darling-gdb/gdb/param.h
2012-06-03 15:36:31 +01:00

494 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Parameters for execution on a Sun 4, for GDB, the GNU debugger.
Copyright (C) 1986, 1987 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@mcc.com)
GDB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY. No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the GDB General Public License for full details.
Everyone is granted permission to copy, modify and redistribute GDB,
but only under the conditions described in the GDB General Public
License. A copy of this license is supposed to have been given to you
along with GDB so you can know your rights and responsibilities. It
should be in a file named COPYING. Among other things, the copyright
notice and this notice must be preserved on all copies.
In other words, go ahead and share GDB, but don't try to stop
anyone else from sharing it farther. Help stamp out software hoarding!
*/
#ifndef sun4
#define sun4
#endif
/* Get rid of any system-imposed stack limit if possible. */
#define SET_STACK_LIMIT_HUGE
/* Define this if the C compiler puts an underscore at the front
of external names before giving them to the linker. */
#define NAMES_HAVE_UNDERSCORE
/* Debugger information will be in DBX format. */
#define READ_DBX_FORMAT
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) \
{ pc = skip_prologue (pc); }
/* Immediately after a function call, return the saved pc.
Can't go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
encodes the structure size being returned. If we detect such
a fake insn, step past it. */
#define PC_ADJUST(pc) ((read_memory_integer (pc + 8, 4) & 0xfffffe00) == 0 ? pc+12 : pc+8)
#define SAVED_PC_AFTER_CALL(frame) PC_ADJUST (read_register (RP_REGNUM))
/* Address of end of stack space. */
#define STACK_END_ADDR 0xf000000
/* Stack grows downward. */
#define INNER_THAN <
/* Stack has strict alignment. */
#define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
/* Sequence of bytes for breakpoint instruction. */
#define BREAKPOINT {0x91, 0xd0, 0x20, 0x01}
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. */
/* For SPARC, this is either a "jmpl %o7+8,%g0" or "jmpl %i7+8,%g0".
Note: this does not work for functions returning structures under SunOS. */
#define ABOUT_TO_RETURN(pc) \
((read_memory_integer (pc, 4)|0x00040000) == 0x81c7e008)
/* Return 1 if P points to an invalid floating point value. */
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
/* Say how long (ordinary) registers are. */
#define REGISTER_TYPE long
/* Number of machine registers */
#define NUM_REGS 72
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES \
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
\
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
\
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" };
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define FP_REGNUM 30 /* Contains address of executing stack frame */
#define RP_REGNUM 15 /* Contains return address value, *before* \
any windows get switched. */
#define SP_REGNUM 14 /* Contains address of top of stack, \
which is also the bottom of the frame. */
#define Y_REGNUM 64 /* Temp register for multiplication, etc. */
#define PS_REGNUM 65 /* Contains processor status */
#define PC_REGNUM 68 /* Contains program counter */
#define NPC_REGNUM 69 /* Contains next PC */
#define FP0_REGNUM 32 /* Floating point register 0 */
#define FPS_REGNUM 70 /* Floating point status register */
#define CPS_REGNUM 71 /* Coprocessor status register */
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES (32*4+32*4+8*4)
/* Index within `registers' of the first byte of the space for
register N. */
/* ?? */
#define REGISTER_BYTE(N) ((N)*4)
/* Number of bytes of storage in the actual machine representation
for register N. */
/* On the SPARC, all regs are 4 bytes. */
#define REGISTER_RAW_SIZE(N) (4)
/* Number of bytes of storage in the program's representation
for register N. */
/* On the SPARC, all regs are 4 bytes. */
#define REGISTER_VIRTUAL_SIZE(N) (4)
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 8
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 8
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) (0)
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
{ bcopy ((FROM), (TO), 4); }
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
{ bcopy ((FROM), (TO), 4); }
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) \
((N) < 32 ? builtin_type_int : (N) < 64 ? builtin_type_float : builtin_type_int)
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
bcopy ((int *)REGBUF+8, VALBUF, TYPE_LENGTH (TYPE))
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
/* On sparc, values are returned in register %o0. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (REGISTER_BYTE (8), VALBUF, TYPE_LENGTH (TYPE))
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (read_memory_integer (((int *)(REGBUF))[SP_REGNUM]+(16*4), 4))
/* Enable use of alternate code to read and write registers. */
#define NEW_SUN_PTRACE
/* Enable use of alternate code for Sun's format of core dump file. */
#define NEW_SUN_CORE
/* Do implement the attach and detach commands. */
#define ATTACH_DETACH
/* It is safe to look for symsegs on a Sun, because Sun's ld
does not screw up with random garbage at end of file. */
#define READ_GDB_SYMSEGS
/* The SPARC processor has register windows. */
#define HAVE_REGISTER_WINDOWS
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
#include <machine/reg.h>
#define GET_RWINDOW_REG(FRAME, REG) \
(read_memory_integer (&((struct rwindow *)FRAME)->REG, 4))
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer.
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
and produces the nominal address of the caller frame.
However, if FRAME_CHAIN_VALID returns zero,
it means the given frame is the outermost one and has no caller.
In that case, FRAME_CHAIN_COMBINE is not used. */
/* In the case of the Sun 4, the frame-chain's nominal address
is held in the frame pointer register.
On the Sun4, the frame (in %fp) is %sp for the previous frame.
From the previous frame's %sp, we can find the previous frame's
%fp: it is in the save area just above the previous frame's %sp. */
#define FRAME_CHAIN(thisframe) \
GET_RWINDOW_REG (thisframe, rw_in[6])
#define FRAME_CHAIN_VALID(chain, thisframe) \
(chain != 0 && (FRAME_SAVED_PC (thisframe, 0) >= first_object_file_end))
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
/* Define other aspects of the stack frame. */
#define FRAME_SAVED_PC(frame, next_frame) frame_saved_pc (frame, next_frame)
/* If the argument is on the stack, it will be here. */
#define FRAME_ARGS_ADDRESS(fi) (fi.frame)
#define FRAME_STRUCT_ARGS_ADDRESS(fi) (fi.frame)
#define FRAME_LOCALS_ADDRESS(fi) (fi.frame)
/* Set VAL to the number of args passed to frame described by FI.
Can set VAL to -1, meaning no way to tell. */
/* We can't tell how many args there are
now that the C compiler delays popping them. */
#define FRAME_NUM_ARGS(val,fi) (val = -1)
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 68
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame.
On the Sun 4, the only time all registers are saved is when
a dummy frame is involved. Otherwise, the only saved registers
are the LOCAL and IN registers which are saved as a result
of the "save/restore" opcodes. This condition is determined
by address rather than by value. */
#define FRAME_FIND_SAVED_REGS(fi, frame_saved_regs) \
{ register int regnum; \
register CORE_ADDR pc; \
FRAME frame = (fi).frame; \
FRAME next_frame = (fi).next_frame; \
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
if ((fi).pc >= frame - CALL_DUMMY_LENGTH - 0x140 \
&& (fi).pc <= frame) \
{ \
for (regnum = 0; regnum < 32; regnum++) \
(frame_saved_regs).regs[regnum+FP0_REGNUM] = frame + regnum * 4 - 0x80;\
for (regnum = 1; regnum < 8; regnum++) \
(frame_saved_regs).regs[regnum] = frame + regnum * 4 - 0xa0; \
for (regnum = 0; regnum < 8; regnum++) \
(frame_saved_regs).regs[regnum+24] = frame + regnum * 4 - 0xc0; \
for (regnum = 0; regnum < 8; regnum++) \
(frame_saved_regs).regs[regnum+64] = frame + regnum * 4 - 0xe0; \
frame = (fi).next_frame ? \
(fi).next_frame : read_register (SP_REGNUM); \
} \
else \
{ \
for (regnum = 0; regnum < 16; regnum++) \
(frame_saved_regs).regs[regnum+16] = frame + regnum * 4; \
} \
if (next_frame == 0) next_frame = read_register (SP_REGNUM); \
for (regnum = 0; regnum < 8; regnum++) \
(frame_saved_regs).regs[regnum+8] = next_frame + regnum * 4; \
(frame_saved_regs).regs[FP_REGNUM] = frame + 14*4; \
(frame_saved_regs).regs[SP_REGNUM] = frame; \
(frame_saved_regs).regs[PC_REGNUM] = frame + 15*4; \
}
/* Things needed for making the inferior call functions. */
/* Push an empty stack frame, to record the current PC, etc. */
/* NOTE: to be perfectly correct, we will probably have to restore the
IN registers (which were the OUT registers of the calling frame). */
#define PUSH_DUMMY_FRAME \
{ extern char registers[]; \
register int regnum; \
CORE_ADDR fp = read_register (FP_REGNUM); \
CORE_ADDR pc = read_register (PC_REGNUM); \
void do_save_insn (); \
supply_register (RP_REGNUM, &pc); \
do_save_insn (0x140); \
fp = read_register (FP_REGNUM); \
write_memory (fp - 0x80, &registers[REGISTER_BYTE (FP0_REGNUM)], 32 * 4); \
write_memory (fp - 0xa0, &registers[REGISTER_BYTE (0)], 8 * 4); \
write_memory (fp - 0xc0, &registers[REGISTER_BYTE (24)], 8 * 4); \
write_memory (fp - 0xe0, &registers[REGISTER_BYTE (64)], 8 * 4); \
}
/* Discard from the stack the innermost frame,
restoring all saved registers. */
#define POP_FRAME \
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
register int regnum; \
struct frame_saved_regs fsr; \
struct frame_info fi; \
char raw_buffer_fp[REGISTER_BYTES]; \
char raw_buffer_globals[REGISTER_BYTES]; \
char raw_buffer_outs[REGISTER_BYTES]; \
char raw_buffer_xx[REGISTER_BYTES]; \
void do_restore_insn (); \
fi = get_frame_info (fp); \
get_frame_saved_regs (&fi, &fsr); \
if (fsr.regs[FP0_REGNUM]) \
read_memory (fsr.regs[FP0_REGNUM], raw_buffer_fp, 32 * 4); \
if (fsr.regs[1]) \
read_memory (fsr.regs[1], raw_buffer_globals, 7 * 4); \
if (fsr.regs[24]) \
read_memory (fsr.regs[24], raw_buffer_outs, 8 * 4); \
if (fsr.regs[64]) \
read_memory (fsr.regs[64], raw_buffer_xx, 8 * 4); \
do_restore_insn (fsr.regs); \
if (fsr.regs[FP0_REGNUM]) \
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer_fp, 32 * 4); \
if (fsr.regs[1]) \
write_register_bytes (REGISTER_BYTE (1), raw_buffer_globals, 7 * 4);\
if (fsr.regs[24]) \
write_register_bytes (REGISTER_BYTE (8), raw_buffer_outs, 8 * 4); \
if (fsr.regs[64]) \
write_register_bytes (REGISTER_BYTE (64), raw_buffer_xx, 8 * 4); \
set_current_frame (read_register (FP_REGNUM)); \
}
/* This sequence of words is the instructions
save %sp,-0x140,%sp
std %f30,[%fp-0x08]
std %f28,[%fp-0x10]
std %f26,[%fp-0x18]
std %f24,[%fp-0x20]
std %f22,[%fp-0x28]
std %f20,[%fp-0x30]
std %f18,[%fp-0x38]
std %f16,[%fp-0x40]
std %f14,[%fp-0x48]
std %f12,[%fp-0x50]
std %f10,[%fp-0x58]
std %f8,[%fp-0x60]
std %f6,[%fp-0x68]
std %f4,[%fp-0x70]
std %f2,[%fp-0x78]
std %f0,[%fp-0x80]
std %g6,[%fp-0x88]
std %g4,[%fp-0x90]
std %g2,[%fp-0x98]
std %g0,[%fp-0xa0]
std %i6,[%fp-0xa8]
std %i4,[%fp-0xb0]
std %i2,[%fp-0xb8]
std %i0,[%fp-0xc0]
nop ! stcsr [%fp-0xc4]
nop ! stfsr [%fp-0xc8]
nop ! wr %npc,[%fp-0xcc]
nop ! wr %pc,[%fp-0xd0]
rd %tbr,%o0
st %o0,[%fp-0xd4]
rd %wim,%o1
st %o0,[%fp-0xd8]
rd %psr,%o0
st %o0,[%fp-0xdc]
rd %y,%o0
st %o0,[%fp-0xe0]
/..* The arguments are pushed at this point by GDB;
no code is needed in the dummy for this.
The CALL_DUMMY_START_OFFSET gives the position of
the following call instruction. *../
ld [%sp+0x58],%o5
ld [%sp+0x44],%o4
ld [%sp+0x50],%o3
ld [%sp+0x4c],%o2
ld [%sp+0x48],%o1
call 0x34343434
ld [%sp+0x44],%o0
nop
ta 1
nop
note that this is 192 bytes, which is a multiple of 8 (not only 4) bytes.
note that the `call' insn is a relative, not an absolute call.
note that the `nop' at the end is needed to keep the trap from
clobbering things (if NPC pointed to garbage instead).
We actually start executing at the `sethi', since the pushing of the
registers (as arguments) is done by PUSH_DUMMY_FRAME. If this were
real code, the arguments for the function called by the CALL would be
pushed between the list of ST insns and the CALL, and we could allow
it to execute through. But the arguments have to be pushed by GDB
after the PUSH_DUMMY_FRAME is done, and we cannot allow these ST
insns to be performed again, lest the registers saved be taken for
arguments. */
#define CALL_DUMMY { 0x9de3bee0, 0xfd3fbff8, 0xf93fbff0, 0xf53fbfe8, \
0xf13fbfe0, 0xed3fbfd8, 0xe93fbfd0, 0xe53fbfc8, \
0xe13fbfc0, 0xdd3fbfb8, 0xd93fbfb0, 0xd53fbfa8, \
0xd13fbfa0, 0xcd3fbf98, 0xc93fbf90, 0xc53fbf88, \
0xc13fbf80, 0xcc3fbf78, 0xc83fbf70, 0xc43fbf68, \
0xc03fbf60, 0xfc3fbf58, 0xf83fbf50, 0xf43fbf48, \
0xf03fbf40, 0x01000000, 0x01000000, 0x01000000, \
0x01000000, 0x91580000, 0xd027bf50, 0x93500000, \
0xd027bf4c, 0x91480000, 0xd027bf48, 0x91400000, \
0xd027bf44, 0xda03a058, 0xd803a044, 0xd603a050, \
0xd403a04c, 0xd203a048, 0x40000000, 0xd003a044, \
0x01000000, 0x91d02001, 0x01000000, 0x01000000}
#define CALL_DUMMY_LENGTH 192
#define CALL_DUMMY_START_OFFSET 148
#define CALL_DUMMY_STACK_ADJUST 68
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
{ \
*(int *)((char *) dummyname+168) = (0x40000000|((fun-(pc+168))>>2)); \
if (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION) \
*(int *)((char *) dummyname+176) = (TYPE_LENGTH (type) & 0x1fff); \
}
/* Sparc has no reliable single step ptrace call */
#define NO_SINGLE_STEP 1
/* KDB stuff flushed for now. */