darling-gdb/bfd/archures.c
1991-11-30 21:41:22 +00:00

713 lines
15 KiB
C

/* BFD library support routines for architectures.
Copyright (C) 1990-1991 Free Software Foundation, Inc.
Hacked by John Gilmore and Steve Chamberlain of Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
SECTION
Architectures
DESCRIPTION
BFD's idea of an architecture is implimented in
<<archures.c>>. BFD keeps one atom in a BFD describing the
architecture of the data attached to the BFD; a pointer to a
<<bfd_arch_info_type>>.
Pointers to structures can be requested independently of a bfd
so that an architecture's information can be interrogated
without access to an open bfd.
The arch information is provided by each architecture package.
The set of default architectures is selected by the #define
<<SELECT_ARCHITECTURES>>. This is normally set up in the
<<config\/h\->> file of your choice. If the name is not
defined, then all the architectures supported are included.
When BFD starts up, all the architectures are called with an
initialize method. It is up to the architecture back end to
insert as many items into the list of arches as it wants to,
generally this would be one for each machine and one for the
default case (an item with a machine field of 0).
*/
/*
SUBSECTION
bfd_architecture
DESCRIPTION
This enum gives the object file's CPU architecture, in a
global sense. E.g. what processor family does it belong to?
There is another field, which indicates what processor within
the family is in use. The machine gives a number which
distingushes different versions of the architecture,
containing for example 2 and 3 for Intel i960 KA and i960 KB,
and 68020 and 68030 for Motorola 68020 and 68030.
.enum bfd_architecture
.{
. bfd_arch_unknown, {* File arch not known *}
. bfd_arch_obscure, {* Arch known, not one of these *}
. bfd_arch_m68k, {* Motorola 68xxx *}
. bfd_arch_vax, {* DEC Vax *}
. bfd_arch_i960, {* Intel 960 *}
. {* The order of the following is important.
. lower number indicates a machine type that
. only accepts a subset of the instructions
. available to machines with higher numbers.
. The exception is the "ca", which is
. incompatible with all other machines except
. "core". *}
.
.#define bfd_mach_i960_core 1
.#define bfd_mach_i960_ka_sa 2
.#define bfd_mach_i960_kb_sb 3
.#define bfd_mach_i960_mc 4
.#define bfd_mach_i960_xa 5
.#define bfd_mach_i960_ca 6
.
. bfd_arch_a29k, {* AMD 29000 *}
. bfd_arch_sparc, {* SPARC *}
. bfd_arch_mips, {* MIPS Rxxxx *}
. bfd_arch_i386, {* Intel 386 *}
. bfd_arch_ns32k, {* National Semiconductor 32xxx *}
. bfd_arch_tahoe, {* CCI/Harris Tahoe *}
. bfd_arch_i860, {* Intel 860 *}
. bfd_arch_romp, {* IBM ROMP PC/RT *}
. bfd_arch_alliant, {* Alliant *}
. bfd_arch_convex, {* Convex *}
. bfd_arch_m88k, {* Motorola 88xxx *}
. bfd_arch_pyramid, {* Pyramid Technology *}
. bfd_arch_h8300, {* Hitachi H8/300 *}
. bfd_arch_rs6000, {* IBM RS/6000 *}
. bfd_arch_last
. };
*/
/* $Id$ */
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
/*
SUBSECTION
bfd_arch_info
DESCRIPTION
This structure contains information on architectures for use
within BFD.
.typedef int bfd_reloc_code_type;
.
.typedef struct bfd_arch_info
.{
. int bits_per_word;
. int bits_per_address;
. int bits_per_byte;
. enum bfd_architecture arch;
. long mach;
. char *arch_name;
. CONST char *printable_name;
.{* true if this is the default machine for the architecture *}
. boolean the_default;
. CONST struct bfd_arch_info * EXFUN((*compatible),
. (CONST struct bfd_arch_info *a,
. CONST struct bfd_arch_info *b));
.
. boolean EXFUN((*scan),(CONST struct bfd_arch_info *,CONST char *));
. unsigned int EXFUN((*disassemble),(bfd_vma addr, CONST char *data,
. PTR stream));
. CONST struct reloc_howto_struct *EXFUN((*reloc_type_lookup),
. (CONST struct bfd_arch_info *,
. bfd_reloc_code_type code));
.
. struct bfd_arch_info *next;
.
.} bfd_arch_info_type;
*/
bfd_arch_info_type *bfd_arch_info_list;
/*
FUNCTION
bfd_printable_name
DESCRIPTION
Return a printable string representing the architecture and machine
from the pointer to the arch info structure
SYNOPSIS
CONST char *bfd_printable_name(bfd *abfd);
*/
CONST char *
DEFUN(bfd_printable_name, (abfd),
bfd *abfd)
{
return abfd->arch_info->printable_name;
}
/*
FUNCTION
bfd_scan_arch
DESCRIPTION
This routine is provided with a string and tries to work out
if bfd supports any cpu which could be described with the name
provided. The routine returns a pointer to an arch_info
structure if a machine is found, otherwise NULL.
SYNOPSIS
bfd_arch_info_type *bfd_scan_arch(CONST char *);
*/
bfd_arch_info_type *
DEFUN(bfd_scan_arch,(string),
CONST char *string)
{
struct bfd_arch_info *ap;
/* Look through all the installed architectures */
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->scan(ap, string))
return ap;
}
return (bfd_arch_info_type *)NULL;
}
/*
FUNCTION
bfd_arch_get_compatible
DESCRIPTION
This routine is used to determine whether two BFDs'
architectures and achine types are compatible. It calculates
the lowest common denominator between the two architectures
and machine types implied by the BFDs and returns a pointer to
an arch_info structure describing the compatible machine.
SYNOPSIS
CONST bfd_arch_info_type *bfd_arch_get_compatible(
CONST bfd *abfd,
CONST bfd *bbfd);
*/
CONST bfd_arch_info_type *
DEFUN(bfd_arch_get_compatible,(abfd, bbfd),
CONST bfd *abfd AND
CONST bfd *bbfd)
{
return abfd->arch_info->compatible(abfd->arch_info,bbfd->arch_info);
}
/*
INTERNAL
SUBSECTION
bfd_default_arch_struct
DESCRIPTION
What bfds are seeded with
.extern bfd_arch_info_type bfd_default_arch_struct;
*/
bfd_arch_info_type bfd_default_arch_struct =
{
32,32,8,bfd_arch_unknown,0,"unknown","unknown",true,
bfd_default_compatible,
bfd_default_scan,
0,
bfd_default_reloc_type_lookup
};
/*
FUNCTION
bfd_set_arch_info
SYNOPSIS
void bfd_set_arch_info(bfd *, bfd_arch_info_type *);
*/
void DEFUN(bfd_set_arch_info,(abfd, arg),
bfd *abfd AND
bfd_arch_info_type *arg)
{
abfd->arch_info = arg;
}
/*
INTERNAL FUNCTION
bfd_default_set_arch_mach
DESCRIPTION
Set the architecture and machine type in a bfd. This finds the
correct pointer to structure and inserts it into the arch_info
pointer.
SYNOPSIS
boolean bfd_default_set_arch_mach(bfd *abfd,
enum bfd_architecture arch,
unsigned long mach);
*/
boolean DEFUN(bfd_default_set_arch_mach,(abfd, arch, mach),
bfd *abfd AND
enum bfd_architecture arch AND
unsigned long mach)
{
static struct bfd_arch_info *old_ptr = &bfd_default_arch_struct;
boolean found = false;
/* run through the table to find the one we want, we keep a little
cache to speed things up */
if (old_ptr == 0 || arch != old_ptr->arch || mach != old_ptr->mach) {
bfd_arch_info_type *ptr;
old_ptr = (bfd_arch_info_type *)NULL;
for (ptr = bfd_arch_info_list;
ptr != (bfd_arch_info_type *)NULL;
ptr= ptr->next) {
if (ptr->arch == arch &&
((ptr->mach == mach) || (ptr->the_default && mach == 0))) {
old_ptr = ptr;
found = true;
break;
}
}
if (found==false) {
/*looked for it and it wasn't there, so put in the default */
old_ptr = &bfd_default_arch_struct;
}
}
else {
/* it was in the cache */
found = true;
}
abfd->arch_info = old_ptr;
return found;
}
/*
FUNCTION
bfd_get_arch
DESCRIPTION
Returns the enumerated type which describes the supplied bfd's
architecture
SYNOPSIS
enum bfd_architecture bfd_get_arch(bfd *abfd);
*/
enum bfd_architecture DEFUN(bfd_get_arch, (abfd), bfd *abfd)
{
return abfd->arch_info->arch;
}
/*
FUNCTION
bfd_get_mach
DESCRIPTION
Returns the long type which describes the supplied bfd's
machine
SYNOPSIS
unsigned long bfd_get_mach(bfd *abfd);
*/
unsigned long
DEFUN(bfd_get_mach, (abfd), bfd *abfd)
{
return abfd->arch_info->mach;
}
/*
FUNCTION
bfd_arch_bits_per_byte
DESCRIPTION
Returns the number of bits in one of the architectures bytes
SYNOPSIS
unsigned int bfd_arch_bits_per_byte(bfd *abfd);
*/
unsigned int DEFUN(bfd_arch_bits_per_byte, (abfd), bfd *abfd)
{
return abfd->arch_info->bits_per_byte;
}
/*
FUNCTION
bfd_arch_bits_per_address
DESCRIPTION
Returns the number of bits in one of the architectures addresses
SYNOPSIS
unsigned int bfd_arch_bits_per_address(bfd *abfd);
*/
unsigned int DEFUN(bfd_arch_bits_per_address, (abfd), bfd *abfd)
{
return abfd->arch_info->bits_per_address;
}
extern void EXFUN(bfd_h8300_arch,(void));
extern void EXFUN(bfd_i960_arch,(void));
extern void EXFUN(bfd_empty_arch,(void));
extern void EXFUN(bfd_sparc_arch,(void));
extern void EXFUN(bfd_m88k_arch,(void));
extern void EXFUN(bfd_m68k_arch,(void));
extern void EXFUN(bfd_vax_arch,(void));
extern void EXFUN(bfd_a29k_arch,(void));
extern void EXFUN(bfd_mips_arch,(void));
extern void EXFUN(bfd_i386_arch,(void));
extern void EXFUN(bfd_rs6000_arch,(void));
static void EXFUN((*archures_init_table[]),()) =
{
#ifdef SELECT_ARCHITECTURES
SELECT_ARCHITECTURES,
#else
bfd_sparc_arch,
bfd_a29k_arch,
bfd_mips_arch,
bfd_h8300_arch,
bfd_i386_arch,
bfd_m88k_arch,
bfd_i960_arch,
bfd_m68k_arch,
bfd_vax_arch,
bfd_rs6000_arch,
#endif
0
};
/*
INTERNAL FUNCTION
bfd_arch_init
DESCRIPTION
This routine initializes the architecture dispatch table by
calling all installed architecture packages and getting them
to poke around.
SYNOPSIS
void bfd_arch_init(void);
*/
void
DEFUN_VOID(bfd_arch_init)
{
void EXFUN((**ptable),());
for (ptable = archures_init_table;
*ptable ;
ptable++)
{
(*ptable)();
}
}
/*
INTERNAL FUNCTION
bfd_arch_linkin
DESCRIPTION
Link the provided arch info structure into the list
SYNOPSIS
void bfd_arch_linkin(bfd_arch_info_type *);
*/
void DEFUN(bfd_arch_linkin,(ptr),
bfd_arch_info_type *ptr)
{
ptr->next = bfd_arch_info_list;
bfd_arch_info_list = ptr;
}
/*
INTERNAL FUNCTION
bfd_default_compatible
DESCRIPTION
The default function for testing for compatibility.
SYNOPSIS
CONST bfd_arch_info_type *bfd_default_compatible
(CONST bfd_arch_info_type *a,
CONST bfd_arch_info_type *b);
*/
CONST bfd_arch_info_type *
DEFUN(bfd_default_compatible,(a,b),
CONST bfd_arch_info_type *a AND
CONST bfd_arch_info_type *b)
{
if(a->arch != b->arch) return NULL;
if (a->mach > b->mach) {
return a;
}
if (b->mach > a->mach) {
return b;
}
return a;
}
/*
INTERNAL FUNCTION
bfd_default_scan
DESCRIPTION
The default function for working out whether this is an
architecture hit and a machine hit.
SYNOPSIS
boolean bfd_default_scan(CONST struct bfd_arch_info *, CONST char *);
*/
boolean
DEFUN(bfd_default_scan,(info, string),
CONST struct bfd_arch_info *info AND
CONST char *string)
{
CONST char *ptr_src;
CONST char *ptr_tst;
unsigned long number;
enum bfd_architecture arch;
/* First test for an exact match */
if (strcmp(string, info->printable_name) == 0) return true;
/* See how much of the supplied string matches with the
architecture, eg the string m68k:68020 would match the 68k entry
up to the :, then we get left with the machine number */
for (ptr_src = string,
ptr_tst = info->arch_name;
*ptr_src && *ptr_tst;
ptr_src++,
ptr_tst++)
{
if (*ptr_src != *ptr_tst) break;
}
/* Chewed up as much of the architecture as will match, skip any
colons */
if (*ptr_src == ':') ptr_src++;
if (*ptr_src == 0) {
/* nothing more, then only keep this one if it is the default
machine for this architecture */
return info->the_default;
}
number = 0;
while (isdigit(*ptr_src)) {
number = number * 10 + *ptr_src - '0';
ptr_src++;
}
switch (number)
{
case 68010:
case 68020:
case 68030:
case 68040:
case 68332:
case 68050:
case 68000:
arch = bfd_arch_m68k;
break;
case 386:
case 80386:
case 486:
arch = bfd_arch_i386;
break;
case 29000:
arch = bfd_arch_a29k;
break;
case 32016:
case 32032:
case 32132:
case 32232:
case 32332:
case 32432:
case 32532:
case 32000:
arch = bfd_arch_ns32k;
break;
case 860:
case 80860:
arch = bfd_arch_i860;
break;
case 6000:
arch = bfd_arch_rs6000;
break;
default:
return false;
}
if (arch != info->arch)
return false;
if (number != info->mach)
return false;
return true;
}
/*
FUNCTION
bfd_get_arch_info
SYNOPSIS
bfd_arch_info_type * bfd_get_arch_info(bfd *);
*/
bfd_arch_info_type *
DEFUN(bfd_get_arch_info,(abfd),
bfd *abfd)
{
return abfd->arch_info;
}
/*
FUNCTION
bfd_lookup_arch
DESCRIPTION
Look for the architecure info struct which matches the
arguments given. A machine of 0 will match the
machine/architecture structure which marks itself as the
default.
SYNOPSIS
bfd_arch_info_type *bfd_lookup_arch
(enum bfd_architecture
arch,
long machine);
*/
bfd_arch_info_type *
DEFUN(bfd_lookup_arch,(arch, machine),
enum bfd_architecture arch AND
long machine)
{
bfd_arch_info_type *ap;
bfd_check_init();
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->arch == arch &&
((ap->mach == machine)
|| (ap->the_default && machine == 0))) {
return ap;
}
}
return (bfd_arch_info_type *)NULL;
}
/*
FUNCTION
bfd_printable_arch_mach
DESCRIPTION
Return a printable string representing the architecture and
machine type.
NB. The use of this routine is depreciated.
SYNOPSIS
CONST char * bfd_printable_arch_mach
(enum bfd_architecture arch, unsigned long machine);
*/
CONST char *
DEFUN(bfd_printable_arch_mach,(arch, machine),
enum bfd_architecture arch AND
unsigned long machine)
{
bfd_arch_info_type *ap = bfd_lookup_arch(arch, machine);
if(ap) return ap->printable_name;
return "UNKNOWN!";
}