darling-gdb/readline/bind.c
Elena Zannoni 1b17e76665 readline:
2000-07-09  Elena Zannoni  <ezannoni@kwikemart.cygnus.com>

        * Import of readline 4.1.

        Locally modified files: Makefile.in, configure.in, configure
        (regenerated), config.h.in (regenerated), readline.h, rltty.c,
 	shell.c signals.c.

        Locally added files: acconfig.h, config/*, config.h.bot,
        cross-build/*, doc/inc-hit.texinfo.

        New files: USAGE, rlprivate.h, rlshell.h, xmalloc.h.
examples:
2000-07-09  Elena Zannoni  <ezannoni@kwikemart.cygnus.com>

        * Import of readline 4.1.

        New files: excallback.c, rlfe.c.
doc:
2000-07-09  Elena Zannoni  <ezannoni@kwikemart.cygnus.com>

        * Import of readline 4.1.

        Regenerated inc-hist.texinfo as copy of hsuser.texinfo, for
        inclusion in the gdb manual.

        New file: rluserman.texinfo
2000-07-09 17:20:00 +00:00

2102 lines
49 KiB
C

/* bind.c -- key binding and startup file support for the readline library. */
/* Copyright (C) 1987, 1989, 1992 Free Software Foundation, Inc.
This file is part of the GNU Readline Library, a library for
reading lines of text with interactive input and history editing.
The GNU Readline Library is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2, or
(at your option) any later version.
The GNU Readline Library is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111 USA. */
#define READLINE_LIBRARY
#if defined (HAVE_CONFIG_H)
# include <config.h>
#endif
#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#if defined (HAVE_SYS_FILE_H)
# include <sys/file.h>
#endif /* HAVE_SYS_FILE_H */
#if defined (HAVE_UNISTD_H)
# include <unistd.h>
#endif /* HAVE_UNISTD_H */
#if defined (HAVE_STDLIB_H)
# include <stdlib.h>
#else
# include "ansi_stdlib.h"
#endif /* HAVE_STDLIB_H */
#include <errno.h>
#if !defined (errno)
extern int errno;
#endif /* !errno */
#include "posixstat.h"
/* System-specific feature definitions and include files. */
#include "rldefs.h"
/* Some standard library routines. */
#include "readline.h"
#include "history.h"
#include "rlprivate.h"
#include "rlshell.h"
#include "xmalloc.h"
#if !defined (strchr) && !defined (__STDC__)
extern char *strchr (), *strrchr ();
#endif /* !strchr && !__STDC__ */
/* Variables exported by this file. */
Keymap rl_binding_keymap;
static int _rl_read_init_file __P((char *, int));
static int glean_key_from_name __P((char *));
static int substring_member_of_array __P((char *, char **));
static int currently_reading_init_file;
/* used only in this file */
static int _rl_prefer_visible_bell = 1;
/* **************************************************************** */
/* */
/* Binding keys */
/* */
/* **************************************************************** */
/* rl_add_defun (char *name, Function *function, int key)
Add NAME to the list of named functions. Make FUNCTION be the function
that gets called. If KEY is not -1, then bind it. */
int
rl_add_defun (name, function, key)
char *name;
Function *function;
int key;
{
if (key != -1)
rl_bind_key (key, function);
rl_add_funmap_entry (name, function);
return 0;
}
/* Bind KEY to FUNCTION. Returns non-zero if KEY is out of range. */
int
rl_bind_key (key, function)
int key;
Function *function;
{
if (key < 0)
return (key);
if (META_CHAR (key) && _rl_convert_meta_chars_to_ascii)
{
if (_rl_keymap[ESC].type == ISKMAP)
{
Keymap escmap;
escmap = FUNCTION_TO_KEYMAP (_rl_keymap, ESC);
key = UNMETA (key);
escmap[key].type = ISFUNC;
escmap[key].function = function;
return (0);
}
return (key);
}
_rl_keymap[key].type = ISFUNC;
_rl_keymap[key].function = function;
rl_binding_keymap = _rl_keymap;
return (0);
}
/* Bind KEY to FUNCTION in MAP. Returns non-zero in case of invalid
KEY. */
int
rl_bind_key_in_map (key, function, map)
int key;
Function *function;
Keymap map;
{
int result;
Keymap oldmap;
oldmap = _rl_keymap;
_rl_keymap = map;
result = rl_bind_key (key, function);
_rl_keymap = oldmap;
return (result);
}
/* Make KEY do nothing in the currently selected keymap.
Returns non-zero in case of error. */
int
rl_unbind_key (key)
int key;
{
return (rl_bind_key (key, (Function *)NULL));
}
/* Make KEY do nothing in MAP.
Returns non-zero in case of error. */
int
rl_unbind_key_in_map (key, map)
int key;
Keymap map;
{
return (rl_bind_key_in_map (key, (Function *)NULL, map));
}
/* Unbind all keys bound to FUNCTION in MAP. */
int
rl_unbind_function_in_map (func, map)
Function *func;
Keymap map;
{
register int i, rval;
for (i = rval = 0; i < KEYMAP_SIZE; i++)
{
if (map[i].type == ISFUNC && map[i].function == func)
{
map[i].function = (Function *)NULL;
rval = 1;
}
}
return rval;
}
int
rl_unbind_command_in_map (command, map)
char *command;
Keymap map;
{
Function *func;
func = rl_named_function (command);
if (func == 0)
return 0;
return (rl_unbind_function_in_map (func, map));
}
/* Bind the key sequence represented by the string KEYSEQ to
FUNCTION. This makes new keymaps as necessary. The initial
place to do bindings is in MAP. */
int
rl_set_key (keyseq, function, map)
char *keyseq;
Function *function;
Keymap map;
{
return (rl_generic_bind (ISFUNC, keyseq, (char *)function, map));
}
/* Bind the key sequence represented by the string KEYSEQ to
the string of characters MACRO. This makes new keymaps as
necessary. The initial place to do bindings is in MAP. */
int
rl_macro_bind (keyseq, macro, map)
char *keyseq, *macro;
Keymap map;
{
char *macro_keys;
int macro_keys_len;
macro_keys = (char *)xmalloc ((2 * strlen (macro)) + 1);
if (rl_translate_keyseq (macro, macro_keys, &macro_keys_len))
{
free (macro_keys);
return -1;
}
rl_generic_bind (ISMACR, keyseq, macro_keys, map);
return 0;
}
/* Bind the key sequence represented by the string KEYSEQ to
the arbitrary pointer DATA. TYPE says what kind of data is
pointed to by DATA, right now this can be a function (ISFUNC),
a macro (ISMACR), or a keymap (ISKMAP). This makes new keymaps
as necessary. The initial place to do bindings is in MAP. */
int
rl_generic_bind (type, keyseq, data, map)
int type;
char *keyseq, *data;
Keymap map;
{
char *keys;
int keys_len;
register int i;
/* If no keys to bind to, exit right away. */
if (!keyseq || !*keyseq)
{
if (type == ISMACR)
free (data);
return -1;
}
keys = xmalloc (1 + (2 * strlen (keyseq)));
/* Translate the ASCII representation of KEYSEQ into an array of
characters. Stuff the characters into KEYS, and the length of
KEYS into KEYS_LEN. */
if (rl_translate_keyseq (keyseq, keys, &keys_len))
{
free (keys);
return -1;
}
/* Bind keys, making new keymaps as necessary. */
for (i = 0; i < keys_len; i++)
{
int ic = (int) ((unsigned char)keys[i]);
if (_rl_convert_meta_chars_to_ascii && META_CHAR (ic))
{
ic = UNMETA (ic);
if (map[ESC].type == ISKMAP)
map = FUNCTION_TO_KEYMAP (map, ESC);
}
if ((i + 1) < keys_len)
{
if (map[ic].type != ISKMAP)
{
if (map[ic].type == ISMACR)
free ((char *)map[ic].function);
map[ic].type = ISKMAP;
map[ic].function = KEYMAP_TO_FUNCTION (rl_make_bare_keymap());
}
map = FUNCTION_TO_KEYMAP (map, ic);
}
else
{
if (map[ic].type == ISMACR)
free ((char *)map[ic].function);
map[ic].function = KEYMAP_TO_FUNCTION (data);
map[ic].type = type;
}
rl_binding_keymap = map;
}
free (keys);
return 0;
}
/* Translate the ASCII representation of SEQ, stuffing the values into ARRAY,
an array of characters. LEN gets the final length of ARRAY. Return
non-zero if there was an error parsing SEQ. */
int
rl_translate_keyseq (seq, array, len)
char *seq, *array;
int *len;
{
register int i, c, l, temp;
for (i = l = 0; c = seq[i]; i++)
{
if (c == '\\')
{
c = seq[++i];
if (c == 0)
break;
/* Handle \C- and \M- prefixes. */
if ((c == 'C' || c == 'M') && seq[i + 1] == '-')
{
/* Handle special case of backwards define. */
if (strncmp (&seq[i], "C-\\M-", 5) == 0)
{
array[l++] = ESC;
i += 5;
array[l++] = CTRL (_rl_to_upper (seq[i]));
if (seq[i] == '\0')
i--;
}
else if (c == 'M')
{
i++;
array[l++] = ESC; /* XXX */
}
else if (c == 'C')
{
i += 2;
/* Special hack for C-?... */
array[l++] = (seq[i] == '?') ? RUBOUT : CTRL (_rl_to_upper (seq[i]));
}
continue;
}
/* Translate other backslash-escaped characters. These are the
same escape sequences that bash's `echo' and `printf' builtins
handle, with the addition of \d -> RUBOUT. A backslash
preceding a character that is not special is stripped. */
switch (c)
{
case 'a':
array[l++] = '\007';
break;
case 'b':
array[l++] = '\b';
break;
case 'd':
array[l++] = RUBOUT; /* readline-specific */
break;
case 'e':
array[l++] = ESC;
break;
case 'f':
array[l++] = '\f';
break;
case 'n':
array[l++] = NEWLINE;
break;
case 'r':
array[l++] = RETURN;
break;
case 't':
array[l++] = TAB;
break;
case 'v':
array[l++] = 0x0B;
break;
case '\\':
array[l++] = '\\';
break;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
i++;
for (temp = 2, c -= '0'; ISOCTAL (seq[i]) && temp--; i++)
c = (c * 8) + OCTVALUE (seq[i]);
i--; /* auto-increment in for loop */
array[l++] = c % (largest_char + 1);
break;
case 'x':
i++;
for (temp = 3, c = 0; isxdigit (seq[i]) && temp--; i++)
c = (c * 16) + HEXVALUE (seq[i]);
if (temp == 3)
c = 'x';
i--; /* auto-increment in for loop */
array[l++] = c % (largest_char + 1);
break;
default: /* backslashes before non-special chars just add the char */
array[l++] = c;
break; /* the backslash is stripped */
}
continue;
}
array[l++] = c;
}
*len = l;
array[l] = '\0';
return (0);
}
char *
rl_untranslate_keyseq (seq)
int seq;
{
static char kseq[16];
int i, c;
i = 0;
c = seq;
if (META_CHAR (c))
{
kseq[i++] = '\\';
kseq[i++] = 'M';
kseq[i++] = '-';
c = UNMETA (c);
}
else if (CTRL_CHAR (c))
{
kseq[i++] = '\\';
kseq[i++] = 'C';
kseq[i++] = '-';
c = _rl_to_lower (UNCTRL (c));
}
else if (c == RUBOUT)
{
kseq[i++] = '\\';
kseq[i++] = 'C';
kseq[i++] = '-';
c = '?';
}
if (c == ESC)
{
kseq[i++] = '\\';
c = 'e';
}
else if (c == '\\' || c == '"')
{
kseq[i++] = '\\';
}
kseq[i++] = (unsigned char) c;
kseq[i] = '\0';
return kseq;
}
static char *
_rl_untranslate_macro_value (seq)
char *seq;
{
char *ret, *r, *s;
int c;
r = ret = xmalloc (7 * strlen (seq) + 1);
for (s = seq; *s; s++)
{
c = *s;
if (META_CHAR (c))
{
*r++ = '\\';
*r++ = 'M';
*r++ = '-';
c = UNMETA (c);
}
else if (CTRL_CHAR (c) && c != ESC)
{
*r++ = '\\';
*r++ = 'C';
*r++ = '-';
c = _rl_to_lower (UNCTRL (c));
}
else if (c == RUBOUT)
{
*r++ = '\\';
*r++ = 'C';
*r++ = '-';
c = '?';
}
if (c == ESC)
{
*r++ = '\\';
c = 'e';
}
else if (c == '\\' || c == '"')
*r++ = '\\';
*r++ = (unsigned char)c;
}
*r = '\0';
return ret;
}
/* Return a pointer to the function that STRING represents.
If STRING doesn't have a matching function, then a NULL pointer
is returned. */
Function *
rl_named_function (string)
char *string;
{
register int i;
rl_initialize_funmap ();
for (i = 0; funmap[i]; i++)
if (_rl_stricmp (funmap[i]->name, string) == 0)
return (funmap[i]->function);
return ((Function *)NULL);
}
/* Return the function (or macro) definition which would be invoked via
KEYSEQ if executed in MAP. If MAP is NULL, then the current keymap is
used. TYPE, if non-NULL, is a pointer to an int which will receive the
type of the object pointed to. One of ISFUNC (function), ISKMAP (keymap),
or ISMACR (macro). */
Function *
rl_function_of_keyseq (keyseq, map, type)
char *keyseq;
Keymap map;
int *type;
{
register int i;
if (!map)
map = _rl_keymap;
for (i = 0; keyseq && keyseq[i]; i++)
{
int ic = keyseq[i];
if (META_CHAR (ic) && _rl_convert_meta_chars_to_ascii)
{
if (map[ESC].type != ISKMAP)
{
if (type)
*type = map[ESC].type;
return (map[ESC].function);
}
else
{
map = FUNCTION_TO_KEYMAP (map, ESC);
ic = UNMETA (ic);
}
}
if (map[ic].type == ISKMAP)
{
/* If this is the last key in the key sequence, return the
map. */
if (!keyseq[i + 1])
{
if (type)
*type = ISKMAP;
return (map[ic].function);
}
else
map = FUNCTION_TO_KEYMAP (map, ic);
}
else
{
if (type)
*type = map[ic].type;
return (map[ic].function);
}
}
return ((Function *) NULL);
}
/* The last key bindings file read. */
static char *last_readline_init_file = (char *)NULL;
/* The file we're currently reading key bindings from. */
static char *current_readline_init_file;
static int current_readline_init_include_level;
static int current_readline_init_lineno;
/* Read FILENAME into a locally-allocated buffer and return the buffer.
The size of the buffer is returned in *SIZEP. Returns NULL if any
errors were encountered. */
static char *
_rl_read_file (filename, sizep)
char *filename;
size_t *sizep;
{
struct stat finfo;
size_t file_size;
char *buffer;
int i, file;
if ((stat (filename, &finfo) < 0) || (file = open (filename, O_RDONLY, 0666)) < 0)
return ((char *)NULL);
file_size = (size_t)finfo.st_size;
/* check for overflow on very large files */
if (file_size != finfo.st_size || file_size + 1 < file_size)
{
if (file >= 0)
close (file);
#if defined (EFBIG)
errno = EFBIG;
#endif
return ((char *)NULL);
}
/* Read the file into BUFFER. */
buffer = (char *)xmalloc (file_size + 1);
i = read (file, buffer, file_size);
close (file);
#if 0
if (i < file_size)
#else
if (i < 0)
#endif
{
free (buffer);
return ((char *)NULL);
}
#if 0
buffer[file_size] = '\0';
if (sizep)
*sizep = file_size;
#else
buffer[i] = '\0';
if (sizep)
*sizep = i;
#endif
return (buffer);
}
/* Re-read the current keybindings file. */
int
rl_re_read_init_file (count, ignore)
int count, ignore;
{
int r;
r = rl_read_init_file ((char *)NULL);
rl_set_keymap_from_edit_mode ();
return r;
}
/* Do key bindings from a file. If FILENAME is NULL it defaults
to the first non-null filename from this list:
1. the filename used for the previous call
2. the value of the shell variable `INPUTRC'
3. ~/.inputrc
If the file existed and could be opened and read, 0 is returned,
otherwise errno is returned. */
int
rl_read_init_file (filename)
char *filename;
{
/* Default the filename. */
if (filename == 0)
{
filename = last_readline_init_file;
if (filename == 0)
filename = get_env_value ("INPUTRC");
if (filename == 0)
filename = DEFAULT_INPUTRC;
}
if (*filename == 0)
filename = DEFAULT_INPUTRC;
#if defined (__MSDOS__)
if (_rl_read_init_file (filename, 0) == 0)
return 0;
filename = "~/_inputrc";
#endif
return (_rl_read_init_file (filename, 0));
}
static int
_rl_read_init_file (filename, include_level)
char *filename;
int include_level;
{
register int i;
char *buffer, *openname, *line, *end;
size_t file_size;
current_readline_init_file = filename;
current_readline_init_include_level = include_level;
openname = tilde_expand (filename);
buffer = _rl_read_file (openname, &file_size);
free (openname);
if (buffer == 0)
return (errno);
if (include_level == 0 && filename != last_readline_init_file)
{
FREE (last_readline_init_file);
last_readline_init_file = savestring (filename);
}
currently_reading_init_file = 1;
/* Loop over the lines in the file. Lines that start with `#' are
comments; all other lines are commands for readline initialization. */
current_readline_init_lineno = 1;
line = buffer;
end = buffer + file_size;
while (line < end)
{
/* Find the end of this line. */
for (i = 0; line + i != end && line[i] != '\n'; i++);
#if defined (__CYGWIN32__)
/* ``Be liberal in what you accept.'' */
if (line[i] == '\n' && line[i-1] == '\r')
line[i - 1] = '\0';
#endif
/* Mark end of line. */
line[i] = '\0';
/* Skip leading whitespace. */
while (*line && whitespace (*line))
{
line++;
i--;
}
/* If the line is not a comment, then parse it. */
if (*line && *line != '#')
rl_parse_and_bind (line);
/* Move to the next line. */
line += i + 1;
current_readline_init_lineno++;
}
free (buffer);
currently_reading_init_file = 0;
return (0);
}
static void
_rl_init_file_error (msg)
char *msg;
{
if (currently_reading_init_file)
fprintf (stderr, "readline: %s: line %d: %s\n", current_readline_init_file,
current_readline_init_lineno, msg);
else
fprintf (stderr, "readline: %s\n", msg);
}
/* **************************************************************** */
/* */
/* Parser Directives */
/* */
/* **************************************************************** */
/* Conditionals. */
/* Calling programs set this to have their argv[0]. */
char *rl_readline_name = "other";
/* Stack of previous values of parsing_conditionalized_out. */
static unsigned char *if_stack = (unsigned char *)NULL;
static int if_stack_depth;
static int if_stack_size;
/* Push _rl_parsing_conditionalized_out, and set parser state based
on ARGS. */
static int
parser_if (args)
char *args;
{
register int i;
/* Push parser state. */
if (if_stack_depth + 1 >= if_stack_size)
{
if (!if_stack)
if_stack = (unsigned char *)xmalloc (if_stack_size = 20);
else
if_stack = (unsigned char *)xrealloc (if_stack, if_stack_size += 20);
}
if_stack[if_stack_depth++] = _rl_parsing_conditionalized_out;
/* If parsing is turned off, then nothing can turn it back on except
for finding the matching endif. In that case, return right now. */
if (_rl_parsing_conditionalized_out)
return 0;
/* Isolate first argument. */
for (i = 0; args[i] && !whitespace (args[i]); i++);
if (args[i])
args[i++] = '\0';
/* Handle "$if term=foo" and "$if mode=emacs" constructs. If this
isn't term=foo, or mode=emacs, then check to see if the first
word in ARGS is the same as the value stored in rl_readline_name. */
if (rl_terminal_name && _rl_strnicmp (args, "term=", 5) == 0)
{
char *tem, *tname;
/* Terminals like "aaa-60" are equivalent to "aaa". */
tname = savestring (rl_terminal_name);
tem = strchr (tname, '-');
if (tem)
*tem = '\0';
/* Test the `long' and `short' forms of the terminal name so that
if someone has a `sun-cmd' and does not want to have bindings
that will be executed if the terminal is a `sun', they can put
`$if term=sun-cmd' into their .inputrc. */
_rl_parsing_conditionalized_out = _rl_stricmp (args + 5, tname) &&
_rl_stricmp (args + 5, rl_terminal_name);
free (tname);
}
#if defined (VI_MODE)
else if (_rl_strnicmp (args, "mode=", 5) == 0)
{
int mode;
if (_rl_stricmp (args + 5, "emacs") == 0)
mode = emacs_mode;
else if (_rl_stricmp (args + 5, "vi") == 0)
mode = vi_mode;
else
mode = no_mode;
_rl_parsing_conditionalized_out = mode != rl_editing_mode;
}
#endif /* VI_MODE */
/* Check to see if the first word in ARGS is the same as the
value stored in rl_readline_name. */
else if (_rl_stricmp (args, rl_readline_name) == 0)
_rl_parsing_conditionalized_out = 0;
else
_rl_parsing_conditionalized_out = 1;
return 0;
}
/* Invert the current parser state if there is anything on the stack. */
static int
parser_else (args)
char *args;
{
register int i;
if (if_stack_depth == 0)
{
_rl_init_file_error ("$else found without matching $if");
return 0;
}
/* Check the previous (n - 1) levels of the stack to make sure that
we haven't previously turned off parsing. */
for (i = 0; i < if_stack_depth - 1; i++)
if (if_stack[i] == 1)
return 0;
/* Invert the state of parsing if at top level. */
_rl_parsing_conditionalized_out = !_rl_parsing_conditionalized_out;
return 0;
}
/* Terminate a conditional, popping the value of
_rl_parsing_conditionalized_out from the stack. */
static int
parser_endif (args)
char *args;
{
if (if_stack_depth)
_rl_parsing_conditionalized_out = if_stack[--if_stack_depth];
else
_rl_init_file_error ("$endif without matching $if");
return 0;
}
static int
parser_include (args)
char *args;
{
char *old_init_file, *e;
int old_line_number, old_include_level, r;
if (_rl_parsing_conditionalized_out)
return (0);
old_init_file = current_readline_init_file;
old_line_number = current_readline_init_lineno;
old_include_level = current_readline_init_include_level;
e = strchr (args, '\n');
if (e)
*e = '\0';
r = _rl_read_init_file (args, old_include_level + 1);
current_readline_init_file = old_init_file;
current_readline_init_lineno = old_line_number;
current_readline_init_include_level = old_include_level;
return r;
}
/* Associate textual names with actual functions. */
static struct {
char *name;
Function *function;
} parser_directives [] = {
{ "if", parser_if },
{ "endif", parser_endif },
{ "else", parser_else },
{ "include", parser_include },
{ (char *)0x0, (Function *)0x0 }
};
/* Handle a parser directive. STATEMENT is the line of the directive
without any leading `$'. */
static int
handle_parser_directive (statement)
char *statement;
{
register int i;
char *directive, *args;
/* Isolate the actual directive. */
/* Skip whitespace. */
for (i = 0; whitespace (statement[i]); i++);
directive = &statement[i];
for (; statement[i] && !whitespace (statement[i]); i++);
if (statement[i])
statement[i++] = '\0';
for (; statement[i] && whitespace (statement[i]); i++);
args = &statement[i];
/* Lookup the command, and act on it. */
for (i = 0; parser_directives[i].name; i++)
if (_rl_stricmp (directive, parser_directives[i].name) == 0)
{
(*parser_directives[i].function) (args);
return (0);
}
/* display an error message about the unknown parser directive */
_rl_init_file_error ("unknown parser directive");
return (1);
}
/* Read the binding command from STRING and perform it.
A key binding command looks like: Keyname: function-name\0,
a variable binding command looks like: set variable value.
A new-style keybinding looks like "\C-x\C-x": exchange-point-and-mark. */
int
rl_parse_and_bind (string)
char *string;
{
char *funname, *kname;
register int c, i;
int key, equivalency;
while (string && whitespace (*string))
string++;
if (!string || !*string || *string == '#')
return 0;
/* If this is a parser directive, act on it. */
if (*string == '$')
{
handle_parser_directive (&string[1]);
return 0;
}
/* If we aren't supposed to be parsing right now, then we're done. */
if (_rl_parsing_conditionalized_out)
return 0;
i = 0;
/* If this keyname is a complex key expression surrounded by quotes,
advance to after the matching close quote. This code allows the
backslash to quote characters in the key expression. */
if (*string == '"')
{
int passc = 0;
for (i = 1; c = string[i]; i++)
{
if (passc)
{
passc = 0;
continue;
}
if (c == '\\')
{
passc++;
continue;
}
if (c == '"')
break;
}
/* If we didn't find a closing quote, abort the line. */
if (string[i] == '\0')
{
_rl_init_file_error ("no closing `\"' in key binding");
return 1;
}
}
/* Advance to the colon (:) or whitespace which separates the two objects. */
for (; (c = string[i]) && c != ':' && c != ' ' && c != '\t'; i++ );
equivalency = (c == ':' && string[i + 1] == '=');
/* Mark the end of the command (or keyname). */
if (string[i])
string[i++] = '\0';
/* If doing assignment, skip the '=' sign as well. */
if (equivalency)
string[i++] = '\0';
/* If this is a command to set a variable, then do that. */
if (_rl_stricmp (string, "set") == 0)
{
char *var = string + i;
char *value;
/* Make VAR point to start of variable name. */
while (*var && whitespace (*var)) var++;
/* Make value point to start of value string. */
value = var;
while (*value && !whitespace (*value)) value++;
if (*value)
*value++ = '\0';
while (*value && whitespace (*value)) value++;
rl_variable_bind (var, value);
return 0;
}
/* Skip any whitespace between keyname and funname. */
for (; string[i] && whitespace (string[i]); i++);
funname = &string[i];
/* Now isolate funname.
For straight function names just look for whitespace, since
that will signify the end of the string. But this could be a
macro definition. In that case, the string is quoted, so skip
to the matching delimiter. We allow the backslash to quote the
delimiter characters in the macro body. */
/* This code exists to allow whitespace in macro expansions, which
would otherwise be gobbled up by the next `for' loop.*/
/* XXX - it may be desirable to allow backslash quoting only if " is
the quoted string delimiter, like the shell. */
if (*funname == '\'' || *funname == '"')
{
int delimiter = string[i++], passc;
for (passc = 0; c = string[i]; i++)
{
if (passc)
{
passc = 0;
continue;
}
if (c == '\\')
{
passc = 1;
continue;
}
if (c == delimiter)
break;
}
if (c)
i++;
}
/* Advance to the end of the string. */
for (; string[i] && !whitespace (string[i]); i++);
/* No extra whitespace at the end of the string. */
string[i] = '\0';
/* Handle equivalency bindings here. Make the left-hand side be exactly
whatever the right-hand evaluates to, including keymaps. */
if (equivalency)
{
return 0;
}
/* If this is a new-style key-binding, then do the binding with
rl_set_key (). Otherwise, let the older code deal with it. */
if (*string == '"')
{
char *seq;
register int j, k, passc;
seq = xmalloc (1 + strlen (string));
for (j = 1, k = passc = 0; string[j]; j++)
{
/* Allow backslash to quote characters, but leave them in place.
This allows a string to end with a backslash quoting another
backslash, or with a backslash quoting a double quote. The
backslashes are left in place for rl_translate_keyseq (). */
if (passc || (string[j] == '\\'))
{
seq[k++] = string[j];
passc = !passc;
continue;
}
if (string[j] == '"')
break;
seq[k++] = string[j];
}
seq[k] = '\0';
/* Binding macro? */
if (*funname == '\'' || *funname == '"')
{
j = strlen (funname);
/* Remove the delimiting quotes from each end of FUNNAME. */
if (j && funname[j - 1] == *funname)
funname[j - 1] = '\0';
rl_macro_bind (seq, &funname[1], _rl_keymap);
}
else
rl_set_key (seq, rl_named_function (funname), _rl_keymap);
free (seq);
return 0;
}
/* Get the actual character we want to deal with. */
kname = strrchr (string, '-');
if (!kname)
kname = string;
else
kname++;
key = glean_key_from_name (kname);
/* Add in control and meta bits. */
if (substring_member_of_array (string, possible_control_prefixes))
key = CTRL (_rl_to_upper (key));
if (substring_member_of_array (string, possible_meta_prefixes))
key = META (key);
/* Temporary. Handle old-style keyname with macro-binding. */
if (*funname == '\'' || *funname == '"')
{
unsigned char useq[2];
int fl = strlen (funname);
useq[0] = key; useq[1] = '\0';
if (fl && funname[fl - 1] == *funname)
funname[fl - 1] = '\0';
rl_macro_bind (useq, &funname[1], _rl_keymap);
}
#if defined (PREFIX_META_HACK)
/* Ugly, but working hack to keep prefix-meta around. */
else if (_rl_stricmp (funname, "prefix-meta") == 0)
{
char seq[2];
seq[0] = key;
seq[1] = '\0';
rl_generic_bind (ISKMAP, seq, (char *)emacs_meta_keymap, _rl_keymap);
}
#endif /* PREFIX_META_HACK */
else
rl_bind_key (key, rl_named_function (funname));
return 0;
}
/* Simple structure for boolean readline variables (i.e., those that can
have one of two values; either "On" or 1 for truth, or "Off" or 0 for
false. */
#define V_SPECIAL 0x1
static struct {
char *name;
int *value;
int flags;
} boolean_varlist [] = {
{ "blink-matching-paren", &rl_blink_matching_paren, V_SPECIAL },
{ "completion-ignore-case", &_rl_completion_case_fold, 0 },
{ "convert-meta", &_rl_convert_meta_chars_to_ascii, 0 },
{ "disable-completion", &rl_inhibit_completion, 0 },
{ "enable-keypad", &_rl_enable_keypad, 0 },
{ "expand-tilde", &rl_complete_with_tilde_expansion, 0 },
{ "horizontal-scroll-mode", &_rl_horizontal_scroll_mode, 0 },
{ "input-meta", &_rl_meta_flag, 0 },
{ "mark-directories", &_rl_complete_mark_directories, 0 },
{ "mark-modified-lines", &_rl_mark_modified_lines, 0 },
{ "meta-flag", &_rl_meta_flag, 0 },
{ "output-meta", &_rl_output_meta_chars, 0 },
{ "prefer-visible-bell", &_rl_prefer_visible_bell, V_SPECIAL },
{ "print-completions-horizontally", &_rl_print_completions_horizontally, 0 },
{ "show-all-if-ambiguous", &_rl_complete_show_all, 0 },
#if defined (VISIBLE_STATS)
{ "visible-stats", &rl_visible_stats, 0 },
#endif /* VISIBLE_STATS */
{ (char *)NULL, (int *)NULL }
};
static int
find_boolean_var (name)
char *name;
{
register int i;
for (i = 0; boolean_varlist[i].name; i++)
if (_rl_stricmp (name, boolean_varlist[i].name) == 0)
return i;
return -1;
}
/* Hooks for handling special boolean variables, where a
function needs to be called or another variable needs
to be changed when they're changed. */
static void
hack_special_boolean_var (i)
int i;
{
char *name;
name = boolean_varlist[i].name;
if (_rl_stricmp (name, "blink-matching-paren") == 0)
_rl_enable_paren_matching (rl_blink_matching_paren);
else if (_rl_stricmp (name, "prefer-visible-bell") == 0)
{
if (_rl_prefer_visible_bell)
_rl_bell_preference = VISIBLE_BELL;
else
_rl_bell_preference = AUDIBLE_BELL;
}
}
/* These *must* correspond to the array indices for the appropriate
string variable. (Though they're not used right now.) */
#define V_BELLSTYLE 0
#define V_COMBEGIN 1
#define V_EDITMODE 2
#define V_ISRCHTERM 3
#define V_KEYMAP 4
#define V_STRING 1
#define V_INT 2
/* Forward declarations */
static int sv_bell_style __P((char *));
static int sv_combegin __P((char *));
static int sv_compquery __P((char *));
static int sv_editmode __P((char *));
static int sv_isrchterm __P((char *));
static int sv_keymap __P((char *));
static struct {
char *name;
int flags;
Function *set_func;
} string_varlist[] = {
{ "bell-style", V_STRING, sv_bell_style },
{ "comment-begin", V_STRING, sv_combegin },
{ "completion-query-items", V_INT, sv_compquery },
{ "editing-mode", V_STRING, sv_editmode },
{ "isearch-terminators", V_STRING, sv_isrchterm },
{ "keymap", V_STRING, sv_keymap },
{ (char *)NULL, 0 }
};
static int
find_string_var (name)
char *name;
{
register int i;
for (i = 0; string_varlist[i].name; i++)
if (_rl_stricmp (name, string_varlist[i].name) == 0)
return i;
return -1;
}
/* A boolean value that can appear in a `set variable' command is true if
the value is null or empty, `on' (case-insenstive), or "1". Any other
values result in 0 (false). */
static int
bool_to_int (value)
char *value;
{
return (value == 0 || *value == '\0' ||
(_rl_stricmp (value, "on") == 0) ||
(value[0] == '1' && value[1] == '\0'));
}
int
rl_variable_bind (name, value)
char *name, *value;
{
register int i;
int v;
/* Check for simple variables first. */
i = find_boolean_var (name);
if (i >= 0)
{
*boolean_varlist[i].value = bool_to_int (value);
if (boolean_varlist[i].flags & V_SPECIAL)
hack_special_boolean_var (i);
return 0;
}
i = find_string_var (name);
/* For the time being, unknown variable names or string names without a
handler function are simply ignored. */
if (i < 0 || string_varlist[i].set_func == 0)
return 0;
v = (*string_varlist[i].set_func) (value);
return v;
}
static int
sv_editmode (value)
char *value;
{
if (_rl_strnicmp (value, "vi", 2) == 0)
{
#if defined (VI_MODE)
_rl_keymap = vi_insertion_keymap;
rl_editing_mode = vi_mode;
#endif /* VI_MODE */
return 0;
}
else if (_rl_strnicmp (value, "emacs", 5) == 0)
{
_rl_keymap = emacs_standard_keymap;
rl_editing_mode = emacs_mode;
return 0;
}
return 1;
}
static int
sv_combegin (value)
char *value;
{
if (value && *value)
{
FREE (_rl_comment_begin);
_rl_comment_begin = savestring (value);
return 0;
}
return 1;
}
static int
sv_compquery (value)
char *value;
{
int nval = 100;
if (value && *value)
{
nval = atoi (value);
if (nval < 0)
nval = 0;
}
rl_completion_query_items = nval;
return 0;
}
static int
sv_keymap (value)
char *value;
{
Keymap kmap;
kmap = rl_get_keymap_by_name (value);
if (kmap)
{
rl_set_keymap (kmap);
return 0;
}
return 1;
}
#define _SET_BELL(v) do { _rl_bell_preference = v; return 0; } while (0)
static int
sv_bell_style (value)
char *value;
{
if (value == 0 || *value == '\0')
_SET_BELL (AUDIBLE_BELL);
else if (_rl_stricmp (value, "none") == 0 || _rl_stricmp (value, "off") == 0)
_SET_BELL (NO_BELL);
else if (_rl_stricmp (value, "audible") == 0 || _rl_stricmp (value, "on") == 0)
_SET_BELL (AUDIBLE_BELL);
else if (_rl_stricmp (value, "visible") == 0)
_SET_BELL (VISIBLE_BELL);
else
return 1;
}
#undef _SET_BELL
static int
sv_isrchterm (value)
char *value;
{
int beg, end, delim;
char *v;
if (value == 0)
return 1;
/* Isolate the value and translate it into a character string. */
v = savestring (value);
FREE (_rl_isearch_terminators);
if (v[0] == '"' || v[0] == '\'')
{
delim = v[0];
for (beg = end = 1; v[end] && v[end] != delim; end++)
;
}
else
{
for (beg = end = 0; whitespace (v[end]) == 0; end++)
;
}
v[end] = '\0';
/* The value starts at v + beg. Translate it into a character string. */
_rl_isearch_terminators = (unsigned char *)xmalloc (2 * strlen (v) + 1);
rl_translate_keyseq (v + beg, _rl_isearch_terminators, &end);
_rl_isearch_terminators[end] = '\0';
free (v);
return 0;
}
/* Return the character which matches NAME.
For example, `Space' returns ' '. */
typedef struct {
char *name;
int value;
} assoc_list;
static assoc_list name_key_alist[] = {
{ "DEL", 0x7f },
{ "ESC", '\033' },
{ "Escape", '\033' },
{ "LFD", '\n' },
{ "Newline", '\n' },
{ "RET", '\r' },
{ "Return", '\r' },
{ "Rubout", 0x7f },
{ "SPC", ' ' },
{ "Space", ' ' },
{ "Tab", 0x09 },
{ (char *)0x0, 0 }
};
static int
glean_key_from_name (name)
char *name;
{
register int i;
for (i = 0; name_key_alist[i].name; i++)
if (_rl_stricmp (name, name_key_alist[i].name) == 0)
return (name_key_alist[i].value);
return (*(unsigned char *)name); /* XXX was return (*name) */
}
/* Auxiliary functions to manage keymaps. */
static struct {
char *name;
Keymap map;
} keymap_names[] = {
{ "emacs", emacs_standard_keymap },
{ "emacs-standard", emacs_standard_keymap },
{ "emacs-meta", emacs_meta_keymap },
{ "emacs-ctlx", emacs_ctlx_keymap },
#if defined (VI_MODE)
{ "vi", vi_movement_keymap },
{ "vi-move", vi_movement_keymap },
{ "vi-command", vi_movement_keymap },
{ "vi-insert", vi_insertion_keymap },
#endif /* VI_MODE */
{ (char *)0x0, (Keymap)0x0 }
};
Keymap
rl_get_keymap_by_name (name)
char *name;
{
register int i;
for (i = 0; keymap_names[i].name; i++)
if (strcmp (name, keymap_names[i].name) == 0)
return (keymap_names[i].map);
return ((Keymap) NULL);
}
char *
rl_get_keymap_name (map)
Keymap map;
{
register int i;
for (i = 0; keymap_names[i].name; i++)
if (map == keymap_names[i].map)
return (keymap_names[i].name);
return ((char *)NULL);
}
void
rl_set_keymap (map)
Keymap map;
{
if (map)
_rl_keymap = map;
}
Keymap
rl_get_keymap ()
{
return (_rl_keymap);
}
void
rl_set_keymap_from_edit_mode ()
{
if (rl_editing_mode == emacs_mode)
_rl_keymap = emacs_standard_keymap;
#if defined (VI_MODE)
else if (rl_editing_mode == vi_mode)
_rl_keymap = vi_insertion_keymap;
#endif /* VI_MODE */
}
char *
rl_get_keymap_name_from_edit_mode ()
{
if (rl_editing_mode == emacs_mode)
return "emacs";
#if defined (VI_MODE)
else if (rl_editing_mode == vi_mode)
return "vi";
#endif /* VI_MODE */
else
return "none";
}
/* **************************************************************** */
/* */
/* Key Binding and Function Information */
/* */
/* **************************************************************** */
/* Each of the following functions produces information about the
state of keybindings and functions known to Readline. The info
is always printed to rl_outstream, and in such a way that it can
be read back in (i.e., passed to rl_parse_and_bind (). */
/* Print the names of functions known to Readline. */
void
rl_list_funmap_names ()
{
register int i;
char **funmap_names;
funmap_names = rl_funmap_names ();
if (!funmap_names)
return;
for (i = 0; funmap_names[i]; i++)
fprintf (rl_outstream, "%s\n", funmap_names[i]);
free (funmap_names);
}
static char *
_rl_get_keyname (key)
int key;
{
char *keyname;
int i, c;
keyname = (char *)xmalloc (8);
c = key;
/* Since this is going to be used to write out keysequence-function
pairs for possible inclusion in an inputrc file, we don't want to
do any special meta processing on KEY. */
#if 0
/* We might want to do this, but the old version of the code did not. */
/* If this is an escape character, we don't want to do any more processing.
Just add the special ESC key sequence and return. */
if (c == ESC)
{
keyseq[0] = '\\';
keyseq[1] = 'e';
keyseq[2] = '\0';
return keyseq;
}
#endif
/* RUBOUT is translated directly into \C-? */
if (key == RUBOUT)
{
keyname[0] = '\\';
keyname[1] = 'C';
keyname[2] = '-';
keyname[3] = '?';
keyname[4] = '\0';
return keyname;
}
i = 0;
/* Now add special prefixes needed for control characters. This can
potentially change C. */
if (CTRL_CHAR (c))
{
keyname[i++] = '\\';
keyname[i++] = 'C';
keyname[i++] = '-';
c = _rl_to_lower (UNCTRL (c));
}
/* XXX experimental code. Turn the characters that are not ASCII or
ISO Latin 1 (128 - 159) into octal escape sequences (\200 - \237).
This changes C. */
if (c >= 128 && c <= 159)
{
keyname[i++] = '\\';
keyname[i++] = '2';
c -= 128;
keyname[i++] = (c / 8) + '0';
c = (c % 8) + '0';
}
/* Now, if the character needs to be quoted with a backslash, do that. */
if (c == '\\' || c == '"')
keyname[i++] = '\\';
/* Now add the key, terminate the string, and return it. */
keyname[i++] = (char) c;
keyname[i] = '\0';
return keyname;
}
/* Return a NULL terminated array of strings which represent the key
sequences that are used to invoke FUNCTION in MAP. */
char **
rl_invoking_keyseqs_in_map (function, map)
Function *function;
Keymap map;
{
register int key;
char **result;
int result_index, result_size;
result = (char **)NULL;
result_index = result_size = 0;
for (key = 0; key < KEYMAP_SIZE; key++)
{
switch (map[key].type)
{
case ISMACR:
/* Macros match, if, and only if, the pointers are identical.
Thus, they are treated exactly like functions in here. */
case ISFUNC:
/* If the function in the keymap is the one we are looking for,
then add the current KEY to the list of invoking keys. */
if (map[key].function == function)
{
char *keyname;
keyname = _rl_get_keyname (key);
if (result_index + 2 > result_size)
{
result_size += 10;
result = (char **) xrealloc (result, result_size * sizeof (char *));
}
result[result_index++] = keyname;
result[result_index] = (char *)NULL;
}
break;
case ISKMAP:
{
char **seqs;
register int i;
/* Find the list of keyseqs in this map which have FUNCTION as
their target. Add the key sequences found to RESULT. */
if (map[key].function)
seqs =
rl_invoking_keyseqs_in_map (function, FUNCTION_TO_KEYMAP (map, key));
else
break;
if (seqs == 0)
break;
for (i = 0; seqs[i]; i++)
{
char *keyname = (char *)xmalloc (6 + strlen (seqs[i]));
if (key == ESC)
sprintf (keyname, "\\e");
else if (CTRL_CHAR (key))
sprintf (keyname, "\\C-%c", _rl_to_lower (UNCTRL (key)));
else if (key == RUBOUT)
sprintf (keyname, "\\C-?");
else if (key == '\\' || key == '"')
{
keyname[0] = '\\';
keyname[1] = (char) key;
keyname[2] = '\0';
}
else
{
keyname[0] = (char) key;
keyname[1] = '\0';
}
strcat (keyname, seqs[i]);
free (seqs[i]);
if (result_index + 2 > result_size)
{
result_size += 10;
result = (char **) xrealloc (result, result_size * sizeof (char *));
}
result[result_index++] = keyname;
result[result_index] = (char *)NULL;
}
free (seqs);
}
break;
}
}
return (result);
}
/* Return a NULL terminated array of strings which represent the key
sequences that can be used to invoke FUNCTION using the current keymap. */
char **
rl_invoking_keyseqs (function)
Function *function;
{
return (rl_invoking_keyseqs_in_map (function, _rl_keymap));
}
/* Print all of the functions and their bindings to rl_outstream. If
PRINT_READABLY is non-zero, then print the output in such a way
that it can be read back in. */
void
rl_function_dumper (print_readably)
int print_readably;
{
register int i;
char **names;
char *name;
names = rl_funmap_names ();
fprintf (rl_outstream, "\n");
for (i = 0; name = names[i]; i++)
{
Function *function;
char **invokers;
function = rl_named_function (name);
invokers = rl_invoking_keyseqs_in_map (function, _rl_keymap);
if (print_readably)
{
if (!invokers)
fprintf (rl_outstream, "# %s (not bound)\n", name);
else
{
register int j;
for (j = 0; invokers[j]; j++)
{
fprintf (rl_outstream, "\"%s\": %s\n",
invokers[j], name);
free (invokers[j]);
}
free (invokers);
}
}
else
{
if (!invokers)
fprintf (rl_outstream, "%s is not bound to any keys\n",
name);
else
{
register int j;
fprintf (rl_outstream, "%s can be found on ", name);
for (j = 0; invokers[j] && j < 5; j++)
{
fprintf (rl_outstream, "\"%s\"%s", invokers[j],
invokers[j + 1] ? ", " : ".\n");
}
if (j == 5 && invokers[j])
fprintf (rl_outstream, "...\n");
for (j = 0; invokers[j]; j++)
free (invokers[j]);
free (invokers);
}
}
}
}
/* Print all of the current functions and their bindings to
rl_outstream. If an explicit argument is given, then print
the output in such a way that it can be read back in. */
int
rl_dump_functions (count, key)
int count, key;
{
if (rl_dispatching)
fprintf (rl_outstream, "\r\n");
rl_function_dumper (rl_explicit_arg);
rl_on_new_line ();
return (0);
}
static void
_rl_macro_dumper_internal (print_readably, map, prefix)
int print_readably;
Keymap map;
char *prefix;
{
register int key;
char *keyname, *out;
int prefix_len;
for (key = 0; key < KEYMAP_SIZE; key++)
{
switch (map[key].type)
{
case ISMACR:
keyname = _rl_get_keyname (key);
#if 0
out = (char *)map[key].function;
#else
out = _rl_untranslate_macro_value ((char *)map[key].function);
#endif
if (print_readably)
fprintf (rl_outstream, "\"%s%s\": \"%s\"\n", prefix ? prefix : "",
keyname,
out ? out : "");
else
fprintf (rl_outstream, "%s%s outputs %s\n", prefix ? prefix : "",
keyname,
out ? out : "");
free (keyname);
#if 1
free (out);
#endif
break;
case ISFUNC:
break;
case ISKMAP:
prefix_len = prefix ? strlen (prefix) : 0;
if (key == ESC)
{
keyname = xmalloc (3 + prefix_len);
if (prefix)
strcpy (keyname, prefix);
keyname[prefix_len] = '\\';
keyname[prefix_len + 1] = 'e';
keyname[prefix_len + 2] = '\0';
}
else
{
keyname = _rl_get_keyname (key);
if (prefix)
{
out = xmalloc (strlen (keyname) + prefix_len + 1);
strcpy (out, prefix);
strcpy (out + prefix_len, keyname);
free (keyname);
keyname = out;
}
}
_rl_macro_dumper_internal (print_readably, FUNCTION_TO_KEYMAP (map, key), keyname);
free (keyname);
break;
}
}
}
void
rl_macro_dumper (print_readably)
int print_readably;
{
_rl_macro_dumper_internal (print_readably, _rl_keymap, (char *)NULL);
}
int
rl_dump_macros (count, key)
int count, key;
{
if (rl_dispatching)
fprintf (rl_outstream, "\r\n");
rl_macro_dumper (rl_explicit_arg);
rl_on_new_line ();
return (0);
}
void
rl_variable_dumper (print_readably)
int print_readably;
{
int i;
char *kname;
for (i = 0; boolean_varlist[i].name; i++)
{
if (print_readably)
fprintf (rl_outstream, "set %s %s\n", boolean_varlist[i].name,
*boolean_varlist[i].value ? "on" : "off");
else
fprintf (rl_outstream, "%s is set to `%s'\n", boolean_varlist[i].name,
*boolean_varlist[i].value ? "on" : "off");
}
/* bell-style */
switch (_rl_bell_preference)
{
case NO_BELL:
kname = "none"; break;
case VISIBLE_BELL:
kname = "visible"; break;
case AUDIBLE_BELL:
default:
kname = "audible"; break;
}
if (print_readably)
fprintf (rl_outstream, "set bell-style %s\n", kname);
else
fprintf (rl_outstream, "bell-style is set to `%s'\n", kname);
/* comment-begin */
if (print_readably)
fprintf (rl_outstream, "set comment-begin %s\n", _rl_comment_begin ? _rl_comment_begin : RL_COMMENT_BEGIN_DEFAULT);
else
fprintf (rl_outstream, "comment-begin is set to `%s'\n", _rl_comment_begin ? _rl_comment_begin : "");
/* completion-query-items */
if (print_readably)
fprintf (rl_outstream, "set completion-query-items %d\n", rl_completion_query_items);
else
fprintf (rl_outstream, "completion-query-items is set to `%d'\n", rl_completion_query_items);
/* editing-mode */
if (print_readably)
fprintf (rl_outstream, "set editing-mode %s\n", (rl_editing_mode == emacs_mode) ? "emacs" : "vi");
else
fprintf (rl_outstream, "editing-mode is set to `%s'\n", (rl_editing_mode == emacs_mode) ? "emacs" : "vi");
/* keymap */
kname = rl_get_keymap_name (_rl_keymap);
if (kname == 0)
kname = rl_get_keymap_name_from_edit_mode ();
if (print_readably)
fprintf (rl_outstream, "set keymap %s\n", kname ? kname : "none");
else
fprintf (rl_outstream, "keymap is set to `%s'\n", kname ? kname : "none");
/* isearch-terminators */
if (_rl_isearch_terminators)
{
char *disp;
disp = _rl_untranslate_macro_value (_rl_isearch_terminators);
if (print_readably)
fprintf (rl_outstream, "set isearch-terminators \"%s\"\n", disp);
else
fprintf (rl_outstream, "isearch-terminators is set to \"%s\"\n", disp);
free (disp);
}
}
/* Print all of the current variables and their values to
rl_outstream. If an explicit argument is given, then print
the output in such a way that it can be read back in. */
int
rl_dump_variables (count, key)
int count, key;
{
if (rl_dispatching)
fprintf (rl_outstream, "\r\n");
rl_variable_dumper (rl_explicit_arg);
rl_on_new_line ();
return (0);
}
/* Bind key sequence KEYSEQ to DEFAULT_FUNC if KEYSEQ is unbound. */
void
_rl_bind_if_unbound (keyseq, default_func)
char *keyseq;
Function *default_func;
{
Function *func;
if (keyseq)
{
func = rl_function_of_keyseq (keyseq, _rl_keymap, (int *)NULL);
if (!func || func == rl_do_lowercase_version)
rl_set_key (keyseq, default_func, _rl_keymap);
}
}
/* Return non-zero if any members of ARRAY are a substring in STRING. */
static int
substring_member_of_array (string, array)
char *string, **array;
{
while (*array)
{
if (_rl_strindex (string, *array))
return (1);
array++;
}
return (0);
}