darling-gdb/gdb/d10v-tdep.c
Eli Zaretskii 197e01b6dc * breakpoint.c:
* arm-tdep.c:
	* ia64-tdep.c:
	* i386-tdep.c:
	* hpread.c:
	* hppa-tdep.c:
	* hppa-hpux-tdep.c:
	* gnu-nat.c:
	* gdbtypes.c:
	* gdbarch.h:
	* gdbarch.c:
	* eval.c:
	* dwarf2read.c:
	* dbxread.c:
	* copying:
	* symfile.c:
	* stabsread.c:
	* sh64-tdep.c:
	* sh-tdep.c:
	* s390-tdep.c:
	* rs6000-tdep.c:
	* remote.c:
	* remote-mips.c:
	* mips-tdep.c:
	* mdebugread.c:
	* linux-nat.c:
	* infrun.c:
	* xcoffread.c:
	* win32-nat.c:
	* valops.c:
	* utils.c:
	* tracepoint.c:
	* target.c:
	* symtab.c:
	* c-exp.y:
	* ada-valprint.c:
	* ada-typeprint.c:
	* ada-lex.l:
	* ada-lang.h:
	* ada-lang.c:
	* ada-exp.y:
	* alphafbsd-tdep.c:
	* alphabsd-tdep.h:
	* alphabsd-tdep.c:
	* alphabsd-nat.c:
	* alpha-tdep.h:
	* alpha-tdep.c:
	* alpha-osf1-tdep.c:
	* alpha-nat.c:
	* alpha-mdebug-tdep.c:
	* alpha-linux-tdep.c:
	* alpha-linux-nat.c:
	* aix-thread.c:
	* abug-rom.c:
	* arch-utils.c:
	* annotate.h:
	* annotate.c:
	* amd64obsd-tdep.c:
	* amd64obsd-nat.c:
	* amd64nbsd-tdep.c:
	* amd64nbsd-nat.c:
	* amd64fbsd-tdep.c:
	* amd64fbsd-nat.c:
	* amd64bsd-nat.c:
	* amd64-tdep.h:
	* amd64-tdep.c:
	* amd64-sol2-tdep.c:
	* amd64-nat.h:
	* amd64-nat.c:
	* amd64-linux-tdep.c:
	* amd64-linux-nat.c:
	* alphanbsd-tdep.c:
	* block.h:
	* block.c:
	* bfd-target.h:
	* bfd-target.c:
	* bcache.h:
	* bcache.c:
	* ax.h:
	* ax-general.c:
	* ax-gdb.h:
	* ax-gdb.c:
	* avr-tdep.c:
	* auxv.h:
	* auxv.c:
	* armnbsd-tdep.c:
	* armnbsd-nat.c:
	* arm-tdep.h:
	* arm-linux-nat.c:
	* arch-utils.h:
	* charset.c:
	* call-cmds.h:
	* c-valprint.c:
	* c-typeprint.c:
	* c-lang.h:
	* c-lang.c:
	* buildsym.h:
	* buildsym.c:
	* bsd-uthread.h:
	* bsd-uthread.c:
	* bsd-kvm.h:
	* bsd-kvm.c:
	* breakpoint.h:
	* core-regset.c:
	* core-aout.c:
	* completer.h:
	* completer.c:
	* complaints.h:
	* complaints.c:
	* command.h:
	* coffread.c:
	* coff-solib.h:
	* coff-solib.c:
	* coff-pe-read.h:
	* coff-pe-read.c:
	* cli-out.h:
	* cli-out.c:
	* charset.h:
	* dink32-rom.c:
	* dictionary.h:
	* dictionary.c:
	* demangle.c:
	* defs.h:
	* dcache.h:
	* dcache.c:
	* d10v-tdep.c:
	* cpu32bug-rom.c:
	* cp-valprint.c:
	* cp-support.h:
	* cp-support.c:
	* cp-namespace.c:
	* cp-abi.h:
	* cp-abi.c:
	* corelow.c:
	* corefile.c:
	* environ.c:
	* elfread.c:
	* dwarfread.c:
	* dwarf2loc.c:
	* dwarf2expr.h:
	* dwarf2expr.c:
	* dwarf2-frame.h:
	* dwarf2-frame.c:
	* dve3900-rom.c:
	* dummy-frame.h:
	* dummy-frame.c:
	* dsrec.c:
	* doublest.h:
	* doublest.c:
	* disasm.h:
	* disasm.c:
	* fork-child.c:
	* findvar.c:
	* fbsd-nat.h:
	* fbsd-nat.c:
	* f-valprint.c:
	* f-typeprint.c:
	* f-lang.h:
	* f-lang.c:
	* expression.h:
	* expprint.c:
	* exec.h:
	* exec.c:
	* exceptions.h:
	* exceptions.c:
	* event-top.h:
	* event-top.c:
	* event-loop.h:
	* event-loop.c:
	* gdb.c:
	* gdb-stabs.h:
	* gdb-events.h:
	* gdb-events.c:
	* gcore.c:
	* frv-tdep.h:
	* frv-tdep.c:
	* frv-linux-tdep.c:
	* frame.h:
	* frame.c:
	* frame-unwind.h:
	* frame-unwind.c:
	* frame-base.h:
	* frame-base.c:
	* gdb_vfork.h:
	* gdb_thread_db.h:
	* gdb_string.h:
	* gdb_stat.h:
	* gdb_regex.h:
	* gdb_ptrace.h:
	* gdb_proc_service.h:
	* gdb_obstack.h:
	* gdb_locale.h:
	* gdb_dirent.h:
	* gdb_curses.h:
	* gdb_assert.h:
	* gdbarch.sh:
	* gdb.h:
	* hpux-thread.c:
	* hppabsd-nat.c:
	* hppa-tdep.h:
	* hpacc-abi.c:
	* h8300-tdep.c:
	* gregset.h:
	* go32-nat.c:
	* gnu-v3-abi.c:
	* gnu-v2-abi.h:
	* gnu-v2-abi.c:
	* gnu-nat.h:
	* glibc-tdep.c:
	* gdbtypes.h:
	* gdbcore.h:
	* gdbcmd.h:
	* i386nbsd-tdep.c:
	* i386nbsd-nat.c:
	* i386gnu-tdep.c:
	* i386gnu-nat.c:
	* i386fbsd-tdep.c:
	* i386fbsd-nat.c:
	* i386bsd-tdep.c:
	* i386bsd-nat.h:
	* i386bsd-nat.c:
	* i386-tdep.h:
	* i386-sol2-nat.c:
	* i386-nto-tdep.c:
	* i386-nat.c:
	* i386-linux-tdep.h:
	* i386-linux-tdep.c:
	* i386-linux-nat.c:
	* i386-cygwin-tdep.c:
	* inf-ttrace.c:
	* inf-ptrace.h:
	* inf-ptrace.c:
	* inf-loop.h:
	* inf-loop.c:
	* inf-child.h:
	* inf-child.c:
	* ia64-tdep.h:
	* ia64-linux-nat.c:
	* i387-tdep.h:
	* i387-tdep.c:
	* i386v4-nat.c:
	* i386v-nat.c:
	* i386obsd-tdep.c:
	* i386obsd-nat.c:
	* kod.c:
	* jv-valprint.c:
	* jv-typeprint.c:
	* jv-lang.h:
	* jv-lang.c:
	* irix5-nat.c:
	* iq2000-tdep.c:
	* interps.h:
	* interps.c:
	* inftarg.c:
	* inflow.h:
	* inflow.c:
	* inferior.h:
	* infcmd.c:
	* infcall.h:
	* infcall.c:
	* inf-ttrace.h:
	* m32r-tdep.h:
	* m32r-tdep.c:
	* m32r-rom.c:
	* m32r-linux-tdep.c:
	* m32r-linux-nat.c:
	* m2-valprint.c:
	* m2-typeprint.c:
	* m2-lang.h:
	* m2-lang.c:
	* lynx-nat.c:
	* linux-thread-db.c:
	* linux-nat.h:
	* linespec.c:
	* libunwind-frame.h:
	* libunwind-frame.c:
	* language.h:
	* language.c:
	* macroexp.c:
	* macrocmd.c:
	* m88kbsd-nat.c:
	* m88k-tdep.h:
	* m88k-tdep.c:
	* m68klinux-tdep.c:
	* m68klinux-nat.c:
	* m68kbsd-tdep.c:
	* m68kbsd-nat.c:
	* m68k-tdep.h:
	* m68k-tdep.c:
	* mips-linux-nat.c:
	* mips-irix-tdep.c:
	* minsyms.c:
	* memattr.h:
	* memattr.c:
	* mem-break.c:
	* mdebugread.h:
	* main.h:
	* main.c:
	* macrotab.h:
	* macrotab.c:
	* macroscope.h:
	* macroscope.c:
	* macroexp.h:
	* nbsd-tdep.c:
	* mt-tdep.c:
	* monitor.h:
	* monitor.c:
	* mn10300-tdep.h:
	* mn10300-tdep.c:
	* mn10300-linux-tdep.c:
	* mipsv4-nat.c:
	* mipsread.c:
	* mipsnbsd-tdep.h:
	* mipsnbsd-tdep.c:
	* mipsnbsd-nat.c:
	* mips64obsd-tdep.c:
	* mips64obsd-nat.c:
	* mips-tdep.h:
	* mips-mdebug-tdep.c:
	* mips-linux-tdep.c:
	* osabi.h:
	* osabi.c:
	* ocd.h:
	* ocd.c:
	* observer.c:
	* objfiles.h:
	* objfiles.c:
	* objc-lang.h:
	* objc-lang.c:
	* objc-exp.y:
	* nto-tdep.h:
	* nto-tdep.c:
	* nto-procfs.c:
	* nlmread.c:
	* nbsd-tdep.h:
	* ppcobsd-tdep.c:
	* ppcobsd-nat.c:
	* ppcnbsd-tdep.h:
	* ppcnbsd-tdep.c:
	* ppcnbsd-nat.c:
	* ppcbug-rom.c:
	* ppc-tdep.h:
	* ppc-sysv-tdep.c:
	* ppc-linux-tdep.c:
	* ppc-linux-nat.c:
	* ppc-bdm.c:
	* parser-defs.h:
	* parse.c:
	* p-valprint.c:
	* p-typeprint.c:
	* p-lang.h:
	* p-lang.c:
	* remote-fileio.h:
	* remote-fileio.c:
	* remote-est.c:
	* remote-e7000.c:
	* regset.h:
	* regset.c:
	* reggroups.h:
	* reggroups.c:
	* regcache.h:
	* regcache.c:
	* proc-why.c:
	* proc-service.c:
	* proc-events.c:
	* printcmd.c:
	* ppcobsd-tdep.h:
	* sentinel-frame.h:
	* sentinel-frame.c:
	* scm-valprint.c:
	* scm-tags.h:
	* scm-lang.h:
	* scm-lang.c:
	* scm-exp.c:
	* s390-tdep.h:
	* rom68k-rom.c:
	* remote.h:
	* remote-utils.c:
	* remote-st.c:
	* remote-sim.c:
	* remote-sds.c:
	* remote-rdp.c:
	* remote-rdi.c:
	* remote-hms.c:
	* sim-regno.h:
	* shnbsd-tdep.h:
	* shnbsd-tdep.c:
	* shnbsd-nat.c:
	* sh-tdep.h:
	* serial.h:
	* serial.c:
	* ser-unix.h:
	* ser-unix.c:
	* ser-tcp.c:
	* ser-pipe.c:
	* ser-go32.c:
	* ser-e7kpc.c:
	* ser-base.h:
	* ser-base.c:
	* solib.c:
	* solib-svr4.h:
	* solib-svr4.c:
	* solib-sunos.c:
	* solib-som.h:
	* solib-som.c:
	* solib-pa64.h:
	* solib-pa64.c:
	* solib-osf.c:
	* solib-null.c:
	* solib-legacy.c:
	* solib-irix.c:
	* solib-frv.c:
	* solib-aix5.c:
	* sol-thread.c:
	* sparc64-linux-tdep.c:
	* sparc64-linux-nat.c:
	* sparc-tdep.h:
	* sparc-tdep.c:
	* sparc-sol2-tdep.c:
	* sparc-sol2-nat.c:
	* sparc-nat.h:
	* sparc-nat.c:
	* sparc-linux-tdep.c:
	* sparc-linux-nat.c:
	* source.h:
	* source.c:
	* somread.c:
	* solist.h:
	* solib.h:
	* std-regs.c:
	* stack.h:
	* stack.c:
	* stabsread.h:
	* sparcobsd-tdep.c:
	* sparcnbsd-tdep.c:
	* sparcnbsd-nat.c:
	* sparc64obsd-tdep.c:
	* sparc64nbsd-tdep.c:
	* sparc64nbsd-nat.c:
	* sparc64fbsd-tdep.c:
	* sparc64fbsd-nat.c:
	* sparc64-tdep.h:
	* sparc64-tdep.c:
	* sparc64-sol2-tdep.c:
	* sparc64-nat.c:
	* ui-file.c:
	* typeprint.h:
	* typeprint.c:
	* tramp-frame.h:
	* tramp-frame.c:
	* trad-frame.h:
	* trad-frame.c:
	* tracepoint.h:
	* top.c:
	* tobs.inc:
	* thread.c:
	* terminal.h:
	* target.h:
	* symfile.h:
	* stop-gdb.c:
	* vaxbsd-nat.c:
	* vax-tdep.h:
	* vax-tdep.c:
	* vax-nat.c:
	* varobj.h:
	* varobj.c:
	* value.h:
	* value.c:
	* valprint.h:
	* valprint.c:
	* v850-tdep.c:
	* uw-thread.c:
	* user-regs.c:
	* ui-out.h:
	* ui-out.c:
	* ui-file.h:
	* xcoffsolib.h:
	* xcoffsolib.c:
	* wrapper.c:
	* wince.c:
	* wince-stub.h:
	* wince-stub.c:
	* vaxobsd-tdep.c:
	* vaxnbsd-tdep.c:
	* gdb_gcore.sh:
	* copying.c:
	* configure.ac:
	* aclocal.m4:
	* acinclude.m4:
	* reply_mig_hack.awk:
	* observer.sh:
	* gdb_mbuild.sh:
	* arm-linux-tdep.c:
	* blockframe.c:
	* dbug-rom.c:
	* environ.h:
	* dwarf2loc.h:
	* gdb-events.sh:
	* glibc-tdep.h:
	* gdb_wait.h:
	* gdbthread.h:
	* i386-sol2-tdep.c:
	* hppabsd-tdep.c:
	* hppa-linux-nat.c:
	* hppa-hpux-nat.c:
	* ia64-linux-tdep.c:
	* infptrace.c:
	* linespec.h:
	* maint.c:
	* mips-mdebug-tdep.h:
	* remote-m32r-sdi.c:
	* s390-nat.c:
	* rs6000-nat.c:
	* remote-utils.h:
	* sh3-rom.c:
	* sh-linux-tdep.c:
	* top.h:
	* symtab.h:
	* symmisc.c:
	* symfile-mem.c:
	* srec.h:
	* user-regs.h:
	* version.h:
	* valarith.c:
	* xstormy16-tdep.c:
	* wrapper.h:
	* Makefile.in:
	* f-exp.y:
	* cris-tdep.c:
	* cp-name-parser.y:
	* procfs.c:
	* proc-utils.h:
	* proc-flags.c:
	* proc-api.c:
	* p-exp.y:
	* m68hc11-tdep.c:
	* m2-exp.y:
	* kod.h:
	* kod-cisco.c:
	* jv-exp.y:
	* hppa-linux-tdep.c: Add (c) after Copyright.  Update the FSF
	address.
2005-12-17 22:34:03 +00:00

1580 lines
62 KiB
C

// OBSOLETE /* Target-dependent code for Renesas D10V, for GDB.
// OBSOLETE
// OBSOLETE Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
// OBSOLETE Foundation, Inc.
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 51 Franklin Street, Fifth Floor,
// OBSOLETE Boston, MA 02110-1301, USA. */
// OBSOLETE
// OBSOLETE /* Contributed by Martin Hunt, hunt@cygnus.com */
// OBSOLETE
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "frame-unwind.h"
// OBSOLETE #include "frame-base.h"
// OBSOLETE #include "symtab.h"
// OBSOLETE #include "gdbtypes.h"
// OBSOLETE #include "gdbcmd.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "gdb_string.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "dis-asm.h"
// OBSOLETE #include "symfile.h"
// OBSOLETE #include "objfiles.h"
// OBSOLETE #include "language.h"
// OBSOLETE #include "arch-utils.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE #include "remote.h"
// OBSOLETE #include "floatformat.h"
// OBSOLETE #include "gdb/sim-d10v.h"
// OBSOLETE #include "sim-regno.h"
// OBSOLETE #include "disasm.h"
// OBSOLETE #include "trad-frame.h"
// OBSOLETE
// OBSOLETE #include "gdb_assert.h"
// OBSOLETE
// OBSOLETE struct gdbarch_tdep
// OBSOLETE {
// OBSOLETE int a0_regnum;
// OBSOLETE int nr_dmap_regs;
// OBSOLETE unsigned long (*dmap_register) (void *regcache, int nr);
// OBSOLETE unsigned long (*imap_register) (void *regcache, int nr);
// OBSOLETE };
// OBSOLETE
// OBSOLETE /* These are the addresses the D10V-EVA board maps data and
// OBSOLETE instruction memory to. */
// OBSOLETE
// OBSOLETE enum memspace {
// OBSOLETE DMEM_START = 0x2000000,
// OBSOLETE IMEM_START = 0x1000000,
// OBSOLETE STACK_START = 0x200bffe
// OBSOLETE };
// OBSOLETE
// OBSOLETE /* d10v register names. */
// OBSOLETE
// OBSOLETE enum
// OBSOLETE {
// OBSOLETE R0_REGNUM = 0,
// OBSOLETE R3_REGNUM = 3,
// OBSOLETE D10V_FP_REGNUM = 11,
// OBSOLETE LR_REGNUM = 13,
// OBSOLETE D10V_SP_REGNUM = 15,
// OBSOLETE PSW_REGNUM = 16,
// OBSOLETE D10V_PC_REGNUM = 18,
// OBSOLETE NR_IMAP_REGS = 2,
// OBSOLETE NR_A_REGS = 2,
// OBSOLETE TS2_NUM_REGS = 37,
// OBSOLETE TS3_NUM_REGS = 42,
// OBSOLETE /* d10v calling convention. */
// OBSOLETE ARG1_REGNUM = R0_REGNUM,
// OBSOLETE ARGN_REGNUM = R3_REGNUM
// OBSOLETE };
// OBSOLETE
// OBSOLETE static int
// OBSOLETE nr_dmap_regs (struct gdbarch *gdbarch)
// OBSOLETE {
// OBSOLETE return gdbarch_tdep (gdbarch)->nr_dmap_regs;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE a0_regnum (struct gdbarch *gdbarch)
// OBSOLETE {
// OBSOLETE return gdbarch_tdep (gdbarch)->a0_regnum;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Local functions */
// OBSOLETE
// OBSOLETE extern void _initialize_d10v_tdep (void);
// OBSOLETE
// OBSOLETE static void d10v_eva_prepare_to_trace (void);
// OBSOLETE
// OBSOLETE static void d10v_eva_get_trace_data (void);
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
// OBSOLETE {
// OBSOLETE /* Align to the size of an instruction (so that they can safely be
// OBSOLETE pushed onto the stack. */
// OBSOLETE return sp & ~3;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static const unsigned char *
// OBSOLETE d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
// OBSOLETE {
// OBSOLETE static unsigned char breakpoint[] =
// OBSOLETE {0x2f, 0x90, 0x5e, 0x00};
// OBSOLETE *lenptr = sizeof (breakpoint);
// OBSOLETE return breakpoint;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Map the REG_NR onto an ascii name. Return NULL or an empty string
// OBSOLETE when the reg_nr isn't valid. */
// OBSOLETE
// OBSOLETE enum ts2_regnums
// OBSOLETE {
// OBSOLETE TS2_IMAP0_REGNUM = 32,
// OBSOLETE TS2_DMAP_REGNUM = 34,
// OBSOLETE TS2_NR_DMAP_REGS = 1,
// OBSOLETE TS2_A0_REGNUM = 35
// OBSOLETE };
// OBSOLETE
// OBSOLETE static const char *
// OBSOLETE d10v_ts2_register_name (int reg_nr)
// OBSOLETE {
// OBSOLETE static char *register_names[] =
// OBSOLETE {
// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
// OBSOLETE "imap0", "imap1", "dmap", "a0", "a1"
// OBSOLETE };
// OBSOLETE if (reg_nr < 0)
// OBSOLETE return NULL;
// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
// OBSOLETE return NULL;
// OBSOLETE return register_names[reg_nr];
// OBSOLETE }
// OBSOLETE
// OBSOLETE enum ts3_regnums
// OBSOLETE {
// OBSOLETE TS3_IMAP0_REGNUM = 36,
// OBSOLETE TS3_DMAP0_REGNUM = 38,
// OBSOLETE TS3_NR_DMAP_REGS = 4,
// OBSOLETE TS3_A0_REGNUM = 32
// OBSOLETE };
// OBSOLETE
// OBSOLETE static const char *
// OBSOLETE d10v_ts3_register_name (int reg_nr)
// OBSOLETE {
// OBSOLETE static char *register_names[] =
// OBSOLETE {
// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
// OBSOLETE "a0", "a1",
// OBSOLETE "spi", "spu",
// OBSOLETE "imap0", "imap1",
// OBSOLETE "dmap0", "dmap1", "dmap2", "dmap3"
// OBSOLETE };
// OBSOLETE if (reg_nr < 0)
// OBSOLETE return NULL;
// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
// OBSOLETE return NULL;
// OBSOLETE return register_names[reg_nr];
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Access the DMAP/IMAP registers in a target independent way.
// OBSOLETE
// OBSOLETE Divide the D10V's 64k data space into four 16k segments:
// OBSOLETE 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
// OBSOLETE 0xc000 -- 0xffff.
// OBSOLETE
// OBSOLETE On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
// OBSOLETE 0x7fff) always map to the on-chip data RAM, and the fourth always
// OBSOLETE maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
// OBSOLETE unified memory or instruction memory, under the control of the
// OBSOLETE single DMAP register.
// OBSOLETE
// OBSOLETE On the TS3, there are four DMAP registers, each of which controls
// OBSOLETE one of the segments. */
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE d10v_ts2_dmap_register (void *regcache, int reg_nr)
// OBSOLETE {
// OBSOLETE switch (reg_nr)
// OBSOLETE {
// OBSOLETE case 0:
// OBSOLETE case 1:
// OBSOLETE return 0x2000;
// OBSOLETE case 2:
// OBSOLETE {
// OBSOLETE ULONGEST reg;
// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, &reg);
// OBSOLETE return reg;
// OBSOLETE }
// OBSOLETE default:
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE d10v_ts3_dmap_register (void *regcache, int reg_nr)
// OBSOLETE {
// OBSOLETE ULONGEST reg;
// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, &reg);
// OBSOLETE return reg;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE d10v_ts2_imap_register (void *regcache, int reg_nr)
// OBSOLETE {
// OBSOLETE ULONGEST reg;
// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, &reg);
// OBSOLETE return reg;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static unsigned long
// OBSOLETE d10v_ts3_imap_register (void *regcache, int reg_nr)
// OBSOLETE {
// OBSOLETE ULONGEST reg;
// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, &reg);
// OBSOLETE return reg;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* MAP GDB's internal register numbering (determined by the layout
// OBSOLETE from the DEPRECATED_REGISTER_BYTE array) onto the simulator's
// OBSOLETE register numbering. */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE d10v_ts2_register_sim_regno (int nr)
// OBSOLETE {
// OBSOLETE /* Only makes sense to supply raw registers. */
// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
// OBSOLETE if (nr >= TS2_IMAP0_REGNUM
// OBSOLETE && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
// OBSOLETE return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
// OBSOLETE if (nr == TS2_DMAP_REGNUM)
// OBSOLETE return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
// OBSOLETE if (nr >= TS2_A0_REGNUM
// OBSOLETE && nr < TS2_A0_REGNUM + NR_A_REGS)
// OBSOLETE return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
// OBSOLETE return nr;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE d10v_ts3_register_sim_regno (int nr)
// OBSOLETE {
// OBSOLETE /* Only makes sense to supply raw registers. */
// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
// OBSOLETE if (nr >= TS3_IMAP0_REGNUM
// OBSOLETE && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
// OBSOLETE return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
// OBSOLETE if (nr >= TS3_DMAP0_REGNUM
// OBSOLETE && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
// OBSOLETE return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
// OBSOLETE if (nr >= TS3_A0_REGNUM
// OBSOLETE && nr < TS3_A0_REGNUM + NR_A_REGS)
// OBSOLETE return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
// OBSOLETE return nr;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the GDB type object for the "standard" data type
// OBSOLETE of data in register N. */
// OBSOLETE
// OBSOLETE static struct type *
// OBSOLETE d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
// OBSOLETE {
// OBSOLETE if (reg_nr == D10V_PC_REGNUM)
// OBSOLETE return builtin_type (gdbarch)->builtin_func_ptr;
// OBSOLETE if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
// OBSOLETE return builtin_type (gdbarch)->builtin_data_ptr;
// OBSOLETE else if (reg_nr >= a0_regnum (gdbarch)
// OBSOLETE && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
// OBSOLETE return builtin_type_int64;
// OBSOLETE else
// OBSOLETE return builtin_type_int16;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE d10v_iaddr_p (CORE_ADDR x)
// OBSOLETE {
// OBSOLETE return (((x) & 0x3000000) == IMEM_START);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_make_daddr (CORE_ADDR x)
// OBSOLETE {
// OBSOLETE return ((x) | DMEM_START);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_make_iaddr (CORE_ADDR x)
// OBSOLETE {
// OBSOLETE if (d10v_iaddr_p (x))
// OBSOLETE return x; /* Idempotency -- x is already in the IMEM space. */
// OBSOLETE else
// OBSOLETE return (((x) << 2) | IMEM_START);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_convert_iaddr_to_raw (CORE_ADDR x)
// OBSOLETE {
// OBSOLETE return (((x) >> 2) & 0xffff);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_convert_daddr_to_raw (CORE_ADDR x)
// OBSOLETE {
// OBSOLETE return ((x) & 0xffff);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
// OBSOLETE {
// OBSOLETE /* Is it a code address? */
// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
// OBSOLETE {
// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
// OBSOLETE d10v_convert_iaddr_to_raw (addr));
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* Strip off any upper segment bits. */
// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
// OBSOLETE d10v_convert_daddr_to_raw (addr));
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_pointer_to_address (struct type *type, const void *buf)
// OBSOLETE {
// OBSOLETE CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
// OBSOLETE /* Is it a code address? */
// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
// OBSOLETE || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
// OBSOLETE return d10v_make_iaddr (addr);
// OBSOLETE else
// OBSOLETE return d10v_make_daddr (addr);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Don't do anything if we have an integer, this way users can type 'x
// OBSOLETE <addr>' w/o having gdb outsmart them. The internal gdb conversions
// OBSOLETE to the correct space are taken care of in the pointer_to_address
// OBSOLETE function. If we don't do this, 'x $fp' wouldn't work. */
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_integer_to_address (struct type *type, void *buf)
// OBSOLETE {
// OBSOLETE LONGEST val;
// OBSOLETE val = unpack_long (type, buf);
// OBSOLETE return val;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Handle the d10v's return_value convention. */
// OBSOLETE
// OBSOLETE static enum return_value_convention
// OBSOLETE d10v_return_value (struct gdbarch *gdbarch, struct type *valtype,
// OBSOLETE struct regcache *regcache, void *readbuf,
// OBSOLETE const void *writebuf)
// OBSOLETE {
// OBSOLETE if (TYPE_LENGTH (valtype) > 8)
// OBSOLETE /* Anything larger than 8 bytes (4 registers) goes on the stack. */
// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
// OBSOLETE if (TYPE_LENGTH (valtype) == 5
// OBSOLETE || TYPE_LENGTH (valtype) == 6)
// OBSOLETE /* Anything 5 or 6 bytes in size goes in memory. Contents don't
// OBSOLETE appear to matter. Note that 7 and 8 byte objects do end up in
// OBSOLETE registers! */
// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
// OBSOLETE if (TYPE_LENGTH (valtype) == 1)
// OBSOLETE {
// OBSOLETE /* All single byte values go in a register stored right-aligned.
// OBSOLETE Note: 2 byte integer values are handled further down. */
// OBSOLETE if (readbuf)
// OBSOLETE {
// OBSOLETE /* Since TYPE is smaller than the register, there isn't a
// OBSOLETE sign extension problem. Let the extraction truncate the
// OBSOLETE register value. */
// OBSOLETE ULONGEST regval;
// OBSOLETE regcache_cooked_read_unsigned (regcache, R0_REGNUM,
// OBSOLETE &regval);
// OBSOLETE store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
// OBSOLETE
// OBSOLETE }
// OBSOLETE if (writebuf)
// OBSOLETE {
// OBSOLETE ULONGEST regval;
// OBSOLETE if (TYPE_CODE (valtype) == TYPE_CODE_INT)
// OBSOLETE /* Some sort of integer value stored in R0. Use
// OBSOLETE unpack_long since that should handle any required sign
// OBSOLETE extension. */
// OBSOLETE regval = unpack_long (valtype, writebuf);
// OBSOLETE else
// OBSOLETE /* Some other type. Don't sign-extend the value when
// OBSOLETE storing it in the register. */
// OBSOLETE regval = extract_unsigned_integer (writebuf, 1);
// OBSOLETE regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval);
// OBSOLETE }
// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
// OBSOLETE }
// OBSOLETE if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
// OBSOLETE || TYPE_CODE (valtype) == TYPE_CODE_UNION)
// OBSOLETE && TYPE_NFIELDS (valtype) > 1
// OBSOLETE && TYPE_FIELD_BITPOS (valtype, 1) == 8)
// OBSOLETE /* If a composite is 8 bit aligned (determined by looking at the
// OBSOLETE start address of the second field), put it in memory. */
// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
// OBSOLETE /* Assume it is in registers. */
// OBSOLETE if (writebuf || readbuf)
// OBSOLETE {
// OBSOLETE int reg;
// OBSOLETE /* Per above, the value is never more than 8 bytes long. */
// OBSOLETE gdb_assert (TYPE_LENGTH (valtype) <= 8);
// OBSOLETE /* Xfer 2 bytes at a time. */
// OBSOLETE for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++)
// OBSOLETE {
// OBSOLETE if (readbuf)
// OBSOLETE regcache_cooked_read (regcache, R0_REGNUM + reg,
// OBSOLETE (bfd_byte *) readbuf + reg * 2);
// OBSOLETE if (writebuf)
// OBSOLETE regcache_cooked_write (regcache, R0_REGNUM + reg,
// OBSOLETE (bfd_byte *) writebuf + reg * 2);
// OBSOLETE }
// OBSOLETE /* Any trailing byte ends up _left_ aligned. */
// OBSOLETE if ((reg * 2) < TYPE_LENGTH (valtype))
// OBSOLETE {
// OBSOLETE if (readbuf)
// OBSOLETE regcache_cooked_read_part (regcache, R0_REGNUM + reg,
// OBSOLETE 0, 1, (bfd_byte *) readbuf + reg * 2);
// OBSOLETE if (writebuf)
// OBSOLETE regcache_cooked_write_part (regcache, R0_REGNUM + reg,
// OBSOLETE 0, 1, (bfd_byte *) writebuf + reg * 2);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static int
// OBSOLETE check_prologue (unsigned short op)
// OBSOLETE {
// OBSOLETE /* st rn, @-sp */
// OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* st2w rn, @-sp */
// OBSOLETE if ((op & 0x7E3F) == 0x6E1F)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* subi sp, n */
// OBSOLETE if ((op & 0x7FE1) == 0x01E1)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* mv r11, sp */
// OBSOLETE if (op == 0x417E)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* nop */
// OBSOLETE if (op == 0x5E00)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* st rn, @sp */
// OBSOLETE if ((op & 0x7E1F) == 0x681E)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* st2w rn, @sp */
// OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_skip_prologue (CORE_ADDR pc)
// OBSOLETE {
// OBSOLETE unsigned long op;
// OBSOLETE unsigned short op1, op2;
// OBSOLETE CORE_ADDR func_addr, func_end;
// OBSOLETE struct symtab_and_line sal;
// OBSOLETE
// OBSOLETE /* If we have line debugging information, then the end of the prologue
// OBSOLETE should be the first assembly instruction of the first source line. */
// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
// OBSOLETE {
// OBSOLETE sal = find_pc_line (func_addr, 0);
// OBSOLETE if (sal.end && sal.end < func_end)
// OBSOLETE return sal.end;
// OBSOLETE }
// OBSOLETE
// OBSOLETE if (target_read_memory (pc, (char *) &op, 4))
// OBSOLETE return pc; /* Can't access it -- assume no prologue. */
// OBSOLETE
// OBSOLETE while (1)
// OBSOLETE {
// OBSOLETE op = (unsigned long) read_memory_integer (pc, 4);
// OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
// OBSOLETE {
// OBSOLETE /* long instruction */
// OBSOLETE if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
// OBSOLETE ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
// OBSOLETE ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* short instructions */
// OBSOLETE if ((op & 0xC0000000) == 0x80000000)
// OBSOLETE {
// OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
// OBSOLETE op1 = op & 0x7FFF;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
// OBSOLETE op2 = op & 0x7FFF;
// OBSOLETE }
// OBSOLETE if (check_prologue (op1))
// OBSOLETE {
// OBSOLETE if (!check_prologue (op2))
// OBSOLETE {
// OBSOLETE /* If the previous opcode was really part of the
// OBSOLETE prologue and not just a NOP, then we want to
// OBSOLETE break after both instructions. */
// OBSOLETE if (op1 != 0x5E00)
// OBSOLETE pc += 4;
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE pc += 4;
// OBSOLETE }
// OBSOLETE return pc;
// OBSOLETE }
// OBSOLETE
// OBSOLETE struct d10v_unwind_cache
// OBSOLETE {
// OBSOLETE /* The previous frame's inner most stack address. Used as this
// OBSOLETE frame ID's stack_addr. */
// OBSOLETE CORE_ADDR prev_sp;
// OBSOLETE /* The frame's base, optionally used by the high-level debug info. */
// OBSOLETE CORE_ADDR base;
// OBSOLETE int size;
// OBSOLETE /* How far the SP and r11 (FP) have been offset from the start of
// OBSOLETE the stack frame (as defined by the previous frame's stack
// OBSOLETE pointer). */
// OBSOLETE LONGEST sp_offset;
// OBSOLETE LONGEST r11_offset;
// OBSOLETE int uses_frame;
// OBSOLETE /* Table indicating the location of each and every register. */
// OBSOLETE struct trad_frame_saved_reg *saved_regs;
// OBSOLETE };
// OBSOLETE
// OBSOLETE static int
// OBSOLETE prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
// OBSOLETE CORE_ADDR addr)
// OBSOLETE {
// OBSOLETE int n;
// OBSOLETE
// OBSOLETE /* st rn, @-sp */
// OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E0) >> 5;
// OBSOLETE info->sp_offset -= 2;
// OBSOLETE info->saved_regs[n].addr = info->sp_offset;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* st2w rn, @-sp */
// OBSOLETE else if ((op & 0x7E3F) == 0x6E1F)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E0) >> 5;
// OBSOLETE info->sp_offset -= 4;
// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* subi sp, n */
// OBSOLETE if ((op & 0x7FE1) == 0x01E1)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E) >> 1;
// OBSOLETE if (n == 0)
// OBSOLETE n = 16;
// OBSOLETE info->sp_offset -= n;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* mv r11, sp */
// OBSOLETE if (op == 0x417E)
// OBSOLETE {
// OBSOLETE info->uses_frame = 1;
// OBSOLETE info->r11_offset = info->sp_offset;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* st rn, @r11 */
// OBSOLETE if ((op & 0x7E1F) == 0x6816)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E0) >> 5;
// OBSOLETE info->saved_regs[n].addr = info->r11_offset;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* nop */
// OBSOLETE if (op == 0x5E00)
// OBSOLETE return 1;
// OBSOLETE
// OBSOLETE /* st rn, @sp */
// OBSOLETE if ((op & 0x7E1F) == 0x681E)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E0) >> 5;
// OBSOLETE info->saved_regs[n].addr = info->sp_offset;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* st2w rn, @sp */
// OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
// OBSOLETE {
// OBSOLETE n = (op & 0x1E0) >> 5;
// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
// OBSOLETE return 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Put here the code to store, into fi->saved_regs, the addresses of
// OBSOLETE the saved registers of frame described by FRAME_INFO. This
// OBSOLETE includes special registers such as pc and fp saved in special ways
// OBSOLETE in the stack frame. sp is even more special: the address we return
// OBSOLETE for it IS the sp for the next frame. */
// OBSOLETE
// OBSOLETE static struct d10v_unwind_cache *
// OBSOLETE d10v_frame_unwind_cache (struct frame_info *next_frame,
// OBSOLETE void **this_prologue_cache)
// OBSOLETE {
// OBSOLETE struct gdbarch *gdbarch = get_frame_arch (next_frame);
// OBSOLETE CORE_ADDR pc;
// OBSOLETE ULONGEST prev_sp;
// OBSOLETE ULONGEST this_base;
// OBSOLETE unsigned long op;
// OBSOLETE unsigned short op1, op2;
// OBSOLETE int i;
// OBSOLETE struct d10v_unwind_cache *info;
// OBSOLETE
// OBSOLETE if ((*this_prologue_cache))
// OBSOLETE return (*this_prologue_cache);
// OBSOLETE
// OBSOLETE info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
// OBSOLETE (*this_prologue_cache) = info;
// OBSOLETE info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
// OBSOLETE
// OBSOLETE info->size = 0;
// OBSOLETE info->sp_offset = 0;
// OBSOLETE
// OBSOLETE info->uses_frame = 0;
// OBSOLETE for (pc = frame_func_unwind (next_frame);
// OBSOLETE pc > 0 && pc < frame_pc_unwind (next_frame);
// OBSOLETE pc += 4)
// OBSOLETE {
// OBSOLETE op = get_frame_memory_unsigned (next_frame, pc, 4);
// OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
// OBSOLETE {
// OBSOLETE /* long instruction */
// OBSOLETE if ((op & 0x3FFF0000) == 0x01FF0000)
// OBSOLETE {
// OBSOLETE /* add3 sp,sp,n */
// OBSOLETE short n = op & 0xFFFF;
// OBSOLETE info->sp_offset += n;
// OBSOLETE }
// OBSOLETE else if ((op & 0x3F0F0000) == 0x340F0000)
// OBSOLETE {
// OBSOLETE /* st rn, @(offset,sp) */
// OBSOLETE short offset = op & 0xFFFF;
// OBSOLETE short n = (op >> 20) & 0xF;
// OBSOLETE info->saved_regs[n].addr = info->sp_offset + offset;
// OBSOLETE }
// OBSOLETE else if ((op & 0x3F1F0000) == 0x350F0000)
// OBSOLETE {
// OBSOLETE /* st2w rn, @(offset,sp) */
// OBSOLETE short offset = op & 0xFFFF;
// OBSOLETE short n = (op >> 20) & 0xF;
// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + offset + 0;
// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + offset + 2;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* short instructions */
// OBSOLETE if ((op & 0xC0000000) == 0x80000000)
// OBSOLETE {
// OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
// OBSOLETE op1 = op & 0x7FFF;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
// OBSOLETE op2 = op & 0x7FFF;
// OBSOLETE }
// OBSOLETE if (!prologue_find_regs (info, op1, pc)
// OBSOLETE || !prologue_find_regs (info, op2, pc))
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE info->size = -info->sp_offset;
// OBSOLETE
// OBSOLETE /* Compute the previous frame's stack pointer (which is also the
// OBSOLETE frame's ID's stack address), and this frame's base pointer. */
// OBSOLETE if (info->uses_frame)
// OBSOLETE {
// OBSOLETE /* The SP was moved to the FP. This indicates that a new frame
// OBSOLETE was created. Get THIS frame's FP value by unwinding it from
// OBSOLETE the next frame. */
// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
// OBSOLETE /* The FP points at the last saved register. Adjust the FP back
// OBSOLETE to before the first saved register giving the SP. */
// OBSOLETE prev_sp = this_base + info->size;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* Assume that the FP is this frame's SP but with that pushed
// OBSOLETE stack space added back. */
// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
// OBSOLETE prev_sp = this_base + info->size;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert that SP/BASE into real addresses. */
// OBSOLETE info->prev_sp = d10v_make_daddr (prev_sp);
// OBSOLETE info->base = d10v_make_daddr (this_base);
// OBSOLETE
// OBSOLETE /* Adjust all the saved registers so that they contain addresses and
// OBSOLETE not offsets. */
// OBSOLETE for (i = 0; i < NUM_REGS - 1; i++)
// OBSOLETE if (trad_frame_addr_p (info->saved_regs, i))
// OBSOLETE {
// OBSOLETE info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* The call instruction moves the caller's PC in the callee's LR.
// OBSOLETE Since this is an unwind, do the reverse. Copy the location of LR
// OBSOLETE into PC (the address / regnum) so that a request for PC will be
// OBSOLETE converted into a request for the LR. */
// OBSOLETE info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM];
// OBSOLETE
// OBSOLETE /* The previous frame's SP needed to be computed. Save the computed
// OBSOLETE value. */
// OBSOLETE trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM,
// OBSOLETE d10v_make_daddr (prev_sp));
// OBSOLETE
// OBSOLETE return info;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
// OBSOLETE struct frame_info *frame, int regnum, int all)
// OBSOLETE {
// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
// OBSOLETE if (regnum >= 0)
// OBSOLETE {
// OBSOLETE default_print_registers_info (gdbarch, file, frame, regnum, all);
// OBSOLETE return;
// OBSOLETE }
// OBSOLETE
// OBSOLETE {
// OBSOLETE ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
// OBSOLETE pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM);
// OBSOLETE psw = get_frame_register_unsigned (frame, PSW_REGNUM);
// OBSOLETE rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1));
// OBSOLETE rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1));
// OBSOLETE rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1));
// OBSOLETE fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
// OBSOLETE (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
// OBSOLETE (long) rpt_s, (long) rpt_e, (long) rpt_c);
// OBSOLETE }
// OBSOLETE
// OBSOLETE {
// OBSOLETE int group;
// OBSOLETE for (group = 0; group < 16; group += 8)
// OBSOLETE {
// OBSOLETE int r;
// OBSOLETE fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
// OBSOLETE for (r = group; r < group + 8; r++)
// OBSOLETE {
// OBSOLETE ULONGEST tmp;
// OBSOLETE tmp = get_frame_register_unsigned (frame, r);
// OBSOLETE fprintf_filtered (file, " %04lx", (long) tmp);
// OBSOLETE }
// OBSOLETE fprintf_filtered (file, "\n");
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Note: The IMAP/DMAP registers don't participate in function
// OBSOLETE calls. Don't bother trying to unwind them. */
// OBSOLETE
// OBSOLETE {
// OBSOLETE int a;
// OBSOLETE for (a = 0; a < NR_IMAP_REGS; a++)
// OBSOLETE {
// OBSOLETE if (a > 0)
// OBSOLETE fprintf_filtered (file, " ");
// OBSOLETE fprintf_filtered (file, "IMAP%d %04lx", a,
// OBSOLETE tdep->imap_register (current_regcache, a));
// OBSOLETE }
// OBSOLETE if (nr_dmap_regs (gdbarch) == 1)
// OBSOLETE /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
// OBSOLETE fprintf_filtered (file, " DMAP %04lx\n",
// OBSOLETE tdep->dmap_register (current_regcache, 2));
// OBSOLETE else
// OBSOLETE {
// OBSOLETE for (a = 0; a < nr_dmap_regs (gdbarch); a++)
// OBSOLETE {
// OBSOLETE fprintf_filtered (file, " DMAP%d %04lx", a,
// OBSOLETE tdep->dmap_register (current_regcache, a));
// OBSOLETE }
// OBSOLETE fprintf_filtered (file, "\n");
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE {
// OBSOLETE char num[MAX_REGISTER_SIZE];
// OBSOLETE int a;
// OBSOLETE fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
// OBSOLETE for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE fprintf_filtered (file, " ");
// OBSOLETE get_frame_register (frame, a, num);
// OBSOLETE for (i = 0; i < register_size (gdbarch, a); i++)
// OBSOLETE {
// OBSOLETE fprintf_filtered (file, "%02x", (num[i] & 0xff));
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE fprintf_filtered (file, "\n");
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE show_regs (char *args, int from_tty)
// OBSOLETE {
// OBSOLETE d10v_print_registers_info (current_gdbarch, gdb_stdout,
// OBSOLETE get_current_frame (), -1, 1);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_read_pc (ptid_t ptid)
// OBSOLETE {
// OBSOLETE ptid_t save_ptid;
// OBSOLETE CORE_ADDR pc;
// OBSOLETE CORE_ADDR retval;
// OBSOLETE
// OBSOLETE save_ptid = inferior_ptid;
// OBSOLETE inferior_ptid = ptid;
// OBSOLETE pc = (int) read_register (D10V_PC_REGNUM);
// OBSOLETE inferior_ptid = save_ptid;
// OBSOLETE retval = d10v_make_iaddr (pc);
// OBSOLETE return retval;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_write_pc (CORE_ADDR val, ptid_t ptid)
// OBSOLETE {
// OBSOLETE ptid_t save_ptid;
// OBSOLETE
// OBSOLETE save_ptid = inferior_ptid;
// OBSOLETE inferior_ptid = ptid;
// OBSOLETE write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
// OBSOLETE inferior_ptid = save_ptid;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
// OBSOLETE {
// OBSOLETE ULONGEST sp;
// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp);
// OBSOLETE return d10v_make_daddr (sp);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* When arguments must be pushed onto the stack, they go on in reverse
// OBSOLETE order. The below implements a FILO (stack) to do this. */
// OBSOLETE
// OBSOLETE struct stack_item
// OBSOLETE {
// OBSOLETE int len;
// OBSOLETE struct stack_item *prev;
// OBSOLETE void *data;
// OBSOLETE };
// OBSOLETE
// OBSOLETE static struct stack_item *push_stack_item (struct stack_item *prev,
// OBSOLETE void *contents, int len);
// OBSOLETE static struct stack_item *
// OBSOLETE push_stack_item (struct stack_item *prev, void *contents, int len)
// OBSOLETE {
// OBSOLETE struct stack_item *si;
// OBSOLETE si = xmalloc (sizeof (struct stack_item));
// OBSOLETE si->data = xmalloc (len);
// OBSOLETE si->len = len;
// OBSOLETE si->prev = prev;
// OBSOLETE memcpy (si->data, contents, len);
// OBSOLETE return si;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static struct stack_item *pop_stack_item (struct stack_item *si);
// OBSOLETE static struct stack_item *
// OBSOLETE pop_stack_item (struct stack_item *si)
// OBSOLETE {
// OBSOLETE struct stack_item *dead = si;
// OBSOLETE si = si->prev;
// OBSOLETE xfree (dead->data);
// OBSOLETE xfree (dead);
// OBSOLETE return si;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_push_dummy_code (struct gdbarch *gdbarch,
// OBSOLETE CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
// OBSOLETE struct value **args, int nargs,
// OBSOLETE struct type *value_type,
// OBSOLETE CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
// OBSOLETE {
// OBSOLETE /* Allocate space sufficient for a breakpoint. */
// OBSOLETE sp = (sp - 4) & ~3;
// OBSOLETE /* Store the address of that breakpoint taking care to first convert
// OBSOLETE it into a code (IADDR) address from a stack (DADDR) address.
// OBSOLETE This of course assumes that the two virtual addresses map onto
// OBSOLETE the same real address. */
// OBSOLETE (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
// OBSOLETE /* d10v always starts the call at the callee's entry point. */
// OBSOLETE (*real_pc) = funaddr;
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
// OBSOLETE struct regcache *regcache, CORE_ADDR bp_addr,
// OBSOLETE int nargs, struct value **args, CORE_ADDR sp,
// OBSOLETE int struct_return, CORE_ADDR struct_addr)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE int regnum = ARG1_REGNUM;
// OBSOLETE struct stack_item *si = NULL;
// OBSOLETE long val;
// OBSOLETE
// OBSOLETE /* Set the return address. For the d10v, the return breakpoint is
// OBSOLETE always at BP_ADDR. */
// OBSOLETE regcache_cooked_write_unsigned (regcache, LR_REGNUM,
// OBSOLETE d10v_convert_iaddr_to_raw (bp_addr));
// OBSOLETE
// OBSOLETE /* If STRUCT_RETURN is true, then the struct return address (in
// OBSOLETE STRUCT_ADDR) will consume the first argument-passing register.
// OBSOLETE Both adjust the register count and store that value. */
// OBSOLETE if (struct_return)
// OBSOLETE {
// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
// OBSOLETE regnum++;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Fill in registers and arg lists */
// OBSOLETE for (i = 0; i < nargs; i++)
// OBSOLETE {
// OBSOLETE struct value *arg = args[i];
// OBSOLETE struct type *type = check_typedef (VALUE_TYPE (arg));
// OBSOLETE char *contents = VALUE_CONTENTS (arg);
// OBSOLETE int len = TYPE_LENGTH (type);
// OBSOLETE int aligned_regnum = (regnum + 1) & ~1;
// OBSOLETE
// OBSOLETE /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
// OBSOLETE if (len <= 2 && regnum <= ARGN_REGNUM)
// OBSOLETE /* fits in a single register, do not align */
// OBSOLETE {
// OBSOLETE val = extract_unsigned_integer (contents, len);
// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
// OBSOLETE }
// OBSOLETE else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
// OBSOLETE /* value fits in remaining registers, store keeping left
// OBSOLETE aligned */
// OBSOLETE {
// OBSOLETE int b;
// OBSOLETE regnum = aligned_regnum;
// OBSOLETE for (b = 0; b < (len & ~1); b += 2)
// OBSOLETE {
// OBSOLETE val = extract_unsigned_integer (&contents[b], 2);
// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
// OBSOLETE }
// OBSOLETE if (b < len)
// OBSOLETE {
// OBSOLETE val = extract_unsigned_integer (&contents[b], 1);
// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* arg will go onto stack */
// OBSOLETE regnum = ARGN_REGNUM + 1;
// OBSOLETE si = push_stack_item (si, contents, len);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE while (si)
// OBSOLETE {
// OBSOLETE sp = (sp - si->len) & ~1;
// OBSOLETE write_memory (sp, si->data, si->len);
// OBSOLETE si = pop_stack_item (si);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Finally, update the SP register. */
// OBSOLETE regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
// OBSOLETE d10v_convert_daddr_to_raw (sp));
// OBSOLETE
// OBSOLETE return sp;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Translate a GDB virtual ADDR/LEN into a format the remote target
// OBSOLETE understands. Returns number of bytes that can be transfered
// OBSOLETE starting at TARG_ADDR. Return ZERO if no bytes can be transfered
// OBSOLETE (segmentation fault). Since the simulator knows all about how the
// OBSOLETE VM system works, we just call that to do the translation. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
// OBSOLETE struct regcache *regcache,
// OBSOLETE CORE_ADDR memaddr, int nr_bytes,
// OBSOLETE CORE_ADDR *targ_addr, int *targ_len)
// OBSOLETE {
// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
// OBSOLETE long out_addr;
// OBSOLETE long out_len;
// OBSOLETE out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
// OBSOLETE tdep->dmap_register, tdep->imap_register);
// OBSOLETE *targ_addr = out_addr;
// OBSOLETE *targ_len = out_len;
// OBSOLETE }
// OBSOLETE
// OBSOLETE
// OBSOLETE /* The following code implements access to, and display of, the D10V's
// OBSOLETE instruction trace buffer. The buffer consists of 64K or more
// OBSOLETE 4-byte words of data, of which each words includes an 8-bit count,
// OBSOLETE an 8-bit segment number, and a 16-bit instruction address.
// OBSOLETE
// OBSOLETE In theory, the trace buffer is continuously capturing instruction
// OBSOLETE data that the CPU presents on its "debug bus", but in practice, the
// OBSOLETE ROMified GDB stub only enables tracing when it continues or steps
// OBSOLETE the program, and stops tracing when the program stops; so it
// OBSOLETE actually works for GDB to read the buffer counter out of memory and
// OBSOLETE then read each trace word. The counter records where the tracing
// OBSOLETE stops, but there is no record of where it started, so we remember
// OBSOLETE the PC when we resumed and then search backwards in the trace
// OBSOLETE buffer for a word that includes that address. This is not perfect,
// OBSOLETE because you will miss trace data if the resumption PC is the target
// OBSOLETE of a branch. (The value of the buffer counter is semi-random, any
// OBSOLETE trace data from a previous program stop is gone.) */
// OBSOLETE
// OBSOLETE /* The address of the last word recorded in the trace buffer. */
// OBSOLETE
// OBSOLETE #define DBBC_ADDR (0xd80000)
// OBSOLETE
// OBSOLETE /* The base of the trace buffer, at least for the "Board_0". */
// OBSOLETE
// OBSOLETE #define TRACE_BUFFER_BASE (0xf40000)
// OBSOLETE
// OBSOLETE static void trace_command (char *, int);
// OBSOLETE
// OBSOLETE static void untrace_command (char *, int);
// OBSOLETE
// OBSOLETE static void trace_info (char *, int);
// OBSOLETE
// OBSOLETE static void tdisassemble_command (char *, int);
// OBSOLETE
// OBSOLETE static void display_trace (int, int);
// OBSOLETE
// OBSOLETE /* True when instruction traces are being collected. */
// OBSOLETE
// OBSOLETE static int tracing;
// OBSOLETE
// OBSOLETE /* Remembered PC. */
// OBSOLETE
// OBSOLETE static CORE_ADDR last_pc;
// OBSOLETE
// OBSOLETE /* True when trace output should be displayed whenever program stops. */
// OBSOLETE
// OBSOLETE static int trace_display;
// OBSOLETE
// OBSOLETE /* True when trace listing should include source lines. */
// OBSOLETE
// OBSOLETE static int default_trace_show_source = 1;
// OBSOLETE
// OBSOLETE struct trace_buffer
// OBSOLETE {
// OBSOLETE int size;
// OBSOLETE short *counts;
// OBSOLETE CORE_ADDR *addrs;
// OBSOLETE }
// OBSOLETE trace_data;
// OBSOLETE
// OBSOLETE static void
// OBSOLETE trace_command (char *args, int from_tty)
// OBSOLETE {
// OBSOLETE /* Clear the host-side trace buffer, allocating space if needed. */
// OBSOLETE trace_data.size = 0;
// OBSOLETE if (trace_data.counts == NULL)
// OBSOLETE trace_data.counts = XCALLOC (65536, short);
// OBSOLETE if (trace_data.addrs == NULL)
// OBSOLETE trace_data.addrs = XCALLOC (65536, CORE_ADDR);
// OBSOLETE
// OBSOLETE tracing = 1;
// OBSOLETE
// OBSOLETE printf_filtered ("Tracing is now on.\n");
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE untrace_command (char *args, int from_tty)
// OBSOLETE {
// OBSOLETE tracing = 0;
// OBSOLETE
// OBSOLETE printf_filtered ("Tracing is now off.\n");
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE trace_info (char *args, int from_tty)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE
// OBSOLETE if (trace_data.size)
// OBSOLETE {
// OBSOLETE printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
// OBSOLETE
// OBSOLETE for (i = 0; i < trace_data.size; ++i)
// OBSOLETE {
// OBSOLETE printf_filtered ("%d: %d instruction%s at 0x%s\n",
// OBSOLETE i,
// OBSOLETE trace_data.counts[i],
// OBSOLETE (trace_data.counts[i] == 1 ? "" : "s"),
// OBSOLETE paddr_nz (trace_data.addrs[i]));
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE printf_filtered ("No entries in trace buffer.\n");
// OBSOLETE
// OBSOLETE printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_eva_prepare_to_trace (void)
// OBSOLETE {
// OBSOLETE if (!tracing)
// OBSOLETE return;
// OBSOLETE
// OBSOLETE last_pc = read_register (D10V_PC_REGNUM);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Collect trace data from the target board and format it into a form
// OBSOLETE more useful for display. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_eva_get_trace_data (void)
// OBSOLETE {
// OBSOLETE int count, i, j, oldsize;
// OBSOLETE int trace_addr, trace_seg, trace_cnt, next_cnt;
// OBSOLETE unsigned int last_trace, trace_word, next_word;
// OBSOLETE unsigned int *tmpspace;
// OBSOLETE
// OBSOLETE if (!tracing)
// OBSOLETE return;
// OBSOLETE
// OBSOLETE tmpspace = xmalloc (65536 * sizeof (unsigned int));
// OBSOLETE
// OBSOLETE last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
// OBSOLETE
// OBSOLETE /* Collect buffer contents from the target, stopping when we reach
// OBSOLETE the word recorded when execution resumed. */
// OBSOLETE
// OBSOLETE count = 0;
// OBSOLETE while (last_trace > 0)
// OBSOLETE {
// OBSOLETE QUIT;
// OBSOLETE trace_word =
// OBSOLETE read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
// OBSOLETE trace_addr = trace_word & 0xffff;
// OBSOLETE last_trace -= 4;
// OBSOLETE /* Ignore an apparently nonsensical entry. */
// OBSOLETE if (trace_addr == 0xffd5)
// OBSOLETE continue;
// OBSOLETE tmpspace[count++] = trace_word;
// OBSOLETE if (trace_addr == last_pc)
// OBSOLETE break;
// OBSOLETE if (count > 65535)
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Move the data to the host-side trace buffer, adjusting counts to
// OBSOLETE include the last instruction executed and transforming the address
// OBSOLETE into something that GDB likes. */
// OBSOLETE
// OBSOLETE for (i = 0; i < count; ++i)
// OBSOLETE {
// OBSOLETE trace_word = tmpspace[i];
// OBSOLETE next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
// OBSOLETE trace_addr = trace_word & 0xffff;
// OBSOLETE next_cnt = (next_word >> 24) & 0xff;
// OBSOLETE j = trace_data.size + count - i - 1;
// OBSOLETE trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
// OBSOLETE trace_data.counts[j] = next_cnt + 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE oldsize = trace_data.size;
// OBSOLETE trace_data.size += count;
// OBSOLETE
// OBSOLETE xfree (tmpspace);
// OBSOLETE
// OBSOLETE if (trace_display)
// OBSOLETE display_trace (oldsize, trace_data.size);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE tdisassemble_command (char *arg, int from_tty)
// OBSOLETE {
// OBSOLETE int i, count;
// OBSOLETE CORE_ADDR low, high;
// OBSOLETE
// OBSOLETE if (!arg)
// OBSOLETE {
// OBSOLETE low = 0;
// OBSOLETE high = trace_data.size;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE char *space_index = strchr (arg, ' ');
// OBSOLETE if (space_index == NULL)
// OBSOLETE {
// OBSOLETE low = parse_and_eval_address (arg);
// OBSOLETE high = low + 5;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE /* Two arguments. */
// OBSOLETE *space_index = '\0';
// OBSOLETE low = parse_and_eval_address (arg);
// OBSOLETE high = parse_and_eval_address (space_index + 1);
// OBSOLETE if (high < low)
// OBSOLETE high = low;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE printf_filtered ("Dump of trace from %s to %s:\n",
// OBSOLETE paddr_u (low), paddr_u (high));
// OBSOLETE
// OBSOLETE display_trace (low, high);
// OBSOLETE
// OBSOLETE printf_filtered ("End of trace dump.\n");
// OBSOLETE gdb_flush (gdb_stdout);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE display_trace (int low, int high)
// OBSOLETE {
// OBSOLETE int i, count, trace_show_source, first, suppress;
// OBSOLETE CORE_ADDR next_address;
// OBSOLETE
// OBSOLETE trace_show_source = default_trace_show_source;
// OBSOLETE if (!have_full_symbols () && !have_partial_symbols ())
// OBSOLETE {
// OBSOLETE trace_show_source = 0;
// OBSOLETE printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
// OBSOLETE printf_filtered ("Trace will not display any source.\n");
// OBSOLETE }
// OBSOLETE
// OBSOLETE first = 1;
// OBSOLETE suppress = 0;
// OBSOLETE for (i = low; i < high; ++i)
// OBSOLETE {
// OBSOLETE next_address = trace_data.addrs[i];
// OBSOLETE count = trace_data.counts[i];
// OBSOLETE while (count-- > 0)
// OBSOLETE {
// OBSOLETE QUIT;
// OBSOLETE if (trace_show_source)
// OBSOLETE {
// OBSOLETE struct symtab_and_line sal, sal_prev;
// OBSOLETE
// OBSOLETE sal_prev = find_pc_line (next_address - 4, 0);
// OBSOLETE sal = find_pc_line (next_address, 0);
// OBSOLETE
// OBSOLETE if (sal.symtab)
// OBSOLETE {
// OBSOLETE if (first || sal.line != sal_prev.line)
// OBSOLETE print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
// OBSOLETE suppress = 0;
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE if (!suppress)
// OBSOLETE /* FIXME-32x64--assumes sal.pc fits in long. */
// OBSOLETE printf_filtered ("No source file for address %s.\n",
// OBSOLETE hex_string ((unsigned long) sal.pc));
// OBSOLETE suppress = 1;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE first = 0;
// OBSOLETE print_address (next_address, gdb_stdout);
// OBSOLETE printf_filtered (":");
// OBSOLETE printf_filtered ("\t");
// OBSOLETE wrap_here (" ");
// OBSOLETE next_address += gdb_print_insn (next_address, gdb_stdout);
// OBSOLETE printf_filtered ("\n");
// OBSOLETE gdb_flush (gdb_stdout);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
// OBSOLETE {
// OBSOLETE ULONGEST pc;
// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
// OBSOLETE return d10v_make_iaddr (pc);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Given a GDB frame, determine the address of the calling function's
// OBSOLETE frame. This will be used to create a new GDB frame struct. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_frame_this_id (struct frame_info *next_frame,
// OBSOLETE void **this_prologue_cache,
// OBSOLETE struct frame_id *this_id)
// OBSOLETE {
// OBSOLETE struct d10v_unwind_cache *info
// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
// OBSOLETE CORE_ADDR base;
// OBSOLETE CORE_ADDR func;
// OBSOLETE struct frame_id id;
// OBSOLETE
// OBSOLETE /* The FUNC is easy. */
// OBSOLETE func = frame_func_unwind (next_frame);
// OBSOLETE
// OBSOLETE /* Hopefully the prologue analysis either correctly determined the
// OBSOLETE frame's base (which is the SP from the previous frame), or set
// OBSOLETE that base to "NULL". */
// OBSOLETE base = info->prev_sp;
// OBSOLETE if (base == STACK_START || base == 0)
// OBSOLETE return;
// OBSOLETE
// OBSOLETE id = frame_id_build (base, func);
// OBSOLETE
// OBSOLETE (*this_id) = id;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void
// OBSOLETE d10v_frame_prev_register (struct frame_info *next_frame,
// OBSOLETE void **this_prologue_cache,
// OBSOLETE int regnum, int *optimizedp,
// OBSOLETE enum lval_type *lvalp, CORE_ADDR *addrp,
// OBSOLETE int *realnump, void *bufferp)
// OBSOLETE {
// OBSOLETE struct d10v_unwind_cache *info
// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
// OBSOLETE trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
// OBSOLETE optimizedp, lvalp, addrp, realnump, bufferp);
// OBSOLETE }
// OBSOLETE
// OBSOLETE static const struct frame_unwind d10v_frame_unwind = {
// OBSOLETE NORMAL_FRAME,
// OBSOLETE d10v_frame_this_id,
// OBSOLETE d10v_frame_prev_register
// OBSOLETE };
// OBSOLETE
// OBSOLETE static const struct frame_unwind *
// OBSOLETE d10v_frame_sniffer (struct frame_info *next_frame)
// OBSOLETE {
// OBSOLETE return &d10v_frame_unwind;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static CORE_ADDR
// OBSOLETE d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
// OBSOLETE {
// OBSOLETE struct d10v_unwind_cache *info
// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_cache);
// OBSOLETE return info->base;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static const struct frame_base d10v_frame_base = {
// OBSOLETE &d10v_frame_unwind,
// OBSOLETE d10v_frame_base_address,
// OBSOLETE d10v_frame_base_address,
// OBSOLETE d10v_frame_base_address
// OBSOLETE };
// OBSOLETE
// OBSOLETE /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
// OBSOLETE dummy frame. The frame ID's base needs to match the TOS value
// OBSOLETE saved by save_dummy_frame_tos(), and the PC match the dummy frame's
// OBSOLETE breakpoint. */
// OBSOLETE
// OBSOLETE static struct frame_id
// OBSOLETE d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
// OBSOLETE {
// OBSOLETE return frame_id_build (d10v_unwind_sp (gdbarch, next_frame),
// OBSOLETE frame_pc_unwind (next_frame));
// OBSOLETE }
// OBSOLETE
// OBSOLETE static gdbarch_init_ftype d10v_gdbarch_init;
// OBSOLETE
// OBSOLETE static struct gdbarch *
// OBSOLETE d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
// OBSOLETE {
// OBSOLETE struct gdbarch *gdbarch;
// OBSOLETE int d10v_num_regs;
// OBSOLETE struct gdbarch_tdep *tdep;
// OBSOLETE gdbarch_register_name_ftype *d10v_register_name;
// OBSOLETE gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
// OBSOLETE
// OBSOLETE /* Find a candidate among the list of pre-declared architectures. */
// OBSOLETE arches = gdbarch_list_lookup_by_info (arches, &info);
// OBSOLETE if (arches != NULL)
// OBSOLETE return arches->gdbarch;
// OBSOLETE
// OBSOLETE /* None found, create a new architecture from the information
// OBSOLETE provided. */
// OBSOLETE tdep = XMALLOC (struct gdbarch_tdep);
// OBSOLETE gdbarch = gdbarch_alloc (&info, tdep);
// OBSOLETE
// OBSOLETE switch (info.bfd_arch_info->mach)
// OBSOLETE {
// OBSOLETE case bfd_mach_d10v_ts2:
// OBSOLETE d10v_num_regs = 37;
// OBSOLETE d10v_register_name = d10v_ts2_register_name;
// OBSOLETE d10v_register_sim_regno = d10v_ts2_register_sim_regno;
// OBSOLETE tdep->a0_regnum = TS2_A0_REGNUM;
// OBSOLETE tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
// OBSOLETE tdep->dmap_register = d10v_ts2_dmap_register;
// OBSOLETE tdep->imap_register = d10v_ts2_imap_register;
// OBSOLETE break;
// OBSOLETE default:
// OBSOLETE case bfd_mach_d10v_ts3:
// OBSOLETE d10v_num_regs = 42;
// OBSOLETE d10v_register_name = d10v_ts3_register_name;
// OBSOLETE d10v_register_sim_regno = d10v_ts3_register_sim_regno;
// OBSOLETE tdep->a0_regnum = TS3_A0_REGNUM;
// OBSOLETE tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
// OBSOLETE tdep->dmap_register = d10v_ts3_dmap_register;
// OBSOLETE tdep->imap_register = d10v_ts3_imap_register;
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE
// OBSOLETE set_gdbarch_read_pc (gdbarch, d10v_read_pc);
// OBSOLETE set_gdbarch_write_pc (gdbarch, d10v_write_pc);
// OBSOLETE set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp);
// OBSOLETE
// OBSOLETE set_gdbarch_num_regs (gdbarch, d10v_num_regs);
// OBSOLETE set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
// OBSOLETE set_gdbarch_register_name (gdbarch, d10v_register_name);
// OBSOLETE set_gdbarch_register_type (gdbarch, d10v_register_type);
// OBSOLETE
// OBSOLETE set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_addr_bit (gdbarch, 32);
// OBSOLETE set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
// OBSOLETE set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
// OBSOLETE set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
// OBSOLETE set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
// OBSOLETE /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
// OBSOLETE double'' is 64 bits. */
// OBSOLETE set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
// OBSOLETE set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
// OBSOLETE switch (info.byte_order)
// OBSOLETE {
// OBSOLETE case BFD_ENDIAN_BIG:
// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
// OBSOLETE set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
// OBSOLETE break;
// OBSOLETE case BFD_ENDIAN_LITTLE:
// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
// OBSOLETE set_gdbarch_long_double_format (gdbarch,
// OBSOLETE &floatformat_ieee_double_little);
// OBSOLETE break;
// OBSOLETE default:
// OBSOLETE internal_error (__FILE__, __LINE__,
// OBSOLETE "d10v_gdbarch_init: bad byte order for float format");
// OBSOLETE }
// OBSOLETE
// OBSOLETE set_gdbarch_return_value (gdbarch, d10v_return_value);
// OBSOLETE set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
// OBSOLETE set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
// OBSOLETE
// OBSOLETE set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
// OBSOLETE set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
// OBSOLETE set_gdbarch_decr_pc_after_break (gdbarch, 4);
// OBSOLETE set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
// OBSOLETE
// OBSOLETE set_gdbarch_remote_translate_xfer_address (gdbarch,
// OBSOLETE remote_d10v_translate_xfer_address);
// OBSOLETE
// OBSOLETE set_gdbarch_frame_align (gdbarch, d10v_frame_align);
// OBSOLETE
// OBSOLETE set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
// OBSOLETE
// OBSOLETE set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
// OBSOLETE
// OBSOLETE frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer);
// OBSOLETE frame_base_set_default (gdbarch, &d10v_frame_base);
// OBSOLETE
// OBSOLETE /* Methods for saving / extracting a dummy frame's ID. The ID's
// OBSOLETE stack address must match the SP value returned by
// OBSOLETE PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
// OBSOLETE set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
// OBSOLETE
// OBSOLETE /* Return the unwound PC value. */
// OBSOLETE set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
// OBSOLETE
// OBSOLETE set_gdbarch_print_insn (gdbarch, print_insn_d10v);
// OBSOLETE
// OBSOLETE return gdbarch;
// OBSOLETE }
// OBSOLETE
// OBSOLETE void
// OBSOLETE _initialize_d10v_tdep (void)
// OBSOLETE {
// OBSOLETE register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
// OBSOLETE
// OBSOLETE deprecated_target_resume_hook = d10v_eva_prepare_to_trace;
// OBSOLETE deprecated_target_wait_loop_hook = d10v_eva_get_trace_data;
// OBSOLETE
// OBSOLETE deprecate_cmd (add_com ("regs", class_vars, show_regs,
// OBSOLETE "Print all registers"),
// OBSOLETE "info registers");
// OBSOLETE
// OBSOLETE add_com ("itrace", class_support, trace_command,
// OBSOLETE "Enable tracing of instruction execution.");
// OBSOLETE
// OBSOLETE add_com ("iuntrace", class_support, untrace_command,
// OBSOLETE "Disable tracing of instruction execution.");
// OBSOLETE
// OBSOLETE add_com ("itdisassemble", class_vars, tdisassemble_command,
// OBSOLETE "Disassemble the trace buffer.\n\
// OBSOLETE Two optional arguments specify a range of trace buffer entries\n\
// OBSOLETE as reported by info trace (NOT addresses!).");
// OBSOLETE
// OBSOLETE add_info ("itrace", trace_info,
// OBSOLETE "Display info about the trace data buffer.");
// OBSOLETE
// OBSOLETE add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\
// OBSOLETE Set automatic display of trace.", "\
// OBSOLETE Show automatic display of trace.", "\
// OBSOLETE Controls the display of d10v specific instruction trace information.", "\
// OBSOLETE Automatic display of trace is %s.",
// OBSOLETE NULL, NULL, &setlist, &showlist);
// OBSOLETE add_setshow_boolean_cmd ("itracesource", no_class,
// OBSOLETE &default_trace_show_source, "\
// OBSOLETE Set display of source code with trace.", "\
// OBSOLETE Show display of source code with trace.", "\
// OBSOLETE When on source code is included in the d10v instruction trace display.", "\
// OBSOLETE Display of source code with trace is %s.",
// OBSOLETE NULL, NULL, &setlist, &showlist);
// OBSOLETE }