mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-09 05:31:41 +00:00
6c95b8df7f
Stan Shebs <stan@codesourcery.com> Add base multi-executable/process support to GDB. gdb/ * Makefile.in (SFILES): Add progspace.c. (COMMON_OBS): Add progspace.o. * progspace.h: New. * progspace.c: New. * breakpoint.h (struct bp_target_info) <placed_address_space>: New field. (struct bp_location) <pspace>: New field. (struct breakpoint) <pspace>: New field. (bpstat_stop_status, breakpoint_here_p) (moribund_breakpoint_here_p, breakpoint_inserted_here_p) (regular_breakpoint_inserted_here_p) (software_breakpoint_inserted_here_p, breakpoint_thread_match) (set_default_breakpoint): Adjust prototypes. (remove_breakpoints_pid, breakpoint_program_space_exit): Declare. (insert_single_step_breakpoint, deprecated_insert_raw_breakpoint): Adjust prototypes. * breakpoint.c (executing_startup): Delete. (default_breakpoint_sspace): New. (breakpoint_restore_shadows): Skip if the address space doesn't match. (update_watchpoint): Record the frame's program space in the breakpoint location. (insert_bp_location): Record the address space in target_info. Adjust to pass the symbol space to solib_name_from_address. (breakpoint_program_space_exit): New. (insert_breakpoint_locations): Switch the symbol space and thread when inserting breakpoints. Don't insert breakpoints in a vfork parent waiting for vfork done if we're not attached to the vfork child. (remove_breakpoints_pid): New. (reattach_breakpoints): Switch to a thread of PID. Ignore breakpoints of other symbol spaces. (create_internal_breakpoint): Store the symbol space in the sal. (create_longjmp_master_breakpoint): Iterate over all symbol spaces. (update_breakpoints_after_exec): Ignore breakpoints for other symbol spaces. (remove_breakpoint): Rename to ... (remove_breakpoint_1): ... this. Pass the breakpoints symbol space to solib_name_from_address. (remove_breakpoint): New. (mark_breakpoints_out): Ignore breakpoints from other symbol spaces. (breakpoint_init_inferior): Ditto. (breakpoint_here_p): Add an address space argument and adjust to use breakpoint_address_match. (moribund_breakpoint_here_p): Ditto. (regular_breakpoint_inserted_here_p): Ditto. (breakpoint_inserted_here_p): Ditto. (software_breakpoint_inserted_here_p): Ditto. (breakpoint_thread_match): Ditto. (bpstat_check_location): Ditto. (bpstat_stop_status): Ditto. (print_breakpoint_location): If there's a location to print, switch the current symbol space. (print_one_breakpoint_location): Add `allflag' argument. (print_one_breakpoint): Ditto. Adjust. (do_captured_breakpoint_query): Adjust. (breakpoint_1): Adjust. (breakpoint_has_pc): Also match the symbol space. (describe_other_breakpoints): Add a symbol space argument and adjust. (set_default_breakpoint): Add a symbol space argument. Set default_breakpoint_sspace. (breakpoint_address_match): New. (check_duplicates_for): Add an address space argument, and adjust. (set_raw_breakpoint): Record the symbol space in the location and in the breakpoint. (set_longjmp_breakpoint): Skip longjmp master breakpoints from other symbol spaces. (remove_thread_event_breakpoints, remove_solib_event_breakpoints) (disable_breakpoints_in_shlibs): Skip breakpoints from other symbol spaces. (disable_breakpoints_in_unloaded_shlib): Match symbol spaces. (create_catchpoint): Set the symbol space in the sal. (disable_breakpoints_before_startup): Skip breakpoints from other symbol spaces. Set executing_startup in the current symbol space. (enable_breakpoints_after_startup): Clear executing_startup in the current symbol space. Skip breakpoints from other symbol spaces. (clone_momentary_breakpoint): Also copy the symbol space. (add_location_to_breakpoint): Set the location's symbol space. (bp_loc_is_permanent): Switch thread and symbol space. (create_breakpoint): Adjust. (expand_line_sal_maybe): Expand comment to mention symbol spaces. Switch thread and symbol space when reading memory. (parse_breakpoint_sals): Set the symbol space in the sal. (break_command_really): Ditto. (skip_prologue_sal): Switch and space. (resolve_sal_pc): Ditto. (watch_command_1): Record the symbol space in the sal. (create_ada_exception_breakpoint): Adjust. (clear_command): Adjust. Match symbol spaces. (update_global_location_list): Use breakpoint_address_match. (breakpoint_re_set_one): Switch thread and space. (breakpoint_re_set): Save symbol space. (breakpoint_re_set_thread): Also reset the symbol space. (deprecated_insert_raw_breakpoint): Add an address space argument. Adjust. (insert_single_step_breakpoint): Ditto. (single_step_breakpoint_inserted_here_p): Ditto. (clear_syscall_counts): New. (_initialize_breakpoint): Install it as inferior_exit observer. * exec.h: Include "progspace.h". (exec_bfd, exec_bfd_mtime): New defines. (exec_close): Declare. * exec.c: Include "gdbthread.h" and "progspace.h". (exec_bfd, exec_bfd_mtime, current_target_sections_1): Delete. (using_exec_ops): New. (exec_close_1): Rename to exec_close, and make public. (exec_close): Rename to exec_close_1, and adjust all callers. Add description. Remove target sections and close executables from all program spaces. (exec_file_attach): Add comment. (add_target_sections): Check on `using_exec_ops' to check if the target should be pushed. (remove_target_sections): Only unpush the target if there are no more target sections in any symbol space. * gdbcore.h: Include "exec.h". (exec_bfd, exec_bfd_mtime): Remove declarations. * frame.h (get_frame_program_space, get_frame_address_space) (frame_unwind_program_space): Declare. * frame.c (struct frame_info) <pspace, aspace>: New fields. (create_sentinel_frame): Add program space argument. Set the pspace and aspace fields of the frame object. (get_current_frame, create_new_frame): Adjust. (get_frame_program_space): New. (frame_unwind_program_space): New. (get_frame_address_space): New. * stack.c (print_frame_info): Adjust. (print_frame): Use the frame's program space. * gdbthread.h (any_live_thread_of_process): Declare. * thread.c (any_live_thread_of_process): New. (switch_to_thread): Switch the program space as well. (restore_selected_frame): Don't warn if trying to restore frame level 0. * inferior.h: Include "progspace.h". (detach_fork): Declare. (struct inferior) <removable, aspace, pspace> <vfork_parent, vfork_child, pending_detach> <waiting_for_vfork_done>: New fields. <terminal_info>: Remove field. <data, num_data>: New fields. (register_inferior_data, register_inferior_data_with_cleanup) (clear_inferior_data, set_inferior_data, inferior_data): Declare. (exit_inferior, exit_inferior_silent, exit_inferior_num_silent) (inferior_appeared): Declare. (find_inferior_pid): Typo. (find_inferior_id, find_inferior_for_program_space): Declare. (set_current_inferior, save_current_inferior, prune_inferiors) (number_of_inferiors): Declare. (inferior_list): Declare. * inferior.c: Include "gdbcore.h" and "symfile.h". (inferior_list): Make public. (delete_inferior_1): Always delete thread silently. (find_inferior_id): Make public. (current_inferior_): New. (current_inferior): Use it. (set_current_inferior): New. (restore_inferior): New. (save_current_inferior): New. (free_inferior): Free the per-inferior data. (add_inferior_silent): Allocate per-inferior data. Call inferior_appeared. (delete_threads_of_inferior): New. (delete_inferior_1): Adjust interface to take an inferior pointer. (delete_inferior): Adjust. (delete_inferior_silent): Adjust. (exit_inferior_1): New. (exit_inferior): New. (exit_inferior_silent): New. (exit_inferior_num_silent): New. (detach_inferior): Adjust. (inferior_appeared): New. (discard_all_inferiors): Adjust. (find_inferior_id): Make public. Assert pid is not zero. (find_inferior_for_program_space): New. (have_inferiors): Check if we have any inferior with pid not zero. (have_live_inferiors): Go over all pushed targets looking for process_stratum. (prune_inferiors): New. (number_of_inferiors): New. (print_inferior): Add executable column. Print vfork parent/child relationships. (inferior_command): Adjust to cope with not running inferiors. (remove_inferior_command): New. (add_inferior_command): New. (clone_inferior_command): New. (struct inferior_data): New. (struct inferior_data_registration): New. (struct inferior_data_registry): New. (inferior_data_registry): New. (register_inferior_data_with_cleanup): New. (register_inferior_data): New. (inferior_alloc_data): New. (inferior_free_data): New. (clear_inferior_data): New. (set_inferior_data): New. (inferior_data): New. (initialize_inferiors): New. (_initialize_inferiors): Register "add-inferior", "remove-inferior" and "clone-inferior" commands. * objfiles.h: Include "progspace.h". (struct objfile) <pspace>: New field. (symfile_objfile, object_files): Don't declare. (ALL_PSPACE_OBJFILES): New. (ALL_PSPACE_OBJFILES_SAFE): New. (ALL_OBJFILES, ALL_OBJFILES_SAFE): Adjust. (ALL_PSPACE_SYMTABS): New. (ALL_PRIMARY_SYMTABS): Adjust. (ALL_PSPACE_PRIMARY_SYMTABS): New. (ALL_PSYMTABS): Adjust. (ALL_PSPACE_PSYMTABS): New. * objfiles.c (object_files, symfile_objfile): Delete. (struct objfile_sspace_info): New. (objfiles_pspace_data): New. (objfiles_pspace_data_cleanup): New. (get_objfile_pspace_data): New. (objfiles_changed_p): Delete. (allocate_objfile): Set the objfile's program space. Adjust to reference objfiles_changed_p in pspace data. (free_objfile): Adjust to reference objfiles_changed_p in pspace data. (objfile_relocate): Ditto. (update_section_map): Add pspace argument. Adjust to iterate over objfiles in the passed in pspace. (find_pc_section): Delete sections and num_sections statics. Adjust to refer to program space's objfiles_changed_p. Adjust to refer to sections and num_sections store in the objfile's pspace data. (objfiles_changed): Adjust to reference objfiles_changed_p in pspace data. (_initialize_objfiles): New. * linespec.c (decode_all_digits, decode_dollar): Set the sal's program space. * source.c (current_source_pspace): New. (get_current_source_symtab_and_line): Set the sal's program space. (set_current_source_symtab_and_line): Set current_source_pspace. (select_source_symtab): Ditto. Use ALL_OBJFILES. (forget_cached_source_info): Iterate over all program spaces. * symfile.c (clear_symtab_users): Adjust. * symmisc.c (print_symbol_bcache_statistics): Iterate over all program spaces. (print_objfile_statistics): Ditto. (maintenance_print_msymbols): Ditto. (maintenance_print_objfiles): Ditto. (maintenance_info_symtabs): Ditto. (maintenance_info_psymtabs): Ditto. * symtab.h (SYMTAB_PSPACE): New. (struct symtab_and_line) <pspace>: New field. * symtab.c (init_sal): Clear the sal's program space. (find_pc_sect_symtab): Set the sal's program space. Switch thread and space. (append_expanded_sal): Add program space argument. Iterate over all program spaces. (expand_line_sal): Iterate over all program spaces. Switch program space. * target.h (enum target_waitkind) <TARGET_WAITKIND_VFORK_DONE>: New. (struct target_ops) <to_thread_address_space>: New field. (target_thread_address_space): Define. * target.c (target_detach): Only remove breakpoints from the inferior we're detaching. (target_thread_address_space): New. * defs.h (initialize_progspace): Declare. * top.c (gdb_init): Call it. * solist.h (struct so_list) <sspace>: New field. * solib.h (struct program_space): Forward declare. (solib_name_from_address): Adjust prototype. * solib.c (so_list_head): Replace with a macro referencing the program space. (update_solib_list): Set the so's program space. (solib_name_from_address): Add a program space argument and adjust. * solib-svr4.c (struct svr4_info) <pid>: Delete field. <interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low> <interp_plt_sect_high>: New fields. (svr4_info_p, svr4_info): Delete. (solib_svr4_sspace_data): New. (get_svr4_info): Rewrite. (svr4_sspace_data_cleanup): New. (open_symbol_file_object): Adjust. (svr4_default_sos): Adjust. (svr4_fetch_objfile_link_map): Adjust. (interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low) (interp_plt_sect_high): Delete. (svr4_in_dynsym_resolve_code): Adjust. (enable_break): Adjust. (svr4_clear_solib): Revert bit that removed the svr4_info here, and reinstate clearing debug_base, debug_loader_offset_p, debug_loader_offset and debug_loader_name. (_initialize_svr4_solib): Register solib_svr4_pspace_data. Don't install an inferior_exit observer anymore. * printcmd.c (struct display) <pspace>: New field. (display_command): Set the display's sspace. (do_one_display): Match the display's sspace. (display_uses_solib_p): Ditto. * linux-fork.c (detach_fork): Moved to infrun.c. (_initialize_linux_fork): Moved "detach-on-fork" command to infrun.c. * infrun.c (detach_fork): Moved from linux-fork.c. (proceed_after_vfork_done): New. (handle_vfork_child_exec_or_exit): New. (follow_exec_mode_replace, follow_exec_mode_keep) (follow_exec_mode_names, follow_exec_mode_string) (show_follow_exec_mode_string): New. (follow_exec): New. Reinstate the mark_breakpoints_out call. Remove shared libraries before attaching new executable. If user wants to keep the inferior, keep it. (displaced_step_fixup): Adjust to pass an address space to the breakpoints module. (resume): Ditto. (clear_proceed_status): In all-stop mode, always clear the proceed status of all threads. (prepare_to_proceed): Adjust to pass an address space to the breakpoints module. (proceed): Ditto. (adjust_pc_after_break): Ditto. (handle_inferior_event): When handling a process exit, switch the program space to the inferior's that had exited. Call handle_vfork_child_exec_or_exit. Adjust to pass an address space to the breakpoints module. In non-stop mode, when following a fork and detach-fork is off, also resume the other branch. Handle TARGET_WAITKIND_VFORK_DONE. Set the program space in sals. (normal_stop): Prune inferiors. (_initialize_infrun): Install the new "follow-exec-mode" command. "detach-on-fork" moved here. * regcache.h (get_regcache_aspace): Declare. * regcache.c (struct regcache) <aspace>: New field. (regcache_xmalloc): Clear the aspace. (get_regcache_aspace): New. (regcache_cpy): Copy the aspace field. (regcache_cpy_no_passthrough): Ditto. (get_thread_regcache): Fetch the thread's address space from the target, and store it in the regcache. * infcall.c (call_function_by_hand): Set the sal's pspace. * arch-utils.c (default_has_shared_address_space): New. * arch-utils.h (default_has_shared_address_space): Declare. * gdbarch.sh (has_shared_address_space): New. * gdbarch.h, gdbarch.c: Regenerate. * linux-tdep.c: Include auxv.h, target.h, elf/common.h. (linux_has_shared_address_space): New. (_initialize_linux_tdep): Declare. * arm-tdep.c (arm_software_single_step): Pass the frame's address space to insert_single_step_breakpoint. * arm-linux-tdep.c (arm_linux_software_single_step): Pass the frame's pspace to breakpoint functions. * cris-tdep.c (crisv32_single_step_through_delay): Ditto. (cris_software_single_step): Ditto. * mips-tdep.c (deal_with_atomic_sequence): Add frame argument. Pass the frame's pspace to breakpoint functions. (mips_software_single_step): Adjust. (mips_single_step_through_delay): Adjust. * rs6000-aix-tdep.c (rs6000_software_single_step): Adjust. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust. * solib-irix.c (enable_break): Adjust to pass the current frame's address space to breakpoint functions. * sparc-tdep.c (sparc_software_single_step): Ditto. * spu-tdep.c (spu_software_single_step): Ditto. * alpha-tdep.c (alpha_software_single_step): Ditto. * record.c (record_wait): Adjust to pass an address space to the breakpoints module. * fork-child.c (fork_inferior): Set the new inferior's program and address spaces. * inf-ptrace.c (inf_ptrace_follow_fork): Copy the parent's program and address spaces. (inf_ptrace_attach): Set the inferior's program and address spaces. * linux-nat.c: Include "solib.h". (linux_child_follow_fork): Manage parent and child's program and address spaces. Clone the parent's program space if necessary. Don't wait for the vfork to be done here. Refuse to resume if following the vfork parent while leaving the child stopped. (resume_callback): Don't resume a vfork parent. (linux_nat_resume): Also check for pending events in the lp->waitstatus field. (linux_handle_extended_wait): Report TARGET_WAITKIND_VFORK_DONE events to the core. (stop_wait_callback): Don't wait for SIGSTOP on vfork parents. (cancel_breakpoint): Adjust. * linux-thread-db.c (thread_db_wait): Don't remove thread event breakpoints here. (thread_db_mourn_inferior): Don't mark breakpoints out here. Remove thread event breakpoints after mourning. * corelow.c: Include progspace.h. (core_open): Set the inferior's program and address spaces. * remote.c (remote_add_inferior): Set the new inferior's program and address spaces. (remote_start_remote): Update address spaces. (extended_remote_create_inferior_1): Don't init the thread list if we already debugging other inferiors. * darwin-nat.c (darwin_attach): Set the new inferior's program and address spaces. * gnu-nat.c (gnu_attach): Ditto. * go32-nat.c (go32_create_inferior): Ditto. * inf-ttrace.c (inf_ttrace_follow_fork, inf_ttrace_attach): Ditto. * monitor.c (monitor_open): Ditto. * nto-procfs.c (procfs_attach, procfs_create_inferior): Ditto. * procfs.c (do_attach): Ditto. * windows-nat.c (do_initial_windows_stuff): Ditto. * inflow.c (inferior_process_group) (terminal_init_inferior_with_pgrp, terminal_inferior, (terminal_ours_1, inflow_inferior_exit, copy_terminal_info) (child_terminal_info, new_tty_postfork, set_sigint_trap): Adjust to use per-inferior data instead of inferior->terminal_info. (inflow_inferior_data): New. (inflow_new_inferior): Delete. (inflow_inferior_data_cleanup): New. (get_inflow_inferior_data): New. * mi/mi-interp.c (mi_new_inferior): Rename to... (mi_inferior_appeared): ... this. (mi_interpreter_init): Adjust. * tui/tui-disasm.c: Include "progspace.h". (tui_set_disassem_content): Pass an address space to breakpoint_here_p. * NEWS: Mention multi-program debugging support. Mention new commands "add-inferior", "clone-inferior", "remove-inferior", "maint info program-spaces", and new option "set follow-exec-mode". 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * observer.texi (new_inferior): Rename to... (inferior_appeared): ... this. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/testsuite/ * gdb.base/foll-vfork.exp: Adjust to spell out "follow-fork". * gdb.base/foll-exec.exp: Adjust to expect a process id before "Executing new program". * gdb.base/foll-fork.exp: Adjust to spell out "follow-fork". * gdb.base/multi-forks.exp: Ditto. Adjust to the inferior being left listed after having been killed. * gdb.base/attach.exp: Adjust to spell out "symbol-file". * gdb.base/maint.exp: Adjust test. * Makefile.in (ALL_SUBDIRS): Add gdb.multi. * gdb.multi/Makefile.in: New. * gdb.multi/base.exp: New. * gdb.multi/goodbye.c: New. * gdb.multi/hangout.c: New. * gdb.multi/hello.c: New. * gdb.multi/bkpt-multi-exec.c: New. * gdb.multi/bkpt-multi-exec.exp: New. * gdb.multi/crashme.c: New. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * gdb.texinfo (Inferiors): Rename node to ... (Inferiors and Programs): ... this. Mention running multiple programs in the same debug session. <info inferiors>: Mention the new 'Executable' column if "info inferiors". Update examples. Document the "add-inferior", "clone-inferior", "remove-inferior" and "maint info program-spaces" commands. (Process): Rename node to... (Forks): ... this. Document "set|show follow-exec-mode".
2724 lines
78 KiB
C
2724 lines
78 KiB
C
/* SPU target-dependent code for GDB, the GNU debugger.
|
|
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
Based on a port by Sid Manning <sid@us.ibm.com>.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "objfiles.h"
|
|
#include "language.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "floatformat.h"
|
|
#include "block.h"
|
|
#include "observer.h"
|
|
#include "infcall.h"
|
|
|
|
#include "spu-tdep.h"
|
|
|
|
|
|
/* The list of available "set spu " and "show spu " commands. */
|
|
static struct cmd_list_element *setspucmdlist = NULL;
|
|
static struct cmd_list_element *showspucmdlist = NULL;
|
|
|
|
/* Whether to stop for new SPE contexts. */
|
|
static int spu_stop_on_load_p = 0;
|
|
/* Whether to automatically flush the SW-managed cache. */
|
|
static int spu_auto_flush_cache_p = 1;
|
|
|
|
|
|
/* The tdep structure. */
|
|
struct gdbarch_tdep
|
|
{
|
|
/* The spufs ID identifying our address space. */
|
|
int id;
|
|
|
|
/* SPU-specific vector type. */
|
|
struct type *spu_builtin_type_vec128;
|
|
};
|
|
|
|
|
|
/* SPU-specific vector type. */
|
|
static struct type *
|
|
spu_builtin_type_vec128 (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (!tdep->spu_builtin_type_vec128)
|
|
{
|
|
const struct builtin_type *bt = builtin_type (gdbarch);
|
|
struct type *t;
|
|
|
|
t = arch_composite_type (gdbarch,
|
|
"__spu_builtin_type_vec128", TYPE_CODE_UNION);
|
|
append_composite_type_field (t, "uint128", bt->builtin_int128);
|
|
append_composite_type_field (t, "v2_int64",
|
|
init_vector_type (bt->builtin_int64, 2));
|
|
append_composite_type_field (t, "v4_int32",
|
|
init_vector_type (bt->builtin_int32, 4));
|
|
append_composite_type_field (t, "v8_int16",
|
|
init_vector_type (bt->builtin_int16, 8));
|
|
append_composite_type_field (t, "v16_int8",
|
|
init_vector_type (bt->builtin_int8, 16));
|
|
append_composite_type_field (t, "v2_double",
|
|
init_vector_type (bt->builtin_double, 2));
|
|
append_composite_type_field (t, "v4_float",
|
|
init_vector_type (bt->builtin_float, 4));
|
|
|
|
TYPE_VECTOR (t) = 1;
|
|
TYPE_NAME (t) = "spu_builtin_type_vec128";
|
|
|
|
tdep->spu_builtin_type_vec128 = t;
|
|
}
|
|
|
|
return tdep->spu_builtin_type_vec128;
|
|
}
|
|
|
|
|
|
/* The list of available "info spu " commands. */
|
|
static struct cmd_list_element *infospucmdlist = NULL;
|
|
|
|
/* Registers. */
|
|
|
|
static const char *
|
|
spu_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
|
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
|
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
|
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
|
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
|
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
|
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
|
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
|
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
|
"id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
|
|
};
|
|
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= sizeof register_names / sizeof *register_names)
|
|
return NULL;
|
|
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static struct type *
|
|
spu_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < SPU_NUM_GPRS)
|
|
return spu_builtin_type_vec128 (gdbarch);
|
|
|
|
switch (reg_nr)
|
|
{
|
|
case SPU_ID_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_PC_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
|
|
case SPU_SP_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint128;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_DECR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
|
}
|
|
}
|
|
|
|
/* Pseudo registers for preferred slots - stack pointer. */
|
|
|
|
static void
|
|
spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
|
|
gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte reg[32];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
|
memset (reg, 0, sizeof reg);
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
reg, 0, sizeof reg);
|
|
|
|
store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
|
|
}
|
|
|
|
static void
|
|
spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_byte reg[16];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
memcpy (buf, reg, 4);
|
|
break;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
|
break;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
spu_pseudo_register_read_spu (regcache, "srr0", buf);
|
|
break;
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
spu_pseudo_register_read_spu (regcache, "lslr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_REGNUM:
|
|
spu_pseudo_register_read_spu (regcache, "decr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
spu_pseudo_register_read_spu (regcache, "decr_status", buf);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
|
|
const gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte reg[32];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
|
xsnprintf (reg, sizeof reg, "0x%s",
|
|
phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
reg, 0, strlen (reg));
|
|
}
|
|
|
|
static void
|
|
spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const gdb_byte *buf)
|
|
{
|
|
gdb_byte reg[16];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
memcpy (reg, buf, 4);
|
|
regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
break;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
|
break;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "srr0", buf);
|
|
break;
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "lslr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "decr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "decr_status", buf);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
/* Value conversion -- access scalar values at the preferred slot. */
|
|
|
|
static struct value *
|
|
spu_value_from_register (struct type *type, int regnum,
|
|
struct frame_info *frame)
|
|
{
|
|
struct value *value = default_value_from_register (type, regnum, frame);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (regnum < SPU_NUM_GPRS && len < 16)
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
set_value_offset (value, preferred_slot);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Register groups. */
|
|
|
|
static int
|
|
spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
/* Registers displayed via 'info regs'. */
|
|
if (group == general_reggroup)
|
|
return 1;
|
|
|
|
/* Registers displayed via 'info float'. */
|
|
if (group == float_reggroup)
|
|
return 0;
|
|
|
|
/* Registers that need to be saved/restored in order to
|
|
push or pop frames. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return 1;
|
|
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
|
|
/* Address handling. */
|
|
|
|
static int
|
|
spu_gdbarch_id (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int id = tdep->id;
|
|
|
|
/* The objfile architecture of a standalone SPU executable does not
|
|
provide an SPU ID. Retrieve it from the the objfile's relocated
|
|
address range in this special case. */
|
|
if (id == -1
|
|
&& symfile_objfile && symfile_objfile->obfd
|
|
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
|
|
&& symfile_objfile->sections != symfile_objfile->sections_end)
|
|
id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
|
|
|
|
return id;
|
|
}
|
|
|
|
static ULONGEST
|
|
spu_lslr (int id)
|
|
{
|
|
gdb_byte buf[32];
|
|
char annex[32];
|
|
|
|
if (id == -1)
|
|
return SPU_LS_SIZE - 1;
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/lslr", id);
|
|
memset (buf, 0, sizeof buf);
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
|
|
return strtoulst (buf, NULL, 16);
|
|
}
|
|
|
|
static int
|
|
spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
if (dwarf2_addr_class == 1)
|
|
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
|
|
return "__ea";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
|
|
const char *name, int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "__ea") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spu_address_to_pointer (struct gdbarch *gdbarch,
|
|
struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
|
SPUADDR_ADDR (addr));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_pointer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
int id = spu_gdbarch_id (gdbarch);
|
|
ULONGEST lslr = spu_lslr (id);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST addr
|
|
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
|
|
|
/* Do not convert __ea pointers. */
|
|
if (TYPE_ADDRESS_CLASS_1 (type))
|
|
return addr;
|
|
|
|
return addr? SPUADDR (id, addr & lslr) : 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_integer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
int id = spu_gdbarch_id (gdbarch);
|
|
ULONGEST lslr = spu_lslr (id);
|
|
ULONGEST addr = unpack_long (type, buf);
|
|
|
|
return SPUADDR (id, addr & lslr);
|
|
}
|
|
|
|
|
|
/* Decoding SPU instructions. */
|
|
|
|
enum
|
|
{
|
|
op_lqd = 0x34,
|
|
op_lqx = 0x3c4,
|
|
op_lqa = 0x61,
|
|
op_lqr = 0x67,
|
|
op_stqd = 0x24,
|
|
op_stqx = 0x144,
|
|
op_stqa = 0x41,
|
|
op_stqr = 0x47,
|
|
|
|
op_il = 0x081,
|
|
op_ila = 0x21,
|
|
op_a = 0x0c0,
|
|
op_ai = 0x1c,
|
|
|
|
op_selb = 0x4,
|
|
|
|
op_br = 0x64,
|
|
op_bra = 0x60,
|
|
op_brsl = 0x66,
|
|
op_brasl = 0x62,
|
|
op_brnz = 0x42,
|
|
op_brz = 0x40,
|
|
op_brhnz = 0x46,
|
|
op_brhz = 0x44,
|
|
op_bi = 0x1a8,
|
|
op_bisl = 0x1a9,
|
|
op_biz = 0x128,
|
|
op_binz = 0x129,
|
|
op_bihz = 0x12a,
|
|
op_bihnz = 0x12b,
|
|
};
|
|
|
|
static int
|
|
is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
|
|
{
|
|
if ((insn >> 21) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*rb = (insn >> 14) & 127;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
|
|
{
|
|
if ((insn >> 28) == op)
|
|
{
|
|
*rt = (insn >> 21) & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*rb = (insn >> 14) & 127;
|
|
*rc = insn & 127;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
|
|
{
|
|
if ((insn >> 21) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
|
|
{
|
|
if ((insn >> 24) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri16 (unsigned int insn, int op, int *rt, int *i16)
|
|
{
|
|
if ((insn >> 23) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri18 (unsigned int insn, int op, int *rt, int *i18)
|
|
{
|
|
if ((insn >> 25) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_branch (unsigned int insn, int *offset, int *reg)
|
|
{
|
|
int rt, i7, i16;
|
|
|
|
if (is_ri16 (insn, op_br, &rt, &i16)
|
|
|| is_ri16 (insn, op_brsl, &rt, &i16)
|
|
|| is_ri16 (insn, op_brnz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brhnz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brhz, &rt, &i16))
|
|
{
|
|
*reg = SPU_PC_REGNUM;
|
|
*offset = i16 << 2;
|
|
return 1;
|
|
}
|
|
|
|
if (is_ri16 (insn, op_bra, &rt, &i16)
|
|
|| is_ri16 (insn, op_brasl, &rt, &i16))
|
|
{
|
|
*reg = -1;
|
|
*offset = i16 << 2;
|
|
return 1;
|
|
}
|
|
|
|
if (is_ri7 (insn, op_bi, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bisl, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_biz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_binz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bihz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bihnz, &rt, reg, &i7))
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Prolog parsing. */
|
|
|
|
struct spu_prologue_data
|
|
{
|
|
/* Stack frame size. -1 if analysis was unsuccessful. */
|
|
int size;
|
|
|
|
/* How to find the CFA. The CFA is equal to SP at function entry. */
|
|
int cfa_reg;
|
|
int cfa_offset;
|
|
|
|
/* Offset relative to CFA where a register is saved. -1 if invalid. */
|
|
int reg_offset[SPU_NUM_GPRS];
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc, CORE_ADDR end_pc,
|
|
struct spu_prologue_data *data)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int found_sp = 0;
|
|
int found_fp = 0;
|
|
int found_lr = 0;
|
|
int reg_immed[SPU_NUM_GPRS];
|
|
gdb_byte buf[16];
|
|
CORE_ADDR prolog_pc = start_pc;
|
|
CORE_ADDR pc;
|
|
int i;
|
|
|
|
|
|
/* Initialize DATA to default values. */
|
|
data->size = -1;
|
|
|
|
data->cfa_reg = SPU_RAW_SP_REGNUM;
|
|
data->cfa_offset = 0;
|
|
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
data->reg_offset[i] = -1;
|
|
|
|
/* Set up REG_IMMED array. This is non-zero for a register if we know its
|
|
preferred slot currently holds this immediate value. */
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
reg_immed[i] = 0;
|
|
|
|
/* Scan instructions until the first branch.
|
|
|
|
The following instructions are important prolog components:
|
|
|
|
- The first instruction to set up the stack pointer.
|
|
- The first instruction to set up the frame pointer.
|
|
- The first instruction to save the link register.
|
|
|
|
We return the instruction after the latest of these three,
|
|
or the incoming PC if none is found. The first instruction
|
|
to set up the stack pointer also defines the frame size.
|
|
|
|
Note that instructions saving incoming arguments to their stack
|
|
slots are not counted as important, because they are hard to
|
|
identify with certainty. This should not matter much, because
|
|
arguments are relevant only in code compiled with debug data,
|
|
and in such code the GDB core will advance until the first source
|
|
line anyway, using SAL data.
|
|
|
|
For purposes of stack unwinding, we analyze the following types
|
|
of instructions in addition:
|
|
|
|
- Any instruction adding to the current frame pointer.
|
|
- Any instruction loading an immediate constant into a register.
|
|
- Any instruction storing a register onto the stack.
|
|
|
|
These are used to compute the CFA and REG_OFFSET output. */
|
|
|
|
for (pc = start_pc; pc < end_pc; pc += 4)
|
|
{
|
|
unsigned int insn;
|
|
int rt, ra, rb, rc, immed;
|
|
|
|
if (target_read_memory (pc, buf, 4))
|
|
break;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
/* AI is the typical instruction to set up a stack frame.
|
|
It is also used to initialize the frame pointer. */
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
|
|
{
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
|
data->cfa_offset -= immed;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_sp)
|
|
{
|
|
found_sp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
data->size = -immed;
|
|
}
|
|
else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_fp)
|
|
{
|
|
found_fp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
data->cfa_reg = SPU_FP_REGNUM;
|
|
data->cfa_offset -= immed;
|
|
}
|
|
}
|
|
|
|
/* A is used to set up stack frames of size >= 512 bytes.
|
|
If we have tracked the contents of the addend register,
|
|
we can handle this as well. */
|
|
else if (is_rr (insn, op_a, &rt, &ra, &rb))
|
|
{
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
|
{
|
|
if (reg_immed[rb] != 0)
|
|
data->cfa_offset -= reg_immed[rb];
|
|
else
|
|
data->cfa_reg = -1; /* We don't know the CFA any more. */
|
|
}
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_sp)
|
|
{
|
|
found_sp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
if (reg_immed[rb] != 0)
|
|
data->size = -reg_immed[rb];
|
|
}
|
|
}
|
|
|
|
/* We need to track IL and ILA used to load immediate constants
|
|
in case they are later used as input to an A instruction. */
|
|
else if (is_ri16 (insn, op_il, &rt, &immed))
|
|
{
|
|
reg_immed[rt] = immed;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
else if (is_ri18 (insn, op_ila, &rt, &immed))
|
|
{
|
|
reg_immed[rt] = immed & 0x3ffff;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
/* STQD is used to save registers to the stack. */
|
|
else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
|
|
{
|
|
if (ra == data->cfa_reg)
|
|
data->reg_offset[rt] = data->cfa_offset - (immed << 4);
|
|
|
|
if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
|
|
&& !found_lr)
|
|
{
|
|
found_lr = 1;
|
|
prolog_pc = pc + 4;
|
|
}
|
|
}
|
|
|
|
/* _start uses SELB to set up the stack pointer. */
|
|
else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
/* We terminate if we find a branch. */
|
|
else if (is_branch (insn, &immed, &ra))
|
|
break;
|
|
}
|
|
|
|
|
|
/* If we successfully parsed until here, and didn't find any instruction
|
|
modifying SP, we assume we have a frameless function. */
|
|
if (!found_sp)
|
|
data->size = 0;
|
|
|
|
/* Return cooked instead of raw SP. */
|
|
if (data->cfa_reg == SPU_RAW_SP_REGNUM)
|
|
data->cfa_reg = SPU_SP_REGNUM;
|
|
|
|
return prolog_pc;
|
|
}
|
|
|
|
/* Return the first instruction after the prologue starting at PC. */
|
|
static CORE_ADDR
|
|
spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct spu_prologue_data data;
|
|
return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
}
|
|
|
|
/* Return the frame pointer in use at address PC. */
|
|
static void
|
|
spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|
int *reg, LONGEST *offset)
|
|
{
|
|
struct spu_prologue_data data;
|
|
spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
|
{
|
|
/* The 'frame pointer' address is CFA minus frame size. */
|
|
*reg = data.cfa_reg;
|
|
*offset = data.cfa_offset - data.size;
|
|
}
|
|
else
|
|
{
|
|
/* ??? We don't really know ... */
|
|
*reg = SPU_SP_REGNUM;
|
|
*offset = 0;
|
|
}
|
|
}
|
|
|
|
/* Return true if we are in the function's epilogue, i.e. after the
|
|
instruction that destroyed the function's stack frame.
|
|
|
|
1) scan forward from the point of execution:
|
|
a) If you find an instruction that modifies the stack pointer
|
|
or transfers control (except a return), execution is not in
|
|
an epilogue, return.
|
|
b) Stop scanning if you find a return instruction or reach the
|
|
end of the function or reach the hard limit for the size of
|
|
an epilogue.
|
|
2) scan backward from the point of execution:
|
|
a) If you find an instruction that modifies the stack pointer,
|
|
execution *is* in an epilogue, return.
|
|
b) Stop scanning if you reach an instruction that transfers
|
|
control or the beginning of the function or reach the hard
|
|
limit for the size of an epilogue. */
|
|
|
|
static int
|
|
spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
|
bfd_byte buf[4];
|
|
unsigned int insn;
|
|
int rt, ra, rb, rc, immed;
|
|
|
|
/* Find the search limits based on function boundaries and hard limit.
|
|
We assume the epilogue can be up to 64 instructions long. */
|
|
|
|
const int spu_max_epilogue_size = 64 * 4;
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
|
return 0;
|
|
|
|
if (pc - func_start < spu_max_epilogue_size)
|
|
epilogue_start = func_start;
|
|
else
|
|
epilogue_start = pc - spu_max_epilogue_size;
|
|
|
|
if (func_end - pc < spu_max_epilogue_size)
|
|
epilogue_end = func_end;
|
|
else
|
|
epilogue_end = pc + spu_max_epilogue_size;
|
|
|
|
/* Scan forward until next 'bi $0'. */
|
|
|
|
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
|
|
{
|
|
if (target_read_memory (scan_pc, buf, 4))
|
|
return 0;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (is_branch (insn, &immed, &ra))
|
|
{
|
|
if (immed == 0 && ra == SPU_LR_REGNUM)
|
|
break;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (scan_pc >= epilogue_end)
|
|
return 0;
|
|
|
|
/* Scan backward until adjustment to stack pointer (R1). */
|
|
|
|
for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
|
|
{
|
|
if (target_read_memory (scan_pc, buf, 4))
|
|
return 0;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (is_branch (insn, &immed, &ra))
|
|
return 0;
|
|
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Normal stack frames. */
|
|
|
|
struct spu_unwind_cache
|
|
{
|
|
CORE_ADDR func;
|
|
CORE_ADDR frame_base;
|
|
CORE_ADDR local_base;
|
|
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct spu_unwind_cache *
|
|
spu_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct spu_unwind_cache *info;
|
|
struct spu_prologue_data data;
|
|
CORE_ADDR id = tdep->id;
|
|
gdb_byte buf[16];
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
info->frame_base = 0;
|
|
info->local_base = 0;
|
|
|
|
/* Find the start of the current function, and analyze its prologue. */
|
|
info->func = get_frame_func (this_frame);
|
|
if (info->func == 0)
|
|
{
|
|
/* Fall back to using the current PC as frame ID. */
|
|
info->func = get_frame_pc (this_frame);
|
|
data.size = -1;
|
|
}
|
|
else
|
|
spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
|
|
&data);
|
|
|
|
/* If successful, use prologue analysis data. */
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
|
{
|
|
CORE_ADDR cfa;
|
|
int i;
|
|
|
|
/* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
|
|
get_frame_register (this_frame, data.cfa_reg, buf);
|
|
cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
|
|
cfa = SPUADDR (id, cfa);
|
|
|
|
/* Call-saved register slots. */
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
if (i == SPU_LR_REGNUM
|
|
|| (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
|
|
if (data.reg_offset[i] != -1)
|
|
info->saved_regs[i].addr = cfa - data.reg_offset[i];
|
|
|
|
/* Frame bases. */
|
|
info->frame_base = cfa;
|
|
info->local_base = cfa - data.size;
|
|
}
|
|
|
|
/* Otherwise, fall back to reading the backchain link. */
|
|
else
|
|
{
|
|
CORE_ADDR reg;
|
|
LONGEST backchain;
|
|
int status;
|
|
|
|
/* Get the backchain. */
|
|
reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
|
|
status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
|
|
&backchain);
|
|
|
|
/* A zero backchain terminates the frame chain. Also, sanity
|
|
check against the local store size limit. */
|
|
if (status && backchain > 0 && backchain < SPU_LS_SIZE)
|
|
{
|
|
/* Assume the link register is saved into its slot. */
|
|
if (backchain + 16 < SPU_LS_SIZE)
|
|
info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
|
|
|
|
/* Frame bases. */
|
|
info->frame_base = SPUADDR (id, backchain);
|
|
info->local_base = SPUADDR (id, reg);
|
|
}
|
|
}
|
|
|
|
/* If we didn't find a frame, we cannot determine SP / return address. */
|
|
if (info->frame_base == 0)
|
|
return info;
|
|
|
|
/* The previous SP is equal to the CFA. */
|
|
trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
|
|
SPUADDR_ADDR (info->frame_base));
|
|
|
|
/* Read full contents of the unwound link register in order to
|
|
be able to determine the return address. */
|
|
if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
|
|
target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
|
|
else
|
|
get_frame_register (this_frame, SPU_LR_REGNUM, buf);
|
|
|
|
/* Normally, the return address is contained in the slot 0 of the
|
|
link register, and slots 1-3 are zero. For an overlay return,
|
|
slot 0 contains the address of the overlay manager return stub,
|
|
slot 1 contains the partition number of the overlay section to
|
|
be returned to, and slot 2 contains the return address within
|
|
that section. Return the latter address in that case. */
|
|
if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
|
extract_unsigned_integer (buf + 8, 4, byte_order));
|
|
else
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
|
extract_unsigned_integer (buf, 4, byte_order));
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
spu_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct spu_unwind_cache *info =
|
|
spu_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
if (info->frame_base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
|
}
|
|
|
|
static struct value *
|
|
spu_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct spu_unwind_cache *info
|
|
= spu_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
/* Special-case the stack pointer. */
|
|
if (regnum == SPU_RAW_SP_REGNUM)
|
|
regnum = SPU_SP_REGNUM;
|
|
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind spu_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
spu_frame_this_id,
|
|
spu_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct spu_unwind_cache *info
|
|
= spu_frame_unwind_cache (this_frame, this_cache);
|
|
return info->local_base;
|
|
}
|
|
|
|
static const struct frame_base spu_frame_base = {
|
|
&spu_frame_unwind,
|
|
spu_frame_base_address,
|
|
spu_frame_base_address,
|
|
spu_frame_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
|
|
/* Mask off interrupt enable bit. */
|
|
return SPUADDR (tdep->id, pc & -4);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
|
|
return SPUADDR (tdep->id, sp);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_read_pc (struct regcache *regcache)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
|
|
ULONGEST pc;
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
|
|
/* Mask off interrupt enable bit. */
|
|
return SPUADDR (tdep->id, pc & -4);
|
|
}
|
|
|
|
static void
|
|
spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
/* Keep interrupt enabled state unchanged. */
|
|
ULONGEST old_pc;
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
|
|
regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
|
|
(SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
|
|
}
|
|
|
|
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
|
|
|
struct spu2ppu_cache
|
|
{
|
|
struct frame_id frame_id;
|
|
struct regcache *regcache;
|
|
};
|
|
|
|
static struct gdbarch *
|
|
spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
return get_regcache_arch (cache->regcache);
|
|
}
|
|
|
|
static void
|
|
spu2ppu_this_id (struct frame_info *this_frame,
|
|
void **this_cache, struct frame_id *this_id)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
*this_id = cache->frame_id;
|
|
}
|
|
|
|
static struct value *
|
|
spu2ppu_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
|
|
gdb_byte *buf;
|
|
|
|
buf = alloca (register_size (gdbarch, regnum));
|
|
regcache_cooked_read (cache->regcache, regnum, buf);
|
|
return frame_unwind_got_bytes (this_frame, regnum, buf);
|
|
}
|
|
|
|
static int
|
|
spu2ppu_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR base, func, backchain;
|
|
gdb_byte buf[4];
|
|
|
|
if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
|
|
return 0;
|
|
|
|
base = get_frame_sp (this_frame);
|
|
func = get_frame_pc (this_frame);
|
|
if (target_read_memory (base, buf, 4))
|
|
return 0;
|
|
backchain = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (!backchain)
|
|
{
|
|
struct frame_info *fi;
|
|
|
|
struct spu2ppu_cache *cache
|
|
= FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
|
|
|
|
cache->frame_id = frame_id_build (base + 16, func);
|
|
|
|
for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
|
|
break;
|
|
|
|
if (fi)
|
|
{
|
|
cache->regcache = frame_save_as_regcache (fi);
|
|
*this_prologue_cache = cache;
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
struct regcache *regcache;
|
|
regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
|
|
cache->regcache = regcache_dup (regcache);
|
|
*this_prologue_cache = cache;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
|
|
{
|
|
struct spu2ppu_cache *cache = this_cache;
|
|
regcache_xfree (cache->regcache);
|
|
}
|
|
|
|
static const struct frame_unwind spu2ppu_unwind = {
|
|
ARCH_FRAME,
|
|
spu2ppu_this_id,
|
|
spu2ppu_prev_register,
|
|
NULL,
|
|
spu2ppu_sniffer,
|
|
spu2ppu_dealloc_cache,
|
|
spu2ppu_prev_arch,
|
|
};
|
|
|
|
|
|
/* Function calling convention. */
|
|
|
|
static CORE_ADDR
|
|
spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
return sp & ~15;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
|
|
struct value **args, int nargs, struct type *value_type,
|
|
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
|
|
struct regcache *regcache)
|
|
{
|
|
/* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
|
|
sp = (sp - 4) & ~15;
|
|
/* Store the address of that breakpoint */
|
|
*bp_addr = sp;
|
|
/* The call starts at the callee's entry point. */
|
|
*real_pc = funaddr;
|
|
|
|
return sp;
|
|
}
|
|
|
|
static int
|
|
spu_scalar_value_p (struct type *type)
|
|
{
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_ENUM:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_PTR:
|
|
case TYPE_CODE_REF:
|
|
return TYPE_LENGTH (type) <= 16;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_value_to_regcache (struct regcache *regcache, int regnum,
|
|
struct type *type, const gdb_byte *in)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (spu_scalar_value_p (type))
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
|
|
}
|
|
else
|
|
{
|
|
while (len >= 16)
|
|
{
|
|
regcache_cooked_write (regcache, regnum++, in);
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len > 0)
|
|
regcache_cooked_write_part (regcache, regnum, 0, len, in);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_regcache_to_value (struct regcache *regcache, int regnum,
|
|
struct type *type, gdb_byte *out)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (spu_scalar_value_p (type))
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
|
|
}
|
|
else
|
|
{
|
|
while (len >= 16)
|
|
{
|
|
regcache_cooked_read (regcache, regnum++, out);
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len > 0)
|
|
regcache_cooked_read_part (regcache, regnum, 0, len, out);
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR sp_delta;
|
|
int i;
|
|
int regnum = SPU_ARG1_REGNUM;
|
|
int stack_arg = -1;
|
|
gdb_byte buf[16];
|
|
|
|
/* Set the return address. */
|
|
memset (buf, 0, sizeof buf);
|
|
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
|
|
regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
|
|
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
|
Both adjust the register count and store that value. */
|
|
if (struct_return)
|
|
{
|
|
memset (buf, 0, sizeof buf);
|
|
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
|
|
regcache_cooked_write (regcache, regnum++, buf);
|
|
}
|
|
|
|
/* Fill in argument registers. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
const gdb_byte *contents = value_contents (arg);
|
|
int len = TYPE_LENGTH (type);
|
|
int n_regs = align_up (len, 16) / 16;
|
|
|
|
/* If the argument doesn't wholly fit into registers, it and
|
|
all subsequent arguments go to the stack. */
|
|
if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
|
|
{
|
|
stack_arg = i;
|
|
break;
|
|
}
|
|
|
|
spu_value_to_regcache (regcache, regnum, type, contents);
|
|
regnum += n_regs;
|
|
}
|
|
|
|
/* Overflow arguments go to the stack. */
|
|
if (stack_arg != -1)
|
|
{
|
|
CORE_ADDR ap;
|
|
|
|
/* Allocate all required stack size. */
|
|
for (i = stack_arg; i < nargs; i++)
|
|
{
|
|
struct type *type = check_typedef (value_type (args[i]));
|
|
sp -= align_up (TYPE_LENGTH (type), 16);
|
|
}
|
|
|
|
/* Fill in stack arguments. */
|
|
ap = sp;
|
|
for (i = stack_arg; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (type);
|
|
int preferred_slot;
|
|
|
|
if (spu_scalar_value_p (type))
|
|
preferred_slot = len < 4 ? 4 - len : 0;
|
|
else
|
|
preferred_slot = 0;
|
|
|
|
target_write_memory (ap + preferred_slot, value_contents (arg), len);
|
|
ap += align_up (TYPE_LENGTH (type), 16);
|
|
}
|
|
}
|
|
|
|
/* Allocate stack frame header. */
|
|
sp -= 32;
|
|
|
|
/* Store stack back chain. */
|
|
regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
|
|
target_write_memory (sp, buf, 16);
|
|
|
|
/* Finally, update all slots of the SP register. */
|
|
sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
|
|
store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
|
|
}
|
|
regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static struct frame_id
|
|
spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
|
|
return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
|
|
}
|
|
|
|
/* Function return value access. */
|
|
|
|
static enum return_value_convention
|
|
spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *out, const gdb_byte *in)
|
|
{
|
|
enum return_value_convention rvc;
|
|
|
|
if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
|
|
rvc = RETURN_VALUE_REGISTER_CONVENTION;
|
|
else
|
|
rvc = RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (in)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error ("Cannot set function return value.");
|
|
break;
|
|
}
|
|
}
|
|
else if (out)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error ("Function return value unknown.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rvc;
|
|
}
|
|
|
|
|
|
/* Breakpoints. */
|
|
|
|
static const gdb_byte *
|
|
spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
|
|
{
|
|
static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
|
|
|
|
*lenptr = sizeof breakpoint;
|
|
return breakpoint;
|
|
}
|
|
|
|
|
|
/* Software single-stepping support. */
|
|
|
|
static int
|
|
spu_software_single_step (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR pc, next_pc;
|
|
unsigned int insn;
|
|
int offset, reg;
|
|
gdb_byte buf[4];
|
|
|
|
pc = get_frame_pc (frame);
|
|
|
|
if (target_read_memory (pc, buf, 4))
|
|
return 1;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
/* Next sequential instruction is at PC + 4, except if the current
|
|
instruction is a PPE-assisted call, in which case it is at PC + 8.
|
|
Wrap around LS limit to be on the safe side. */
|
|
if ((insn & 0xffffff00) == 0x00002100)
|
|
next_pc = (SPUADDR_ADDR (pc) + 8) & (SPU_LS_SIZE - 1);
|
|
else
|
|
next_pc = (SPUADDR_ADDR (pc) + 4) & (SPU_LS_SIZE - 1);
|
|
|
|
insert_single_step_breakpoint (gdbarch,
|
|
aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
|
|
|
|
if (is_branch (insn, &offset, ®))
|
|
{
|
|
CORE_ADDR target = offset;
|
|
|
|
if (reg == SPU_PC_REGNUM)
|
|
target += SPUADDR_ADDR (pc);
|
|
else if (reg != -1)
|
|
{
|
|
get_frame_register_bytes (frame, reg, 0, 4, buf);
|
|
target += extract_unsigned_integer (buf, 4, byte_order) & -4;
|
|
}
|
|
|
|
target = target & (SPU_LS_SIZE - 1);
|
|
if (target != next_pc)
|
|
insert_single_step_breakpoint (gdbarch, aspace,
|
|
SPUADDR (SPUADDR_SPU (pc), target));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Longjmp support. */
|
|
|
|
static int
|
|
spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[4];
|
|
CORE_ADDR jb_addr;
|
|
|
|
/* Jump buffer is pointed to by the argument register $r3. */
|
|
get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
|
|
jb_addr = extract_unsigned_integer (buf, 4, byte_order);
|
|
if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf, 4, byte_order);
|
|
*pc = SPUADDR (tdep->id, *pc);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Disassembler. */
|
|
|
|
struct spu_dis_asm_data
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
int id;
|
|
};
|
|
|
|
static void
|
|
spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
|
|
{
|
|
struct spu_dis_asm_data *data = info->application_data;
|
|
print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
|
|
}
|
|
|
|
static int
|
|
gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
|
|
{
|
|
/* The opcodes disassembler does 18-bit address arithmetic. Make sure the
|
|
SPU ID encoded in the high bits is added back when we call print_address. */
|
|
struct disassemble_info spu_info = *info;
|
|
struct spu_dis_asm_data data;
|
|
data.gdbarch = info->application_data;
|
|
data.id = SPUADDR_SPU (memaddr);
|
|
|
|
spu_info.application_data = &data;
|
|
spu_info.print_address_func = spu_dis_asm_print_address;
|
|
return print_insn_spu (memaddr, &spu_info);
|
|
}
|
|
|
|
|
|
/* Target overlays for the SPU overlay manager.
|
|
|
|
See the documentation of simple_overlay_update for how the
|
|
interface is supposed to work.
|
|
|
|
Data structures used by the overlay manager:
|
|
|
|
struct ovly_table
|
|
{
|
|
u32 vma;
|
|
u32 size;
|
|
u32 pos;
|
|
u32 buf;
|
|
} _ovly_table[]; -- one entry per overlay section
|
|
|
|
struct ovly_buf_table
|
|
{
|
|
u32 mapped;
|
|
} _ovly_buf_table[]; -- one entry per overlay buffer
|
|
|
|
_ovly_table should never change.
|
|
|
|
Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
|
|
and _ovly_buf_table are of type STT_OBJECT and their size set to the size
|
|
of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
|
|
|
|
mapped is an index into _ovly_table. Both the mapped and buf indices start
|
|
from one to reference the first entry in their respective tables. */
|
|
|
|
/* Using the per-objfile private data mechanism, we store for each
|
|
objfile an array of "struct spu_overlay_table" structures, one
|
|
for each obj_section of the objfile. This structure holds two
|
|
fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
|
|
is *not* an overlay section. If it is non-zero, it represents
|
|
a target address. The overlay section is mapped iff the target
|
|
integer at this location equals MAPPED_VAL. */
|
|
|
|
static const struct objfile_data *spu_overlay_data;
|
|
|
|
struct spu_overlay_table
|
|
{
|
|
CORE_ADDR mapped_ptr;
|
|
CORE_ADDR mapped_val;
|
|
};
|
|
|
|
/* Retrieve the overlay table for OBJFILE. If not already cached, read
|
|
the _ovly_table data structure from the target and initialize the
|
|
spu_overlay_table data structure from it. */
|
|
static struct spu_overlay_table *
|
|
spu_get_overlay_table (struct objfile *objfile)
|
|
{
|
|
enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
|
|
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
|
struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
|
|
CORE_ADDR ovly_table_base, ovly_buf_table_base;
|
|
unsigned ovly_table_size, ovly_buf_table_size;
|
|
struct spu_overlay_table *tbl;
|
|
struct obj_section *osect;
|
|
char *ovly_table;
|
|
int i;
|
|
|
|
tbl = objfile_data (objfile, spu_overlay_data);
|
|
if (tbl)
|
|
return tbl;
|
|
|
|
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
|
|
if (!ovly_table_msym)
|
|
return NULL;
|
|
|
|
ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
|
|
if (!ovly_buf_table_msym)
|
|
return NULL;
|
|
|
|
ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
|
ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
|
|
|
|
ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
|
|
ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
|
|
|
|
ovly_table = xmalloc (ovly_table_size);
|
|
read_memory (ovly_table_base, ovly_table, ovly_table_size);
|
|
|
|
tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
|
objfile->sections_end - objfile->sections,
|
|
struct spu_overlay_table);
|
|
|
|
for (i = 0; i < ovly_table_size / 16; i++)
|
|
{
|
|
CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
|
|
4, byte_order);
|
|
CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
|
|
4, byte_order);
|
|
CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
|
|
4, byte_order);
|
|
CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
|
|
4, byte_order);
|
|
|
|
if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
|
|
continue;
|
|
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
|
|
&& pos == osect->the_bfd_section->filepos)
|
|
{
|
|
int ndx = osect - objfile->sections;
|
|
tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
|
|
tbl[ndx].mapped_val = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
xfree (ovly_table);
|
|
set_objfile_data (objfile, spu_overlay_data, tbl);
|
|
return tbl;
|
|
}
|
|
|
|
/* Read _ovly_buf_table entry from the target to dermine whether
|
|
OSECT is currently mapped, and update the mapped state. */
|
|
static void
|
|
spu_overlay_update_osect (struct obj_section *osect)
|
|
{
|
|
enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
|
|
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
|
struct spu_overlay_table *ovly_table;
|
|
CORE_ADDR id, val;
|
|
|
|
ovly_table = spu_get_overlay_table (osect->objfile);
|
|
if (!ovly_table)
|
|
return;
|
|
|
|
ovly_table += osect - osect->objfile->sections;
|
|
if (ovly_table->mapped_ptr == 0)
|
|
return;
|
|
|
|
id = SPUADDR_SPU (obj_section_addr (osect));
|
|
val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
|
|
4, byte_order);
|
|
osect->ovly_mapped = (val == ovly_table->mapped_val);
|
|
}
|
|
|
|
/* If OSECT is NULL, then update all sections' mapped state.
|
|
If OSECT is non-NULL, then update only OSECT's mapped state. */
|
|
static void
|
|
spu_overlay_update (struct obj_section *osect)
|
|
{
|
|
/* Just one section. */
|
|
if (osect)
|
|
spu_overlay_update_osect (osect);
|
|
|
|
/* All sections. */
|
|
else
|
|
{
|
|
struct objfile *objfile;
|
|
|
|
ALL_OBJSECTIONS (objfile, osect)
|
|
if (section_is_overlay (osect))
|
|
spu_overlay_update_osect (osect);
|
|
}
|
|
}
|
|
|
|
/* Whenever a new objfile is loaded, read the target's _ovly_table.
|
|
If there is one, go through all sections and make sure for non-
|
|
overlay sections LMA equals VMA, while for overlay sections LMA
|
|
is larger than local store size. */
|
|
static void
|
|
spu_overlay_new_objfile (struct objfile *objfile)
|
|
{
|
|
struct spu_overlay_table *ovly_table;
|
|
struct obj_section *osect;
|
|
|
|
/* If we've already touched this file, do nothing. */
|
|
if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
|
|
return;
|
|
|
|
/* Consider only SPU objfiles. */
|
|
if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
|
|
return;
|
|
|
|
/* Check if this objfile has overlays. */
|
|
ovly_table = spu_get_overlay_table (objfile);
|
|
if (!ovly_table)
|
|
return;
|
|
|
|
/* Now go and fiddle with all the LMAs. */
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
{
|
|
bfd *obfd = objfile->obfd;
|
|
asection *bsect = osect->the_bfd_section;
|
|
int ndx = osect - objfile->sections;
|
|
|
|
if (ovly_table[ndx].mapped_ptr == 0)
|
|
bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
|
|
else
|
|
bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
|
|
}
|
|
}
|
|
|
|
|
|
/* Insert temporary breakpoint on "main" function of newly loaded
|
|
SPE context OBJFILE. */
|
|
static void
|
|
spu_catch_start (struct objfile *objfile)
|
|
{
|
|
struct minimal_symbol *minsym;
|
|
struct symtab *symtab;
|
|
CORE_ADDR pc;
|
|
char buf[32];
|
|
|
|
/* Do this only if requested by "set spu stop-on-load on". */
|
|
if (!spu_stop_on_load_p)
|
|
return;
|
|
|
|
/* Consider only SPU objfiles. */
|
|
if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
|
|
return;
|
|
|
|
/* The main objfile is handled differently. */
|
|
if (objfile == symfile_objfile)
|
|
return;
|
|
|
|
/* There can be multiple symbols named "main". Search for the
|
|
"main" in *this* objfile. */
|
|
minsym = lookup_minimal_symbol ("main", NULL, objfile);
|
|
if (!minsym)
|
|
return;
|
|
|
|
/* If we have debugging information, try to use it -- this
|
|
will allow us to properly skip the prologue. */
|
|
pc = SYMBOL_VALUE_ADDRESS (minsym);
|
|
symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
|
|
if (symtab != NULL)
|
|
{
|
|
struct blockvector *bv = BLOCKVECTOR (symtab);
|
|
struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
struct symbol *sym;
|
|
struct symtab_and_line sal;
|
|
|
|
sym = lookup_block_symbol (block, "main", NULL, VAR_DOMAIN);
|
|
if (sym)
|
|
{
|
|
fixup_symbol_section (sym, objfile);
|
|
sal = find_function_start_sal (sym, 1);
|
|
pc = sal.pc;
|
|
}
|
|
}
|
|
|
|
/* Use a numerical address for the set_breakpoint command to avoid having
|
|
the breakpoint re-set incorrectly. */
|
|
xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
|
|
set_breakpoint (get_objfile_arch (objfile),
|
|
buf, NULL /* condition */,
|
|
0 /* hardwareflag */, 1 /* tempflag */,
|
|
-1 /* thread */, 0 /* ignore_count */,
|
|
0 /* pending */, 1 /* enabled */);
|
|
}
|
|
|
|
|
|
/* Look up OBJFILE loaded into FRAME's SPU context. */
|
|
static struct objfile *
|
|
spu_objfile_from_frame (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct objfile *obj;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
return NULL;
|
|
|
|
ALL_OBJFILES (obj)
|
|
{
|
|
if (obj->sections != obj->sections_end
|
|
&& SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
|
|
return obj;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Flush cache for ea pointer access if available. */
|
|
static void
|
|
flush_ea_cache (void)
|
|
{
|
|
struct minimal_symbol *msymbol;
|
|
struct objfile *obj;
|
|
|
|
if (!has_stack_frames ())
|
|
return;
|
|
|
|
obj = spu_objfile_from_frame (get_current_frame ());
|
|
if (obj == NULL)
|
|
return;
|
|
|
|
/* Lookup inferior function __cache_flush. */
|
|
msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
|
|
if (msymbol != NULL)
|
|
{
|
|
struct type *type;
|
|
CORE_ADDR addr;
|
|
|
|
type = objfile_type (obj)->builtin_void;
|
|
type = lookup_function_type (type);
|
|
type = lookup_pointer_type (type);
|
|
addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
|
|
|
call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
|
|
}
|
|
}
|
|
|
|
/* This handler is called when the inferior has stopped. If it is stopped in
|
|
SPU architecture then flush the ea cache if used. */
|
|
static void
|
|
spu_attach_normal_stop (struct bpstats *bs, int print_frame)
|
|
{
|
|
if (!spu_auto_flush_cache_p)
|
|
return;
|
|
|
|
/* Temporarily reset spu_auto_flush_cache_p to avoid recursively
|
|
re-entering this function when __cache_flush stops. */
|
|
spu_auto_flush_cache_p = 0;
|
|
flush_ea_cache ();
|
|
spu_auto_flush_cache_p = 1;
|
|
}
|
|
|
|
|
|
/* "info spu" commands. */
|
|
|
|
static void
|
|
info_spu_event_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
ULONGEST event_status = 0;
|
|
ULONGEST event_mask = 0;
|
|
struct cleanup *chain;
|
|
gdb_byte buf[100];
|
|
char annex[32];
|
|
LONGEST len;
|
|
int rc, id;
|
|
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/event_status", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read event_status."));
|
|
buf[len] = '\0';
|
|
event_status = strtoulst (buf, NULL, 16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/event_mask", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read event_mask."));
|
|
buf[len] = '\0';
|
|
event_mask = strtoulst (buf, NULL, 16);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
|
|
|
|
if (ui_out_is_mi_like_p (uiout))
|
|
{
|
|
ui_out_field_fmt (uiout, "event_status",
|
|
"0x%s", phex_nz (event_status, 4));
|
|
ui_out_field_fmt (uiout, "event_mask",
|
|
"0x%s", phex_nz (event_mask, 4));
|
|
}
|
|
else
|
|
{
|
|
printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
|
|
printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_signal_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST signal1 = 0;
|
|
ULONGEST signal1_type = 0;
|
|
int signal1_pending = 0;
|
|
ULONGEST signal2 = 0;
|
|
ULONGEST signal2_type = 0;
|
|
int signal2_pending = 0;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[100];
|
|
LONGEST len;
|
|
int rc, id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal1", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
|
if (len < 0)
|
|
error (_("Could not read signal1."));
|
|
else if (len == 4)
|
|
{
|
|
signal1 = extract_unsigned_integer (buf, 4, byte_order);
|
|
signal1_pending = 1;
|
|
}
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read signal1_type."));
|
|
buf[len] = '\0';
|
|
signal1_type = strtoulst (buf, NULL, 16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal2", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
|
if (len < 0)
|
|
error (_("Could not read signal2."));
|
|
else if (len == 4)
|
|
{
|
|
signal2 = extract_unsigned_integer (buf, 4, byte_order);
|
|
signal2_pending = 1;
|
|
}
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read signal2_type."));
|
|
buf[len] = '\0';
|
|
signal2_type = strtoulst (buf, NULL, 16);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
|
|
|
|
if (ui_out_is_mi_like_p (uiout))
|
|
{
|
|
ui_out_field_int (uiout, "signal1_pending", signal1_pending);
|
|
ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
|
|
ui_out_field_int (uiout, "signal1_type", signal1_type);
|
|
ui_out_field_int (uiout, "signal2_pending", signal2_pending);
|
|
ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
|
|
ui_out_field_int (uiout, "signal2_type", signal2_type);
|
|
}
|
|
else
|
|
{
|
|
if (signal1_pending)
|
|
printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
|
|
else
|
|
printf_filtered (_("Signal 1 not pending "));
|
|
|
|
if (signal1_type)
|
|
printf_filtered (_("(Type Or)\n"));
|
|
else
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
|
|
|
if (signal2_pending)
|
|
printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
|
|
else
|
|
printf_filtered (_("Signal 2 not pending "));
|
|
|
|
if (signal2_type)
|
|
printf_filtered (_("(Type Or)\n"));
|
|
else
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
|
|
const char *field, const char *msg)
|
|
{
|
|
struct cleanup *chain;
|
|
int i;
|
|
|
|
if (nr <= 0)
|
|
return;
|
|
|
|
chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
|
|
|
|
ui_out_table_header (uiout, 32, ui_left, field, msg);
|
|
ui_out_table_body (uiout);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
struct cleanup *val_chain;
|
|
ULONGEST val;
|
|
val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
|
|
val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
|
|
ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
|
|
do_cleanups (val_chain);
|
|
|
|
if (!ui_out_is_mi_like_p (uiout))
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_mailbox_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int i, id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read mbox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"mbox", "SPU Outbound Mailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read ibox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"ibox", "SPU Outbound Interrupt Mailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read wbox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"wbox", "SPU Inbound Mailbox");
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static ULONGEST
|
|
spu_mfc_get_bitfield (ULONGEST word, int first, int last)
|
|
{
|
|
ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
|
|
return (word >> (63 - last)) & mask;
|
|
}
|
|
|
|
static void
|
|
info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
|
|
{
|
|
static char *spu_mfc_opcode[256] =
|
|
{
|
|
/* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
|
|
"puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
|
|
/* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
|
|
"gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
|
|
/* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
|
|
/* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
|
|
"putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
"mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
|
|
/* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
};
|
|
|
|
int *seq = alloca (nr * sizeof (int));
|
|
int done = 0;
|
|
struct cleanup *chain;
|
|
int i, j;
|
|
|
|
|
|
/* Determine sequence in which to display (valid) entries. */
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
/* Search for the first valid entry all of whose
|
|
dependencies are met. */
|
|
for (j = 0; j < nr; j++)
|
|
{
|
|
ULONGEST mfc_cq_dw3;
|
|
ULONGEST dependencies;
|
|
|
|
if (done & (1 << (nr - 1 - j)))
|
|
continue;
|
|
|
|
mfc_cq_dw3
|
|
= extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
|
|
if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
|
|
continue;
|
|
|
|
dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
|
|
if ((dependencies & done) != dependencies)
|
|
continue;
|
|
|
|
seq[i] = j;
|
|
done |= 1 << (nr - 1 - j);
|
|
break;
|
|
}
|
|
|
|
if (j == nr)
|
|
break;
|
|
}
|
|
|
|
nr = i;
|
|
|
|
|
|
chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
|
|
|
|
ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
|
|
ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
|
|
ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
|
|
ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
|
|
ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
|
|
ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
|
|
ui_out_table_header (uiout, 7, ui_left, "size", "Size");
|
|
ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
|
|
ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
|
|
ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
|
|
|
|
ui_out_table_body (uiout);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
struct cleanup *cmd_chain;
|
|
ULONGEST mfc_cq_dw0;
|
|
ULONGEST mfc_cq_dw1;
|
|
ULONGEST mfc_cq_dw2;
|
|
int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
|
|
int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
|
|
ULONGEST mfc_ea;
|
|
int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
|
|
|
|
/* Decode contents of MFC Command Queue Context Save/Restore Registers.
|
|
See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
|
|
|
|
mfc_cq_dw0
|
|
= extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
|
|
mfc_cq_dw1
|
|
= extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
|
|
mfc_cq_dw2
|
|
= extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
|
|
|
|
list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
|
|
list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
|
|
mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
|
|
mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
|
|
list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
|
|
rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
|
|
tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
|
|
|
|
mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
|
|
| spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
|
|
|
|
mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
|
|
mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
|
|
noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
|
|
qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
|
|
ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
|
|
cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
|
|
|
|
cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
|
|
|
|
if (spu_mfc_opcode[mfc_cmd_opcode])
|
|
ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
|
|
else
|
|
ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
|
|
|
|
ui_out_field_int (uiout, "tag", mfc_cmd_tag);
|
|
ui_out_field_int (uiout, "tid", tclass_id);
|
|
ui_out_field_int (uiout, "rid", rclass_id);
|
|
|
|
if (ea_valid_p)
|
|
ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
|
|
else
|
|
ui_out_field_skip (uiout, "ea");
|
|
|
|
ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
|
|
if (qw_valid_p)
|
|
ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
|
|
else
|
|
ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
|
|
|
|
if (list_valid_p)
|
|
{
|
|
ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
|
|
ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
|
|
}
|
|
else
|
|
{
|
|
ui_out_field_skip (uiout, "lstaddr");
|
|
ui_out_field_skip (uiout, "lstsize");
|
|
}
|
|
|
|
if (cmd_error_p)
|
|
ui_out_field_string (uiout, "error_p", "*");
|
|
else
|
|
ui_out_field_skip (uiout, "error_p");
|
|
|
|
do_cleanups (cmd_chain);
|
|
|
|
if (!ui_out_is_mi_like_p (uiout))
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_dma_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST dma_info_type;
|
|
ULONGEST dma_info_mask;
|
|
ULONGEST dma_info_status;
|
|
ULONGEST dma_info_stall_and_notify;
|
|
ULONGEST dma_info_atomic_command_status;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int i, id;
|
|
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/dma_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, 40 + 16 * 32);
|
|
if (len <= 0)
|
|
error (_("Could not read dma_info."));
|
|
|
|
dma_info_type
|
|
= extract_unsigned_integer (buf, 8, byte_order);
|
|
dma_info_mask
|
|
= extract_unsigned_integer (buf + 8, 8, byte_order);
|
|
dma_info_status
|
|
= extract_unsigned_integer (buf + 16, 8, byte_order);
|
|
dma_info_stall_and_notify
|
|
= extract_unsigned_integer (buf + 24, 8, byte_order);
|
|
dma_info_atomic_command_status
|
|
= extract_unsigned_integer (buf + 32, 8, byte_order);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
|
|
|
|
if (ui_out_is_mi_like_p (uiout))
|
|
{
|
|
ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
|
|
phex_nz (dma_info_type, 4));
|
|
ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
|
|
phex_nz (dma_info_mask, 4));
|
|
ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
|
|
phex_nz (dma_info_status, 4));
|
|
ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
|
|
phex_nz (dma_info_stall_and_notify, 4));
|
|
ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
|
|
phex_nz (dma_info_atomic_command_status, 4));
|
|
}
|
|
else
|
|
{
|
|
const char *query_msg = _("no query pending");
|
|
|
|
if (dma_info_type & 4)
|
|
switch (dma_info_type & 3)
|
|
{
|
|
case 1: query_msg = _("'any' query pending"); break;
|
|
case 2: query_msg = _("'all' query pending"); break;
|
|
default: query_msg = _("undefined query type"); break;
|
|
}
|
|
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
|
phex (dma_info_status, 4));
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
|
phex (dma_info_mask, 4), query_msg);
|
|
printf_filtered (_("Stall-and-Notify 0x%s\n"),
|
|
phex (dma_info_stall_and_notify, 4));
|
|
printf_filtered (_("Atomic Cmd Status 0x%s\n"),
|
|
phex (dma_info_atomic_command_status, 4));
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
info_spu_dma_cmdlist (buf + 40, 16, byte_order);
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_proxydma_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST dma_info_type;
|
|
ULONGEST dma_info_mask;
|
|
ULONGEST dma_info_status;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int i, id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, 24 + 8 * 32);
|
|
if (len <= 0)
|
|
error (_("Could not read proxydma_info."));
|
|
|
|
dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
|
|
dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
|
|
dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
|
|
|
|
if (ui_out_is_mi_like_p (uiout))
|
|
{
|
|
ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
|
|
phex_nz (dma_info_type, 4));
|
|
ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
|
|
phex_nz (dma_info_mask, 4));
|
|
ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
|
|
phex_nz (dma_info_status, 4));
|
|
}
|
|
else
|
|
{
|
|
const char *query_msg;
|
|
|
|
switch (dma_info_type & 3)
|
|
{
|
|
case 0: query_msg = _("no query pending"); break;
|
|
case 1: query_msg = _("'any' query pending"); break;
|
|
case 2: query_msg = _("'all' query pending"); break;
|
|
default: query_msg = _("undefined query type"); break;
|
|
}
|
|
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
|
phex (dma_info_status, 4));
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
|
phex (dma_info_mask, 4), query_msg);
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
info_spu_dma_cmdlist (buf + 24, 8, byte_order);
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
|
|
help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
|
|
}
|
|
|
|
|
|
/* Root of all "set spu "/"show spu " commands. */
|
|
|
|
static void
|
|
show_spu_command (char *args, int from_tty)
|
|
{
|
|
help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
set_spu_command (char *args, int from_tty)
|
|
{
|
|
help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
show_spu_stop_on_load (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
static void
|
|
show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
|
|
/* Set up gdbarch struct. */
|
|
|
|
static struct gdbarch *
|
|
spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int id = -1;
|
|
|
|
/* Which spufs ID was requested as address space? */
|
|
if (info.tdep_info)
|
|
id = *(int *)info.tdep_info;
|
|
/* For objfile architectures of SPU solibs, decode the ID from the name.
|
|
This assumes the filename convention employed by solib-spu.c. */
|
|
else if (info.abfd)
|
|
{
|
|
char *name = strrchr (info.abfd->filename, '@');
|
|
if (name)
|
|
sscanf (name, "@0x%*x <%d>", &id);
|
|
}
|
|
|
|
/* Find a candidate among extant architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
|
if (tdep && tdep->id == id)
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* None found, so create a new architecture. */
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
|
tdep->id = id;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Disassembler. */
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
|
|
|
|
/* Registers. */
|
|
set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
|
|
set_gdbarch_read_pc (gdbarch, spu_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, spu_write_pc);
|
|
set_gdbarch_register_name (gdbarch, spu_register_name);
|
|
set_gdbarch_register_type (gdbarch, spu_register_type);
|
|
set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
|
|
set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
|
|
set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
|
|
|
|
/* Data types. */
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
|
|
|
/* Address handling. */
|
|
set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
|
|
set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
|
|
set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
|
|
set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name
|
|
(gdbarch, spu_address_class_type_flags_to_name);
|
|
set_gdbarch_address_class_name_to_type_flags
|
|
(gdbarch, spu_address_class_name_to_type_flags);
|
|
|
|
|
|
/* Inferior function calls. */
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
|
set_gdbarch_frame_align (gdbarch, spu_frame_align);
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 2000);
|
|
set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
|
|
set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
|
|
set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
|
|
set_gdbarch_return_value (gdbarch, spu_return_value);
|
|
|
|
/* Frame handling. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
|
|
frame_base_set_default (gdbarch, &spu_frame_base);
|
|
set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
|
|
set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
|
|
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
|
frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
|
|
|
|
/* Breakpoints. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 4);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
|
|
set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
|
|
set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
|
|
set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
|
|
|
|
/* Overlays. */
|
|
set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
|
extern initialize_file_ftype _initialize_spu_tdep;
|
|
|
|
void
|
|
_initialize_spu_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
|
|
|
|
/* Add ourselves to objfile event chain. */
|
|
observer_attach_new_objfile (spu_overlay_new_objfile);
|
|
spu_overlay_data = register_objfile_data ();
|
|
|
|
/* Install spu stop-on-load handler. */
|
|
observer_attach_new_objfile (spu_catch_start);
|
|
|
|
/* Add ourselves to normal_stop event chain. */
|
|
observer_attach_normal_stop (spu_attach_normal_stop);
|
|
|
|
/* Add root prefix command for all "set spu"/"show spu" commands. */
|
|
add_prefix_cmd ("spu", no_class, set_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&setspucmdlist, "set spu ", 0, &setlist);
|
|
add_prefix_cmd ("spu", no_class, show_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&showspucmdlist, "show spu ", 0, &showlist);
|
|
|
|
/* Toggle whether or not to add a temporary breakpoint at the "main"
|
|
function of new SPE contexts. */
|
|
add_setshow_boolean_cmd ("stop-on-load", class_support,
|
|
&spu_stop_on_load_p, _("\
|
|
Set whether to stop for new SPE threads."),
|
|
_("\
|
|
Show whether to stop for new SPE threads."),
|
|
_("\
|
|
Use \"on\" to give control to the user when a new SPE thread\n\
|
|
enters its \"main\" function.\n\
|
|
Use \"off\" to disable stopping for new SPE threads."),
|
|
NULL,
|
|
show_spu_stop_on_load,
|
|
&setspucmdlist, &showspucmdlist);
|
|
|
|
/* Toggle whether or not to automatically flush the software-managed
|
|
cache whenever SPE execution stops. */
|
|
add_setshow_boolean_cmd ("auto-flush-cache", class_support,
|
|
&spu_auto_flush_cache_p, _("\
|
|
Set whether to automatically flush the software-managed cache."),
|
|
_("\
|
|
Show whether to automatically flush the software-managed cache."),
|
|
_("\
|
|
Use \"on\" to automatically flush the software-managed cache\n\
|
|
whenever SPE execution stops.\n\
|
|
Use \"off\" to never automatically flush the software-managed cache."),
|
|
NULL,
|
|
show_spu_auto_flush_cache,
|
|
&setspucmdlist, &showspucmdlist);
|
|
|
|
/* Add root prefix command for all "info spu" commands. */
|
|
add_prefix_cmd ("spu", class_info, info_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&infospucmdlist, "info spu ", 0, &infolist);
|
|
|
|
/* Add various "info spu" commands. */
|
|
add_cmd ("event", class_info, info_spu_event_command,
|
|
_("Display SPU event facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("signal", class_info, info_spu_signal_command,
|
|
_("Display SPU signal notification facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("mailbox", class_info, info_spu_mailbox_command,
|
|
_("Display SPU mailbox facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("dma", class_info, info_spu_dma_command,
|
|
_("Display MFC DMA status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("proxydma", class_info, info_spu_proxydma_command,
|
|
_("Display MFC Proxy-DMA status.\n"),
|
|
&infospucmdlist);
|
|
}
|