Pedro Alves c9737c08e7 infrun debug output: print enum gdb_signal symbol names instead of POSIX signal names.
The other day while debugging something related to random signals, I
got confused with "set debug infrun 1" output, for it said:

 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x323d4e8b94
 infrun: random signal 20

On GNU/Linux, 20 is SIGTSTP.  For some reason, it took me a few
minutes to realize that 20 is actually a GDB signal number, not a
target signal number (duh!).  In any case, I propose making GDB's
output clearer here:

One way would be to use gdb_signal_to_name, like already used
elsewhere:

 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x323d4e8b94
 infrun: random signal SIGCHLD (20)

but I think that might confuse someone too ("20? Why does GDB believe
SIGCHLD is 20?").  So I thought of printing the enum string instead:

 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x323d4e8b94
 infrun: random signal GDB_SIGNAL_CHLD (20)

Looking at a more complete infrun debug log, we had actually printed
the (POSIX) signal name name a bit before:

 infrun: target_wait (-1, status) =
 infrun:   9300 [Thread 0x7ffff7fcb740 (LWP 9300)],
 infrun:   status->kind = stopped, signal = SIGCHLD
 ...
 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x323d4e8b94
 infrun: random signal 20

So I'm now thinking that it'd be even better to make infrun output
consistently use the enum symbol string, like so:

 infrun: clear_proceed_status_thread (Thread 0x7ffff7fca700 (LWP 25663))
 infrun: clear_proceed_status_thread (Thread 0x7ffff7fcb740 (LWP 25659))
- infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1)
+ infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT, step=1)
- infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
+ infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
 infrun: wait_for_inferior ()
 infrun: target_wait (-1, status) =
 infrun:   25659 [Thread 0x7ffff7fcb740 (LWP 25659)],
- infrun:   status->kind = stopped, signal = SIGCHLD
+ infrun:   status->kind = stopped, signal = GDB_SIGNAL_CHLD
 infrun: infwait_normal_state
 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x400700
- infrun: random signal 20
+ infrun: random signal (GDB_SIGNAL_CHLD)
 infrun: random signal, keep going
- infrun: resume (step=1, signal=20), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
+ infrun: resume (step=1, signal=GDB_SIGNAL_CHLD), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
 infrun: prepare_to_wait
 infrun: target_wait (-1, status) =
 infrun:   25659 [Thread 0x7ffff7fcb740 (LWP 25659)],
- infrun:   status->kind = stopped, signal = SIGTRAP
+ infrun:   status->kind = stopped, signal = GDB_SIGNAL_TRAP
 infrun: infwait_normal_state
 infrun: TARGET_WAITKIND_STOPPED
 infrun: stop_pc = 0x400704
 infrun: stepi/nexti
 infrun: stop_stepping

GDB's signal numbers are public and hardcoded (see
include/gdb/signals.h), so there's really no need to clutter the
output with numeric values in some places while others not.  Replacing
the magic "144" with GDB_SIGNAL_DEFAULT in "proceed"'s debug output
(see above) I think is quite nice.

I posit that all this makes it clearer to newcomers that GDB has its
own signal numbering (and that there must be some mapping going on).

Tested on x86_64 Fedora 17.

gdb/
2013-10-23  Pedro Alves  <palves@redhat.com>

	* common/gdb_signals.h (gdb_signal_to_symbol_string): Declare.
	* common/signals.c: Include "gdb_assert.h".
	(signals): New field 'symbol'.
	(SET): Use the 'symbol' parameter.
	(gdb_signal_to_symbol_string): New function.
	* infrun.c (handle_inferior_event) <random signal>: In debug
	output, print the random signal enum as string in addition to its
	number.
	* target/waitstatus.c (target_waitstatus_to_string): Print the
	signal's enum value as string instead of the (POSIX) signal name.
2013-10-25 14:02:59 +00:00
2013-10-25 14:02:58 +00:00
2013-10-25 14:02:58 +00:00
2013-03-08 17:25:12 +00:00
2013-03-01 22:45:56 +00:00
2013-10-09 16:34:30 +00:00
2010-09-27 21:01:18 +00:00
2013-10-18 02:38:35 +00:00
2013-10-16 00:29:48 +00:00
2013-10-16 00:29:48 +00:00
2013-10-15 13:30:40 +00:00
2013-10-15 20:42:07 +00:00
2007-02-13 15:25:58 +00:00
2010-01-09 21:11:44 +00:00
2010-01-09 21:11:44 +00:00
2010-01-09 21:11:44 +00:00

		   README for GNU development tools

This directory contains various GNU compilers, assemblers, linkers, 
debuggers, etc., plus their support routines, definitions, and documentation.

If you are receiving this as part of a GDB release, see the file gdb/README.
If with a binutils release, see binutils/README;  if with a libg++ release,
see libg++/README, etc.  That'll give you info about this
package -- supported targets, how to use it, how to report bugs, etc.

It is now possible to automatically configure and build a variety of
tools with one command.  To build all of the tools contained herein,
run the ``configure'' script here, e.g.:

	./configure 
	make

To install them (by default in /usr/local/bin, /usr/local/lib, etc),
then do:
	make install

(If the configure script can't determine your type of computer, give it
the name as an argument, for instance ``./configure sun4''.  You can
use the script ``config.sub'' to test whether a name is recognized; if
it is, config.sub translates it to a triplet specifying CPU, vendor,
and OS.)

If you have more than one compiler on your system, it is often best to
explicitly set CC in the environment before running configure, and to
also set CC when running make.  For example (assuming sh/bash/ksh):

	CC=gcc ./configure
	make

A similar example using csh:

	setenv CC gcc
	./configure
	make

Much of the code and documentation enclosed is copyright by
the Free Software Foundation, Inc.  See the file COPYING or
COPYING.LIB in the various directories, for a description of the
GNU General Public License terms under which you can copy the files.

REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info
on where and how to report problems.
Description
GDB that can debug Mach-Os on Linux
Readme 280 MiB
Languages
C 58.3%
Makefile 18.5%
Assembly 13.3%
C++ 3.6%
Scheme 1.2%
Other 4.7%