mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-10 06:00:59 +00:00
ccd2ec6a87
2005-10-23 H.J. Lu <hongjiu.lu@intel.com> PR ld/1487 * elf-bfd.h (_bfd_generic_init_private_section_data): New. (_bfd_elf_init_private_section_data): New. * elf.c (elf_fake_sections): Don't set SHF_GROUP for relocatable link. (bfd_elf_set_group_contents): Don't handle relocatable link specially. (assign_section_numbers): If it isn't called by assembler, use the output section of elf_linked_to_section for SHF_LINK_ORDER. (_bfd_elf_init_private_section_data): New. (_bfd_elf_copy_private_section_data): Call it. * libbfd-in.h (_bfd_generic_init_private_section_data): New. * libbfd.c (_bfd_generic_init_private_section_data): New. * targets.c (BFD_JUMP_TABLE_COPY): Add _bfd_generic_init_private_section_data. (bfd_init_private_section_data): Likewise. * bfd-in2.h: Regenerated. * libbfd.h: Likewise. ld/ 2005-10-23 H.J. Lu <hongjiu.lu@intel.com> PR ld/1487 * emultempl/elf32.em (gld${EMULATION_NAME}_place_orphan): Call bfd_match_sections_by_type to match section types. * ldlang.c (init_os): Take the input section. Call bfd_init_private_section_data if the input section isn't NULL. (exp_init_os): Pass NULL to init_os. (map_input_to_output_sections): Likewise. (lang_add_section): Pass the input section to init_os. ld/testsuite/ 2005-10-23 H.J. Lu <hongjiu.lu@intel.com> PR ld/1487 * ld-ia64/tlspic.rd: Updated.
6706 lines
175 KiB
C
6706 lines
175 KiB
C
/* Linker command language support.
|
||
Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GLD, the Gnu Linker.
|
||
|
||
GLD is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GLD is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GLD; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "libiberty.h"
|
||
#include "safe-ctype.h"
|
||
#include "obstack.h"
|
||
#include "bfdlink.h"
|
||
|
||
#include "ld.h"
|
||
#include "ldmain.h"
|
||
#include "ldexp.h"
|
||
#include "ldlang.h"
|
||
#include <ldgram.h>
|
||
#include "ldlex.h"
|
||
#include "ldmisc.h"
|
||
#include "ldctor.h"
|
||
#include "ldfile.h"
|
||
#include "ldemul.h"
|
||
#include "fnmatch.h"
|
||
#include "demangle.h"
|
||
#include "hashtab.h"
|
||
|
||
#ifndef offsetof
|
||
#define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
|
||
#endif
|
||
|
||
/* Locals variables. */
|
||
static struct obstack stat_obstack;
|
||
static struct obstack map_obstack;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
static const char *startup_file;
|
||
static lang_statement_list_type input_file_chain;
|
||
static bfd_boolean placed_commons = FALSE;
|
||
static bfd_boolean stripped_excluded_sections = FALSE;
|
||
static lang_output_section_statement_type *default_common_section;
|
||
static bfd_boolean map_option_f;
|
||
static bfd_vma print_dot;
|
||
static lang_input_statement_type *first_file;
|
||
static const char *current_target;
|
||
static const char *output_target;
|
||
static lang_statement_list_type statement_list;
|
||
static struct lang_phdr *lang_phdr_list;
|
||
static struct bfd_hash_table lang_definedness_table;
|
||
|
||
/* Forward declarations. */
|
||
static void exp_init_os (etree_type *);
|
||
static void init_map_userdata (bfd *, asection *, void *);
|
||
static lang_input_statement_type *lookup_name (const char *);
|
||
static bfd_boolean load_symbols (lang_input_statement_type *,
|
||
lang_statement_list_type *);
|
||
static struct bfd_hash_entry *lang_definedness_newfunc
|
||
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
||
static void insert_undefined (const char *);
|
||
static void print_all_symbols (asection *);
|
||
static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
|
||
static void print_statement (lang_statement_union_type *,
|
||
lang_output_section_statement_type *);
|
||
static void print_statement_list (lang_statement_union_type *,
|
||
lang_output_section_statement_type *);
|
||
static void print_statements (void);
|
||
static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
|
||
static void lang_record_phdrs (void);
|
||
static void lang_do_version_exports_section (void);
|
||
|
||
/* Exported variables. */
|
||
lang_output_section_statement_type *abs_output_section;
|
||
lang_statement_list_type lang_output_section_statement;
|
||
lang_statement_list_type *stat_ptr = &statement_list;
|
||
lang_statement_list_type file_chain = { NULL, NULL };
|
||
struct bfd_sym_chain entry_symbol = { NULL, NULL };
|
||
static const char *entry_symbol_default = "start";
|
||
const char *entry_section = ".text";
|
||
bfd_boolean entry_from_cmdline;
|
||
bfd_boolean lang_has_input_file = FALSE;
|
||
bfd_boolean had_output_filename = FALSE;
|
||
bfd_boolean lang_float_flag = FALSE;
|
||
bfd_boolean delete_output_file_on_failure = FALSE;
|
||
struct lang_nocrossrefs *nocrossref_list;
|
||
static struct unique_sections *unique_section_list;
|
||
static bfd_boolean ldlang_sysrooted_script = FALSE;
|
||
|
||
/* Functions that traverse the linker script and might evaluate
|
||
DEFINED() need to increment this. */
|
||
int lang_statement_iteration = 0;
|
||
|
||
etree_type *base; /* Relocation base - or null */
|
||
|
||
/* Return TRUE if the PATTERN argument is a wildcard pattern.
|
||
Although backslashes are treated specially if a pattern contains
|
||
wildcards, we do not consider the mere presence of a backslash to
|
||
be enough to cause the pattern to be treated as a wildcard.
|
||
That lets us handle DOS filenames more naturally. */
|
||
#define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
|
||
|
||
#define new_stat(x, y) \
|
||
(x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
|
||
|
||
#define outside_section_address(q) \
|
||
((q)->output_offset + (q)->output_section->vma)
|
||
|
||
#define outside_symbol_address(q) \
|
||
((q)->value + outside_section_address (q->section))
|
||
|
||
#define SECTION_NAME_MAP_LENGTH (16)
|
||
|
||
void *
|
||
stat_alloc (size_t size)
|
||
{
|
||
return obstack_alloc (&stat_obstack, size);
|
||
}
|
||
|
||
bfd_boolean
|
||
unique_section_p (const asection *sec)
|
||
{
|
||
struct unique_sections *unam;
|
||
const char *secnam;
|
||
|
||
if (link_info.relocatable
|
||
&& sec->owner != NULL
|
||
&& bfd_is_group_section (sec->owner, sec))
|
||
return TRUE;
|
||
|
||
secnam = sec->name;
|
||
for (unam = unique_section_list; unam; unam = unam->next)
|
||
if (wildcardp (unam->name)
|
||
? fnmatch (unam->name, secnam, 0) == 0
|
||
: strcmp (unam->name, secnam) == 0)
|
||
{
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Generic traversal routines for finding matching sections. */
|
||
|
||
/* Try processing a section against a wildcard. This just calls
|
||
the callback unless the filename exclusion list is present
|
||
and excludes the file. It's hardly ever present so this
|
||
function is very fast. */
|
||
|
||
static void
|
||
walk_wild_consider_section (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
asection *s,
|
||
struct wildcard_list *sec,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
bfd_boolean skip = FALSE;
|
||
struct name_list *list_tmp;
|
||
|
||
/* Don't process sections from files which were
|
||
excluded. */
|
||
for (list_tmp = sec->spec.exclude_name_list;
|
||
list_tmp;
|
||
list_tmp = list_tmp->next)
|
||
{
|
||
bfd_boolean is_wildcard = wildcardp (list_tmp->name);
|
||
if (is_wildcard)
|
||
skip = fnmatch (list_tmp->name, file->filename, 0) == 0;
|
||
else
|
||
skip = strcmp (list_tmp->name, file->filename) == 0;
|
||
|
||
/* If this file is part of an archive, and the archive is
|
||
excluded, exclude this file. */
|
||
if (! skip && file->the_bfd != NULL
|
||
&& file->the_bfd->my_archive != NULL
|
||
&& file->the_bfd->my_archive->filename != NULL)
|
||
{
|
||
if (is_wildcard)
|
||
skip = fnmatch (list_tmp->name,
|
||
file->the_bfd->my_archive->filename,
|
||
0) == 0;
|
||
else
|
||
skip = strcmp (list_tmp->name,
|
||
file->the_bfd->my_archive->filename) == 0;
|
||
}
|
||
|
||
if (skip)
|
||
break;
|
||
}
|
||
|
||
if (!skip)
|
||
(*callback) (ptr, sec, s, file, data);
|
||
}
|
||
|
||
/* Lowest common denominator routine that can handle everything correctly,
|
||
but slowly. */
|
||
|
||
static void
|
||
walk_wild_section_general (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
asection *s;
|
||
struct wildcard_list *sec;
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
sec = ptr->section_list;
|
||
if (sec == NULL)
|
||
(*callback) (ptr, sec, s, file, data);
|
||
|
||
while (sec != NULL)
|
||
{
|
||
bfd_boolean skip = FALSE;
|
||
|
||
if (sec->spec.name != NULL)
|
||
{
|
||
const char *sname = bfd_get_section_name (file->the_bfd, s);
|
||
|
||
if (wildcardp (sec->spec.name))
|
||
skip = fnmatch (sec->spec.name, sname, 0) != 0;
|
||
else
|
||
skip = strcmp (sec->spec.name, sname) != 0;
|
||
}
|
||
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, sec, callback, data);
|
||
|
||
sec = sec->next;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Routines to find a single section given its name. If there's more
|
||
than one section with that name, we report that. */
|
||
|
||
typedef struct
|
||
{
|
||
asection *found_section;
|
||
bfd_boolean multiple_sections_found;
|
||
} section_iterator_callback_data;
|
||
|
||
static bfd_boolean
|
||
section_iterator_callback (bfd *bfd ATTRIBUTE_UNUSED, asection *s, void *data)
|
||
{
|
||
section_iterator_callback_data *d = data;
|
||
|
||
if (d->found_section != NULL)
|
||
{
|
||
d->multiple_sections_found = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
d->found_section = s;
|
||
return FALSE;
|
||
}
|
||
|
||
static asection *
|
||
find_section (lang_input_statement_type *file,
|
||
struct wildcard_list *sec,
|
||
bfd_boolean *multiple_sections_found)
|
||
{
|
||
section_iterator_callback_data cb_data = { NULL, FALSE };
|
||
|
||
bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
|
||
section_iterator_callback, &cb_data);
|
||
*multiple_sections_found = cb_data.multiple_sections_found;
|
||
return cb_data.found_section;
|
||
}
|
||
|
||
/* Code for handling simple wildcards without going through fnmatch,
|
||
which can be expensive because of charset translations etc. */
|
||
|
||
/* A simple wild is a literal string followed by a single '*',
|
||
where the literal part is at least 4 characters long. */
|
||
|
||
static bfd_boolean
|
||
is_simple_wild (const char *name)
|
||
{
|
||
size_t len = strcspn (name, "*?[");
|
||
return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
|
||
}
|
||
|
||
static bfd_boolean
|
||
match_simple_wild (const char *pattern, const char *name)
|
||
{
|
||
/* The first four characters of the pattern are guaranteed valid
|
||
non-wildcard characters. So we can go faster. */
|
||
if (pattern[0] != name[0] || pattern[1] != name[1]
|
||
|| pattern[2] != name[2] || pattern[3] != name[3])
|
||
return FALSE;
|
||
|
||
pattern += 4;
|
||
name += 4;
|
||
while (*pattern != '*')
|
||
if (*name++ != *pattern++)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Specialized, optimized routines for handling different kinds of
|
||
wildcards */
|
||
|
||
static void
|
||
walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
/* We can just do a hash lookup for the section with the right name.
|
||
But if that lookup discovers more than one section with the name
|
||
(should be rare), we fall back to the general algorithm because
|
||
we would otherwise have to sort the sections to make sure they
|
||
get processed in the bfd's order. */
|
||
bfd_boolean multiple_sections_found;
|
||
struct wildcard_list *sec0 = ptr->handler_data[0];
|
||
asection *s0 = find_section (file, sec0, &multiple_sections_found);
|
||
|
||
if (multiple_sections_found)
|
||
walk_wild_section_general (ptr, file, callback, data);
|
||
else if (s0)
|
||
walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
|
||
}
|
||
|
||
static void
|
||
walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
asection *s;
|
||
struct wildcard_list *wildsec0 = ptr->handler_data[0];
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *sname = bfd_get_section_name (file->the_bfd, s);
|
||
bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
|
||
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
|
||
}
|
||
}
|
||
|
||
static void
|
||
walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
asection *s;
|
||
struct wildcard_list *sec0 = ptr->handler_data[0];
|
||
struct wildcard_list *wildsec1 = ptr->handler_data[1];
|
||
bfd_boolean multiple_sections_found;
|
||
asection *s0 = find_section (file, sec0, &multiple_sections_found);
|
||
|
||
if (multiple_sections_found)
|
||
{
|
||
walk_wild_section_general (ptr, file, callback, data);
|
||
return;
|
||
}
|
||
|
||
/* Note that if the section was not found, s0 is NULL and
|
||
we'll simply never succeed the s == s0 test below. */
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
/* Recall that in this code path, a section cannot satisfy more
|
||
than one spec, so if s == s0 then it cannot match
|
||
wildspec1. */
|
||
if (s == s0)
|
||
walk_wild_consider_section (ptr, file, s, sec0, callback, data);
|
||
else
|
||
{
|
||
const char *sname = bfd_get_section_name (file->the_bfd, s);
|
||
bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
|
||
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec1, callback,
|
||
data);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
asection *s;
|
||
struct wildcard_list *sec0 = ptr->handler_data[0];
|
||
struct wildcard_list *wildsec1 = ptr->handler_data[1];
|
||
struct wildcard_list *wildsec2 = ptr->handler_data[2];
|
||
bfd_boolean multiple_sections_found;
|
||
asection *s0 = find_section (file, sec0, &multiple_sections_found);
|
||
|
||
if (multiple_sections_found)
|
||
{
|
||
walk_wild_section_general (ptr, file, callback, data);
|
||
return;
|
||
}
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (s == s0)
|
||
walk_wild_consider_section (ptr, file, s, sec0, callback, data);
|
||
else
|
||
{
|
||
const char *sname = bfd_get_section_name (file->the_bfd, s);
|
||
bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
|
||
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
|
||
else
|
||
{
|
||
skip = !match_simple_wild (wildsec2->spec.name, sname);
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec2, callback,
|
||
data);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
asection *s;
|
||
struct wildcard_list *sec0 = ptr->handler_data[0];
|
||
struct wildcard_list *sec1 = ptr->handler_data[1];
|
||
struct wildcard_list *wildsec2 = ptr->handler_data[2];
|
||
struct wildcard_list *wildsec3 = ptr->handler_data[3];
|
||
bfd_boolean multiple_sections_found;
|
||
asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
|
||
|
||
if (multiple_sections_found)
|
||
{
|
||
walk_wild_section_general (ptr, file, callback, data);
|
||
return;
|
||
}
|
||
|
||
s1 = find_section (file, sec1, &multiple_sections_found);
|
||
if (multiple_sections_found)
|
||
{
|
||
walk_wild_section_general (ptr, file, callback, data);
|
||
return;
|
||
}
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (s == s0)
|
||
walk_wild_consider_section (ptr, file, s, sec0, callback, data);
|
||
else
|
||
if (s == s1)
|
||
walk_wild_consider_section (ptr, file, s, sec1, callback, data);
|
||
else
|
||
{
|
||
const char *sname = bfd_get_section_name (file->the_bfd, s);
|
||
bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
|
||
sname);
|
||
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec2, callback,
|
||
data);
|
||
else
|
||
{
|
||
skip = !match_simple_wild (wildsec3->spec.name, sname);
|
||
if (!skip)
|
||
walk_wild_consider_section (ptr, file, s, wildsec3,
|
||
callback, data);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
walk_wild_section (lang_wild_statement_type *ptr,
|
||
lang_input_statement_type *file,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
if (file->just_syms_flag)
|
||
return;
|
||
|
||
(*ptr->walk_wild_section_handler) (ptr, file, callback, data);
|
||
}
|
||
|
||
/* Returns TRUE when name1 is a wildcard spec that might match
|
||
something name2 can match. We're conservative: we return FALSE
|
||
only if the prefixes of name1 and name2 are different up to the
|
||
first wildcard character. */
|
||
|
||
static bfd_boolean
|
||
wild_spec_can_overlap (const char *name1, const char *name2)
|
||
{
|
||
size_t prefix1_len = strcspn (name1, "?*[");
|
||
size_t prefix2_len = strcspn (name2, "?*[");
|
||
size_t min_prefix_len;
|
||
|
||
/* Note that if there is no wildcard character, then we treat the
|
||
terminating 0 as part of the prefix. Thus ".text" won't match
|
||
".text." or ".text.*", for example. */
|
||
if (name1[prefix1_len] == '\0')
|
||
prefix1_len++;
|
||
if (name2[prefix2_len] == '\0')
|
||
prefix2_len++;
|
||
|
||
min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
|
||
|
||
return memcmp (name1, name2, min_prefix_len) == 0;
|
||
}
|
||
|
||
/* Select specialized code to handle various kinds of wildcard
|
||
statements. */
|
||
|
||
static void
|
||
analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
|
||
{
|
||
int sec_count = 0;
|
||
int wild_name_count = 0;
|
||
struct wildcard_list *sec;
|
||
int signature;
|
||
int data_counter;
|
||
|
||
ptr->walk_wild_section_handler = walk_wild_section_general;
|
||
|
||
/* Count how many wildcard_specs there are, and how many of those
|
||
actually use wildcards in the name. Also, bail out if any of the
|
||
wildcard names are NULL. (Can this actually happen?
|
||
walk_wild_section used to test for it.) And bail out if any
|
||
of the wildcards are more complex than a simple string
|
||
ending in a single '*'. */
|
||
for (sec = ptr->section_list; sec != NULL; sec = sec->next)
|
||
{
|
||
++sec_count;
|
||
if (sec->spec.name == NULL)
|
||
return;
|
||
if (wildcardp (sec->spec.name))
|
||
{
|
||
++wild_name_count;
|
||
if (!is_simple_wild (sec->spec.name))
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* The zero-spec case would be easy to optimize but it doesn't
|
||
happen in practice. Likewise, more than 4 specs doesn't
|
||
happen in practice. */
|
||
if (sec_count == 0 || sec_count > 4)
|
||
return;
|
||
|
||
/* Check that no two specs can match the same section. */
|
||
for (sec = ptr->section_list; sec != NULL; sec = sec->next)
|
||
{
|
||
struct wildcard_list *sec2;
|
||
for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
|
||
{
|
||
if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
|
||
return;
|
||
}
|
||
}
|
||
|
||
signature = (sec_count << 8) + wild_name_count;
|
||
switch (signature)
|
||
{
|
||
case 0x0100:
|
||
ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
|
||
break;
|
||
case 0x0101:
|
||
ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
|
||
break;
|
||
case 0x0201:
|
||
ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
|
||
break;
|
||
case 0x0302:
|
||
ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
|
||
break;
|
||
case 0x0402:
|
||
ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
|
||
/* Now fill the data array with pointers to the specs, first the
|
||
specs with non-wildcard names, then the specs with wildcard
|
||
names. It's OK to process the specs in different order from the
|
||
given order, because we've already determined that no section
|
||
will match more than one spec. */
|
||
data_counter = 0;
|
||
for (sec = ptr->section_list; sec != NULL; sec = sec->next)
|
||
if (!wildcardp (sec->spec.name))
|
||
ptr->handler_data[data_counter++] = sec;
|
||
for (sec = ptr->section_list; sec != NULL; sec = sec->next)
|
||
if (wildcardp (sec->spec.name))
|
||
ptr->handler_data[data_counter++] = sec;
|
||
}
|
||
|
||
/* Handle a wild statement for a single file F. */
|
||
|
||
static void
|
||
walk_wild_file (lang_wild_statement_type *s,
|
||
lang_input_statement_type *f,
|
||
callback_t callback,
|
||
void *data)
|
||
{
|
||
if (f->the_bfd == NULL
|
||
|| ! bfd_check_format (f->the_bfd, bfd_archive))
|
||
walk_wild_section (s, f, callback, data);
|
||
else
|
||
{
|
||
bfd *member;
|
||
|
||
/* This is an archive file. We must map each member of the
|
||
archive separately. */
|
||
member = bfd_openr_next_archived_file (f->the_bfd, NULL);
|
||
while (member != NULL)
|
||
{
|
||
/* When lookup_name is called, it will call the add_symbols
|
||
entry point for the archive. For each element of the
|
||
archive which is included, BFD will call ldlang_add_file,
|
||
which will set the usrdata field of the member to the
|
||
lang_input_statement. */
|
||
if (member->usrdata != NULL)
|
||
{
|
||
walk_wild_section (s, member->usrdata, callback, data);
|
||
}
|
||
|
||
member = bfd_openr_next_archived_file (f->the_bfd, member);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
|
||
{
|
||
const char *file_spec = s->filename;
|
||
|
||
if (file_spec == NULL)
|
||
{
|
||
/* Perform the iteration over all files in the list. */
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
walk_wild_file (s, f, callback, data);
|
||
}
|
||
}
|
||
else if (wildcardp (file_spec))
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
if (fnmatch (file_spec, f->filename, FNM_FILE_NAME) == 0)
|
||
walk_wild_file (s, f, callback, data);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
lang_input_statement_type *f;
|
||
|
||
/* Perform the iteration over a single file. */
|
||
f = lookup_name (file_spec);
|
||
if (f)
|
||
walk_wild_file (s, f, callback, data);
|
||
}
|
||
}
|
||
|
||
/* lang_for_each_statement walks the parse tree and calls the provided
|
||
function for each node. */
|
||
|
||
static void
|
||
lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
|
||
lang_statement_union_type *s)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
func (s);
|
||
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
lang_for_each_statement_worker (func, constructor_list.head);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
lang_for_each_statement_worker
|
||
(func, s->output_section_statement.children.head);
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
lang_for_each_statement_worker (func,
|
||
s->wild_statement.children.head);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
lang_for_each_statement_worker (func,
|
||
s->group_statement.children.head);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
case lang_input_section_enum:
|
||
case lang_input_statement_enum:
|
||
case lang_assignment_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_address_statement_enum:
|
||
case lang_fill_statement_enum:
|
||
break;
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_for_each_statement (void (*func) (lang_statement_union_type *))
|
||
{
|
||
lang_for_each_statement_worker (func, statement_list.head);
|
||
}
|
||
|
||
/*----------------------------------------------------------------------*/
|
||
|
||
void
|
||
lang_list_init (lang_statement_list_type *list)
|
||
{
|
||
list->head = NULL;
|
||
list->tail = &list->head;
|
||
}
|
||
|
||
/* Build a new statement node for the parse tree. */
|
||
|
||
static lang_statement_union_type *
|
||
new_statement (enum statement_enum type,
|
||
size_t size,
|
||
lang_statement_list_type *list)
|
||
{
|
||
lang_statement_union_type *new;
|
||
|
||
new = stat_alloc (size);
|
||
new->header.type = type;
|
||
new->header.next = NULL;
|
||
lang_statement_append (list, new, &new->header.next);
|
||
return new;
|
||
}
|
||
|
||
/* Build a new input file node for the language. There are several
|
||
ways in which we treat an input file, eg, we only look at symbols,
|
||
or prefix it with a -l etc.
|
||
|
||
We can be supplied with requests for input files more than once;
|
||
they may, for example be split over several lines like foo.o(.text)
|
||
foo.o(.data) etc, so when asked for a file we check that we haven't
|
||
got it already so we don't duplicate the bfd. */
|
||
|
||
static lang_input_statement_type *
|
||
new_afile (const char *name,
|
||
lang_input_file_enum_type file_type,
|
||
const char *target,
|
||
bfd_boolean add_to_list)
|
||
{
|
||
lang_input_statement_type *p;
|
||
|
||
if (add_to_list)
|
||
p = new_stat (lang_input_statement, stat_ptr);
|
||
else
|
||
{
|
||
p = stat_alloc (sizeof (lang_input_statement_type));
|
||
p->header.next = NULL;
|
||
}
|
||
|
||
lang_has_input_file = TRUE;
|
||
p->target = target;
|
||
p->sysrooted = FALSE;
|
||
switch (file_type)
|
||
{
|
||
case lang_input_file_is_symbols_only_enum:
|
||
p->filename = name;
|
||
p->is_archive = FALSE;
|
||
p->real = TRUE;
|
||
p->local_sym_name = name;
|
||
p->just_syms_flag = TRUE;
|
||
p->search_dirs_flag = FALSE;
|
||
break;
|
||
case lang_input_file_is_fake_enum:
|
||
p->filename = name;
|
||
p->is_archive = FALSE;
|
||
p->real = FALSE;
|
||
p->local_sym_name = name;
|
||
p->just_syms_flag = FALSE;
|
||
p->search_dirs_flag = FALSE;
|
||
break;
|
||
case lang_input_file_is_l_enum:
|
||
p->is_archive = TRUE;
|
||
p->filename = name;
|
||
p->real = TRUE;
|
||
p->local_sym_name = concat ("-l", name, NULL);
|
||
p->just_syms_flag = FALSE;
|
||
p->search_dirs_flag = TRUE;
|
||
break;
|
||
case lang_input_file_is_marker_enum:
|
||
p->filename = name;
|
||
p->is_archive = FALSE;
|
||
p->real = FALSE;
|
||
p->local_sym_name = name;
|
||
p->just_syms_flag = FALSE;
|
||
p->search_dirs_flag = TRUE;
|
||
break;
|
||
case lang_input_file_is_search_file_enum:
|
||
p->sysrooted = ldlang_sysrooted_script;
|
||
p->filename = name;
|
||
p->is_archive = FALSE;
|
||
p->real = TRUE;
|
||
p->local_sym_name = name;
|
||
p->just_syms_flag = FALSE;
|
||
p->search_dirs_flag = TRUE;
|
||
break;
|
||
case lang_input_file_is_file_enum:
|
||
p->filename = name;
|
||
p->is_archive = FALSE;
|
||
p->real = TRUE;
|
||
p->local_sym_name = name;
|
||
p->just_syms_flag = FALSE;
|
||
p->search_dirs_flag = FALSE;
|
||
break;
|
||
default:
|
||
FAIL ();
|
||
}
|
||
p->the_bfd = NULL;
|
||
p->asymbols = NULL;
|
||
p->next_real_file = NULL;
|
||
p->next = NULL;
|
||
p->symbol_count = 0;
|
||
p->dynamic = config.dynamic_link;
|
||
p->add_needed = add_needed;
|
||
p->as_needed = as_needed;
|
||
p->whole_archive = whole_archive;
|
||
p->loaded = FALSE;
|
||
lang_statement_append (&input_file_chain,
|
||
(lang_statement_union_type *) p,
|
||
&p->next_real_file);
|
||
return p;
|
||
}
|
||
|
||
lang_input_statement_type *
|
||
lang_add_input_file (const char *name,
|
||
lang_input_file_enum_type file_type,
|
||
const char *target)
|
||
{
|
||
lang_has_input_file = TRUE;
|
||
return new_afile (name, file_type, target, TRUE);
|
||
}
|
||
|
||
struct output_statement_hash_entry
|
||
{
|
||
struct bfd_hash_entry root;
|
||
lang_output_section_statement_type *entry;
|
||
};
|
||
|
||
/* The hash table. */
|
||
|
||
static struct bfd_hash_table output_statement_table;
|
||
|
||
/* Support routines for the hash table used by lang_output_section_find_1,
|
||
initialize the table, fill in an entry and remove the table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
output_statement_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
|
||
struct bfd_hash_table *table,
|
||
const char *string ATTRIBUTE_UNUSED)
|
||
{
|
||
struct output_statement_hash_entry *ret
|
||
= bfd_hash_allocate (table,
|
||
sizeof (struct output_statement_hash_entry));
|
||
ret->entry = NULL;
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
static void
|
||
output_statement_table_init (void)
|
||
{
|
||
if (! bfd_hash_table_init_n (&output_statement_table,
|
||
output_statement_newfunc, 61))
|
||
einfo (_("%P%F: Failed to create hash table\n"));
|
||
}
|
||
|
||
static void
|
||
output_statement_table_free (void)
|
||
{
|
||
bfd_hash_table_free (&output_statement_table);
|
||
}
|
||
|
||
/* Build enough state so that the parser can build its tree. */
|
||
|
||
void
|
||
lang_init (void)
|
||
{
|
||
obstack_begin (&stat_obstack, 1000);
|
||
|
||
stat_ptr = &statement_list;
|
||
|
||
output_statement_table_init ();
|
||
|
||
lang_list_init (stat_ptr);
|
||
|
||
lang_list_init (&input_file_chain);
|
||
lang_list_init (&lang_output_section_statement);
|
||
lang_list_init (&file_chain);
|
||
first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
|
||
NULL);
|
||
abs_output_section =
|
||
lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME);
|
||
|
||
abs_output_section->bfd_section = bfd_abs_section_ptr;
|
||
|
||
/* The value "3" is ad-hoc, somewhat related to the expected number of
|
||
DEFINED expressions in a linker script. For most default linker
|
||
scripts, there are none. Why a hash table then? Well, it's somewhat
|
||
simpler to re-use working machinery than using a linked list in terms
|
||
of code-complexity here in ld, besides the initialization which just
|
||
looks like other code here. */
|
||
if (!bfd_hash_table_init_n (&lang_definedness_table,
|
||
lang_definedness_newfunc, 3))
|
||
einfo (_("%P%F: out of memory during initialization"));
|
||
}
|
||
|
||
void
|
||
lang_finish (void)
|
||
{
|
||
output_statement_table_free ();
|
||
}
|
||
|
||
/*----------------------------------------------------------------------
|
||
A region is an area of memory declared with the
|
||
MEMORY { name:org=exp, len=exp ... }
|
||
syntax.
|
||
|
||
We maintain a list of all the regions here.
|
||
|
||
If no regions are specified in the script, then the default is used
|
||
which is created when looked up to be the entire data space.
|
||
|
||
If create is true we are creating a region inside a MEMORY block.
|
||
In this case it is probably an error to create a region that has
|
||
already been created. If we are not inside a MEMORY block it is
|
||
dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
|
||
and so we issue a warning. */
|
||
|
||
static lang_memory_region_type *lang_memory_region_list;
|
||
static lang_memory_region_type **lang_memory_region_list_tail
|
||
= &lang_memory_region_list;
|
||
|
||
lang_memory_region_type *
|
||
lang_memory_region_lookup (const char *const name, bfd_boolean create)
|
||
{
|
||
lang_memory_region_type *p;
|
||
lang_memory_region_type *new;
|
||
|
||
/* NAME is NULL for LMA memspecs if no region was specified. */
|
||
if (name == NULL)
|
||
return NULL;
|
||
|
||
for (p = lang_memory_region_list; p != NULL; p = p->next)
|
||
if (strcmp (p->name, name) == 0)
|
||
{
|
||
if (create)
|
||
einfo (_("%P:%S: warning: redeclaration of memory region '%s'\n"),
|
||
name);
|
||
return p;
|
||
}
|
||
|
||
if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
|
||
einfo (_("%P:%S: warning: memory region %s not declared\n"), name);
|
||
|
||
new = stat_alloc (sizeof (lang_memory_region_type));
|
||
|
||
new->name = xstrdup (name);
|
||
new->next = NULL;
|
||
|
||
*lang_memory_region_list_tail = new;
|
||
lang_memory_region_list_tail = &new->next;
|
||
new->origin = 0;
|
||
new->flags = 0;
|
||
new->not_flags = 0;
|
||
new->length = ~(bfd_size_type) 0;
|
||
new->current = 0;
|
||
new->had_full_message = FALSE;
|
||
|
||
return new;
|
||
}
|
||
|
||
static lang_memory_region_type *
|
||
lang_memory_default (asection *section)
|
||
{
|
||
lang_memory_region_type *p;
|
||
|
||
flagword sec_flags = section->flags;
|
||
|
||
/* Override SEC_DATA to mean a writable section. */
|
||
if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
|
||
sec_flags |= SEC_DATA;
|
||
|
||
for (p = lang_memory_region_list; p != NULL; p = p->next)
|
||
{
|
||
if ((p->flags & sec_flags) != 0
|
||
&& (p->not_flags & sec_flags) == 0)
|
||
{
|
||
return p;
|
||
}
|
||
}
|
||
return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
|
||
}
|
||
|
||
static lang_output_section_statement_type *
|
||
lang_output_section_find_1 (const char *const name, int constraint)
|
||
{
|
||
lang_output_section_statement_type *lookup;
|
||
struct output_statement_hash_entry *entry;
|
||
unsigned long hash;
|
||
|
||
entry = ((struct output_statement_hash_entry *)
|
||
bfd_hash_lookup (&output_statement_table, name, FALSE,
|
||
FALSE));
|
||
if (entry == NULL || (lookup = entry->entry) == NULL)
|
||
return NULL;
|
||
|
||
hash = entry->root.hash;
|
||
do
|
||
{
|
||
if (lookup->constraint != -1
|
||
&& (constraint == 0
|
||
|| (constraint == lookup->constraint
|
||
&& constraint != SPECIAL)))
|
||
return lookup;
|
||
entry = (struct output_statement_hash_entry *) entry->root.next;
|
||
lookup = entry ? entry->entry : NULL;
|
||
}
|
||
while (entry != NULL
|
||
&& entry->root.hash == hash
|
||
&& strcmp (name, lookup->name) == 0);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_find (const char *const name)
|
||
{
|
||
return lang_output_section_find_1 (name, 0);
|
||
}
|
||
|
||
static lang_output_section_statement_type *
|
||
lang_output_section_statement_lookup_1 (const char *const name, int constraint)
|
||
{
|
||
lang_output_section_statement_type *lookup;
|
||
lang_output_section_statement_type **nextp;
|
||
|
||
lookup = lang_output_section_find_1 (name, constraint);
|
||
if (lookup == NULL)
|
||
{
|
||
struct output_statement_hash_entry *entry;
|
||
|
||
lookup = new_stat (lang_output_section_statement, stat_ptr);
|
||
lookup->region = NULL;
|
||
lookup->lma_region = NULL;
|
||
lookup->fill = 0;
|
||
lookup->block_value = 1;
|
||
lookup->name = name;
|
||
|
||
lookup->next = NULL;
|
||
lookup->bfd_section = NULL;
|
||
lookup->processed = FALSE;
|
||
lookup->constraint = constraint;
|
||
lookup->ignored = FALSE;
|
||
lookup->sectype = normal_section;
|
||
lookup->addr_tree = NULL;
|
||
lang_list_init (&lookup->children);
|
||
|
||
lookup->memspec = NULL;
|
||
lookup->flags = 0;
|
||
lookup->subsection_alignment = -1;
|
||
lookup->section_alignment = -1;
|
||
lookup->load_base = NULL;
|
||
lookup->update_dot_tree = NULL;
|
||
lookup->phdrs = NULL;
|
||
|
||
entry = ((struct output_statement_hash_entry *)
|
||
bfd_hash_lookup (&output_statement_table, name, TRUE,
|
||
FALSE));
|
||
if (entry == NULL)
|
||
einfo (_("%P%F: bfd_hash_lookup failed creating section `%s'\n"),
|
||
name);
|
||
|
||
entry->entry = lookup;
|
||
|
||
/* GCC's strict aliasing rules prevent us from just casting the
|
||
address, so we store the pointer in a variable and cast that
|
||
instead. */
|
||
nextp = &lookup->next;
|
||
lang_statement_append (&lang_output_section_statement,
|
||
(lang_statement_union_type *) lookup,
|
||
(lang_statement_union_type **) nextp);
|
||
}
|
||
return lookup;
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_statement_lookup (const char *const name)
|
||
{
|
||
return lang_output_section_statement_lookup_1 (name, 0);
|
||
}
|
||
|
||
/* A variant of lang_output_section_find used by place_orphan.
|
||
Returns the output statement that should precede a new output
|
||
statement for SEC. If an exact match is found on certain flags,
|
||
sets *EXACT too. */
|
||
|
||
lang_output_section_statement_type *
|
||
lang_output_section_find_by_flags (const asection *sec,
|
||
lang_output_section_statement_type **exact)
|
||
{
|
||
lang_output_section_statement_type *first, *look, *found;
|
||
flagword flags;
|
||
|
||
/* We know the first statement on this list is *ABS*. May as well
|
||
skip it. */
|
||
first = &lang_output_section_statement.head->output_section_statement;
|
||
first = first->next;
|
||
|
||
/* First try for an exact match. */
|
||
found = NULL;
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
|
||
| SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
if (found != NULL)
|
||
{
|
||
*exact = found;
|
||
return found;
|
||
}
|
||
|
||
if (sec->flags & SEC_CODE)
|
||
{
|
||
/* Try for a rw code section. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
if (sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL))
|
||
{
|
||
/* .rodata can go after .text, .sdata2 after .rodata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_READONLY))
|
||
&& !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
if (sec->flags & SEC_SMALL_DATA)
|
||
{
|
||
/* .sdata goes after .data, .sbss after .sdata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_THREAD_LOCAL))
|
||
|| ((look->flags & SEC_SMALL_DATA)
|
||
&& !(sec->flags & SEC_HAS_CONTENTS)))
|
||
found = look;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
if (sec->flags & SEC_HAS_CONTENTS)
|
||
{
|
||
/* .data goes after .rodata. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
|
||
| SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
|
||
found = look;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
/* .bss goes last. */
|
||
for (look = first; look; look = look->next)
|
||
{
|
||
flags = look->flags;
|
||
if (look->bfd_section != NULL)
|
||
{
|
||
flags = look->bfd_section->flags;
|
||
if (!bfd_match_sections_by_type (output_bfd,
|
||
look->bfd_section,
|
||
sec->owner, sec))
|
||
continue;
|
||
}
|
||
flags ^= sec->flags;
|
||
if (!(flags & SEC_ALLOC))
|
||
found = look;
|
||
}
|
||
|
||
return found;
|
||
}
|
||
|
||
/* Find the last output section before given output statement.
|
||
Used by place_orphan. */
|
||
|
||
static asection *
|
||
output_prev_sec_find (lang_output_section_statement_type *os)
|
||
{
|
||
asection *s = (asection *) NULL;
|
||
lang_output_section_statement_type *lookup;
|
||
|
||
for (lookup = &lang_output_section_statement.head->output_section_statement;
|
||
lookup != NULL;
|
||
lookup = lookup->next)
|
||
{
|
||
if (lookup->constraint == -1)
|
||
continue;
|
||
if (lookup == os)
|
||
return s;
|
||
|
||
if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
|
||
s = lookup->bfd_section;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_insert_orphan (lang_input_statement_type *file,
|
||
asection *s,
|
||
const char *secname,
|
||
lang_output_section_statement_type *after,
|
||
struct orphan_save *place,
|
||
etree_type *address,
|
||
lang_statement_list_type *add_child)
|
||
{
|
||
lang_statement_list_type *old;
|
||
lang_statement_list_type add;
|
||
const char *ps;
|
||
etree_type *load_base;
|
||
lang_output_section_statement_type *os;
|
||
lang_output_section_statement_type **os_tail;
|
||
|
||
/* Start building a list of statements for this section.
|
||
First save the current statement pointer. */
|
||
old = stat_ptr;
|
||
|
||
/* If we have found an appropriate place for the output section
|
||
statements for this orphan, add them to our own private list,
|
||
inserting them later into the global statement list. */
|
||
if (after != NULL)
|
||
{
|
||
stat_ptr = &add;
|
||
lang_list_init (stat_ptr);
|
||
}
|
||
|
||
ps = NULL;
|
||
if (config.build_constructors)
|
||
{
|
||
/* If the name of the section is representable in C, then create
|
||
symbols to mark the start and the end of the section. */
|
||
for (ps = secname; *ps != '\0'; ps++)
|
||
if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
|
||
break;
|
||
if (*ps == '\0')
|
||
{
|
||
char *symname;
|
||
etree_type *e_align;
|
||
|
||
symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
|
||
symname[0] = bfd_get_symbol_leading_char (output_bfd);
|
||
sprintf (symname + (symname[0] != 0), "__start_%s", secname);
|
||
e_align = exp_unop (ALIGN_K,
|
||
exp_intop ((bfd_vma) 1 << s->alignment_power));
|
||
lang_add_assignment (exp_assop ('=', ".", e_align));
|
||
lang_add_assignment (exp_assop ('=', symname,
|
||
exp_nameop (NAME, ".")));
|
||
}
|
||
}
|
||
|
||
if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
|
||
address = exp_intop (0);
|
||
|
||
load_base = NULL;
|
||
if (after != NULL && after->load_base != NULL)
|
||
{
|
||
etree_type *lma_from_vma;
|
||
lma_from_vma = exp_binop ('-', after->load_base,
|
||
exp_nameop (ADDR, after->name));
|
||
load_base = exp_binop ('+', lma_from_vma,
|
||
exp_nameop (ADDR, secname));
|
||
}
|
||
|
||
os_tail = ((lang_output_section_statement_type **)
|
||
lang_output_section_statement.tail);
|
||
os = lang_enter_output_section_statement (secname, address, 0, NULL, NULL,
|
||
load_base, 0);
|
||
|
||
if (add_child == NULL)
|
||
add_child = &os->children;
|
||
lang_add_section (add_child, s, os, file);
|
||
|
||
lang_leave_output_section_statement (0, "*default*", NULL, NULL);
|
||
|
||
if (config.build_constructors && *ps == '\0')
|
||
{
|
||
char *symname;
|
||
|
||
/* lang_leave_ouput_section_statement resets stat_ptr.
|
||
Put stat_ptr back where we want it. */
|
||
if (after != NULL)
|
||
stat_ptr = &add;
|
||
|
||
symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
|
||
symname[0] = bfd_get_symbol_leading_char (output_bfd);
|
||
sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
|
||
lang_add_assignment (exp_assop ('=', symname,
|
||
exp_nameop (NAME, ".")));
|
||
}
|
||
|
||
/* Restore the global list pointer. */
|
||
if (after != NULL)
|
||
stat_ptr = old;
|
||
|
||
if (after != NULL && os->bfd_section != NULL)
|
||
{
|
||
asection *snew, *as;
|
||
|
||
snew = os->bfd_section;
|
||
|
||
/* Shuffle the bfd section list to make the output file look
|
||
neater. This is really only cosmetic. */
|
||
if (place->section == NULL
|
||
&& after != (&lang_output_section_statement.head
|
||
->output_section_statement))
|
||
{
|
||
asection *bfd_section = after->bfd_section;
|
||
|
||
/* If the output statement hasn't been used to place any input
|
||
sections (and thus doesn't have an output bfd_section),
|
||
look for the closest prior output statement having an
|
||
output section. */
|
||
if (bfd_section == NULL)
|
||
bfd_section = output_prev_sec_find (after);
|
||
|
||
if (bfd_section != NULL && bfd_section != snew)
|
||
place->section = &bfd_section->next;
|
||
}
|
||
|
||
if (place->section == NULL)
|
||
place->section = &output_bfd->sections;
|
||
|
||
as = *place->section;
|
||
if (as != snew && as->prev != snew)
|
||
{
|
||
/* Unlink the section. */
|
||
bfd_section_list_remove (output_bfd, snew);
|
||
|
||
/* Now tack it back on in the right place. */
|
||
bfd_section_list_insert_before (output_bfd, as, snew);
|
||
}
|
||
|
||
/* Save the end of this list. Further ophans of this type will
|
||
follow the one we've just added. */
|
||
place->section = &snew->next;
|
||
|
||
/* The following is non-cosmetic. We try to put the output
|
||
statements in some sort of reasonable order here, because they
|
||
determine the final load addresses of the orphan sections.
|
||
In addition, placing output statements in the wrong order may
|
||
require extra segments. For instance, given a typical
|
||
situation of all read-only sections placed in one segment and
|
||
following that a segment containing all the read-write
|
||
sections, we wouldn't want to place an orphan read/write
|
||
section before or amongst the read-only ones. */
|
||
if (add.head != NULL)
|
||
{
|
||
lang_output_section_statement_type *newly_added_os;
|
||
|
||
if (place->stmt == NULL)
|
||
{
|
||
lang_statement_union_type **where;
|
||
lang_statement_union_type **assign = NULL;
|
||
|
||
/* Look for a suitable place for the new statement list.
|
||
The idea is to skip over anything that might be inside
|
||
a SECTIONS {} statement in a script, before we find
|
||
another output_section_statement. Assignments to "dot"
|
||
before an output section statement are assumed to
|
||
belong to it. */
|
||
for (where = &after->header.next;
|
||
*where != NULL;
|
||
where = &(*where)->header.next)
|
||
{
|
||
switch ((*where)->header.type)
|
||
{
|
||
case lang_assignment_statement_enum:
|
||
if (assign == NULL)
|
||
{
|
||
lang_assignment_statement_type *ass;
|
||
ass = &(*where)->assignment_statement;
|
||
if (ass->exp->type.node_class != etree_assert
|
||
&& ass->exp->assign.dst[0] == '.'
|
||
&& ass->exp->assign.dst[1] == 0)
|
||
assign = where;
|
||
}
|
||
continue;
|
||
case lang_wild_statement_enum:
|
||
case lang_input_section_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_fill_statement_enum:
|
||
case lang_data_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_constructors_statement_enum:
|
||
assign = NULL;
|
||
continue;
|
||
case lang_output_section_statement_enum:
|
||
if (assign != NULL)
|
||
where = assign;
|
||
case lang_input_statement_enum:
|
||
case lang_address_statement_enum:
|
||
case lang_target_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_group_statement_enum:
|
||
case lang_afile_asection_pair_statement_enum:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
*add.tail = *where;
|
||
*where = add.head;
|
||
|
||
place->os_tail = &after->next;
|
||
}
|
||
else
|
||
{
|
||
/* Put it after the last orphan statement we added. */
|
||
*add.tail = *place->stmt;
|
||
*place->stmt = add.head;
|
||
}
|
||
|
||
/* Fix the global list pointer if we happened to tack our
|
||
new list at the tail. */
|
||
if (*old->tail == add.head)
|
||
old->tail = add.tail;
|
||
|
||
/* Save the end of this list. */
|
||
place->stmt = add.tail;
|
||
|
||
/* Do the same for the list of output section statements. */
|
||
newly_added_os = *os_tail;
|
||
*os_tail = NULL;
|
||
newly_added_os->next = *place->os_tail;
|
||
*place->os_tail = newly_added_os;
|
||
place->os_tail = &newly_added_os->next;
|
||
|
||
/* Fixing the global list pointer here is a little different.
|
||
We added to the list in lang_enter_output_section_statement,
|
||
trimmed off the new output_section_statment above when
|
||
assigning *os_tail = NULL, but possibly added it back in
|
||
the same place when assigning *place->os_tail. */
|
||
if (*os_tail == NULL)
|
||
lang_output_section_statement.tail
|
||
= (lang_statement_union_type **) os_tail;
|
||
}
|
||
}
|
||
return os;
|
||
}
|
||
|
||
static void
|
||
lang_map_flags (flagword flag)
|
||
{
|
||
if (flag & SEC_ALLOC)
|
||
minfo ("a");
|
||
|
||
if (flag & SEC_CODE)
|
||
minfo ("x");
|
||
|
||
if (flag & SEC_READONLY)
|
||
minfo ("r");
|
||
|
||
if (flag & SEC_DATA)
|
||
minfo ("w");
|
||
|
||
if (flag & SEC_LOAD)
|
||
minfo ("l");
|
||
}
|
||
|
||
void
|
||
lang_map (void)
|
||
{
|
||
lang_memory_region_type *m;
|
||
bfd *p;
|
||
|
||
minfo (_("\nMemory Configuration\n\n"));
|
||
fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
|
||
_("Name"), _("Origin"), _("Length"), _("Attributes"));
|
||
|
||
for (m = lang_memory_region_list; m != NULL; m = m->next)
|
||
{
|
||
char buf[100];
|
||
int len;
|
||
|
||
fprintf (config.map_file, "%-16s ", m->name);
|
||
|
||
sprintf_vma (buf, m->origin);
|
||
minfo ("0x%s ", buf);
|
||
len = strlen (buf);
|
||
while (len < 16)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
minfo ("0x%V", m->length);
|
||
if (m->flags || m->not_flags)
|
||
{
|
||
#ifndef BFD64
|
||
minfo (" ");
|
||
#endif
|
||
if (m->flags)
|
||
{
|
||
print_space ();
|
||
lang_map_flags (m->flags);
|
||
}
|
||
|
||
if (m->not_flags)
|
||
{
|
||
minfo (" !");
|
||
lang_map_flags (m->not_flags);
|
||
}
|
||
}
|
||
|
||
print_nl ();
|
||
}
|
||
|
||
fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
|
||
|
||
if (! command_line.reduce_memory_overheads)
|
||
{
|
||
obstack_begin (&map_obstack, 1000);
|
||
for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
|
||
bfd_map_over_sections (p, init_map_userdata, 0);
|
||
bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
|
||
}
|
||
print_statements ();
|
||
}
|
||
|
||
static void
|
||
init_map_userdata (abfd, sec, data)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
asection *sec;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
fat_section_userdata_type *new_data
|
||
= ((fat_section_userdata_type *) (stat_alloc
|
||
(sizeof (fat_section_userdata_type))));
|
||
|
||
ASSERT (get_userdata (sec) == NULL);
|
||
get_userdata (sec) = new_data;
|
||
new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
|
||
}
|
||
|
||
static bfd_boolean
|
||
sort_def_symbol (hash_entry, info)
|
||
struct bfd_link_hash_entry *hash_entry;
|
||
void *info ATTRIBUTE_UNUSED;
|
||
{
|
||
if (hash_entry->type == bfd_link_hash_defined
|
||
|| hash_entry->type == bfd_link_hash_defweak)
|
||
{
|
||
struct fat_user_section_struct *ud;
|
||
struct map_symbol_def *def;
|
||
|
||
ud = get_userdata (hash_entry->u.def.section);
|
||
if (! ud)
|
||
{
|
||
/* ??? What do we have to do to initialize this beforehand? */
|
||
/* The first time we get here is bfd_abs_section... */
|
||
init_map_userdata (0, hash_entry->u.def.section, 0);
|
||
ud = get_userdata (hash_entry->u.def.section);
|
||
}
|
||
else if (!ud->map_symbol_def_tail)
|
||
ud->map_symbol_def_tail = &ud->map_symbol_def_head;
|
||
|
||
def = obstack_alloc (&map_obstack, sizeof *def);
|
||
def->entry = hash_entry;
|
||
*(ud->map_symbol_def_tail) = def;
|
||
ud->map_symbol_def_tail = &def->next;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Initialize an output section. */
|
||
|
||
static void
|
||
init_os (lang_output_section_statement_type *s, asection *isec)
|
||
{
|
||
if (s->bfd_section != NULL)
|
||
return;
|
||
|
||
if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
|
||
einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
|
||
|
||
s->bfd_section = bfd_get_section_by_name (output_bfd, s->name);
|
||
if (s->bfd_section == NULL)
|
||
s->bfd_section = bfd_make_section (output_bfd, s->name);
|
||
if (s->bfd_section == NULL)
|
||
{
|
||
einfo (_("%P%F: output format %s cannot represent section called %s\n"),
|
||
output_bfd->xvec->name, s->name);
|
||
}
|
||
s->bfd_section->output_section = s->bfd_section;
|
||
|
||
/* We initialize an output sections output offset to minus its own
|
||
vma to allow us to output a section through itself. */
|
||
s->bfd_section->output_offset = 0;
|
||
if (!command_line.reduce_memory_overheads)
|
||
{
|
||
fat_section_userdata_type *new
|
||
= stat_alloc (sizeof (fat_section_userdata_type));
|
||
memset (new, 0, sizeof (fat_section_userdata_type));
|
||
get_userdata (s->bfd_section) = new;
|
||
}
|
||
|
||
|
||
/* If there is a base address, make sure that any sections it might
|
||
mention are initialized. */
|
||
if (s->addr_tree != NULL)
|
||
exp_init_os (s->addr_tree);
|
||
|
||
if (s->load_base != NULL)
|
||
exp_init_os (s->load_base);
|
||
|
||
if (isec)
|
||
bfd_init_private_section_data (isec->owner, isec,
|
||
output_bfd, s->bfd_section,
|
||
&link_info);
|
||
}
|
||
|
||
/* Make sure that all output sections mentioned in an expression are
|
||
initialized. */
|
||
|
||
static void
|
||
exp_init_os (etree_type *exp)
|
||
{
|
||
switch (exp->type.node_class)
|
||
{
|
||
case etree_assign:
|
||
case etree_provide:
|
||
exp_init_os (exp->assign.src);
|
||
break;
|
||
|
||
case etree_binary:
|
||
exp_init_os (exp->binary.lhs);
|
||
exp_init_os (exp->binary.rhs);
|
||
break;
|
||
|
||
case etree_trinary:
|
||
exp_init_os (exp->trinary.cond);
|
||
exp_init_os (exp->trinary.lhs);
|
||
exp_init_os (exp->trinary.rhs);
|
||
break;
|
||
|
||
case etree_assert:
|
||
exp_init_os (exp->assert_s.child);
|
||
break;
|
||
|
||
case etree_unary:
|
||
exp_init_os (exp->unary.child);
|
||
break;
|
||
|
||
case etree_name:
|
||
switch (exp->type.node_code)
|
||
{
|
||
case ADDR:
|
||
case LOADADDR:
|
||
case SIZEOF:
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = lang_output_section_find (exp->name.name);
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, NULL);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
section_already_linked (bfd *abfd, asection *sec, void *data)
|
||
{
|
||
lang_input_statement_type *entry = data;
|
||
|
||
/* If we are only reading symbols from this object, then we want to
|
||
discard all sections. */
|
||
if (entry->just_syms_flag)
|
||
{
|
||
bfd_link_just_syms (abfd, sec, &link_info);
|
||
return;
|
||
}
|
||
|
||
if (!(abfd->flags & DYNAMIC))
|
||
bfd_section_already_linked (abfd, sec);
|
||
}
|
||
|
||
/* The wild routines.
|
||
|
||
These expand statements like *(.text) and foo.o to a list of
|
||
explicit actions, like foo.o(.text), bar.o(.text) and
|
||
foo.o(.text, .data). */
|
||
|
||
/* Add SECTION to the output section OUTPUT. Do this by creating a
|
||
lang_input_section statement which is placed at PTR. FILE is the
|
||
input file which holds SECTION. */
|
||
|
||
void
|
||
lang_add_section (lang_statement_list_type *ptr,
|
||
asection *section,
|
||
lang_output_section_statement_type *output,
|
||
lang_input_statement_type *file)
|
||
{
|
||
flagword flags = section->flags;
|
||
bfd_boolean discard;
|
||
|
||
/* Discard sections marked with SEC_EXCLUDE. */
|
||
discard = (flags & SEC_EXCLUDE) != 0;
|
||
|
||
/* Discard input sections which are assigned to a section named
|
||
DISCARD_SECTION_NAME. */
|
||
if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
|
||
discard = TRUE;
|
||
|
||
/* Discard debugging sections if we are stripping debugging
|
||
information. */
|
||
if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
|
||
&& (flags & SEC_DEBUGGING) != 0)
|
||
discard = TRUE;
|
||
|
||
if (discard)
|
||
{
|
||
if (section->output_section == NULL)
|
||
{
|
||
/* This prevents future calls from assigning this section. */
|
||
section->output_section = bfd_abs_section_ptr;
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (section->output_section == NULL)
|
||
{
|
||
bfd_boolean first;
|
||
lang_input_section_type *new;
|
||
flagword flags;
|
||
|
||
if (output->bfd_section == NULL)
|
||
init_os (output, section);
|
||
|
||
first = ! output->bfd_section->linker_has_input;
|
||
output->bfd_section->linker_has_input = 1;
|
||
|
||
if (!link_info.relocatable
|
||
&& !stripped_excluded_sections)
|
||
{
|
||
asection *s = output->bfd_section->map_tail.s;
|
||
output->bfd_section->map_tail.s = section;
|
||
section->map_head.s = NULL;
|
||
section->map_tail.s = s;
|
||
if (s != NULL)
|
||
s->map_head.s = section;
|
||
else
|
||
output->bfd_section->map_head.s = section;
|
||
}
|
||
|
||
/* Add a section reference to the list. */
|
||
new = new_stat (lang_input_section, ptr);
|
||
|
||
new->section = section;
|
||
new->ifile = file;
|
||
section->output_section = output->bfd_section;
|
||
|
||
flags = section->flags;
|
||
|
||
/* We don't copy the SEC_NEVER_LOAD flag from an input section
|
||
to an output section, because we want to be able to include a
|
||
SEC_NEVER_LOAD section in the middle of an otherwise loaded
|
||
section (I don't know why we want to do this, but we do).
|
||
build_link_order in ldwrite.c handles this case by turning
|
||
the embedded SEC_NEVER_LOAD section into a fill. */
|
||
|
||
flags &= ~ SEC_NEVER_LOAD;
|
||
|
||
/* If final link, don't copy the SEC_LINK_ONCE flags, they've
|
||
already been processed. One reason to do this is that on pe
|
||
format targets, .text$foo sections go into .text and it's odd
|
||
to see .text with SEC_LINK_ONCE set. */
|
||
|
||
if (! link_info.relocatable)
|
||
flags &= ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES);
|
||
|
||
/* If this is not the first input section, and the SEC_READONLY
|
||
flag is not currently set, then don't set it just because the
|
||
input section has it set. */
|
||
|
||
if (! first && (output->bfd_section->flags & SEC_READONLY) == 0)
|
||
flags &= ~ SEC_READONLY;
|
||
|
||
/* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
|
||
if (! first
|
||
&& ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
|
||
!= (flags & (SEC_MERGE | SEC_STRINGS))
|
||
|| ((flags & SEC_MERGE)
|
||
&& output->bfd_section->entsize != section->entsize)))
|
||
{
|
||
output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
|
||
flags &= ~ (SEC_MERGE | SEC_STRINGS);
|
||
}
|
||
|
||
output->bfd_section->flags |= flags;
|
||
|
||
if (flags & SEC_MERGE)
|
||
output->bfd_section->entsize = section->entsize;
|
||
|
||
/* If SEC_READONLY is not set in the input section, then clear
|
||
it from the output section. */
|
||
if ((section->flags & SEC_READONLY) == 0)
|
||
output->bfd_section->flags &= ~SEC_READONLY;
|
||
|
||
switch (output->sectype)
|
||
{
|
||
case normal_section:
|
||
break;
|
||
case dsect_section:
|
||
case copy_section:
|
||
case info_section:
|
||
case overlay_section:
|
||
output->bfd_section->flags &= ~SEC_ALLOC;
|
||
break;
|
||
case noload_section:
|
||
output->bfd_section->flags &= ~SEC_LOAD;
|
||
output->bfd_section->flags |= SEC_NEVER_LOAD;
|
||
break;
|
||
}
|
||
|
||
/* Copy over SEC_SMALL_DATA. */
|
||
if (section->flags & SEC_SMALL_DATA)
|
||
output->bfd_section->flags |= SEC_SMALL_DATA;
|
||
|
||
if (section->alignment_power > output->bfd_section->alignment_power)
|
||
output->bfd_section->alignment_power = section->alignment_power;
|
||
|
||
/* If supplied an alignment, then force it. */
|
||
if (output->section_alignment != -1)
|
||
output->bfd_section->alignment_power = output->section_alignment;
|
||
|
||
if (bfd_get_arch (section->owner) == bfd_arch_tic54x
|
||
&& (section->flags & SEC_TIC54X_BLOCK) != 0)
|
||
{
|
||
output->bfd_section->flags |= SEC_TIC54X_BLOCK;
|
||
/* FIXME: This value should really be obtained from the bfd... */
|
||
output->block_value = 128;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compare sections ASEC and BSEC according to SORT. */
|
||
|
||
static int
|
||
compare_section (sort_type sort, asection *asec, asection *bsec)
|
||
{
|
||
int ret;
|
||
|
||
switch (sort)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case by_alignment_name:
|
||
ret = (bfd_section_alignment (bsec->owner, bsec)
|
||
- bfd_section_alignment (asec->owner, asec));
|
||
if (ret)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case by_name:
|
||
ret = strcmp (bfd_get_section_name (asec->owner, asec),
|
||
bfd_get_section_name (bsec->owner, bsec));
|
||
break;
|
||
|
||
case by_name_alignment:
|
||
ret = strcmp (bfd_get_section_name (asec->owner, asec),
|
||
bfd_get_section_name (bsec->owner, bsec));
|
||
if (ret)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
case by_alignment:
|
||
ret = (bfd_section_alignment (bsec->owner, bsec)
|
||
- bfd_section_alignment (asec->owner, asec));
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Handle wildcard sorting. This returns the lang_input_section which
|
||
should follow the one we are going to create for SECTION and FILE,
|
||
based on the sorting requirements of WILD. It returns NULL if the
|
||
new section should just go at the end of the current list. */
|
||
|
||
static lang_statement_union_type *
|
||
wild_sort (lang_wild_statement_type *wild,
|
||
struct wildcard_list *sec,
|
||
lang_input_statement_type *file,
|
||
asection *section)
|
||
{
|
||
const char *section_name;
|
||
lang_statement_union_type *l;
|
||
|
||
if (!wild->filenames_sorted
|
||
&& (sec == NULL || sec->spec.sorted == none))
|
||
return NULL;
|
||
|
||
section_name = bfd_get_section_name (file->the_bfd, section);
|
||
for (l = wild->children.head; l != NULL; l = l->header.next)
|
||
{
|
||
lang_input_section_type *ls;
|
||
|
||
if (l->header.type != lang_input_section_enum)
|
||
continue;
|
||
ls = &l->input_section;
|
||
|
||
/* Sorting by filename takes precedence over sorting by section
|
||
name. */
|
||
|
||
if (wild->filenames_sorted)
|
||
{
|
||
const char *fn, *ln;
|
||
bfd_boolean fa, la;
|
||
int i;
|
||
|
||
/* The PE support for the .idata section as generated by
|
||
dlltool assumes that files will be sorted by the name of
|
||
the archive and then the name of the file within the
|
||
archive. */
|
||
|
||
if (file->the_bfd != NULL
|
||
&& bfd_my_archive (file->the_bfd) != NULL)
|
||
{
|
||
fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
|
||
fa = TRUE;
|
||
}
|
||
else
|
||
{
|
||
fn = file->filename;
|
||
fa = FALSE;
|
||
}
|
||
|
||
if (ls->ifile->the_bfd != NULL
|
||
&& bfd_my_archive (ls->ifile->the_bfd) != NULL)
|
||
{
|
||
ln = bfd_get_filename (bfd_my_archive (ls->ifile->the_bfd));
|
||
la = TRUE;
|
||
}
|
||
else
|
||
{
|
||
ln = ls->ifile->filename;
|
||
la = FALSE;
|
||
}
|
||
|
||
i = strcmp (fn, ln);
|
||
if (i > 0)
|
||
continue;
|
||
else if (i < 0)
|
||
break;
|
||
|
||
if (fa || la)
|
||
{
|
||
if (fa)
|
||
fn = file->filename;
|
||
if (la)
|
||
ln = ls->ifile->filename;
|
||
|
||
i = strcmp (fn, ln);
|
||
if (i > 0)
|
||
continue;
|
||
else if (i < 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Here either the files are not sorted by name, or we are
|
||
looking at the sections for this file. */
|
||
|
||
if (sec != NULL && sec->spec.sorted != none)
|
||
if (compare_section (sec->spec.sorted, section, ls->section) < 0)
|
||
break;
|
||
}
|
||
|
||
return l;
|
||
}
|
||
|
||
/* Expand a wild statement for a particular FILE. SECTION may be
|
||
NULL, in which case it is a wild card. */
|
||
|
||
static void
|
||
output_section_callback (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec,
|
||
asection *section,
|
||
lang_input_statement_type *file,
|
||
void *output)
|
||
{
|
||
lang_statement_union_type *before;
|
||
|
||
/* Exclude sections that match UNIQUE_SECTION_LIST. */
|
||
if (unique_section_p (section))
|
||
return;
|
||
|
||
before = wild_sort (ptr, sec, file, section);
|
||
|
||
/* Here BEFORE points to the lang_input_section which
|
||
should follow the one we are about to add. If BEFORE
|
||
is NULL, then the section should just go at the end
|
||
of the current list. */
|
||
|
||
if (before == NULL)
|
||
lang_add_section (&ptr->children, section,
|
||
(lang_output_section_statement_type *) output,
|
||
file);
|
||
else
|
||
{
|
||
lang_statement_list_type list;
|
||
lang_statement_union_type **pp;
|
||
|
||
lang_list_init (&list);
|
||
lang_add_section (&list, section,
|
||
(lang_output_section_statement_type *) output,
|
||
file);
|
||
|
||
/* If we are discarding the section, LIST.HEAD will
|
||
be NULL. */
|
||
if (list.head != NULL)
|
||
{
|
||
ASSERT (list.head->header.next == NULL);
|
||
|
||
for (pp = &ptr->children.head;
|
||
*pp != before;
|
||
pp = &(*pp)->header.next)
|
||
ASSERT (*pp != NULL);
|
||
|
||
list.head->header.next = *pp;
|
||
*pp = list.head;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if all sections in a wild statement for a particular FILE
|
||
are readonly. */
|
||
|
||
static void
|
||
check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *data)
|
||
{
|
||
/* Exclude sections that match UNIQUE_SECTION_LIST. */
|
||
if (unique_section_p (section))
|
||
return;
|
||
|
||
if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
|
||
((lang_output_section_statement_type *) data)->all_input_readonly = FALSE;
|
||
}
|
||
|
||
/* This is passed a file name which must have been seen already and
|
||
added to the statement tree. We will see if it has been opened
|
||
already and had its symbols read. If not then we'll read it. */
|
||
|
||
static lang_input_statement_type *
|
||
lookup_name (const char *name)
|
||
{
|
||
lang_input_statement_type *search;
|
||
|
||
for (search = (lang_input_statement_type *) input_file_chain.head;
|
||
search != NULL;
|
||
search = (lang_input_statement_type *) search->next_real_file)
|
||
{
|
||
/* Use the local_sym_name as the name of the file that has
|
||
already been loaded as filename might have been transformed
|
||
via the search directory lookup mechanism. */
|
||
const char * filename = search->local_sym_name;
|
||
|
||
if (filename == NULL && name == NULL)
|
||
return search;
|
||
if (filename != NULL
|
||
&& name != NULL
|
||
&& strcmp (filename, name) == 0)
|
||
break;
|
||
}
|
||
|
||
if (search == NULL)
|
||
search = new_afile (name, lang_input_file_is_search_file_enum,
|
||
default_target, FALSE);
|
||
|
||
/* If we have already added this file, or this file is not real
|
||
(FIXME: can that ever actually happen?) or the name is NULL
|
||
(FIXME: can that ever actually happen?) don't add this file. */
|
||
if (search->loaded
|
||
|| ! search->real
|
||
|| search->filename == NULL)
|
||
return search;
|
||
|
||
if (! load_symbols (search, NULL))
|
||
return NULL;
|
||
|
||
return search;
|
||
}
|
||
|
||
/* Save LIST as a list of libraries whose symbols should not be exported. */
|
||
|
||
struct excluded_lib
|
||
{
|
||
char *name;
|
||
struct excluded_lib *next;
|
||
};
|
||
static struct excluded_lib *excluded_libs;
|
||
|
||
void
|
||
add_excluded_libs (const char *list)
|
||
{
|
||
const char *p = list, *end;
|
||
|
||
while (*p != '\0')
|
||
{
|
||
struct excluded_lib *entry;
|
||
end = strpbrk (p, ",:");
|
||
if (end == NULL)
|
||
end = p + strlen (p);
|
||
entry = xmalloc (sizeof (*entry));
|
||
entry->next = excluded_libs;
|
||
entry->name = xmalloc (end - p + 1);
|
||
memcpy (entry->name, p, end - p);
|
||
entry->name[end - p] = '\0';
|
||
excluded_libs = entry;
|
||
if (*end == '\0')
|
||
break;
|
||
p = end + 1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
check_excluded_libs (bfd *abfd)
|
||
{
|
||
struct excluded_lib *lib = excluded_libs;
|
||
|
||
while (lib)
|
||
{
|
||
int len = strlen (lib->name);
|
||
const char *filename = lbasename (abfd->filename);
|
||
|
||
if (strcmp (lib->name, "ALL") == 0)
|
||
{
|
||
abfd->no_export = TRUE;
|
||
return;
|
||
}
|
||
|
||
if (strncmp (lib->name, filename, len) == 0
|
||
&& (filename[len] == '\0'
|
||
|| (filename[len] == '.' && filename[len + 1] == 'a'
|
||
&& filename[len + 2] == '\0')))
|
||
{
|
||
abfd->no_export = TRUE;
|
||
return;
|
||
}
|
||
|
||
lib = lib->next;
|
||
}
|
||
}
|
||
|
||
/* Get the symbols for an input file. */
|
||
|
||
static bfd_boolean
|
||
load_symbols (lang_input_statement_type *entry,
|
||
lang_statement_list_type *place)
|
||
{
|
||
char **matching;
|
||
|
||
if (entry->loaded)
|
||
return TRUE;
|
||
|
||
ldfile_open_file (entry);
|
||
|
||
if (! bfd_check_format (entry->the_bfd, bfd_archive)
|
||
&& ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
|
||
{
|
||
bfd_error_type err;
|
||
lang_statement_list_type *hold;
|
||
bfd_boolean bad_load = TRUE;
|
||
bfd_boolean save_ldlang_sysrooted_script;
|
||
|
||
err = bfd_get_error ();
|
||
|
||
/* See if the emulation has some special knowledge. */
|
||
if (ldemul_unrecognized_file (entry))
|
||
return TRUE;
|
||
|
||
if (err == bfd_error_file_ambiguously_recognized)
|
||
{
|
||
char **p;
|
||
|
||
einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
|
||
einfo (_("%B: matching formats:"), entry->the_bfd);
|
||
for (p = matching; *p != NULL; p++)
|
||
einfo (" %s", *p);
|
||
einfo ("%F\n");
|
||
}
|
||
else if (err != bfd_error_file_not_recognized
|
||
|| place == NULL)
|
||
einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
|
||
else
|
||
bad_load = FALSE;
|
||
|
||
bfd_close (entry->the_bfd);
|
||
entry->the_bfd = NULL;
|
||
|
||
/* Try to interpret the file as a linker script. */
|
||
ldfile_open_command_file (entry->filename);
|
||
|
||
hold = stat_ptr;
|
||
stat_ptr = place;
|
||
save_ldlang_sysrooted_script = ldlang_sysrooted_script;
|
||
ldlang_sysrooted_script = entry->sysrooted;
|
||
|
||
ldfile_assumed_script = TRUE;
|
||
parser_input = input_script;
|
||
/* We want to use the same -Bdynamic/-Bstatic as the one for
|
||
ENTRY. */
|
||
config.dynamic_link = entry->dynamic;
|
||
yyparse ();
|
||
ldfile_assumed_script = FALSE;
|
||
|
||
ldlang_sysrooted_script = save_ldlang_sysrooted_script;
|
||
stat_ptr = hold;
|
||
|
||
return ! bad_load;
|
||
}
|
||
|
||
if (ldemul_recognized_file (entry))
|
||
return TRUE;
|
||
|
||
/* We don't call ldlang_add_file for an archive. Instead, the
|
||
add_symbols entry point will call ldlang_add_file, via the
|
||
add_archive_element callback, for each element of the archive
|
||
which is used. */
|
||
switch (bfd_get_format (entry->the_bfd))
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case bfd_object:
|
||
ldlang_add_file (entry);
|
||
if (trace_files || trace_file_tries)
|
||
info_msg ("%I\n", entry);
|
||
break;
|
||
|
||
case bfd_archive:
|
||
check_excluded_libs (entry->the_bfd);
|
||
|
||
if (entry->whole_archive)
|
||
{
|
||
bfd *member = NULL;
|
||
bfd_boolean loaded = TRUE;
|
||
|
||
for (;;)
|
||
{
|
||
member = bfd_openr_next_archived_file (entry->the_bfd, member);
|
||
|
||
if (member == NULL)
|
||
break;
|
||
|
||
if (! bfd_check_format (member, bfd_object))
|
||
{
|
||
einfo (_("%F%B: member %B in archive is not an object\n"),
|
||
entry->the_bfd, member);
|
||
loaded = FALSE;
|
||
}
|
||
|
||
if (! ((*link_info.callbacks->add_archive_element)
|
||
(&link_info, member, "--whole-archive")))
|
||
abort ();
|
||
|
||
if (! bfd_link_add_symbols (member, &link_info))
|
||
{
|
||
einfo (_("%F%B: could not read symbols: %E\n"), member);
|
||
loaded = FALSE;
|
||
}
|
||
}
|
||
|
||
entry->loaded = loaded;
|
||
return loaded;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (bfd_link_add_symbols (entry->the_bfd, &link_info))
|
||
entry->loaded = TRUE;
|
||
else
|
||
einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
|
||
|
||
return entry->loaded;
|
||
}
|
||
|
||
/* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
|
||
may be NULL, indicating that it is a wildcard. Separate
|
||
lang_input_section statements are created for each part of the
|
||
expansion; they are added after the wild statement S. OUTPUT is
|
||
the output section. */
|
||
|
||
static void
|
||
wild (lang_wild_statement_type *s,
|
||
const char *target ATTRIBUTE_UNUSED,
|
||
lang_output_section_statement_type *output)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
walk_wild (s, output_section_callback, output);
|
||
|
||
for (sec = s->section_list; sec != NULL; sec = sec->next)
|
||
{
|
||
if (default_common_section != NULL)
|
||
break;
|
||
if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
|
||
{
|
||
/* Remember the section that common is going to in case we
|
||
later get something which doesn't know where to put it. */
|
||
default_common_section = output;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return TRUE iff target is the sought target. */
|
||
|
||
static int
|
||
get_target (const bfd_target *target, void *data)
|
||
{
|
||
const char *sought = data;
|
||
|
||
return strcmp (target->name, sought) == 0;
|
||
}
|
||
|
||
/* Like strcpy() but convert to lower case as well. */
|
||
|
||
static void
|
||
stricpy (char *dest, char *src)
|
||
{
|
||
char c;
|
||
|
||
while ((c = *src++) != 0)
|
||
*dest++ = TOLOWER (c);
|
||
|
||
*dest = 0;
|
||
}
|
||
|
||
/* Remove the first occurrence of needle (if any) in haystack
|
||
from haystack. */
|
||
|
||
static void
|
||
strcut (char *haystack, char *needle)
|
||
{
|
||
haystack = strstr (haystack, needle);
|
||
|
||
if (haystack)
|
||
{
|
||
char *src;
|
||
|
||
for (src = haystack + strlen (needle); *src;)
|
||
*haystack++ = *src++;
|
||
|
||
*haystack = 0;
|
||
}
|
||
}
|
||
|
||
/* Compare two target format name strings.
|
||
Return a value indicating how "similar" they are. */
|
||
|
||
static int
|
||
name_compare (char *first, char *second)
|
||
{
|
||
char *copy1;
|
||
char *copy2;
|
||
int result;
|
||
|
||
copy1 = xmalloc (strlen (first) + 1);
|
||
copy2 = xmalloc (strlen (second) + 1);
|
||
|
||
/* Convert the names to lower case. */
|
||
stricpy (copy1, first);
|
||
stricpy (copy2, second);
|
||
|
||
/* Remove size and endian strings from the name. */
|
||
strcut (copy1, "big");
|
||
strcut (copy1, "little");
|
||
strcut (copy2, "big");
|
||
strcut (copy2, "little");
|
||
|
||
/* Return a value based on how many characters match,
|
||
starting from the beginning. If both strings are
|
||
the same then return 10 * their length. */
|
||
for (result = 0; copy1[result] == copy2[result]; result++)
|
||
if (copy1[result] == 0)
|
||
{
|
||
result *= 10;
|
||
break;
|
||
}
|
||
|
||
free (copy1);
|
||
free (copy2);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Set by closest_target_match() below. */
|
||
static const bfd_target *winner;
|
||
|
||
/* Scan all the valid bfd targets looking for one that has the endianness
|
||
requirement that was specified on the command line, and is the nearest
|
||
match to the original output target. */
|
||
|
||
static int
|
||
closest_target_match (const bfd_target *target, void *data)
|
||
{
|
||
const bfd_target *original = data;
|
||
|
||
if (command_line.endian == ENDIAN_BIG
|
||
&& target->byteorder != BFD_ENDIAN_BIG)
|
||
return 0;
|
||
|
||
if (command_line.endian == ENDIAN_LITTLE
|
||
&& target->byteorder != BFD_ENDIAN_LITTLE)
|
||
return 0;
|
||
|
||
/* Must be the same flavour. */
|
||
if (target->flavour != original->flavour)
|
||
return 0;
|
||
|
||
/* If we have not found a potential winner yet, then record this one. */
|
||
if (winner == NULL)
|
||
{
|
||
winner = target;
|
||
return 0;
|
||
}
|
||
|
||
/* Oh dear, we now have two potential candidates for a successful match.
|
||
Compare their names and choose the better one. */
|
||
if (name_compare (target->name, original->name)
|
||
> name_compare (winner->name, original->name))
|
||
winner = target;
|
||
|
||
/* Keep on searching until wqe have checked them all. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the BFD target format of the first input file. */
|
||
|
||
static char *
|
||
get_first_input_target (void)
|
||
{
|
||
char *target = NULL;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (s)
|
||
{
|
||
if (s->header.type == lang_input_statement_enum
|
||
&& s->real)
|
||
{
|
||
ldfile_open_file (s);
|
||
|
||
if (s->the_bfd != NULL
|
||
&& bfd_check_format (s->the_bfd, bfd_object))
|
||
{
|
||
target = bfd_get_target (s->the_bfd);
|
||
|
||
if (target != NULL)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
const char *
|
||
lang_get_output_target (void)
|
||
{
|
||
const char *target;
|
||
|
||
/* Has the user told us which output format to use? */
|
||
if (output_target != NULL)
|
||
return output_target;
|
||
|
||
/* No - has the current target been set to something other than
|
||
the default? */
|
||
if (current_target != default_target)
|
||
return current_target;
|
||
|
||
/* No - can we determine the format of the first input file? */
|
||
target = get_first_input_target ();
|
||
if (target != NULL)
|
||
return target;
|
||
|
||
/* Failed - use the default output target. */
|
||
return default_target;
|
||
}
|
||
|
||
/* Open the output file. */
|
||
|
||
static bfd *
|
||
open_output (const char *name)
|
||
{
|
||
bfd *output;
|
||
|
||
output_target = lang_get_output_target ();
|
||
|
||
/* Has the user requested a particular endianness on the command
|
||
line? */
|
||
if (command_line.endian != ENDIAN_UNSET)
|
||
{
|
||
const bfd_target *target;
|
||
enum bfd_endian desired_endian;
|
||
|
||
/* Get the chosen target. */
|
||
target = bfd_search_for_target (get_target, (void *) output_target);
|
||
|
||
/* If the target is not supported, we cannot do anything. */
|
||
if (target != NULL)
|
||
{
|
||
if (command_line.endian == ENDIAN_BIG)
|
||
desired_endian = BFD_ENDIAN_BIG;
|
||
else
|
||
desired_endian = BFD_ENDIAN_LITTLE;
|
||
|
||
/* See if the target has the wrong endianness. This should
|
||
not happen if the linker script has provided big and
|
||
little endian alternatives, but some scrips don't do
|
||
this. */
|
||
if (target->byteorder != desired_endian)
|
||
{
|
||
/* If it does, then see if the target provides
|
||
an alternative with the correct endianness. */
|
||
if (target->alternative_target != NULL
|
||
&& (target->alternative_target->byteorder == desired_endian))
|
||
output_target = target->alternative_target->name;
|
||
else
|
||
{
|
||
/* Try to find a target as similar as possible to
|
||
the default target, but which has the desired
|
||
endian characteristic. */
|
||
bfd_search_for_target (closest_target_match,
|
||
(void *) target);
|
||
|
||
/* Oh dear - we could not find any targets that
|
||
satisfy our requirements. */
|
||
if (winner == NULL)
|
||
einfo (_("%P: warning: could not find any targets"
|
||
" that match endianness requirement\n"));
|
||
else
|
||
output_target = winner->name;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
output = bfd_openw (name, output_target);
|
||
|
||
if (output == NULL)
|
||
{
|
||
if (bfd_get_error () == bfd_error_invalid_target)
|
||
einfo (_("%P%F: target %s not found\n"), output_target);
|
||
|
||
einfo (_("%P%F: cannot open output file %s: %E\n"), name);
|
||
}
|
||
|
||
delete_output_file_on_failure = TRUE;
|
||
|
||
if (! bfd_set_format (output, bfd_object))
|
||
einfo (_("%P%F:%s: can not make object file: %E\n"), name);
|
||
if (! bfd_set_arch_mach (output,
|
||
ldfile_output_architecture,
|
||
ldfile_output_machine))
|
||
einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
|
||
|
||
link_info.hash = bfd_link_hash_table_create (output);
|
||
if (link_info.hash == NULL)
|
||
einfo (_("%P%F: can not create link hash table: %E\n"));
|
||
|
||
bfd_set_gp_size (output, g_switch_value);
|
||
return output;
|
||
}
|
||
|
||
static void
|
||
ldlang_open_output (lang_statement_union_type *statement)
|
||
{
|
||
switch (statement->header.type)
|
||
{
|
||
case lang_output_statement_enum:
|
||
ASSERT (output_bfd == NULL);
|
||
output_bfd = open_output (statement->output_statement.name);
|
||
ldemul_set_output_arch ();
|
||
if (config.magic_demand_paged && !link_info.relocatable)
|
||
output_bfd->flags |= D_PAGED;
|
||
else
|
||
output_bfd->flags &= ~D_PAGED;
|
||
if (config.text_read_only)
|
||
output_bfd->flags |= WP_TEXT;
|
||
else
|
||
output_bfd->flags &= ~WP_TEXT;
|
||
if (link_info.traditional_format)
|
||
output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
|
||
else
|
||
output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
|
||
break;
|
||
|
||
case lang_target_statement_enum:
|
||
current_target = statement->target_statement.target;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Convert between addresses in bytes and sizes in octets.
|
||
For currently supported targets, octets_per_byte is always a power
|
||
of two, so we can use shifts. */
|
||
#define TO_ADDR(X) ((X) >> opb_shift)
|
||
#define TO_SIZE(X) ((X) << opb_shift)
|
||
|
||
/* Support the above. */
|
||
static unsigned int opb_shift = 0;
|
||
|
||
static void
|
||
init_opb (void)
|
||
{
|
||
unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
|
||
ldfile_output_machine);
|
||
opb_shift = 0;
|
||
if (x > 1)
|
||
while ((x & 1) == 0)
|
||
{
|
||
x >>= 1;
|
||
++opb_shift;
|
||
}
|
||
ASSERT (x == 1);
|
||
}
|
||
|
||
/* Open all the input files. */
|
||
|
||
static void
|
||
open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
open_input_bfds (constructor_list.head, force);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
open_input_bfds (s->output_section_statement.children.head, force);
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
/* Maybe we should load the file's symbols. */
|
||
if (s->wild_statement.filename
|
||
&& ! wildcardp (s->wild_statement.filename))
|
||
lookup_name (s->wild_statement.filename);
|
||
open_input_bfds (s->wild_statement.children.head, force);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
{
|
||
struct bfd_link_hash_entry *undefs;
|
||
|
||
/* We must continually search the entries in the group
|
||
until no new symbols are added to the list of undefined
|
||
symbols. */
|
||
|
||
do
|
||
{
|
||
undefs = link_info.hash->undefs_tail;
|
||
open_input_bfds (s->group_statement.children.head, TRUE);
|
||
}
|
||
while (undefs != link_info.hash->undefs_tail);
|
||
}
|
||
break;
|
||
case lang_target_statement_enum:
|
||
current_target = s->target_statement.target;
|
||
break;
|
||
case lang_input_statement_enum:
|
||
if (s->input_statement.real)
|
||
{
|
||
lang_statement_list_type add;
|
||
|
||
s->input_statement.target = current_target;
|
||
|
||
/* If we are being called from within a group, and this
|
||
is an archive which has already been searched, then
|
||
force it to be researched unless the whole archive
|
||
has been loaded already. */
|
||
if (force
|
||
&& !s->input_statement.whole_archive
|
||
&& s->input_statement.loaded
|
||
&& bfd_check_format (s->input_statement.the_bfd,
|
||
bfd_archive))
|
||
s->input_statement.loaded = FALSE;
|
||
|
||
lang_list_init (&add);
|
||
|
||
if (! load_symbols (&s->input_statement, &add))
|
||
config.make_executable = FALSE;
|
||
|
||
if (add.head != NULL)
|
||
{
|
||
*add.tail = s->header.next;
|
||
s->header.next = add.head;
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
|
||
|
||
void
|
||
lang_track_definedness (const char *name)
|
||
{
|
||
if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
|
||
einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
|
||
}
|
||
|
||
/* New-function for the definedness hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
lang_definedness_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table ATTRIBUTE_UNUSED,
|
||
const char *name ATTRIBUTE_UNUSED)
|
||
{
|
||
struct lang_definedness_hash_entry *ret
|
||
= (struct lang_definedness_hash_entry *) entry;
|
||
|
||
if (ret == NULL)
|
||
ret = (struct lang_definedness_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
|
||
|
||
if (ret == NULL)
|
||
einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
|
||
|
||
ret->iteration = -1;
|
||
return &ret->root;
|
||
}
|
||
|
||
/* Return the iteration when the definition of NAME was last updated. A
|
||
value of -1 means that the symbol is not defined in the linker script
|
||
or the command line, but may be defined in the linker symbol table. */
|
||
|
||
int
|
||
lang_symbol_definition_iteration (const char *name)
|
||
{
|
||
struct lang_definedness_hash_entry *defentry
|
||
= (struct lang_definedness_hash_entry *)
|
||
bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
|
||
|
||
/* We've already created this one on the presence of DEFINED in the
|
||
script, so it can't be NULL unless something is borked elsewhere in
|
||
the code. */
|
||
if (defentry == NULL)
|
||
FAIL ();
|
||
|
||
return defentry->iteration;
|
||
}
|
||
|
||
/* Update the definedness state of NAME. */
|
||
|
||
void
|
||
lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
|
||
{
|
||
struct lang_definedness_hash_entry *defentry
|
||
= (struct lang_definedness_hash_entry *)
|
||
bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
|
||
|
||
/* We don't keep track of symbols not tested with DEFINED. */
|
||
if (defentry == NULL)
|
||
return;
|
||
|
||
/* If the symbol was already defined, and not from an earlier statement
|
||
iteration, don't update the definedness iteration, because that'd
|
||
make the symbol seem defined in the linker script at this point, and
|
||
it wasn't; it was defined in some object. If we do anyway, DEFINED
|
||
would start to yield false before this point and the construct "sym =
|
||
DEFINED (sym) ? sym : X;" would change sym to X despite being defined
|
||
in an object. */
|
||
if (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common
|
||
&& h->type != bfd_link_hash_new
|
||
&& defentry->iteration == -1)
|
||
return;
|
||
|
||
defentry->iteration = lang_statement_iteration;
|
||
}
|
||
|
||
/* Add the supplied name to the symbol table as an undefined reference.
|
||
This is a two step process as the symbol table doesn't even exist at
|
||
the time the ld command line is processed. First we put the name
|
||
on a list, then, once the output file has been opened, transfer the
|
||
name to the symbol table. */
|
||
|
||
typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
|
||
|
||
#define ldlang_undef_chain_list_head entry_symbol.next
|
||
|
||
void
|
||
ldlang_add_undef (const char *const name)
|
||
{
|
||
ldlang_undef_chain_list_type *new =
|
||
stat_alloc (sizeof (ldlang_undef_chain_list_type));
|
||
|
||
new->next = ldlang_undef_chain_list_head;
|
||
ldlang_undef_chain_list_head = new;
|
||
|
||
new->name = xstrdup (name);
|
||
|
||
if (output_bfd != NULL)
|
||
insert_undefined (new->name);
|
||
}
|
||
|
||
/* Insert NAME as undefined in the symbol table. */
|
||
|
||
static void
|
||
insert_undefined (const char *name)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
|
||
if (h == NULL)
|
||
einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
|
||
if (h->type == bfd_link_hash_new)
|
||
{
|
||
h->type = bfd_link_hash_undefined;
|
||
h->u.undef.abfd = NULL;
|
||
bfd_link_add_undef (link_info.hash, h);
|
||
}
|
||
}
|
||
|
||
/* Run through the list of undefineds created above and place them
|
||
into the linker hash table as undefined symbols belonging to the
|
||
script file. */
|
||
|
||
static void
|
||
lang_place_undefineds (void)
|
||
{
|
||
ldlang_undef_chain_list_type *ptr;
|
||
|
||
for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
|
||
insert_undefined (ptr->name);
|
||
}
|
||
|
||
/* Check for all readonly or some readwrite sections. */
|
||
|
||
static void
|
||
check_input_sections
|
||
(lang_statement_union_type *s,
|
||
lang_output_section_statement_type *output_section_statement)
|
||
{
|
||
for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
walk_wild (&s->wild_statement, check_section_callback,
|
||
output_section_statement);
|
||
if (! output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
check_input_sections (constructor_list.head,
|
||
output_section_statement);
|
||
if (! output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
case lang_group_statement_enum:
|
||
check_input_sections (s->group_statement.children.head,
|
||
output_section_statement);
|
||
if (! output_section_statement->all_input_readonly)
|
||
return;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Update wildcard statements if needed. */
|
||
|
||
static void
|
||
update_wild_statements (lang_statement_union_type *s)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
switch (sort_section)
|
||
{
|
||
default:
|
||
FAIL ();
|
||
|
||
case none:
|
||
break;
|
||
|
||
case by_name:
|
||
case by_alignment:
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
sec = s->wild_statement.section_list;
|
||
if (sec != NULL)
|
||
{
|
||
switch (sec->spec.sorted)
|
||
{
|
||
case none:
|
||
sec->spec.sorted = sort_section;
|
||
break;
|
||
case by_name:
|
||
if (sort_section == by_alignment)
|
||
sec->spec.sorted = by_name_alignment;
|
||
break;
|
||
case by_alignment:
|
||
if (sort_section == by_name)
|
||
sec->spec.sorted = by_alignment_name;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_constructors_statement_enum:
|
||
update_wild_statements (constructor_list.head);
|
||
break;
|
||
|
||
case lang_output_section_statement_enum:
|
||
update_wild_statements
|
||
(s->output_section_statement.children.head);
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
update_wild_statements (s->group_statement.children.head);
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Open input files and attach to output sections. */
|
||
|
||
static void
|
||
map_input_to_output_sections
|
||
(lang_statement_union_type *s, const char *target,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
wild (&s->wild_statement, target, os);
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
map_input_to_output_sections (constructor_list.head,
|
||
target,
|
||
os);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
if (s->output_section_statement.constraint)
|
||
{
|
||
if (s->output_section_statement.constraint != ONLY_IF_RW
|
||
&& s->output_section_statement.constraint != ONLY_IF_RO)
|
||
break;
|
||
s->output_section_statement.all_input_readonly = TRUE;
|
||
check_input_sections (s->output_section_statement.children.head,
|
||
&s->output_section_statement);
|
||
if ((s->output_section_statement.all_input_readonly
|
||
&& s->output_section_statement.constraint == ONLY_IF_RW)
|
||
|| (!s->output_section_statement.all_input_readonly
|
||
&& s->output_section_statement.constraint == ONLY_IF_RO))
|
||
{
|
||
s->output_section_statement.constraint = -1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
map_input_to_output_sections (s->output_section_statement.children.head,
|
||
target,
|
||
&s->output_section_statement);
|
||
break;
|
||
case lang_output_statement_enum:
|
||
break;
|
||
case lang_target_statement_enum:
|
||
target = s->target_statement.target;
|
||
break;
|
||
case lang_group_statement_enum:
|
||
map_input_to_output_sections (s->group_statement.children.head,
|
||
target,
|
||
os);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
/* Make sure that any sections mentioned in the expression
|
||
are initialized. */
|
||
exp_init_os (s->data_statement.exp);
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, NULL);
|
||
/* The output section gets contents, and then we inspect for
|
||
any flags set in the input script which override any ALLOC. */
|
||
os->bfd_section->flags |= SEC_HAS_CONTENTS;
|
||
if (!(os->flags & SEC_NEVER_LOAD))
|
||
os->bfd_section->flags |= SEC_ALLOC | SEC_LOAD;
|
||
break;
|
||
case lang_fill_statement_enum:
|
||
case lang_input_section_enum:
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_reloc_statement_enum:
|
||
case lang_padding_statement_enum:
|
||
case lang_input_statement_enum:
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, NULL);
|
||
break;
|
||
case lang_assignment_statement_enum:
|
||
if (os != NULL && os->bfd_section == NULL)
|
||
init_os (os, NULL);
|
||
|
||
/* Make sure that any sections mentioned in the assignment
|
||
are initialized. */
|
||
exp_init_os (s->assignment_statement.exp);
|
||
break;
|
||
case lang_afile_asection_pair_statement_enum:
|
||
FAIL ();
|
||
break;
|
||
case lang_address_statement_enum:
|
||
/* Mark the specified section with the supplied address.
|
||
|
||
If this section was actually a segment marker, then the
|
||
directive is ignored if the linker script explicitly
|
||
processed the segment marker. Originally, the linker
|
||
treated segment directives (like -Ttext on the
|
||
command-line) as section directives. We honor the
|
||
section directive semantics for backwards compatibilty;
|
||
linker scripts that do not specifically check for
|
||
SEGMENT_START automatically get the old semantics. */
|
||
if (!s->address_statement.segment
|
||
|| !s->address_statement.segment->used)
|
||
{
|
||
lang_output_section_statement_type *aos
|
||
= (lang_output_section_statement_lookup
|
||
(s->address_statement.section_name));
|
||
|
||
if (aos->bfd_section == NULL)
|
||
init_os (aos, NULL);
|
||
aos->addr_tree = s->address_statement.address;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* An output section might have been removed after its statement was
|
||
added. For example, ldemul_before_allocation can remove dynamic
|
||
sections if they turn out to be not needed. Clean them up here. */
|
||
|
||
void
|
||
strip_excluded_output_sections (void)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
/* Run lang_size_sections (if not already done). */
|
||
if (expld.phase != lang_mark_phase_enum)
|
||
{
|
||
expld.phase = lang_mark_phase_enum;
|
||
expld.dataseg.phase = exp_dataseg_none;
|
||
one_lang_size_sections_pass (NULL, FALSE);
|
||
lang_reset_memory_regions ();
|
||
}
|
||
|
||
for (os = &lang_output_section_statement.head->output_section_statement;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
asection *output_section;
|
||
bfd_boolean exclude;
|
||
|
||
if (os->constraint == -1)
|
||
continue;
|
||
|
||
output_section = os->bfd_section;
|
||
if (output_section == NULL)
|
||
continue;
|
||
|
||
exclude = (output_section->rawsize == 0
|
||
&& (output_section->flags & SEC_KEEP) == 0
|
||
&& !bfd_section_removed_from_list (output_bfd,
|
||
output_section));
|
||
|
||
/* Some sections have not yet been sized, notably .gnu.version,
|
||
.dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
|
||
input sections, so don't drop output sections that have such
|
||
input sections unless they are also marked SEC_EXCLUDE. */
|
||
if (exclude && output_section->map_head.s != NULL)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
|
||
if ((s->flags & SEC_LINKER_CREATED) != 0
|
||
&& (s->flags & SEC_EXCLUDE) == 0)
|
||
{
|
||
exclude = FALSE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* TODO: Don't just junk map_head.s, turn them into link_orders. */
|
||
output_section->map_head.link_order = NULL;
|
||
output_section->map_tail.link_order = NULL;
|
||
|
||
if (exclude)
|
||
{
|
||
/* We don't set bfd_section to NULL since bfd_section of the
|
||
removed output section statement may still be used. */
|
||
os->ignored = TRUE;
|
||
output_section->flags |= SEC_EXCLUDE;
|
||
bfd_section_list_remove (output_bfd, output_section);
|
||
output_bfd->section_count--;
|
||
}
|
||
}
|
||
|
||
/* Stop future calls to lang_add_section from messing with map_head
|
||
and map_tail link_order fields. */
|
||
stripped_excluded_sections = TRUE;
|
||
}
|
||
|
||
static void
|
||
print_output_section_statement
|
||
(lang_output_section_statement_type *output_section_statement)
|
||
{
|
||
asection *section = output_section_statement->bfd_section;
|
||
int len;
|
||
|
||
if (output_section_statement != abs_output_section)
|
||
{
|
||
minfo ("\n%s", output_section_statement->name);
|
||
|
||
if (section != NULL)
|
||
{
|
||
print_dot = section->vma;
|
||
|
||
len = strlen (output_section_statement->name);
|
||
if (len >= SECTION_NAME_MAP_LENGTH - 1)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
while (len < SECTION_NAME_MAP_LENGTH)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
minfo ("0x%V %W", section->vma, section->size);
|
||
|
||
if (output_section_statement->load_base != NULL)
|
||
{
|
||
bfd_vma addr;
|
||
|
||
addr = exp_get_abs_int (output_section_statement->load_base, 0,
|
||
"load base");
|
||
minfo (_(" load address 0x%V"), addr);
|
||
}
|
||
}
|
||
|
||
print_nl ();
|
||
}
|
||
|
||
print_statement_list (output_section_statement->children.head,
|
||
output_section_statement);
|
||
}
|
||
|
||
/* Scan for the use of the destination in the right hand side
|
||
of an expression. In such cases we will not compute the
|
||
correct expression, since the value of DST that is used on
|
||
the right hand side will be its final value, not its value
|
||
just before this expression is evaluated. */
|
||
|
||
static bfd_boolean
|
||
scan_for_self_assignment (const char * dst, etree_type * rhs)
|
||
{
|
||
if (rhs == NULL || dst == NULL)
|
||
return FALSE;
|
||
|
||
switch (rhs->type.node_class)
|
||
{
|
||
case etree_binary:
|
||
return scan_for_self_assignment (dst, rhs->binary.lhs)
|
||
|| scan_for_self_assignment (dst, rhs->binary.rhs);
|
||
|
||
case etree_trinary:
|
||
return scan_for_self_assignment (dst, rhs->trinary.lhs)
|
||
|| scan_for_self_assignment (dst, rhs->trinary.rhs);
|
||
|
||
case etree_assign:
|
||
case etree_provided:
|
||
case etree_provide:
|
||
if (strcmp (dst, rhs->assign.dst) == 0)
|
||
return TRUE;
|
||
return scan_for_self_assignment (dst, rhs->assign.src);
|
||
|
||
case etree_unary:
|
||
return scan_for_self_assignment (dst, rhs->unary.child);
|
||
|
||
case etree_value:
|
||
if (rhs->value.str)
|
||
return strcmp (dst, rhs->value.str) == 0;
|
||
return FALSE;
|
||
|
||
case etree_name:
|
||
if (rhs->name.name)
|
||
return strcmp (dst, rhs->name.name) == 0;
|
||
return FALSE;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
static void
|
||
print_assignment (lang_assignment_statement_type *assignment,
|
||
lang_output_section_statement_type *output_section)
|
||
{
|
||
unsigned int i;
|
||
bfd_boolean is_dot;
|
||
bfd_boolean computation_is_valid = TRUE;
|
||
etree_type *tree;
|
||
|
||
for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
|
||
print_space ();
|
||
|
||
if (assignment->exp->type.node_class == etree_assert)
|
||
{
|
||
is_dot = FALSE;
|
||
tree = assignment->exp->assert_s.child;
|
||
computation_is_valid = TRUE;
|
||
}
|
||
else
|
||
{
|
||
const char *dst = assignment->exp->assign.dst;
|
||
|
||
is_dot = (dst[0] == '.' && dst[1] == 0);
|
||
tree = assignment->exp->assign.src;
|
||
computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
|
||
}
|
||
|
||
exp_fold_tree (tree, output_section->bfd_section, &print_dot);
|
||
if (expld.result.valid_p)
|
||
{
|
||
bfd_vma value;
|
||
|
||
if (computation_is_valid)
|
||
{
|
||
value = expld.result.value;
|
||
|
||
if (expld.result.section)
|
||
value += expld.result.section->vma;
|
||
|
||
minfo ("0x%V", value);
|
||
if (is_dot)
|
||
print_dot = value;
|
||
}
|
||
else
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
|
||
FALSE, FALSE, TRUE);
|
||
if (h)
|
||
{
|
||
value = h->u.def.value;
|
||
|
||
if (expld.result.section)
|
||
value += expld.result.section->vma;
|
||
|
||
minfo ("[0x%V]", value);
|
||
}
|
||
else
|
||
minfo ("[unresolved]");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
minfo ("*undef* ");
|
||
#ifdef BFD64
|
||
minfo (" ");
|
||
#endif
|
||
}
|
||
|
||
minfo (" ");
|
||
exp_print_tree (assignment->exp);
|
||
print_nl ();
|
||
}
|
||
|
||
static void
|
||
print_input_statement (lang_input_statement_type *statm)
|
||
{
|
||
if (statm->filename != NULL)
|
||
{
|
||
fprintf (config.map_file, "LOAD %s\n", statm->filename);
|
||
}
|
||
}
|
||
|
||
/* Print all symbols defined in a particular section. This is called
|
||
via bfd_link_hash_traverse, or by print_all_symbols. */
|
||
|
||
static bfd_boolean
|
||
print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
|
||
{
|
||
asection *sec = ptr;
|
||
|
||
if ((hash_entry->type == bfd_link_hash_defined
|
||
|| hash_entry->type == bfd_link_hash_defweak)
|
||
&& sec == hash_entry->u.def.section)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
|
||
print_space ();
|
||
minfo ("0x%V ",
|
||
(hash_entry->u.def.value
|
||
+ hash_entry->u.def.section->output_offset
|
||
+ hash_entry->u.def.section->output_section->vma));
|
||
|
||
minfo (" %T\n", hash_entry->root.string);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static void
|
||
print_all_symbols (sec)
|
||
asection *sec;
|
||
{
|
||
struct fat_user_section_struct *ud = get_userdata (sec);
|
||
struct map_symbol_def *def;
|
||
|
||
if (!ud)
|
||
return;
|
||
|
||
*ud->map_symbol_def_tail = 0;
|
||
for (def = ud->map_symbol_def_head; def; def = def->next)
|
||
print_one_symbol (def->entry, sec);
|
||
}
|
||
|
||
/* Print information about an input section to the map file. */
|
||
|
||
static void
|
||
print_input_section (lang_input_section_type *in)
|
||
{
|
||
asection *i = in->section;
|
||
bfd_size_type size = i->size;
|
||
|
||
init_opb ();
|
||
if (size != 0)
|
||
{
|
||
int len;
|
||
bfd_vma addr;
|
||
|
||
print_space ();
|
||
minfo ("%s", i->name);
|
||
|
||
len = 1 + strlen (i->name);
|
||
if (len >= SECTION_NAME_MAP_LENGTH - 1)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
while (len < SECTION_NAME_MAP_LENGTH)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
if (i->output_section != NULL && (i->flags & SEC_EXCLUDE) == 0)
|
||
addr = i->output_section->vma + i->output_offset;
|
||
else
|
||
{
|
||
addr = print_dot;
|
||
size = 0;
|
||
}
|
||
|
||
minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
|
||
|
||
if (size != i->rawsize && i->rawsize != 0)
|
||
{
|
||
len = SECTION_NAME_MAP_LENGTH + 3;
|
||
#ifdef BFD64
|
||
len += 16;
|
||
#else
|
||
len += 8;
|
||
#endif
|
||
while (len > 0)
|
||
{
|
||
print_space ();
|
||
--len;
|
||
}
|
||
|
||
minfo (_("%W (size before relaxing)\n"), i->rawsize);
|
||
}
|
||
|
||
if (i->output_section != NULL && (i->flags & SEC_EXCLUDE) == 0)
|
||
{
|
||
if (command_line.reduce_memory_overheads)
|
||
bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
|
||
else
|
||
print_all_symbols (i);
|
||
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_fill_statement (lang_fill_statement_type *fill)
|
||
{
|
||
size_t size;
|
||
unsigned char *p;
|
||
fputs (" FILL mask 0x", config.map_file);
|
||
for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
|
||
fprintf (config.map_file, "%02x", *p);
|
||
fputs ("\n", config.map_file);
|
||
}
|
||
|
||
static void
|
||
print_data_statement (lang_data_statement_type *data)
|
||
{
|
||
int i;
|
||
bfd_vma addr;
|
||
bfd_size_type size;
|
||
const char *name;
|
||
|
||
init_opb ();
|
||
for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
|
||
print_space ();
|
||
|
||
addr = data->output_vma;
|
||
if (data->output_section != NULL)
|
||
addr += data->output_section->vma;
|
||
|
||
switch (data->type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
name = "BYTE";
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
name = "SHORT";
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
name = "LONG";
|
||
break;
|
||
case QUAD:
|
||
size = QUAD_SIZE;
|
||
name = "QUAD";
|
||
break;
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
name = "SQUAD";
|
||
break;
|
||
}
|
||
|
||
minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
|
||
|
||
if (data->exp->type.node_class != etree_value)
|
||
{
|
||
print_space ();
|
||
exp_print_tree (data->exp);
|
||
}
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
|
||
/* Print an address statement. These are generated by options like
|
||
-Ttext. */
|
||
|
||
static void
|
||
print_address_statement (lang_address_statement_type *address)
|
||
{
|
||
minfo (_("Address of section %s set to "), address->section_name);
|
||
exp_print_tree (address->address);
|
||
print_nl ();
|
||
}
|
||
|
||
/* Print a reloc statement. */
|
||
|
||
static void
|
||
print_reloc_statement (lang_reloc_statement_type *reloc)
|
||
{
|
||
int i;
|
||
bfd_vma addr;
|
||
bfd_size_type size;
|
||
|
||
init_opb ();
|
||
for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
|
||
print_space ();
|
||
|
||
addr = reloc->output_vma;
|
||
if (reloc->output_section != NULL)
|
||
addr += reloc->output_section->vma;
|
||
|
||
size = bfd_get_reloc_size (reloc->howto);
|
||
|
||
minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
|
||
|
||
if (reloc->name != NULL)
|
||
minfo ("%s+", reloc->name);
|
||
else
|
||
minfo ("%s+", reloc->section->name);
|
||
|
||
exp_print_tree (reloc->addend_exp);
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (size);
|
||
}
|
||
|
||
static void
|
||
print_padding_statement (lang_padding_statement_type *s)
|
||
{
|
||
int len;
|
||
bfd_vma addr;
|
||
|
||
init_opb ();
|
||
minfo (" *fill*");
|
||
|
||
len = sizeof " *fill*" - 1;
|
||
while (len < SECTION_NAME_MAP_LENGTH)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
addr = s->output_offset;
|
||
if (s->output_section != NULL)
|
||
addr += s->output_section->vma;
|
||
minfo ("0x%V %W ", addr, (bfd_vma) s->size);
|
||
|
||
if (s->fill->size != 0)
|
||
{
|
||
size_t size;
|
||
unsigned char *p;
|
||
for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
|
||
fprintf (config.map_file, "%02x", *p);
|
||
}
|
||
|
||
print_nl ();
|
||
|
||
print_dot = addr + TO_ADDR (s->size);
|
||
}
|
||
|
||
static void
|
||
print_wild_statement (lang_wild_statement_type *w,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
struct wildcard_list *sec;
|
||
|
||
print_space ();
|
||
|
||
if (w->filenames_sorted)
|
||
minfo ("SORT(");
|
||
if (w->filename != NULL)
|
||
minfo ("%s", w->filename);
|
||
else
|
||
minfo ("*");
|
||
if (w->filenames_sorted)
|
||
minfo (")");
|
||
|
||
minfo ("(");
|
||
for (sec = w->section_list; sec; sec = sec->next)
|
||
{
|
||
if (sec->spec.sorted)
|
||
minfo ("SORT(");
|
||
if (sec->spec.exclude_name_list != NULL)
|
||
{
|
||
name_list *tmp;
|
||
minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
|
||
for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
|
||
minfo (" %s", tmp->name);
|
||
minfo (") ");
|
||
}
|
||
if (sec->spec.name != NULL)
|
||
minfo ("%s", sec->spec.name);
|
||
else
|
||
minfo ("*");
|
||
if (sec->spec.sorted)
|
||
minfo (")");
|
||
if (sec->next)
|
||
minfo (" ");
|
||
}
|
||
minfo (")");
|
||
|
||
print_nl ();
|
||
|
||
print_statement_list (w->children.head, os);
|
||
}
|
||
|
||
/* Print a group statement. */
|
||
|
||
static void
|
||
print_group (lang_group_statement_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
fprintf (config.map_file, "START GROUP\n");
|
||
print_statement_list (s->children.head, os);
|
||
fprintf (config.map_file, "END GROUP\n");
|
||
}
|
||
|
||
/* Print the list of statements in S.
|
||
This can be called for any statement type. */
|
||
|
||
static void
|
||
print_statement_list (lang_statement_union_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
while (s != NULL)
|
||
{
|
||
print_statement (s, os);
|
||
s = s->header.next;
|
||
}
|
||
}
|
||
|
||
/* Print the first statement in statement list S.
|
||
This can be called for any statement type. */
|
||
|
||
static void
|
||
print_statement (lang_statement_union_type *s,
|
||
lang_output_section_statement_type *os)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
default:
|
||
fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
|
||
FAIL ();
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
if (constructor_list.head != NULL)
|
||
{
|
||
if (constructors_sorted)
|
||
minfo (" SORT (CONSTRUCTORS)\n");
|
||
else
|
||
minfo (" CONSTRUCTORS\n");
|
||
print_statement_list (constructor_list.head, os);
|
||
}
|
||
break;
|
||
case lang_wild_statement_enum:
|
||
print_wild_statement (&s->wild_statement, os);
|
||
break;
|
||
case lang_address_statement_enum:
|
||
print_address_statement (&s->address_statement);
|
||
break;
|
||
case lang_object_symbols_statement_enum:
|
||
minfo (" CREATE_OBJECT_SYMBOLS\n");
|
||
break;
|
||
case lang_fill_statement_enum:
|
||
print_fill_statement (&s->fill_statement);
|
||
break;
|
||
case lang_data_statement_enum:
|
||
print_data_statement (&s->data_statement);
|
||
break;
|
||
case lang_reloc_statement_enum:
|
||
print_reloc_statement (&s->reloc_statement);
|
||
break;
|
||
case lang_input_section_enum:
|
||
print_input_section (&s->input_section);
|
||
break;
|
||
case lang_padding_statement_enum:
|
||
print_padding_statement (&s->padding_statement);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
print_output_section_statement (&s->output_section_statement);
|
||
break;
|
||
case lang_assignment_statement_enum:
|
||
print_assignment (&s->assignment_statement, os);
|
||
break;
|
||
case lang_target_statement_enum:
|
||
fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
|
||
break;
|
||
case lang_output_statement_enum:
|
||
minfo ("OUTPUT(%s", s->output_statement.name);
|
||
if (output_target != NULL)
|
||
minfo (" %s", output_target);
|
||
minfo (")\n");
|
||
break;
|
||
case lang_input_statement_enum:
|
||
print_input_statement (&s->input_statement);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
print_group (&s->group_statement, os);
|
||
break;
|
||
case lang_afile_asection_pair_statement_enum:
|
||
FAIL ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_statements (void)
|
||
{
|
||
print_statement_list (statement_list.head, abs_output_section);
|
||
}
|
||
|
||
/* Print the first N statements in statement list S to STDERR.
|
||
If N == 0, nothing is printed.
|
||
If N < 0, the entire list is printed.
|
||
Intended to be called from GDB. */
|
||
|
||
void
|
||
dprint_statement (lang_statement_union_type *s, int n)
|
||
{
|
||
FILE *map_save = config.map_file;
|
||
|
||
config.map_file = stderr;
|
||
|
||
if (n < 0)
|
||
print_statement_list (s, abs_output_section);
|
||
else
|
||
{
|
||
while (s && --n >= 0)
|
||
{
|
||
print_statement (s, abs_output_section);
|
||
s = s->header.next;
|
||
}
|
||
}
|
||
|
||
config.map_file = map_save;
|
||
}
|
||
|
||
static void
|
||
insert_pad (lang_statement_union_type **ptr,
|
||
fill_type *fill,
|
||
unsigned int alignment_needed,
|
||
asection *output_section,
|
||
bfd_vma dot)
|
||
{
|
||
static fill_type zero_fill = { 1, { 0 } };
|
||
lang_statement_union_type *pad = NULL;
|
||
|
||
if (ptr != &statement_list.head)
|
||
pad = ((lang_statement_union_type *)
|
||
((char *) ptr - offsetof (lang_statement_union_type, header.next)));
|
||
if (pad != NULL
|
||
&& pad->header.type == lang_padding_statement_enum
|
||
&& pad->padding_statement.output_section == output_section)
|
||
{
|
||
/* Use the existing pad statement. */
|
||
}
|
||
else if ((pad = *ptr) != NULL
|
||
&& pad->header.type == lang_padding_statement_enum
|
||
&& pad->padding_statement.output_section == output_section)
|
||
{
|
||
/* Use the existing pad statement. */
|
||
}
|
||
else
|
||
{
|
||
/* Make a new padding statement, linked into existing chain. */
|
||
pad = stat_alloc (sizeof (lang_padding_statement_type));
|
||
pad->header.next = *ptr;
|
||
*ptr = pad;
|
||
pad->header.type = lang_padding_statement_enum;
|
||
pad->padding_statement.output_section = output_section;
|
||
if (fill == NULL)
|
||
fill = &zero_fill;
|
||
pad->padding_statement.fill = fill;
|
||
}
|
||
pad->padding_statement.output_offset = dot - output_section->vma;
|
||
pad->padding_statement.size = alignment_needed;
|
||
output_section->size += alignment_needed;
|
||
}
|
||
|
||
/* Work out how much this section will move the dot point. */
|
||
|
||
static bfd_vma
|
||
size_input_section
|
||
(lang_statement_union_type **this_ptr,
|
||
lang_output_section_statement_type *output_section_statement,
|
||
fill_type *fill,
|
||
bfd_vma dot)
|
||
{
|
||
lang_input_section_type *is = &((*this_ptr)->input_section);
|
||
asection *i = is->section;
|
||
|
||
if (!is->ifile->just_syms_flag && (i->flags & SEC_EXCLUDE) == 0)
|
||
{
|
||
unsigned int alignment_needed;
|
||
asection *o;
|
||
|
||
/* Align this section first to the input sections requirement,
|
||
then to the output section's requirement. If this alignment
|
||
is greater than any seen before, then record it too. Perform
|
||
the alignment by inserting a magic 'padding' statement. */
|
||
|
||
if (output_section_statement->subsection_alignment != -1)
|
||
i->alignment_power = output_section_statement->subsection_alignment;
|
||
|
||
o = output_section_statement->bfd_section;
|
||
if (o->alignment_power < i->alignment_power)
|
||
o->alignment_power = i->alignment_power;
|
||
|
||
alignment_needed = align_power (dot, i->alignment_power) - dot;
|
||
|
||
if (alignment_needed != 0)
|
||
{
|
||
insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
|
||
dot += alignment_needed;
|
||
}
|
||
|
||
/* Remember where in the output section this input section goes. */
|
||
|
||
i->output_offset = dot - o->vma;
|
||
|
||
/* Mark how big the output section must be to contain this now. */
|
||
dot += TO_ADDR (i->size);
|
||
o->size = TO_SIZE (dot - o->vma);
|
||
}
|
||
else
|
||
{
|
||
i->output_offset = i->vma - output_section_statement->bfd_section->vma;
|
||
}
|
||
|
||
return dot;
|
||
}
|
||
|
||
static int
|
||
sort_sections_by_lma (const void *arg1, const void *arg2)
|
||
{
|
||
const asection *sec1 = *(const asection **) arg1;
|
||
const asection *sec2 = *(const asection **) arg2;
|
||
|
||
if (bfd_section_lma (sec1->owner, sec1)
|
||
< bfd_section_lma (sec2->owner, sec2))
|
||
return -1;
|
||
else if (bfd_section_lma (sec1->owner, sec1)
|
||
> bfd_section_lma (sec2->owner, sec2))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define IGNORE_SECTION(s) \
|
||
((s->flags & SEC_NEVER_LOAD) != 0 \
|
||
|| (s->flags & SEC_ALLOC) == 0 \
|
||
|| ((s->flags & SEC_THREAD_LOCAL) != 0 \
|
||
&& (s->flags & SEC_LOAD) == 0))
|
||
|
||
/* Check to see if any allocated sections overlap with other allocated
|
||
sections. This can happen if a linker script specifies the output
|
||
section addresses of the two sections. */
|
||
|
||
static void
|
||
lang_check_section_addresses (void)
|
||
{
|
||
asection *s, *os;
|
||
asection **sections, **spp;
|
||
unsigned int count;
|
||
bfd_vma s_start;
|
||
bfd_vma s_end;
|
||
bfd_vma os_start;
|
||
bfd_vma os_end;
|
||
bfd_size_type amt;
|
||
|
||
if (bfd_count_sections (output_bfd) <= 1)
|
||
return;
|
||
|
||
amt = bfd_count_sections (output_bfd) * sizeof (asection *);
|
||
sections = xmalloc (amt);
|
||
|
||
/* Scan all sections in the output list. */
|
||
count = 0;
|
||
for (s = output_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
/* Only consider loadable sections with real contents. */
|
||
if (IGNORE_SECTION (s) || s->size == 0)
|
||
continue;
|
||
|
||
sections[count] = s;
|
||
count++;
|
||
}
|
||
|
||
if (count <= 1)
|
||
return;
|
||
|
||
qsort (sections, (size_t) count, sizeof (asection *),
|
||
sort_sections_by_lma);
|
||
|
||
spp = sections;
|
||
s = *spp++;
|
||
s_start = bfd_section_lma (output_bfd, s);
|
||
s_end = s_start + TO_ADDR (s->size) - 1;
|
||
for (count--; count; count--)
|
||
{
|
||
/* We must check the sections' LMA addresses not their VMA
|
||
addresses because overlay sections can have overlapping VMAs
|
||
but they must have distinct LMAs. */
|
||
os = s;
|
||
os_start = s_start;
|
||
os_end = s_end;
|
||
s = *spp++;
|
||
s_start = bfd_section_lma (output_bfd, s);
|
||
s_end = s_start + TO_ADDR (s->size) - 1;
|
||
|
||
/* Look for an overlap. */
|
||
if (s_end >= os_start && s_start <= os_end)
|
||
einfo (_("%X%P: section %s [%V -> %V] overlaps section %s [%V -> %V]\n"),
|
||
s->name, s_start, s_end, os->name, os_start, os_end);
|
||
}
|
||
|
||
free (sections);
|
||
}
|
||
|
||
/* Make sure the new address is within the region. We explicitly permit the
|
||
current address to be at the exact end of the region when the address is
|
||
non-zero, in case the region is at the end of addressable memory and the
|
||
calculation wraps around. */
|
||
|
||
static void
|
||
os_region_check (lang_output_section_statement_type *os,
|
||
lang_memory_region_type *region,
|
||
etree_type *tree,
|
||
bfd_vma base)
|
||
{
|
||
if ((region->current < region->origin
|
||
|| (region->current - region->origin > region->length))
|
||
&& ((region->current != region->origin + region->length)
|
||
|| base == 0))
|
||
{
|
||
if (tree != NULL)
|
||
{
|
||
einfo (_("%X%P: address 0x%v of %B section %s"
|
||
" is not within region %s\n"),
|
||
region->current,
|
||
os->bfd_section->owner,
|
||
os->bfd_section->name,
|
||
region->name);
|
||
}
|
||
else
|
||
{
|
||
einfo (_("%X%P: region %s is full (%B section %s)\n"),
|
||
region->name,
|
||
os->bfd_section->owner,
|
||
os->bfd_section->name);
|
||
}
|
||
/* Reset the region pointer. */
|
||
region->current = region->origin;
|
||
}
|
||
}
|
||
|
||
/* Set the sizes for all the output sections. */
|
||
|
||
static bfd_vma
|
||
lang_size_sections_1
|
||
(lang_statement_union_type *s,
|
||
lang_output_section_statement_type *output_section_statement,
|
||
lang_statement_union_type **prev,
|
||
fill_type *fill,
|
||
bfd_vma dot,
|
||
bfd_boolean *relax,
|
||
bfd_boolean check_regions)
|
||
{
|
||
/* Size up the sections from their constituent parts. */
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_output_section_statement_enum:
|
||
{
|
||
bfd_vma newdot, after;
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = &s->output_section_statement;
|
||
if (os->addr_tree != NULL)
|
||
{
|
||
os->processed = FALSE;
|
||
exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
|
||
|
||
if (!expld.result.valid_p
|
||
&& expld.phase != lang_mark_phase_enum)
|
||
einfo (_("%F%S: non constant or forward reference"
|
||
" address expression for section %s\n"),
|
||
os->name);
|
||
|
||
dot = expld.result.value + expld.result.section->vma;
|
||
}
|
||
|
||
if (os->bfd_section == NULL)
|
||
/* This section was removed or never actually created. */
|
||
break;
|
||
|
||
/* If this is a COFF shared library section, use the size and
|
||
address from the input section. FIXME: This is COFF
|
||
specific; it would be cleaner if there were some other way
|
||
to do this, but nothing simple comes to mind. */
|
||
if ((bfd_get_flavour (output_bfd) == bfd_target_ecoff_flavour
|
||
|| bfd_get_flavour (output_bfd) == bfd_target_coff_flavour)
|
||
&& (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
|
||
{
|
||
asection *input;
|
||
|
||
if (os->children.head == NULL
|
||
|| os->children.head->header.next != NULL
|
||
|| (os->children.head->header.type
|
||
!= lang_input_section_enum))
|
||
einfo (_("%P%X: Internal error on COFF shared library"
|
||
" section %s\n"), os->name);
|
||
|
||
input = os->children.head->input_section.section;
|
||
bfd_set_section_vma (os->bfd_section->owner,
|
||
os->bfd_section,
|
||
bfd_section_vma (input->owner, input));
|
||
os->bfd_section->size = input->size;
|
||
break;
|
||
}
|
||
|
||
newdot = dot;
|
||
if (bfd_is_abs_section (os->bfd_section))
|
||
{
|
||
/* No matter what happens, an abs section starts at zero. */
|
||
ASSERT (os->bfd_section->vma == 0);
|
||
}
|
||
else
|
||
{
|
||
if (os->addr_tree == NULL)
|
||
{
|
||
/* No address specified for this section, get one
|
||
from the region specification. */
|
||
if (os->region == NULL
|
||
|| ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
|
||
&& os->region->name[0] == '*'
|
||
&& strcmp (os->region->name,
|
||
DEFAULT_MEMORY_REGION) == 0))
|
||
{
|
||
os->region = lang_memory_default (os->bfd_section);
|
||
}
|
||
|
||
/* If a loadable section is using the default memory
|
||
region, and some non default memory regions were
|
||
defined, issue an error message. */
|
||
if (!IGNORE_SECTION (os->bfd_section)
|
||
&& ! link_info.relocatable
|
||
&& check_regions
|
||
&& strcmp (os->region->name,
|
||
DEFAULT_MEMORY_REGION) == 0
|
||
&& lang_memory_region_list != NULL
|
||
&& (strcmp (lang_memory_region_list->name,
|
||
DEFAULT_MEMORY_REGION) != 0
|
||
|| lang_memory_region_list->next != NULL)
|
||
&& expld.phase != lang_mark_phase_enum)
|
||
{
|
||
/* By default this is an error rather than just a
|
||
warning because if we allocate the section to the
|
||
default memory region we can end up creating an
|
||
excessively large binary, or even seg faulting when
|
||
attempting to perform a negative seek. See
|
||
sources.redhat.com/ml/binutils/2003-04/msg00423.html
|
||
for an example of this. This behaviour can be
|
||
overridden by the using the --no-check-sections
|
||
switch. */
|
||
if (command_line.check_section_addresses)
|
||
einfo (_("%P%F: error: no memory region specified"
|
||
" for loadable section `%s'\n"),
|
||
bfd_get_section_name (output_bfd,
|
||
os->bfd_section));
|
||
else
|
||
einfo (_("%P: warning: no memory region specified"
|
||
" for loadable section `%s'\n"),
|
||
bfd_get_section_name (output_bfd,
|
||
os->bfd_section));
|
||
}
|
||
|
||
newdot = os->region->current;
|
||
|
||
if (os->section_alignment == -1)
|
||
{
|
||
bfd_vma savedot = newdot;
|
||
newdot = align_power (newdot,
|
||
os->bfd_section->alignment_power);
|
||
|
||
if (newdot != savedot
|
||
&& config.warn_section_align
|
||
&& expld.phase != lang_mark_phase_enum)
|
||
einfo (_("%P: warning: changing start of section"
|
||
" %s by %lu bytes\n"),
|
||
os->name, (unsigned long) (newdot - savedot));
|
||
}
|
||
}
|
||
|
||
/* The section starts here.
|
||
First, align to what the section needs. */
|
||
|
||
if (os->section_alignment != -1)
|
||
newdot = align_power (newdot, os->section_alignment);
|
||
|
||
bfd_set_section_vma (0, os->bfd_section, newdot);
|
||
|
||
os->bfd_section->output_offset = 0;
|
||
}
|
||
|
||
lang_size_sections_1 (os->children.head, os, &os->children.head,
|
||
os->fill, newdot, relax, check_regions);
|
||
|
||
os->processed = TRUE;
|
||
|
||
if (bfd_is_abs_section (os->bfd_section) || os->ignored)
|
||
{
|
||
ASSERT (os->bfd_section->size == 0);
|
||
break;
|
||
}
|
||
|
||
dot = os->bfd_section->vma;
|
||
|
||
/* Put the section within the requested block size, or
|
||
align at the block boundary. */
|
||
after = ((dot
|
||
+ TO_ADDR (os->bfd_section->size)
|
||
+ os->block_value - 1)
|
||
& - (bfd_vma) os->block_value);
|
||
|
||
os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
|
||
|
||
/* .tbss sections effectively have zero size. */
|
||
if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
|
||
|| (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
|
||
|| link_info.relocatable)
|
||
dot += TO_ADDR (os->bfd_section->size);
|
||
|
||
if (os->update_dot_tree != 0)
|
||
exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
|
||
|
||
/* Update dot in the region ?
|
||
We only do this if the section is going to be allocated,
|
||
since unallocated sections do not contribute to the region's
|
||
overall size in memory.
|
||
|
||
If the SEC_NEVER_LOAD bit is not set, it will affect the
|
||
addresses of sections after it. We have to update
|
||
dot. */
|
||
if (os->region != NULL
|
||
&& ((os->bfd_section->flags & SEC_NEVER_LOAD) == 0
|
||
|| (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))))
|
||
{
|
||
os->region->current = dot;
|
||
|
||
if (check_regions)
|
||
/* Make sure the new address is within the region. */
|
||
os_region_check (os, os->region, os->addr_tree,
|
||
os->bfd_section->vma);
|
||
|
||
/* If there's no load address specified, use the run
|
||
region as the load region. */
|
||
if (os->lma_region == NULL && os->load_base == NULL)
|
||
os->lma_region = os->region;
|
||
|
||
if (os->lma_region != NULL && os->lma_region != os->region)
|
||
{
|
||
/* Set load_base, which will be handled later. */
|
||
os->load_base = exp_intop (os->lma_region->current);
|
||
os->lma_region->current +=
|
||
TO_ADDR (os->bfd_section->size);
|
||
if (check_regions)
|
||
os_region_check (os, os->lma_region, NULL,
|
||
os->bfd_section->lma);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_constructors_statement_enum:
|
||
dot = lang_size_sections_1 (constructor_list.head,
|
||
output_section_statement,
|
||
&s->wild_statement.children.head,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
case lang_data_statement_enum:
|
||
{
|
||
unsigned int size = 0;
|
||
|
||
s->data_statement.output_vma =
|
||
dot - output_section_statement->bfd_section->vma;
|
||
s->data_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
|
||
/* We might refer to provided symbols in the expression, and
|
||
need to mark them as needed. */
|
||
exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
|
||
|
||
switch (s->data_statement.type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case QUAD:
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
break;
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
break;
|
||
}
|
||
if (size < TO_SIZE ((unsigned) 1))
|
||
size = TO_SIZE ((unsigned) 1);
|
||
dot += TO_ADDR (size);
|
||
output_section_statement->bfd_section->size += size;
|
||
}
|
||
break;
|
||
|
||
case lang_reloc_statement_enum:
|
||
{
|
||
int size;
|
||
|
||
s->reloc_statement.output_vma =
|
||
dot - output_section_statement->bfd_section->vma;
|
||
s->reloc_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
size = bfd_get_reloc_size (s->reloc_statement.howto);
|
||
dot += TO_ADDR (size);
|
||
output_section_statement->bfd_section->size += size;
|
||
}
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
dot = lang_size_sections_1 (s->wild_statement.children.head,
|
||
output_section_statement,
|
||
&s->wild_statement.children.head,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
case lang_object_symbols_statement_enum:
|
||
link_info.create_object_symbols_section =
|
||
output_section_statement->bfd_section;
|
||
break;
|
||
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
break;
|
||
|
||
case lang_input_section_enum:
|
||
{
|
||
asection *i;
|
||
|
||
i = (*prev)->input_section.section;
|
||
if (relax)
|
||
{
|
||
bfd_boolean again;
|
||
|
||
if (! bfd_relax_section (i->owner, i, &link_info, &again))
|
||
einfo (_("%P%F: can't relax section: %E\n"));
|
||
if (again)
|
||
*relax = TRUE;
|
||
}
|
||
dot = size_input_section (prev, output_section_statement,
|
||
output_section_statement->fill, dot);
|
||
}
|
||
break;
|
||
|
||
case lang_input_statement_enum:
|
||
break;
|
||
|
||
case lang_fill_statement_enum:
|
||
s->fill_statement.output_section =
|
||
output_section_statement->bfd_section;
|
||
|
||
fill = s->fill_statement.fill;
|
||
break;
|
||
|
||
case lang_assignment_statement_enum:
|
||
{
|
||
bfd_vma newdot = dot;
|
||
|
||
exp_fold_tree (s->assignment_statement.exp,
|
||
output_section_statement->bfd_section,
|
||
&newdot);
|
||
|
||
if (newdot != dot && !output_section_statement->ignored)
|
||
{
|
||
if (output_section_statement == abs_output_section)
|
||
{
|
||
/* If we don't have an output section, then just adjust
|
||
the default memory address. */
|
||
lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
|
||
FALSE)->current = newdot;
|
||
}
|
||
else
|
||
{
|
||
/* Insert a pad after this statement. We can't
|
||
put the pad before when relaxing, in case the
|
||
assignment references dot. */
|
||
insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
|
||
output_section_statement->bfd_section, dot);
|
||
|
||
/* Don't neuter the pad below when relaxing. */
|
||
s = s->header.next;
|
||
|
||
/* If dot is advanced, this implies that the section
|
||
should have space allocated to it, unless the
|
||
user has explicitly stated that the section
|
||
should never be loaded. */
|
||
if (!(output_section_statement->flags
|
||
& (SEC_NEVER_LOAD | SEC_ALLOC)))
|
||
output_section_statement->bfd_section->flags |= SEC_ALLOC;
|
||
}
|
||
dot = newdot;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_padding_statement_enum:
|
||
/* If this is the first time lang_size_sections is called,
|
||
we won't have any padding statements. If this is the
|
||
second or later passes when relaxing, we should allow
|
||
padding to shrink. If padding is needed on this pass, it
|
||
will be added back in. */
|
||
s->padding_statement.size = 0;
|
||
|
||
/* Make sure output_offset is valid. If relaxation shrinks
|
||
the section and this pad isn't needed, it's possible to
|
||
have output_offset larger than the final size of the
|
||
section. bfd_set_section_contents will complain even for
|
||
a pad size of zero. */
|
||
s->padding_statement.output_offset
|
||
= dot - output_section_statement->bfd_section->vma;
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
dot = lang_size_sections_1 (s->group_statement.children.head,
|
||
output_section_statement,
|
||
&s->group_statement.children.head,
|
||
fill, dot, relax, check_regions);
|
||
break;
|
||
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
|
||
/* We can only get here when relaxing is turned on. */
|
||
case lang_address_statement_enum:
|
||
break;
|
||
}
|
||
prev = &s->header.next;
|
||
}
|
||
return dot;
|
||
}
|
||
|
||
void
|
||
one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
|
||
{
|
||
lang_statement_iteration++;
|
||
lang_size_sections_1 (statement_list.head, abs_output_section,
|
||
&statement_list.head, 0, 0, relax, check_regions);
|
||
}
|
||
|
||
void
|
||
lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
|
||
{
|
||
expld.phase = lang_allocating_phase_enum;
|
||
expld.dataseg.phase = exp_dataseg_none;
|
||
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
if (expld.dataseg.phase == exp_dataseg_end_seen
|
||
&& link_info.relro && expld.dataseg.relro_end)
|
||
{
|
||
/* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
|
||
to put expld.dataseg.relro on a (common) page boundary. */
|
||
bfd_vma old_min_base, relro_end, maxpage;
|
||
|
||
expld.dataseg.phase = exp_dataseg_relro_adjust;
|
||
old_min_base = expld.dataseg.min_base;
|
||
maxpage = expld.dataseg.maxpagesize;
|
||
expld.dataseg.base += (-expld.dataseg.relro_end
|
||
& (expld.dataseg.pagesize - 1));
|
||
/* Compute the expected PT_GNU_RELRO segment end. */
|
||
relro_end = (expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
|
||
& ~(expld.dataseg.pagesize - 1);
|
||
if (old_min_base + maxpage < expld.dataseg.base)
|
||
{
|
||
expld.dataseg.base -= maxpage;
|
||
relro_end -= maxpage;
|
||
}
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
if (expld.dataseg.relro_end > relro_end)
|
||
{
|
||
/* The alignment of sections between DATA_SEGMENT_ALIGN
|
||
and DATA_SEGMENT_RELRO_END caused huge padding to be
|
||
inserted at DATA_SEGMENT_RELRO_END. Try some other base. */
|
||
asection *sec;
|
||
unsigned int max_alignment_power = 0;
|
||
|
||
/* Find maximum alignment power of sections between
|
||
DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
|
||
for (sec = output_bfd->sections; sec; sec = sec->next)
|
||
if (sec->vma >= expld.dataseg.base
|
||
&& sec->vma < expld.dataseg.relro_end
|
||
&& sec->alignment_power > max_alignment_power)
|
||
max_alignment_power = sec->alignment_power;
|
||
|
||
if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
|
||
{
|
||
if (expld.dataseg.base - (1 << max_alignment_power)
|
||
< old_min_base)
|
||
expld.dataseg.base += expld.dataseg.pagesize;
|
||
expld.dataseg.base -= (1 << max_alignment_power);
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
}
|
||
}
|
||
link_info.relro_start = expld.dataseg.base;
|
||
link_info.relro_end = expld.dataseg.relro_end;
|
||
}
|
||
else if (expld.dataseg.phase == exp_dataseg_end_seen)
|
||
{
|
||
/* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
|
||
a page could be saved in the data segment. */
|
||
bfd_vma first, last;
|
||
|
||
first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
|
||
last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
|
||
if (first && last
|
||
&& ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
|
||
!= (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
|
||
&& first + last <= expld.dataseg.pagesize)
|
||
{
|
||
expld.dataseg.phase = exp_dataseg_adjust;
|
||
one_lang_size_sections_pass (relax, check_regions);
|
||
}
|
||
}
|
||
|
||
expld.phase = lang_final_phase_enum;
|
||
}
|
||
|
||
/* Worker function for lang_do_assignments. Recursiveness goes here. */
|
||
|
||
static bfd_vma
|
||
lang_do_assignments_1
|
||
(lang_statement_union_type *s,
|
||
lang_output_section_statement_type *output_section_statement,
|
||
fill_type *fill,
|
||
bfd_vma dot)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_constructors_statement_enum:
|
||
dot = lang_do_assignments_1 (constructor_list.head,
|
||
output_section_statement,
|
||
fill,
|
||
dot);
|
||
break;
|
||
|
||
case lang_output_section_statement_enum:
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = &(s->output_section_statement);
|
||
if (os->bfd_section != NULL && !os->ignored)
|
||
{
|
||
dot = os->bfd_section->vma;
|
||
lang_do_assignments_1 (os->children.head, os, os->fill, dot);
|
||
/* .tbss sections effectively have zero size. */
|
||
if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
|
||
|| (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
|
||
|| link_info.relocatable)
|
||
dot += TO_ADDR (os->bfd_section->size);
|
||
}
|
||
if (os->load_base)
|
||
{
|
||
/* If nothing has been placed into the output section then
|
||
it won't have a bfd_section. */
|
||
if (os->bfd_section && !os->ignored)
|
||
{
|
||
os->bfd_section->lma
|
||
= exp_get_abs_int (os->load_base, 0, "load base");
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case lang_wild_statement_enum:
|
||
|
||
dot = lang_do_assignments_1 (s->wild_statement.children.head,
|
||
output_section_statement,
|
||
fill, dot);
|
||
break;
|
||
|
||
case lang_object_symbols_statement_enum:
|
||
case lang_output_statement_enum:
|
||
case lang_target_statement_enum:
|
||
break;
|
||
|
||
case lang_data_statement_enum:
|
||
exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
|
||
if (expld.result.valid_p)
|
||
s->data_statement.value = (expld.result.value
|
||
+ expld.result.section->vma);
|
||
else
|
||
einfo (_("%F%P: invalid data statement\n"));
|
||
{
|
||
unsigned int size;
|
||
switch (s->data_statement.type)
|
||
{
|
||
default:
|
||
abort ();
|
||
case QUAD:
|
||
case SQUAD:
|
||
size = QUAD_SIZE;
|
||
break;
|
||
case LONG:
|
||
size = LONG_SIZE;
|
||
break;
|
||
case SHORT:
|
||
size = SHORT_SIZE;
|
||
break;
|
||
case BYTE:
|
||
size = BYTE_SIZE;
|
||
break;
|
||
}
|
||
if (size < TO_SIZE ((unsigned) 1))
|
||
size = TO_SIZE ((unsigned) 1);
|
||
dot += TO_ADDR (size);
|
||
}
|
||
break;
|
||
|
||
case lang_reloc_statement_enum:
|
||
exp_fold_tree (s->reloc_statement.addend_exp,
|
||
bfd_abs_section_ptr, &dot);
|
||
if (expld.result.valid_p)
|
||
s->reloc_statement.addend_value = expld.result.value;
|
||
else
|
||
einfo (_("%F%P: invalid reloc statement\n"));
|
||
dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
|
||
break;
|
||
|
||
case lang_input_section_enum:
|
||
{
|
||
asection *in = s->input_section.section;
|
||
|
||
if ((in->flags & SEC_EXCLUDE) == 0)
|
||
dot += TO_ADDR (in->size);
|
||
}
|
||
break;
|
||
|
||
case lang_input_statement_enum:
|
||
break;
|
||
|
||
case lang_fill_statement_enum:
|
||
fill = s->fill_statement.fill;
|
||
break;
|
||
|
||
case lang_assignment_statement_enum:
|
||
exp_fold_tree (s->assignment_statement.exp,
|
||
output_section_statement->bfd_section,
|
||
&dot);
|
||
break;
|
||
|
||
case lang_padding_statement_enum:
|
||
dot += TO_ADDR (s->padding_statement.size);
|
||
break;
|
||
|
||
case lang_group_statement_enum:
|
||
dot = lang_do_assignments_1 (s->group_statement.children.head,
|
||
output_section_statement,
|
||
fill, dot);
|
||
break;
|
||
|
||
default:
|
||
FAIL ();
|
||
break;
|
||
|
||
case lang_address_statement_enum:
|
||
break;
|
||
}
|
||
}
|
||
return dot;
|
||
}
|
||
|
||
void
|
||
lang_do_assignments (void)
|
||
{
|
||
lang_statement_iteration++;
|
||
lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
|
||
}
|
||
|
||
/* Fix any .startof. or .sizeof. symbols. When the assemblers see the
|
||
operator .startof. (section_name), it produces an undefined symbol
|
||
.startof.section_name. Similarly, when it sees
|
||
.sizeof. (section_name), it produces an undefined symbol
|
||
.sizeof.section_name. For all the output sections, we look for
|
||
such symbols, and set them to the correct value. */
|
||
|
||
static void
|
||
lang_set_startof (void)
|
||
{
|
||
asection *s;
|
||
|
||
if (link_info.relocatable)
|
||
return;
|
||
|
||
for (s = output_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *secname;
|
||
char *buf;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
secname = bfd_get_section_name (output_bfd, s);
|
||
buf = xmalloc (10 + strlen (secname));
|
||
|
||
sprintf (buf, ".startof.%s", secname);
|
||
h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
|
||
if (h != NULL && h->type == bfd_link_hash_undefined)
|
||
{
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.value = bfd_get_section_vma (output_bfd, s);
|
||
h->u.def.section = bfd_abs_section_ptr;
|
||
}
|
||
|
||
sprintf (buf, ".sizeof.%s", secname);
|
||
h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
|
||
if (h != NULL && h->type == bfd_link_hash_undefined)
|
||
{
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.value = TO_ADDR (s->size);
|
||
h->u.def.section = bfd_abs_section_ptr;
|
||
}
|
||
|
||
free (buf);
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_end (void)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
bfd_boolean warn;
|
||
|
||
if (link_info.relocatable || link_info.shared)
|
||
warn = FALSE;
|
||
else
|
||
warn = TRUE;
|
||
|
||
if (entry_symbol.name == NULL)
|
||
{
|
||
/* No entry has been specified. Look for the default entry, but
|
||
don't warn if we don't find it. */
|
||
entry_symbol.name = entry_symbol_default;
|
||
warn = FALSE;
|
||
}
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
|
||
FALSE, FALSE, TRUE);
|
||
if (h != NULL
|
||
&& (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
&& h->u.def.section->output_section != NULL)
|
||
{
|
||
bfd_vma val;
|
||
|
||
val = (h->u.def.value
|
||
+ bfd_get_section_vma (output_bfd,
|
||
h->u.def.section->output_section)
|
||
+ h->u.def.section->output_offset);
|
||
if (! bfd_set_start_address (output_bfd, val))
|
||
einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
|
||
}
|
||
else
|
||
{
|
||
bfd_vma val;
|
||
const char *send;
|
||
|
||
/* We couldn't find the entry symbol. Try parsing it as a
|
||
number. */
|
||
val = bfd_scan_vma (entry_symbol.name, &send, 0);
|
||
if (*send == '\0')
|
||
{
|
||
if (! bfd_set_start_address (output_bfd, val))
|
||
einfo (_("%P%F: can't set start address\n"));
|
||
}
|
||
else
|
||
{
|
||
asection *ts;
|
||
|
||
/* Can't find the entry symbol, and it's not a number. Use
|
||
the first address in the text section. */
|
||
ts = bfd_get_section_by_name (output_bfd, entry_section);
|
||
if (ts != NULL)
|
||
{
|
||
if (warn)
|
||
einfo (_("%P: warning: cannot find entry symbol %s;"
|
||
" defaulting to %V\n"),
|
||
entry_symbol.name,
|
||
bfd_get_section_vma (output_bfd, ts));
|
||
if (! bfd_set_start_address (output_bfd,
|
||
bfd_get_section_vma (output_bfd,
|
||
ts)))
|
||
einfo (_("%P%F: can't set start address\n"));
|
||
}
|
||
else
|
||
{
|
||
if (warn)
|
||
einfo (_("%P: warning: cannot find entry symbol %s;"
|
||
" not setting start address\n"),
|
||
entry_symbol.name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Don't bfd_hash_table_free (&lang_definedness_table);
|
||
map file output may result in a call of lang_track_definedness. */
|
||
}
|
||
|
||
/* This is a small function used when we want to ignore errors from
|
||
BFD. */
|
||
|
||
static void
|
||
ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
|
||
{
|
||
/* Don't do anything. */
|
||
}
|
||
|
||
/* Check that the architecture of all the input files is compatible
|
||
with the output file. Also call the backend to let it do any
|
||
other checking that is needed. */
|
||
|
||
static void
|
||
lang_check (void)
|
||
{
|
||
lang_statement_union_type *file;
|
||
bfd *input_bfd;
|
||
const bfd_arch_info_type *compatible;
|
||
|
||
for (file = file_chain.head; file != NULL; file = file->input_statement.next)
|
||
{
|
||
input_bfd = file->input_statement.the_bfd;
|
||
compatible
|
||
= bfd_arch_get_compatible (input_bfd, output_bfd,
|
||
command_line.accept_unknown_input_arch);
|
||
|
||
/* In general it is not possible to perform a relocatable
|
||
link between differing object formats when the input
|
||
file has relocations, because the relocations in the
|
||
input format may not have equivalent representations in
|
||
the output format (and besides BFD does not translate
|
||
relocs for other link purposes than a final link). */
|
||
if ((link_info.relocatable || link_info.emitrelocations)
|
||
&& (compatible == NULL
|
||
|| bfd_get_flavour (input_bfd) != bfd_get_flavour (output_bfd))
|
||
&& (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
|
||
{
|
||
einfo (_("%P%F: Relocatable linking with relocations from"
|
||
" format %s (%B) to format %s (%B) is not supported\n"),
|
||
bfd_get_target (input_bfd), input_bfd,
|
||
bfd_get_target (output_bfd), output_bfd);
|
||
/* einfo with %F exits. */
|
||
}
|
||
|
||
if (compatible == NULL)
|
||
{
|
||
if (command_line.warn_mismatch)
|
||
einfo (_("%P: warning: %s architecture of input file `%B'"
|
||
" is incompatible with %s output\n"),
|
||
bfd_printable_name (input_bfd), input_bfd,
|
||
bfd_printable_name (output_bfd));
|
||
}
|
||
else if (bfd_count_sections (input_bfd))
|
||
{
|
||
/* If the input bfd has no contents, it shouldn't set the
|
||
private data of the output bfd. */
|
||
|
||
bfd_error_handler_type pfn = NULL;
|
||
|
||
/* If we aren't supposed to warn about mismatched input
|
||
files, temporarily set the BFD error handler to a
|
||
function which will do nothing. We still want to call
|
||
bfd_merge_private_bfd_data, since it may set up
|
||
information which is needed in the output file. */
|
||
if (! command_line.warn_mismatch)
|
||
pfn = bfd_set_error_handler (ignore_bfd_errors);
|
||
if (! bfd_merge_private_bfd_data (input_bfd, output_bfd))
|
||
{
|
||
if (command_line.warn_mismatch)
|
||
einfo (_("%P%X: failed to merge target specific data"
|
||
" of file %B\n"), input_bfd);
|
||
}
|
||
if (! command_line.warn_mismatch)
|
||
bfd_set_error_handler (pfn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look through all the global common symbols and attach them to the
|
||
correct section. The -sort-common command line switch may be used
|
||
to roughly sort the entries by size. */
|
||
|
||
static void
|
||
lang_common (void)
|
||
{
|
||
if (command_line.inhibit_common_definition)
|
||
return;
|
||
if (link_info.relocatable
|
||
&& ! command_line.force_common_definition)
|
||
return;
|
||
|
||
if (! config.sort_common)
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
|
||
else
|
||
{
|
||
int power;
|
||
|
||
for (power = 4; power >= 0; power--)
|
||
bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
|
||
}
|
||
}
|
||
|
||
/* Place one common symbol in the correct section. */
|
||
|
||
static bfd_boolean
|
||
lang_one_common (struct bfd_link_hash_entry *h, void *info)
|
||
{
|
||
unsigned int power_of_two;
|
||
bfd_vma size;
|
||
asection *section;
|
||
|
||
if (h->type != bfd_link_hash_common)
|
||
return TRUE;
|
||
|
||
size = h->u.c.size;
|
||
power_of_two = h->u.c.p->alignment_power;
|
||
|
||
if (config.sort_common
|
||
&& power_of_two < (unsigned int) *(int *) info)
|
||
return TRUE;
|
||
|
||
section = h->u.c.p->section;
|
||
|
||
/* Increase the size of the section to align the common sym. */
|
||
section->size += ((bfd_vma) 1 << (power_of_two + opb_shift)) - 1;
|
||
section->size &= (- (bfd_vma) 1 << (power_of_two + opb_shift));
|
||
|
||
/* Adjust the alignment if necessary. */
|
||
if (power_of_two > section->alignment_power)
|
||
section->alignment_power = power_of_two;
|
||
|
||
/* Change the symbol from common to defined. */
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.section = section;
|
||
h->u.def.value = section->size;
|
||
|
||
/* Increase the size of the section. */
|
||
section->size += size;
|
||
|
||
/* Make sure the section is allocated in memory, and make sure that
|
||
it is no longer a common section. */
|
||
section->flags |= SEC_ALLOC;
|
||
section->flags &= ~SEC_IS_COMMON;
|
||
|
||
if (config.map_file != NULL)
|
||
{
|
||
static bfd_boolean header_printed;
|
||
int len;
|
||
char *name;
|
||
char buf[50];
|
||
|
||
if (! header_printed)
|
||
{
|
||
minfo (_("\nAllocating common symbols\n"));
|
||
minfo (_("Common symbol size file\n\n"));
|
||
header_printed = TRUE;
|
||
}
|
||
|
||
name = demangle (h->root.string);
|
||
minfo ("%s", name);
|
||
len = strlen (name);
|
||
free (name);
|
||
|
||
if (len >= 19)
|
||
{
|
||
print_nl ();
|
||
len = 0;
|
||
}
|
||
while (len < 20)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
minfo ("0x");
|
||
if (size <= 0xffffffff)
|
||
sprintf (buf, "%lx", (unsigned long) size);
|
||
else
|
||
sprintf_vma (buf, size);
|
||
minfo ("%s", buf);
|
||
len = strlen (buf);
|
||
|
||
while (len < 16)
|
||
{
|
||
print_space ();
|
||
++len;
|
||
}
|
||
|
||
minfo ("%B\n", section->owner);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Run through the input files and ensure that every input section has
|
||
somewhere to go. If one is found without a destination then create
|
||
an input request and place it into the statement tree. */
|
||
|
||
static void
|
||
lang_place_orphans (void)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (file)
|
||
{
|
||
asection *s;
|
||
|
||
for (s = file->the_bfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (s->output_section == NULL)
|
||
{
|
||
/* This section of the file is not attached, root
|
||
around for a sensible place for it to go. */
|
||
|
||
if (file->just_syms_flag)
|
||
bfd_link_just_syms (file->the_bfd, s, &link_info);
|
||
else if ((s->flags & SEC_EXCLUDE) != 0)
|
||
s->output_section = bfd_abs_section_ptr;
|
||
else if (strcmp (s->name, "COMMON") == 0)
|
||
{
|
||
/* This is a lonely common section which must have
|
||
come from an archive. We attach to the section
|
||
with the wildcard. */
|
||
if (! link_info.relocatable
|
||
|| command_line.force_common_definition)
|
||
{
|
||
if (default_common_section == NULL)
|
||
{
|
||
default_common_section =
|
||
lang_output_section_statement_lookup (".bss");
|
||
|
||
}
|
||
lang_add_section (&default_common_section->children, s,
|
||
default_common_section, file);
|
||
}
|
||
}
|
||
else if (ldemul_place_orphan (file, s))
|
||
;
|
||
else
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
os = lang_output_section_statement_lookup (s->name);
|
||
lang_add_section (&os->children, s, os, file);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
|
||
{
|
||
flagword *ptr_flags;
|
||
|
||
ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
|
||
while (*flags)
|
||
{
|
||
switch (*flags)
|
||
{
|
||
case 'A': case 'a':
|
||
*ptr_flags |= SEC_ALLOC;
|
||
break;
|
||
|
||
case 'R': case 'r':
|
||
*ptr_flags |= SEC_READONLY;
|
||
break;
|
||
|
||
case 'W': case 'w':
|
||
*ptr_flags |= SEC_DATA;
|
||
break;
|
||
|
||
case 'X': case 'x':
|
||
*ptr_flags |= SEC_CODE;
|
||
break;
|
||
|
||
case 'L': case 'l':
|
||
case 'I': case 'i':
|
||
*ptr_flags |= SEC_LOAD;
|
||
break;
|
||
|
||
default:
|
||
einfo (_("%P%F: invalid syntax in flags\n"));
|
||
break;
|
||
}
|
||
flags++;
|
||
}
|
||
}
|
||
|
||
/* Call a function on each input file. This function will be called
|
||
on an archive, but not on the elements. */
|
||
|
||
void
|
||
lang_for_each_input_file (void (*func) (lang_input_statement_type *))
|
||
{
|
||
lang_input_statement_type *f;
|
||
|
||
for (f = (lang_input_statement_type *) input_file_chain.head;
|
||
f != NULL;
|
||
f = (lang_input_statement_type *) f->next_real_file)
|
||
func (f);
|
||
}
|
||
|
||
/* Call a function on each file. The function will be called on all
|
||
the elements of an archive which are included in the link, but will
|
||
not be called on the archive file itself. */
|
||
|
||
void
|
||
lang_for_each_file (void (*func) (lang_input_statement_type *))
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
func (f);
|
||
}
|
||
}
|
||
|
||
void
|
||
ldlang_add_file (lang_input_statement_type *entry)
|
||
{
|
||
bfd **pp;
|
||
|
||
lang_statement_append (&file_chain,
|
||
(lang_statement_union_type *) entry,
|
||
&entry->next);
|
||
|
||
/* The BFD linker needs to have a list of all input BFDs involved in
|
||
a link. */
|
||
ASSERT (entry->the_bfd->link_next == NULL);
|
||
ASSERT (entry->the_bfd != output_bfd);
|
||
for (pp = &link_info.input_bfds; *pp != NULL; pp = &(*pp)->link_next)
|
||
;
|
||
*pp = entry->the_bfd;
|
||
entry->the_bfd->usrdata = entry;
|
||
bfd_set_gp_size (entry->the_bfd, g_switch_value);
|
||
|
||
/* Look through the sections and check for any which should not be
|
||
included in the link. We need to do this now, so that we can
|
||
notice when the backend linker tries to report multiple
|
||
definition errors for symbols which are in sections we aren't
|
||
going to link. FIXME: It might be better to entirely ignore
|
||
symbols which are defined in sections which are going to be
|
||
discarded. This would require modifying the backend linker for
|
||
each backend which might set the SEC_LINK_ONCE flag. If we do
|
||
this, we should probably handle SEC_EXCLUDE in the same way. */
|
||
|
||
bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
|
||
}
|
||
|
||
void
|
||
lang_add_output (const char *name, int from_script)
|
||
{
|
||
/* Make -o on command line override OUTPUT in script. */
|
||
if (!had_output_filename || !from_script)
|
||
{
|
||
output_filename = name;
|
||
had_output_filename = TRUE;
|
||
}
|
||
}
|
||
|
||
static lang_output_section_statement_type *current_section;
|
||
|
||
static int
|
||
topower (int x)
|
||
{
|
||
unsigned int i = 1;
|
||
int l;
|
||
|
||
if (x < 0)
|
||
return -1;
|
||
|
||
for (l = 0; l < 32; l++)
|
||
{
|
||
if (i >= (unsigned int) x)
|
||
return l;
|
||
i <<= 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
lang_output_section_statement_type *
|
||
lang_enter_output_section_statement (const char *output_section_statement_name,
|
||
etree_type *address_exp,
|
||
enum section_type sectype,
|
||
etree_type *align,
|
||
etree_type *subalign,
|
||
etree_type *ebase,
|
||
int constraint)
|
||
{
|
||
lang_output_section_statement_type *os;
|
||
|
||
current_section =
|
||
os =
|
||
lang_output_section_statement_lookup_1 (output_section_statement_name,
|
||
constraint);
|
||
|
||
/* Make next things chain into subchain of this. */
|
||
|
||
if (os->addr_tree == NULL)
|
||
{
|
||
os->addr_tree = address_exp;
|
||
}
|
||
os->sectype = sectype;
|
||
if (sectype != noload_section)
|
||
os->flags = SEC_NO_FLAGS;
|
||
else
|
||
os->flags = SEC_NEVER_LOAD;
|
||
os->block_value = 1;
|
||
stat_ptr = &os->children;
|
||
|
||
os->subsection_alignment =
|
||
topower (exp_get_value_int (subalign, -1, "subsection alignment"));
|
||
os->section_alignment =
|
||
topower (exp_get_value_int (align, -1, "section alignment"));
|
||
|
||
os->load_base = ebase;
|
||
return os;
|
||
}
|
||
|
||
void
|
||
lang_final (void)
|
||
{
|
||
lang_output_statement_type *new =
|
||
new_stat (lang_output_statement, stat_ptr);
|
||
|
||
new->name = output_filename;
|
||
}
|
||
|
||
/* Reset the current counters in the regions. */
|
||
|
||
void
|
||
lang_reset_memory_regions (void)
|
||
{
|
||
lang_memory_region_type *p = lang_memory_region_list;
|
||
asection *o;
|
||
lang_output_section_statement_type *os;
|
||
|
||
for (p = lang_memory_region_list; p != NULL; p = p->next)
|
||
{
|
||
p->old_length = (bfd_size_type) (p->current - p->origin);
|
||
p->current = p->origin;
|
||
}
|
||
|
||
for (os = &lang_output_section_statement.head->output_section_statement;
|
||
os != NULL;
|
||
os = os->next)
|
||
os->processed = FALSE;
|
||
|
||
for (o = output_bfd->sections; o != NULL; o = o->next)
|
||
{
|
||
/* Save the last size for possible use by bfd_relax_section. */
|
||
o->rawsize = o->size;
|
||
o->size = 0;
|
||
}
|
||
}
|
||
|
||
/* Worker for lang_gc_sections_1. */
|
||
|
||
static void
|
||
gc_section_callback (lang_wild_statement_type *ptr,
|
||
struct wildcard_list *sec ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
lang_input_statement_type *file ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
/* If the wild pattern was marked KEEP, the member sections
|
||
should be as well. */
|
||
if (ptr->keep_sections)
|
||
section->flags |= SEC_KEEP;
|
||
}
|
||
|
||
/* Iterate over sections marking them against GC. */
|
||
|
||
static void
|
||
lang_gc_sections_1 (lang_statement_union_type *s)
|
||
{
|
||
for (; s != NULL; s = s->header.next)
|
||
{
|
||
switch (s->header.type)
|
||
{
|
||
case lang_wild_statement_enum:
|
||
walk_wild (&s->wild_statement, gc_section_callback, NULL);
|
||
break;
|
||
case lang_constructors_statement_enum:
|
||
lang_gc_sections_1 (constructor_list.head);
|
||
break;
|
||
case lang_output_section_statement_enum:
|
||
lang_gc_sections_1 (s->output_section_statement.children.head);
|
||
break;
|
||
case lang_group_statement_enum:
|
||
lang_gc_sections_1 (s->group_statement.children.head);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
lang_gc_sections (void)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
ldlang_undef_chain_list_type *ulist;
|
||
|
||
/* Keep all sections so marked in the link script. */
|
||
|
||
lang_gc_sections_1 (statement_list.head);
|
||
|
||
/* Keep all sections containing symbols undefined on the command-line,
|
||
and the section containing the entry symbol. */
|
||
|
||
for (ulist = link_info.gc_sym_list; ulist; ulist = ulist->next)
|
||
{
|
||
h = bfd_link_hash_lookup (link_info.hash, ulist->name,
|
||
FALSE, FALSE, FALSE);
|
||
|
||
if (h != NULL
|
||
&& (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
&& ! bfd_is_abs_section (h->u.def.section))
|
||
{
|
||
h->u.def.section->flags |= SEC_KEEP;
|
||
}
|
||
}
|
||
|
||
/* SEC_EXCLUDE is ignored when doing a relocatable link, except in
|
||
the special case of debug info. (See bfd/stabs.c)
|
||
Twiddle the flag here, to simplify later linker code. */
|
||
if (link_info.relocatable)
|
||
{
|
||
LANG_FOR_EACH_INPUT_STATEMENT (f)
|
||
{
|
||
asection *sec;
|
||
for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
|
||
if ((sec->flags & SEC_DEBUGGING) == 0)
|
||
sec->flags &= ~SEC_EXCLUDE;
|
||
}
|
||
}
|
||
|
||
if (link_info.gc_sections)
|
||
bfd_gc_sections (output_bfd, &link_info);
|
||
}
|
||
|
||
void
|
||
lang_process (void)
|
||
{
|
||
current_target = default_target;
|
||
|
||
/* Open the output file. */
|
||
lang_for_each_statement (ldlang_open_output);
|
||
init_opb ();
|
||
|
||
ldemul_create_output_section_statements ();
|
||
|
||
/* Add to the hash table all undefineds on the command line. */
|
||
lang_place_undefineds ();
|
||
|
||
if (!bfd_section_already_linked_table_init ())
|
||
einfo (_("%P%F: Failed to create hash table\n"));
|
||
|
||
/* Create a bfd for each input file. */
|
||
current_target = default_target;
|
||
open_input_bfds (statement_list.head, FALSE);
|
||
|
||
link_info.gc_sym_list = &entry_symbol;
|
||
if (entry_symbol.name == NULL)
|
||
link_info.gc_sym_list = ldlang_undef_chain_list_head;
|
||
|
||
ldemul_after_open ();
|
||
|
||
bfd_section_already_linked_table_free ();
|
||
|
||
/* Make sure that we're not mixing architectures. We call this
|
||
after all the input files have been opened, but before we do any
|
||
other processing, so that any operations merge_private_bfd_data
|
||
does on the output file will be known during the rest of the
|
||
link. */
|
||
lang_check ();
|
||
|
||
/* Handle .exports instead of a version script if we're told to do so. */
|
||
if (command_line.version_exports_section)
|
||
lang_do_version_exports_section ();
|
||
|
||
/* Build all sets based on the information gathered from the input
|
||
files. */
|
||
ldctor_build_sets ();
|
||
|
||
/* Remove unreferenced sections if asked to. */
|
||
lang_gc_sections ();
|
||
|
||
/* Size up the common data. */
|
||
lang_common ();
|
||
|
||
/* Update wild statements. */
|
||
update_wild_statements (statement_list.head);
|
||
|
||
/* Run through the contours of the script and attach input sections
|
||
to the correct output sections. */
|
||
map_input_to_output_sections (statement_list.head, NULL, NULL);
|
||
|
||
/* Find any sections not attached explicitly and handle them. */
|
||
lang_place_orphans ();
|
||
|
||
if (! link_info.relocatable)
|
||
{
|
||
asection *found;
|
||
|
||
/* Merge SEC_MERGE sections. This has to be done after GC of
|
||
sections, so that GCed sections are not merged, but before
|
||
assigning dynamic symbols, since removing whole input sections
|
||
is hard then. */
|
||
bfd_merge_sections (output_bfd, &link_info);
|
||
|
||
/* Look for a text section and set the readonly attribute in it. */
|
||
found = bfd_get_section_by_name (output_bfd, ".text");
|
||
|
||
if (found != NULL)
|
||
{
|
||
if (config.text_read_only)
|
||
found->flags |= SEC_READONLY;
|
||
else
|
||
found->flags &= ~SEC_READONLY;
|
||
}
|
||
}
|
||
|
||
/* Do anything special before sizing sections. This is where ELF
|
||
and other back-ends size dynamic sections. */
|
||
ldemul_before_allocation ();
|
||
|
||
/* We must record the program headers before we try to fix the
|
||
section positions, since they will affect SIZEOF_HEADERS. */
|
||
lang_record_phdrs ();
|
||
|
||
/* Size up the sections. */
|
||
lang_size_sections (NULL, !command_line.relax);
|
||
|
||
/* Now run around and relax if we can. */
|
||
if (command_line.relax)
|
||
{
|
||
/* Keep relaxing until bfd_relax_section gives up. */
|
||
bfd_boolean relax_again;
|
||
|
||
do
|
||
{
|
||
relax_again = FALSE;
|
||
|
||
/* Note: pe-dll.c does something like this also. If you find
|
||
you need to change this code, you probably need to change
|
||
pe-dll.c also. DJ */
|
||
|
||
/* Do all the assignments with our current guesses as to
|
||
section sizes. */
|
||
lang_do_assignments ();
|
||
|
||
/* We must do this after lang_do_assignments, because it uses
|
||
size. */
|
||
lang_reset_memory_regions ();
|
||
|
||
/* Perform another relax pass - this time we know where the
|
||
globals are, so can make a better guess. */
|
||
lang_size_sections (&relax_again, FALSE);
|
||
|
||
/* If the normal relax is done and the relax finalize pass
|
||
is not performed yet, we perform another relax pass. */
|
||
if (!relax_again && link_info.need_relax_finalize)
|
||
{
|
||
link_info.need_relax_finalize = FALSE;
|
||
relax_again = TRUE;
|
||
}
|
||
}
|
||
while (relax_again);
|
||
|
||
/* Final extra sizing to report errors. */
|
||
lang_do_assignments ();
|
||
lang_reset_memory_regions ();
|
||
lang_size_sections (NULL, TRUE);
|
||
}
|
||
|
||
/* See if anything special should be done now we know how big
|
||
everything is. */
|
||
ldemul_after_allocation ();
|
||
|
||
/* Fix any .startof. or .sizeof. symbols. */
|
||
lang_set_startof ();
|
||
|
||
/* Do all the assignments, now that we know the final resting places
|
||
of all the symbols. */
|
||
|
||
lang_do_assignments ();
|
||
|
||
/* Make sure that the section addresses make sense. */
|
||
if (! link_info.relocatable
|
||
&& command_line.check_section_addresses)
|
||
lang_check_section_addresses ();
|
||
|
||
/* Final stuffs. */
|
||
ldemul_finish ();
|
||
lang_end ();
|
||
}
|
||
|
||
/* EXPORTED TO YACC */
|
||
|
||
void
|
||
lang_add_wild (struct wildcard_spec *filespec,
|
||
struct wildcard_list *section_list,
|
||
bfd_boolean keep_sections)
|
||
{
|
||
struct wildcard_list *curr, *next;
|
||
lang_wild_statement_type *new;
|
||
|
||
/* Reverse the list as the parser puts it back to front. */
|
||
for (curr = section_list, section_list = NULL;
|
||
curr != NULL;
|
||
section_list = curr, curr = next)
|
||
{
|
||
if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
|
||
placed_commons = TRUE;
|
||
|
||
next = curr->next;
|
||
curr->next = section_list;
|
||
}
|
||
|
||
if (filespec != NULL && filespec->name != NULL)
|
||
{
|
||
if (strcmp (filespec->name, "*") == 0)
|
||
filespec->name = NULL;
|
||
else if (! wildcardp (filespec->name))
|
||
lang_has_input_file = TRUE;
|
||
}
|
||
|
||
new = new_stat (lang_wild_statement, stat_ptr);
|
||
new->filename = NULL;
|
||
new->filenames_sorted = FALSE;
|
||
if (filespec != NULL)
|
||
{
|
||
new->filename = filespec->name;
|
||
new->filenames_sorted = filespec->sorted == by_name;
|
||
}
|
||
new->section_list = section_list;
|
||
new->keep_sections = keep_sections;
|
||
lang_list_init (&new->children);
|
||
analyze_walk_wild_section_handler (new);
|
||
}
|
||
|
||
void
|
||
lang_section_start (const char *name, etree_type *address,
|
||
const segment_type *segment)
|
||
{
|
||
lang_address_statement_type *ad;
|
||
|
||
ad = new_stat (lang_address_statement, stat_ptr);
|
||
ad->section_name = name;
|
||
ad->address = address;
|
||
ad->segment = segment;
|
||
}
|
||
|
||
/* Set the start symbol to NAME. CMDLINE is nonzero if this is called
|
||
because of a -e argument on the command line, or zero if this is
|
||
called by ENTRY in a linker script. Command line arguments take
|
||
precedence. */
|
||
|
||
void
|
||
lang_add_entry (const char *name, bfd_boolean cmdline)
|
||
{
|
||
if (entry_symbol.name == NULL
|
||
|| cmdline
|
||
|| ! entry_from_cmdline)
|
||
{
|
||
entry_symbol.name = name;
|
||
entry_from_cmdline = cmdline;
|
||
}
|
||
}
|
||
|
||
/* Set the default start symbol to NAME. .em files should use this,
|
||
not lang_add_entry, to override the use of "start" if neither the
|
||
linker script nor the command line specifies an entry point. NAME
|
||
must be permanently allocated. */
|
||
void
|
||
lang_default_entry (const char *name)
|
||
{
|
||
entry_symbol_default = name;
|
||
}
|
||
|
||
void
|
||
lang_add_target (const char *name)
|
||
{
|
||
lang_target_statement_type *new = new_stat (lang_target_statement,
|
||
stat_ptr);
|
||
|
||
new->target = name;
|
||
|
||
}
|
||
|
||
void
|
||
lang_add_map (const char *name)
|
||
{
|
||
while (*name)
|
||
{
|
||
switch (*name)
|
||
{
|
||
case 'F':
|
||
map_option_f = TRUE;
|
||
break;
|
||
}
|
||
name++;
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_add_fill (fill_type *fill)
|
||
{
|
||
lang_fill_statement_type *new = new_stat (lang_fill_statement,
|
||
stat_ptr);
|
||
|
||
new->fill = fill;
|
||
}
|
||
|
||
void
|
||
lang_add_data (int type, union etree_union *exp)
|
||
{
|
||
|
||
lang_data_statement_type *new = new_stat (lang_data_statement,
|
||
stat_ptr);
|
||
|
||
new->exp = exp;
|
||
new->type = type;
|
||
|
||
}
|
||
|
||
/* Create a new reloc statement. RELOC is the BFD relocation type to
|
||
generate. HOWTO is the corresponding howto structure (we could
|
||
look this up, but the caller has already done so). SECTION is the
|
||
section to generate a reloc against, or NAME is the name of the
|
||
symbol to generate a reloc against. Exactly one of SECTION and
|
||
NAME must be NULL. ADDEND is an expression for the addend. */
|
||
|
||
void
|
||
lang_add_reloc (bfd_reloc_code_real_type reloc,
|
||
reloc_howto_type *howto,
|
||
asection *section,
|
||
const char *name,
|
||
union etree_union *addend)
|
||
{
|
||
lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
|
||
|
||
p->reloc = reloc;
|
||
p->howto = howto;
|
||
p->section = section;
|
||
p->name = name;
|
||
p->addend_exp = addend;
|
||
|
||
p->addend_value = 0;
|
||
p->output_section = NULL;
|
||
p->output_vma = 0;
|
||
}
|
||
|
||
lang_assignment_statement_type *
|
||
lang_add_assignment (etree_type *exp)
|
||
{
|
||
lang_assignment_statement_type *new = new_stat (lang_assignment_statement,
|
||
stat_ptr);
|
||
|
||
new->exp = exp;
|
||
return new;
|
||
}
|
||
|
||
void
|
||
lang_add_attribute (enum statement_enum attribute)
|
||
{
|
||
new_statement (attribute, sizeof (lang_statement_union_type), stat_ptr);
|
||
}
|
||
|
||
void
|
||
lang_startup (const char *name)
|
||
{
|
||
if (startup_file != NULL)
|
||
{
|
||
einfo (_("%P%F: multiple STARTUP files\n"));
|
||
}
|
||
first_file->filename = name;
|
||
first_file->local_sym_name = name;
|
||
first_file->real = TRUE;
|
||
|
||
startup_file = name;
|
||
}
|
||
|
||
void
|
||
lang_float (bfd_boolean maybe)
|
||
{
|
||
lang_float_flag = maybe;
|
||
}
|
||
|
||
|
||
/* Work out the load- and run-time regions from a script statement, and
|
||
store them in *LMA_REGION and *REGION respectively.
|
||
|
||
MEMSPEC is the name of the run-time region, or the value of
|
||
DEFAULT_MEMORY_REGION if the statement didn't specify one.
|
||
LMA_MEMSPEC is the name of the load-time region, or null if the
|
||
statement didn't specify one.HAVE_LMA_P is TRUE if the statement
|
||
had an explicit load address.
|
||
|
||
It is an error to specify both a load region and a load address. */
|
||
|
||
static void
|
||
lang_get_regions (lang_memory_region_type **region,
|
||
lang_memory_region_type **lma_region,
|
||
const char *memspec,
|
||
const char *lma_memspec,
|
||
bfd_boolean have_lma,
|
||
bfd_boolean have_vma)
|
||
{
|
||
*lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
|
||
|
||
/* If no runtime region or VMA has been specified, but the load region
|
||
has been specified, then use the load region for the runtime region
|
||
as well. */
|
||
if (lma_memspec != NULL
|
||
&& ! have_vma
|
||
&& strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
|
||
*region = *lma_region;
|
||
else
|
||
*region = lang_memory_region_lookup (memspec, FALSE);
|
||
|
||
if (have_lma && lma_memspec != 0)
|
||
einfo (_("%X%P:%S: section has both a load address and a load region\n"));
|
||
}
|
||
|
||
void
|
||
lang_leave_output_section_statement (fill_type *fill, const char *memspec,
|
||
lang_output_section_phdr_list *phdrs,
|
||
const char *lma_memspec)
|
||
{
|
||
lang_get_regions (¤t_section->region,
|
||
¤t_section->lma_region,
|
||
memspec, lma_memspec,
|
||
current_section->load_base != NULL,
|
||
current_section->addr_tree != NULL);
|
||
current_section->fill = fill;
|
||
current_section->phdrs = phdrs;
|
||
stat_ptr = &statement_list;
|
||
}
|
||
|
||
/* Create an absolute symbol with the given name with the value of the
|
||
address of first byte of the section named.
|
||
|
||
If the symbol already exists, then do nothing. */
|
||
|
||
void
|
||
lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
|
||
if (h == NULL)
|
||
einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
|
||
|
||
if (h->type == bfd_link_hash_new
|
||
|| h->type == bfd_link_hash_undefined)
|
||
{
|
||
asection *sec;
|
||
|
||
h->type = bfd_link_hash_defined;
|
||
|
||
sec = bfd_get_section_by_name (output_bfd, secname);
|
||
if (sec == NULL)
|
||
h->u.def.value = 0;
|
||
else
|
||
h->u.def.value = bfd_get_section_vma (output_bfd, sec);
|
||
|
||
h->u.def.section = bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
|
||
/* Create an absolute symbol with the given name with the value of the
|
||
address of the first byte after the end of the section named.
|
||
|
||
If the symbol already exists, then do nothing. */
|
||
|
||
void
|
||
lang_abs_symbol_at_end_of (const char *secname, const char *name)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
|
||
if (h == NULL)
|
||
einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
|
||
|
||
if (h->type == bfd_link_hash_new
|
||
|| h->type == bfd_link_hash_undefined)
|
||
{
|
||
asection *sec;
|
||
|
||
h->type = bfd_link_hash_defined;
|
||
|
||
sec = bfd_get_section_by_name (output_bfd, secname);
|
||
if (sec == NULL)
|
||
h->u.def.value = 0;
|
||
else
|
||
h->u.def.value = (bfd_get_section_vma (output_bfd, sec)
|
||
+ TO_ADDR (sec->size));
|
||
|
||
h->u.def.section = bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
|
||
void
|
||
lang_statement_append (lang_statement_list_type *list,
|
||
lang_statement_union_type *element,
|
||
lang_statement_union_type **field)
|
||
{
|
||
*(list->tail) = element;
|
||
list->tail = field;
|
||
}
|
||
|
||
/* Set the output format type. -oformat overrides scripts. */
|
||
|
||
void
|
||
lang_add_output_format (const char *format,
|
||
const char *big,
|
||
const char *little,
|
||
int from_script)
|
||
{
|
||
if (output_target == NULL || !from_script)
|
||
{
|
||
if (command_line.endian == ENDIAN_BIG
|
||
&& big != NULL)
|
||
format = big;
|
||
else if (command_line.endian == ENDIAN_LITTLE
|
||
&& little != NULL)
|
||
format = little;
|
||
|
||
output_target = format;
|
||
}
|
||
}
|
||
|
||
/* Enter a group. This creates a new lang_group_statement, and sets
|
||
stat_ptr to build new statements within the group. */
|
||
|
||
void
|
||
lang_enter_group (void)
|
||
{
|
||
lang_group_statement_type *g;
|
||
|
||
g = new_stat (lang_group_statement, stat_ptr);
|
||
lang_list_init (&g->children);
|
||
stat_ptr = &g->children;
|
||
}
|
||
|
||
/* Leave a group. This just resets stat_ptr to start writing to the
|
||
regular list of statements again. Note that this will not work if
|
||
groups can occur inside anything else which can adjust stat_ptr,
|
||
but currently they can't. */
|
||
|
||
void
|
||
lang_leave_group (void)
|
||
{
|
||
stat_ptr = &statement_list;
|
||
}
|
||
|
||
/* Add a new program header. This is called for each entry in a PHDRS
|
||
command in a linker script. */
|
||
|
||
void
|
||
lang_new_phdr (const char *name,
|
||
etree_type *type,
|
||
bfd_boolean filehdr,
|
||
bfd_boolean phdrs,
|
||
etree_type *at,
|
||
etree_type *flags)
|
||
{
|
||
struct lang_phdr *n, **pp;
|
||
|
||
n = stat_alloc (sizeof (struct lang_phdr));
|
||
n->next = NULL;
|
||
n->name = name;
|
||
n->type = exp_get_value_int (type, 0, "program header type");
|
||
n->filehdr = filehdr;
|
||
n->phdrs = phdrs;
|
||
n->at = at;
|
||
n->flags = flags;
|
||
|
||
for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
|
||
;
|
||
*pp = n;
|
||
}
|
||
|
||
/* Record the program header information in the output BFD. FIXME: We
|
||
should not be calling an ELF specific function here. */
|
||
|
||
static void
|
||
lang_record_phdrs (void)
|
||
{
|
||
unsigned int alc;
|
||
asection **secs;
|
||
lang_output_section_phdr_list *last;
|
||
struct lang_phdr *l;
|
||
lang_output_section_statement_type *os;
|
||
|
||
alc = 10;
|
||
secs = xmalloc (alc * sizeof (asection *));
|
||
last = NULL;
|
||
for (l = lang_phdr_list; l != NULL; l = l->next)
|
||
{
|
||
unsigned int c;
|
||
flagword flags;
|
||
bfd_vma at;
|
||
|
||
c = 0;
|
||
for (os = &lang_output_section_statement.head->output_section_statement;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
lang_output_section_phdr_list *pl;
|
||
|
||
if (os->constraint == -1)
|
||
continue;
|
||
|
||
pl = os->phdrs;
|
||
if (pl != NULL)
|
||
last = pl;
|
||
else
|
||
{
|
||
if (os->sectype == noload_section
|
||
|| os->bfd_section == NULL
|
||
|| (os->bfd_section->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
pl = last;
|
||
}
|
||
|
||
if (os->bfd_section == NULL)
|
||
continue;
|
||
|
||
for (; pl != NULL; pl = pl->next)
|
||
{
|
||
if (strcmp (pl->name, l->name) == 0)
|
||
{
|
||
if (c >= alc)
|
||
{
|
||
alc *= 2;
|
||
secs = xrealloc (secs, alc * sizeof (asection *));
|
||
}
|
||
secs[c] = os->bfd_section;
|
||
++c;
|
||
pl->used = TRUE;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (l->flags == NULL)
|
||
flags = 0;
|
||
else
|
||
flags = exp_get_vma (l->flags, 0, "phdr flags");
|
||
|
||
if (l->at == NULL)
|
||
at = 0;
|
||
else
|
||
at = exp_get_vma (l->at, 0, "phdr load address");
|
||
|
||
if (! bfd_record_phdr (output_bfd, l->type,
|
||
l->flags != NULL, flags, l->at != NULL,
|
||
at, l->filehdr, l->phdrs, c, secs))
|
||
einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
|
||
}
|
||
|
||
free (secs);
|
||
|
||
/* Make sure all the phdr assignments succeeded. */
|
||
for (os = &lang_output_section_statement.head->output_section_statement;
|
||
os != NULL;
|
||
os = os->next)
|
||
{
|
||
lang_output_section_phdr_list *pl;
|
||
|
||
if (os->constraint == -1
|
||
|| os->bfd_section == NULL)
|
||
continue;
|
||
|
||
for (pl = os->phdrs;
|
||
pl != NULL;
|
||
pl = pl->next)
|
||
if (! pl->used && strcmp (pl->name, "NONE") != 0)
|
||
einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
|
||
os->name, pl->name);
|
||
}
|
||
}
|
||
|
||
/* Record a list of sections which may not be cross referenced. */
|
||
|
||
void
|
||
lang_add_nocrossref (lang_nocrossref_type *l)
|
||
{
|
||
struct lang_nocrossrefs *n;
|
||
|
||
n = xmalloc (sizeof *n);
|
||
n->next = nocrossref_list;
|
||
n->list = l;
|
||
nocrossref_list = n;
|
||
|
||
/* Set notice_all so that we get informed about all symbols. */
|
||
link_info.notice_all = TRUE;
|
||
}
|
||
|
||
/* Overlay handling. We handle overlays with some static variables. */
|
||
|
||
/* The overlay virtual address. */
|
||
static etree_type *overlay_vma;
|
||
/* And subsection alignment. */
|
||
static etree_type *overlay_subalign;
|
||
|
||
/* An expression for the maximum section size seen so far. */
|
||
static etree_type *overlay_max;
|
||
|
||
/* A list of all the sections in this overlay. */
|
||
|
||
struct overlay_list {
|
||
struct overlay_list *next;
|
||
lang_output_section_statement_type *os;
|
||
};
|
||
|
||
static struct overlay_list *overlay_list;
|
||
|
||
/* Start handling an overlay. */
|
||
|
||
void
|
||
lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
|
||
{
|
||
/* The grammar should prevent nested overlays from occurring. */
|
||
ASSERT (overlay_vma == NULL
|
||
&& overlay_subalign == NULL
|
||
&& overlay_max == NULL);
|
||
|
||
overlay_vma = vma_expr;
|
||
overlay_subalign = subalign;
|
||
}
|
||
|
||
/* Start a section in an overlay. We handle this by calling
|
||
lang_enter_output_section_statement with the correct VMA.
|
||
lang_leave_overlay sets up the LMA and memory regions. */
|
||
|
||
void
|
||
lang_enter_overlay_section (const char *name)
|
||
{
|
||
struct overlay_list *n;
|
||
etree_type *size;
|
||
|
||
lang_enter_output_section_statement (name, overlay_vma, normal_section,
|
||
0, overlay_subalign, 0, 0);
|
||
|
||
/* If this is the first section, then base the VMA of future
|
||
sections on this one. This will work correctly even if `.' is
|
||
used in the addresses. */
|
||
if (overlay_list == NULL)
|
||
overlay_vma = exp_nameop (ADDR, name);
|
||
|
||
/* Remember the section. */
|
||
n = xmalloc (sizeof *n);
|
||
n->os = current_section;
|
||
n->next = overlay_list;
|
||
overlay_list = n;
|
||
|
||
size = exp_nameop (SIZEOF, name);
|
||
|
||
/* Arrange to work out the maximum section end address. */
|
||
if (overlay_max == NULL)
|
||
overlay_max = size;
|
||
else
|
||
overlay_max = exp_binop (MAX_K, overlay_max, size);
|
||
}
|
||
|
||
/* Finish a section in an overlay. There isn't any special to do
|
||
here. */
|
||
|
||
void
|
||
lang_leave_overlay_section (fill_type *fill,
|
||
lang_output_section_phdr_list *phdrs)
|
||
{
|
||
const char *name;
|
||
char *clean, *s2;
|
||
const char *s1;
|
||
char *buf;
|
||
|
||
name = current_section->name;
|
||
|
||
/* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
|
||
region and that no load-time region has been specified. It doesn't
|
||
really matter what we say here, since lang_leave_overlay will
|
||
override it. */
|
||
lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
|
||
|
||
/* Define the magic symbols. */
|
||
|
||
clean = xmalloc (strlen (name) + 1);
|
||
s2 = clean;
|
||
for (s1 = name; *s1 != '\0'; s1++)
|
||
if (ISALNUM (*s1) || *s1 == '_')
|
||
*s2++ = *s1;
|
||
*s2 = '\0';
|
||
|
||
buf = xmalloc (strlen (clean) + sizeof "__load_start_");
|
||
sprintf (buf, "__load_start_%s", clean);
|
||
lang_add_assignment (exp_assop ('=', buf,
|
||
exp_nameop (LOADADDR, name)));
|
||
|
||
buf = xmalloc (strlen (clean) + sizeof "__load_stop_");
|
||
sprintf (buf, "__load_stop_%s", clean);
|
||
lang_add_assignment (exp_assop ('=', buf,
|
||
exp_binop ('+',
|
||
exp_nameop (LOADADDR, name),
|
||
exp_nameop (SIZEOF, name))));
|
||
|
||
free (clean);
|
||
}
|
||
|
||
/* Finish an overlay. If there are any overlay wide settings, this
|
||
looks through all the sections in the overlay and sets them. */
|
||
|
||
void
|
||
lang_leave_overlay (etree_type *lma_expr,
|
||
int nocrossrefs,
|
||
fill_type *fill,
|
||
const char *memspec,
|
||
lang_output_section_phdr_list *phdrs,
|
||
const char *lma_memspec)
|
||
{
|
||
lang_memory_region_type *region;
|
||
lang_memory_region_type *lma_region;
|
||
struct overlay_list *l;
|
||
lang_nocrossref_type *nocrossref;
|
||
|
||
lang_get_regions (®ion, &lma_region,
|
||
memspec, lma_memspec,
|
||
lma_expr != NULL, FALSE);
|
||
|
||
nocrossref = NULL;
|
||
|
||
/* After setting the size of the last section, set '.' to end of the
|
||
overlay region. */
|
||
if (overlay_list != NULL)
|
||
overlay_list->os->update_dot_tree
|
||
= exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
|
||
|
||
l = overlay_list;
|
||
while (l != NULL)
|
||
{
|
||
struct overlay_list *next;
|
||
|
||
if (fill != NULL && l->os->fill == NULL)
|
||
l->os->fill = fill;
|
||
|
||
l->os->region = region;
|
||
l->os->lma_region = lma_region;
|
||
|
||
/* The first section has the load address specified in the
|
||
OVERLAY statement. The rest are worked out from that.
|
||
The base address is not needed (and should be null) if
|
||
an LMA region was specified. */
|
||
if (l->next == 0)
|
||
l->os->load_base = lma_expr;
|
||
else if (lma_region == 0)
|
||
l->os->load_base = exp_binop ('+',
|
||
exp_nameop (LOADADDR, l->next->os->name),
|
||
exp_nameop (SIZEOF, l->next->os->name));
|
||
|
||
if (phdrs != NULL && l->os->phdrs == NULL)
|
||
l->os->phdrs = phdrs;
|
||
|
||
if (nocrossrefs)
|
||
{
|
||
lang_nocrossref_type *nc;
|
||
|
||
nc = xmalloc (sizeof *nc);
|
||
nc->name = l->os->name;
|
||
nc->next = nocrossref;
|
||
nocrossref = nc;
|
||
}
|
||
|
||
next = l->next;
|
||
free (l);
|
||
l = next;
|
||
}
|
||
|
||
if (nocrossref != NULL)
|
||
lang_add_nocrossref (nocrossref);
|
||
|
||
overlay_vma = NULL;
|
||
overlay_list = NULL;
|
||
overlay_max = NULL;
|
||
}
|
||
|
||
/* Version handling. This is only useful for ELF. */
|
||
|
||
/* This global variable holds the version tree that we build. */
|
||
|
||
struct bfd_elf_version_tree *lang_elf_version_info;
|
||
|
||
/* If PREV is NULL, return first version pattern matching particular symbol.
|
||
If PREV is non-NULL, return first version pattern matching particular
|
||
symbol after PREV (previously returned by lang_vers_match). */
|
||
|
||
static struct bfd_elf_version_expr *
|
||
lang_vers_match (struct bfd_elf_version_expr_head *head,
|
||
struct bfd_elf_version_expr *prev,
|
||
const char *sym)
|
||
{
|
||
const char *cxx_sym = sym;
|
||
const char *java_sym = sym;
|
||
struct bfd_elf_version_expr *expr = NULL;
|
||
|
||
if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
|
||
{
|
||
cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
|
||
if (!cxx_sym)
|
||
cxx_sym = sym;
|
||
}
|
||
if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
|
||
{
|
||
java_sym = cplus_demangle (sym, DMGL_JAVA);
|
||
if (!java_sym)
|
||
java_sym = sym;
|
||
}
|
||
|
||
if (head->htab && (prev == NULL || prev->symbol))
|
||
{
|
||
struct bfd_elf_version_expr e;
|
||
|
||
switch (prev ? prev->mask : 0)
|
||
{
|
||
case 0:
|
||
if (head->mask & BFD_ELF_VERSION_C_TYPE)
|
||
{
|
||
e.symbol = sym;
|
||
expr = htab_find (head->htab, &e);
|
||
while (expr && strcmp (expr->symbol, sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_C_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
case BFD_ELF_VERSION_C_TYPE:
|
||
if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
|
||
{
|
||
e.symbol = cxx_sym;
|
||
expr = htab_find (head->htab, &e);
|
||
while (expr && strcmp (expr->symbol, cxx_sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
case BFD_ELF_VERSION_CXX_TYPE:
|
||
if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
|
||
{
|
||
e.symbol = java_sym;
|
||
expr = htab_find (head->htab, &e);
|
||
while (expr && strcmp (expr->symbol, java_sym) == 0)
|
||
if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
|
||
goto out_ret;
|
||
else
|
||
expr = expr->next;
|
||
}
|
||
/* Fallthrough */
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Finally, try the wildcards. */
|
||
if (prev == NULL || prev->symbol)
|
||
expr = head->remaining;
|
||
else
|
||
expr = prev->next;
|
||
for (; expr; expr = expr->next)
|
||
{
|
||
const char *s;
|
||
|
||
if (!expr->pattern)
|
||
continue;
|
||
|
||
if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
|
||
break;
|
||
|
||
if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
|
||
s = java_sym;
|
||
else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
|
||
s = cxx_sym;
|
||
else
|
||
s = sym;
|
||
if (fnmatch (expr->pattern, s, 0) == 0)
|
||
break;
|
||
}
|
||
|
||
out_ret:
|
||
if (cxx_sym != sym)
|
||
free ((char *) cxx_sym);
|
||
if (java_sym != sym)
|
||
free ((char *) java_sym);
|
||
return expr;
|
||
}
|
||
|
||
/* Return NULL if the PATTERN argument is a glob pattern, otherwise,
|
||
return a string pointing to the symbol name. */
|
||
|
||
static const char *
|
||
realsymbol (const char *pattern)
|
||
{
|
||
const char *p;
|
||
bfd_boolean changed = FALSE, backslash = FALSE;
|
||
char *s, *symbol = xmalloc (strlen (pattern) + 1);
|
||
|
||
for (p = pattern, s = symbol; *p != '\0'; ++p)
|
||
{
|
||
/* It is a glob pattern only if there is no preceding
|
||
backslash. */
|
||
if (! backslash && (*p == '?' || *p == '*' || *p == '['))
|
||
{
|
||
free (symbol);
|
||
return NULL;
|
||
}
|
||
|
||
if (backslash)
|
||
{
|
||
/* Remove the preceding backslash. */
|
||
*(s - 1) = *p;
|
||
changed = TRUE;
|
||
}
|
||
else
|
||
*s++ = *p;
|
||
|
||
backslash = *p == '\\';
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
*s = '\0';
|
||
return symbol;
|
||
}
|
||
else
|
||
{
|
||
free (symbol);
|
||
return pattern;
|
||
}
|
||
}
|
||
|
||
/* This is called for each variable name or match expression. NEW is
|
||
the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
|
||
pattern to be matched against symbol names. */
|
||
|
||
struct bfd_elf_version_expr *
|
||
lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
|
||
const char *new,
|
||
const char *lang,
|
||
bfd_boolean literal_p)
|
||
{
|
||
struct bfd_elf_version_expr *ret;
|
||
|
||
ret = xmalloc (sizeof *ret);
|
||
ret->next = orig;
|
||
ret->pattern = literal_p ? NULL : new;
|
||
ret->symver = 0;
|
||
ret->script = 0;
|
||
ret->symbol = literal_p ? new : realsymbol (new);
|
||
|
||
if (lang == NULL || strcasecmp (lang, "C") == 0)
|
||
ret->mask = BFD_ELF_VERSION_C_TYPE;
|
||
else if (strcasecmp (lang, "C++") == 0)
|
||
ret->mask = BFD_ELF_VERSION_CXX_TYPE;
|
||
else if (strcasecmp (lang, "Java") == 0)
|
||
ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
|
||
else
|
||
{
|
||
einfo (_("%X%P: unknown language `%s' in version information\n"),
|
||
lang);
|
||
ret->mask = BFD_ELF_VERSION_C_TYPE;
|
||
}
|
||
|
||
return ldemul_new_vers_pattern (ret);
|
||
}
|
||
|
||
/* This is called for each set of variable names and match
|
||
expressions. */
|
||
|
||
struct bfd_elf_version_tree *
|
||
lang_new_vers_node (struct bfd_elf_version_expr *globals,
|
||
struct bfd_elf_version_expr *locals)
|
||
{
|
||
struct bfd_elf_version_tree *ret;
|
||
|
||
ret = xcalloc (1, sizeof *ret);
|
||
ret->globals.list = globals;
|
||
ret->locals.list = locals;
|
||
ret->match = lang_vers_match;
|
||
ret->name_indx = (unsigned int) -1;
|
||
return ret;
|
||
}
|
||
|
||
/* This static variable keeps track of version indices. */
|
||
|
||
static int version_index;
|
||
|
||
static hashval_t
|
||
version_expr_head_hash (const void *p)
|
||
{
|
||
const struct bfd_elf_version_expr *e = p;
|
||
|
||
return htab_hash_string (e->symbol);
|
||
}
|
||
|
||
static int
|
||
version_expr_head_eq (const void *p1, const void *p2)
|
||
{
|
||
const struct bfd_elf_version_expr *e1 = p1;
|
||
const struct bfd_elf_version_expr *e2 = p2;
|
||
|
||
return strcmp (e1->symbol, e2->symbol) == 0;
|
||
}
|
||
|
||
static void
|
||
lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
|
||
{
|
||
size_t count = 0;
|
||
struct bfd_elf_version_expr *e, *next;
|
||
struct bfd_elf_version_expr **list_loc, **remaining_loc;
|
||
|
||
for (e = head->list; e; e = e->next)
|
||
{
|
||
if (e->symbol)
|
||
count++;
|
||
head->mask |= e->mask;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
head->htab = htab_create (count * 2, version_expr_head_hash,
|
||
version_expr_head_eq, NULL);
|
||
list_loc = &head->list;
|
||
remaining_loc = &head->remaining;
|
||
for (e = head->list; e; e = next)
|
||
{
|
||
next = e->next;
|
||
if (!e->symbol)
|
||
{
|
||
*remaining_loc = e;
|
||
remaining_loc = &e->next;
|
||
}
|
||
else
|
||
{
|
||
void **loc = htab_find_slot (head->htab, e, INSERT);
|
||
|
||
if (*loc)
|
||
{
|
||
struct bfd_elf_version_expr *e1, *last;
|
||
|
||
e1 = *loc;
|
||
last = NULL;
|
||
do
|
||
{
|
||
if (e1->mask == e->mask)
|
||
{
|
||
last = NULL;
|
||
break;
|
||
}
|
||
last = e1;
|
||
e1 = e1->next;
|
||
}
|
||
while (e1 && strcmp (e1->symbol, e->symbol) == 0);
|
||
|
||
if (last == NULL)
|
||
{
|
||
/* This is a duplicate. */
|
||
/* FIXME: Memory leak. Sometimes pattern is not
|
||
xmalloced alone, but in larger chunk of memory. */
|
||
/* free (e->symbol); */
|
||
free (e);
|
||
}
|
||
else
|
||
{
|
||
e->next = last->next;
|
||
last->next = e;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*loc = e;
|
||
*list_loc = e;
|
||
list_loc = &e->next;
|
||
}
|
||
}
|
||
}
|
||
*remaining_loc = NULL;
|
||
*list_loc = head->remaining;
|
||
}
|
||
else
|
||
head->remaining = head->list;
|
||
}
|
||
|
||
/* This is called when we know the name and dependencies of the
|
||
version. */
|
||
|
||
void
|
||
lang_register_vers_node (const char *name,
|
||
struct bfd_elf_version_tree *version,
|
||
struct bfd_elf_version_deps *deps)
|
||
{
|
||
struct bfd_elf_version_tree *t, **pp;
|
||
struct bfd_elf_version_expr *e1;
|
||
|
||
if (name == NULL)
|
||
name = "";
|
||
|
||
if ((name[0] == '\0' && lang_elf_version_info != NULL)
|
||
|| (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
|
||
{
|
||
einfo (_("%X%P: anonymous version tag cannot be combined"
|
||
" with other version tags\n"));
|
||
free (version);
|
||
return;
|
||
}
|
||
|
||
/* Make sure this node has a unique name. */
|
||
for (t = lang_elf_version_info; t != NULL; t = t->next)
|
||
if (strcmp (t->name, name) == 0)
|
||
einfo (_("%X%P: duplicate version tag `%s'\n"), name);
|
||
|
||
lang_finalize_version_expr_head (&version->globals);
|
||
lang_finalize_version_expr_head (&version->locals);
|
||
|
||
/* Check the global and local match names, and make sure there
|
||
aren't any duplicates. */
|
||
|
||
for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
|
||
{
|
||
for (t = lang_elf_version_info; t != NULL; t = t->next)
|
||
{
|
||
struct bfd_elf_version_expr *e2;
|
||
|
||
if (t->locals.htab && e1->symbol)
|
||
{
|
||
e2 = htab_find (t->locals.htab, e1);
|
||
while (e2 && strcmp (e1->symbol, e2->symbol) == 0)
|
||
{
|
||
if (e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->symbol);
|
||
e2 = e2->next;
|
||
}
|
||
}
|
||
else if (!e1->symbol)
|
||
for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
|
||
if (strcmp (e1->pattern, e2->pattern) == 0
|
||
&& e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->pattern);
|
||
}
|
||
}
|
||
|
||
for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
|
||
{
|
||
for (t = lang_elf_version_info; t != NULL; t = t->next)
|
||
{
|
||
struct bfd_elf_version_expr *e2;
|
||
|
||
if (t->globals.htab && e1->symbol)
|
||
{
|
||
e2 = htab_find (t->globals.htab, e1);
|
||
while (e2 && strcmp (e1->symbol, e2->symbol) == 0)
|
||
{
|
||
if (e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"),
|
||
e1->symbol);
|
||
e2 = e2->next;
|
||
}
|
||
}
|
||
else if (!e1->symbol)
|
||
for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
|
||
if (strcmp (e1->pattern, e2->pattern) == 0
|
||
&& e1->mask == e2->mask)
|
||
einfo (_("%X%P: duplicate expression `%s'"
|
||
" in version information\n"), e1->pattern);
|
||
}
|
||
}
|
||
|
||
version->deps = deps;
|
||
version->name = name;
|
||
if (name[0] != '\0')
|
||
{
|
||
++version_index;
|
||
version->vernum = version_index;
|
||
}
|
||
else
|
||
version->vernum = 0;
|
||
|
||
for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
|
||
;
|
||
*pp = version;
|
||
}
|
||
|
||
/* This is called when we see a version dependency. */
|
||
|
||
struct bfd_elf_version_deps *
|
||
lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
|
||
{
|
||
struct bfd_elf_version_deps *ret;
|
||
struct bfd_elf_version_tree *t;
|
||
|
||
ret = xmalloc (sizeof *ret);
|
||
ret->next = list;
|
||
|
||
for (t = lang_elf_version_info; t != NULL; t = t->next)
|
||
{
|
||
if (strcmp (t->name, name) == 0)
|
||
{
|
||
ret->version_needed = t;
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
lang_do_version_exports_section (void)
|
||
{
|
||
struct bfd_elf_version_expr *greg = NULL, *lreg;
|
||
|
||
LANG_FOR_EACH_INPUT_STATEMENT (is)
|
||
{
|
||
asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
|
||
char *contents, *p;
|
||
bfd_size_type len;
|
||
|
||
if (sec == NULL)
|
||
continue;
|
||
|
||
len = sec->size;
|
||
contents = xmalloc (len);
|
||
if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
|
||
einfo (_("%X%P: unable to read .exports section contents\n"), sec);
|
||
|
||
p = contents;
|
||
while (p < contents + len)
|
||
{
|
||
greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
|
||
p = strchr (p, '\0') + 1;
|
||
}
|
||
|
||
/* Do not free the contents, as we used them creating the regex. */
|
||
|
||
/* Do not include this section in the link. */
|
||
sec->flags |= SEC_EXCLUDE;
|
||
}
|
||
|
||
lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
|
||
lang_register_vers_node (command_line.version_exports_section,
|
||
lang_new_vers_node (greg, lreg), NULL);
|
||
}
|
||
|
||
void
|
||
lang_add_unique (const char *name)
|
||
{
|
||
struct unique_sections *ent;
|
||
|
||
for (ent = unique_section_list; ent; ent = ent->next)
|
||
if (strcmp (ent->name, name) == 0)
|
||
return;
|
||
|
||
ent = xmalloc (sizeof *ent);
|
||
ent->name = xstrdup (name);
|
||
ent->next = unique_section_list;
|
||
unique_section_list = ent;
|
||
}
|