mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-30 07:20:41 +00:00
10a4b11321
* gdbarch.sh (PARM_BOUNDARY): Delete. gdbarch.h, gdbarch.c: Re-generate. * valops.c (PARM_BOUNDARY): Delete macro. (value_push): Delete PARM_BOUNDARY code. * m68k-tdep.c (m68k_gdbarch_init): Do not set parm_boundary.
2922 lines
89 KiB
C
2922 lines
89 KiB
C
/* Perform non-arithmetic operations on values, for GDB.
|
||
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
|
||
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "demangle.h"
|
||
#include "language.h"
|
||
#include "gdbcmd.h"
|
||
#include "regcache.h"
|
||
#include "cp-abi.h"
|
||
#include "block.h"
|
||
#include "infcall.h"
|
||
#include "dictionary.h"
|
||
#include "cp-support.h"
|
||
|
||
#include <errno.h>
|
||
#include "gdb_string.h"
|
||
#include "gdb_assert.h"
|
||
#include "cp-support.h"
|
||
#include "observer.h"
|
||
|
||
extern int overload_debug;
|
||
/* Local functions. */
|
||
|
||
static int typecmp (int staticp, int varargs, int nargs,
|
||
struct field t1[], struct value *t2[]);
|
||
|
||
static CORE_ADDR value_push (CORE_ADDR, struct value *);
|
||
|
||
static struct value *search_struct_field (char *, struct value *, int,
|
||
struct type *, int);
|
||
|
||
static struct value *search_struct_method (char *, struct value **,
|
||
struct value **,
|
||
int, int *, struct type *);
|
||
|
||
static int find_oload_champ_namespace (struct type **arg_types, int nargs,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
struct symbol ***oload_syms,
|
||
struct badness_vector **oload_champ_bv);
|
||
|
||
static
|
||
int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
int namespace_len,
|
||
struct symbol ***oload_syms,
|
||
struct badness_vector **oload_champ_bv,
|
||
int *oload_champ);
|
||
|
||
static int find_oload_champ (struct type **arg_types, int nargs, int method,
|
||
int num_fns,
|
||
struct fn_field *fns_ptr,
|
||
struct symbol **oload_syms,
|
||
struct badness_vector **oload_champ_bv);
|
||
|
||
static int oload_method_static (int method, struct fn_field *fns_ptr,
|
||
int index);
|
||
|
||
enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
|
||
|
||
static enum
|
||
oload_classification classify_oload_match (struct badness_vector
|
||
* oload_champ_bv,
|
||
int nargs,
|
||
int static_offset);
|
||
|
||
static int check_field_in (struct type *, const char *);
|
||
|
||
static struct value *value_struct_elt_for_reference (struct type *domain,
|
||
int offset,
|
||
struct type *curtype,
|
||
char *name,
|
||
struct type *intype,
|
||
enum noside noside);
|
||
|
||
static struct value *value_namespace_elt (const struct type *curtype,
|
||
char *name,
|
||
enum noside noside);
|
||
|
||
static struct value *value_maybe_namespace_elt (const struct type *curtype,
|
||
char *name,
|
||
enum noside noside);
|
||
|
||
static CORE_ADDR allocate_space_in_inferior (int);
|
||
|
||
static struct value *cast_into_complex (struct type *, struct value *);
|
||
|
||
static struct fn_field *find_method_list (struct value ** argp, char *method,
|
||
int offset,
|
||
struct type *type, int *num_fns,
|
||
struct type **basetype,
|
||
int *boffset);
|
||
|
||
void _initialize_valops (void);
|
||
|
||
/* Flag for whether we want to abandon failed expression evals by default. */
|
||
|
||
#if 0
|
||
static int auto_abandon = 0;
|
||
#endif
|
||
|
||
int overload_resolution = 0;
|
||
|
||
/* Find the address of function name NAME in the inferior. */
|
||
|
||
struct value *
|
||
find_function_in_inferior (const char *name)
|
||
{
|
||
struct symbol *sym;
|
||
sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
|
||
if (sym != NULL)
|
||
{
|
||
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
||
{
|
||
error ("\"%s\" exists in this program but is not a function.",
|
||
name);
|
||
}
|
||
return value_of_variable (sym, NULL);
|
||
}
|
||
else
|
||
{
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
||
if (msymbol != NULL)
|
||
{
|
||
struct type *type;
|
||
CORE_ADDR maddr;
|
||
type = lookup_pointer_type (builtin_type_char);
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
maddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
return value_from_pointer (type, maddr);
|
||
}
|
||
else
|
||
{
|
||
if (!target_has_execution)
|
||
error ("evaluation of this expression requires the target program to be active");
|
||
else
|
||
error ("evaluation of this expression requires the program to have a function \"%s\".", name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate NBYTES of space in the inferior using the inferior's malloc
|
||
and return a value that is a pointer to the allocated space. */
|
||
|
||
struct value *
|
||
value_allocate_space_in_inferior (int len)
|
||
{
|
||
struct value *blocklen;
|
||
struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
|
||
|
||
blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
|
||
val = call_function_by_hand (val, 1, &blocklen);
|
||
if (value_logical_not (val))
|
||
{
|
||
if (!target_has_execution)
|
||
error ("No memory available to program now: you need to start the target first");
|
||
else
|
||
error ("No memory available to program: call to malloc failed");
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
allocate_space_in_inferior (int len)
|
||
{
|
||
return value_as_long (value_allocate_space_in_inferior (len));
|
||
}
|
||
|
||
/* Cast value ARG2 to type TYPE and return as a value.
|
||
More general than a C cast: accepts any two types of the same length,
|
||
and if ARG2 is an lvalue it can be cast into anything at all. */
|
||
/* In C++, casts may change pointer or object representations. */
|
||
|
||
struct value *
|
||
value_cast (struct type *type, struct value *arg2)
|
||
{
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
int scalar;
|
||
struct type *type2;
|
||
|
||
int convert_to_boolean = 0;
|
||
|
||
if (VALUE_TYPE (arg2) == type)
|
||
return arg2;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
code1 = TYPE_CODE (type);
|
||
COERCE_REF (arg2);
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
/* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
|
||
is treated like a cast to (TYPE [N])OBJECT,
|
||
where N is sizeof(OBJECT)/sizeof(TYPE). */
|
||
if (code1 == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (type);
|
||
unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
|
||
if (element_length > 0
|
||
&& TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (type);
|
||
int val_length = TYPE_LENGTH (type2);
|
||
LONGEST low_bound, high_bound, new_length;
|
||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||
low_bound = 0, high_bound = 0;
|
||
new_length = val_length / element_length;
|
||
if (val_length % element_length != 0)
|
||
warning ("array element type size does not divide object size in cast");
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
range_type = create_range_type ((struct type *) NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
low_bound,
|
||
new_length + low_bound - 1);
|
||
VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
|
||
element_type, range_type);
|
||
return arg2;
|
||
}
|
||
}
|
||
|
||
if (current_language->c_style_arrays
|
||
&& TYPE_CODE (type2) == TYPE_CODE_ARRAY)
|
||
arg2 = value_coerce_array (arg2);
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
|
||
arg2 = value_coerce_function (arg2);
|
||
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
COERCE_VARYING_ARRAY (arg2, type2);
|
||
code2 = TYPE_CODE (type2);
|
||
|
||
if (code1 == TYPE_CODE_COMPLEX)
|
||
return cast_into_complex (type, arg2);
|
||
if (code1 == TYPE_CODE_BOOL)
|
||
{
|
||
code1 = TYPE_CODE_INT;
|
||
convert_to_boolean = 1;
|
||
}
|
||
if (code1 == TYPE_CODE_CHAR)
|
||
code1 = TYPE_CODE_INT;
|
||
if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
|
||
code2 = TYPE_CODE_INT;
|
||
|
||
scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
|
||
|| code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
|
||
|
||
if (code1 == TYPE_CODE_STRUCT
|
||
&& code2 == TYPE_CODE_STRUCT
|
||
&& TYPE_NAME (type) != 0)
|
||
{
|
||
/* Look in the type of the source to see if it contains the
|
||
type of the target as a superclass. If so, we'll need to
|
||
offset the object in addition to changing its type. */
|
||
struct value *v = search_struct_field (type_name_no_tag (type),
|
||
arg2, 0, type2, 1);
|
||
if (v)
|
||
{
|
||
VALUE_TYPE (v) = type;
|
||
return v;
|
||
}
|
||
}
|
||
if (code1 == TYPE_CODE_FLT && scalar)
|
||
return value_from_double (type, value_as_double (arg2));
|
||
else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
|
||
|| code1 == TYPE_CODE_RANGE)
|
||
&& (scalar || code2 == TYPE_CODE_PTR))
|
||
{
|
||
LONGEST longest;
|
||
|
||
if (deprecated_hp_som_som_object_present /* if target compiled by HP aCC */
|
||
&& (code2 == TYPE_CODE_PTR))
|
||
{
|
||
unsigned int *ptr;
|
||
struct value *retvalp;
|
||
|
||
switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
|
||
{
|
||
/* With HP aCC, pointers to data members have a bias */
|
||
case TYPE_CODE_MEMBER:
|
||
retvalp = value_from_longest (type, value_as_long (arg2));
|
||
/* force evaluation */
|
||
ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
|
||
*ptr &= ~0x20000000; /* zap 29th bit to remove bias */
|
||
return retvalp;
|
||
|
||
/* While pointers to methods don't really point to a function */
|
||
case TYPE_CODE_METHOD:
|
||
error ("Pointers to methods not supported with HP aCC");
|
||
|
||
default:
|
||
break; /* fall out and go to normal handling */
|
||
}
|
||
}
|
||
|
||
/* When we cast pointers to integers, we mustn't use
|
||
POINTER_TO_ADDRESS to find the address the pointer
|
||
represents, as value_as_long would. GDB should evaluate
|
||
expressions just as the compiler would --- and the compiler
|
||
sees a cast as a simple reinterpretation of the pointer's
|
||
bits. */
|
||
if (code2 == TYPE_CODE_PTR)
|
||
longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
|
||
TYPE_LENGTH (type2));
|
||
else
|
||
longest = value_as_long (arg2);
|
||
return value_from_longest (type, convert_to_boolean ?
|
||
(LONGEST) (longest ? 1 : 0) : longest);
|
||
}
|
||
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
|
||
code2 == TYPE_CODE_ENUM ||
|
||
code2 == TYPE_CODE_RANGE))
|
||
{
|
||
/* TYPE_LENGTH (type) is the length of a pointer, but we really
|
||
want the length of an address! -- we are really dealing with
|
||
addresses (i.e., gdb representations) not pointers (i.e.,
|
||
target representations) here.
|
||
|
||
This allows things like "print *(int *)0x01000234" to work
|
||
without printing a misleading message -- which would
|
||
otherwise occur when dealing with a target having two byte
|
||
pointers and four byte addresses. */
|
||
|
||
int addr_bit = TARGET_ADDR_BIT;
|
||
|
||
LONGEST longest = value_as_long (arg2);
|
||
if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
|
||
{
|
||
if (longest >= ((LONGEST) 1 << addr_bit)
|
||
|| longest <= -((LONGEST) 1 << addr_bit))
|
||
warning ("value truncated");
|
||
}
|
||
return value_from_longest (type, longest);
|
||
}
|
||
else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
|
||
{
|
||
if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
{
|
||
struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
|
||
struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
||
if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t2) == TYPE_CODE_STRUCT
|
||
&& !value_logical_not (arg2))
|
||
{
|
||
struct value *v;
|
||
|
||
/* Look in the type of the source to see if it contains the
|
||
type of the target as a superclass. If so, we'll need to
|
||
offset the pointer rather than just change its type. */
|
||
if (TYPE_NAME (t1) != NULL)
|
||
{
|
||
v = search_struct_field (type_name_no_tag (t1),
|
||
value_ind (arg2), 0, t2, 1);
|
||
if (v)
|
||
{
|
||
v = value_addr (v);
|
||
VALUE_TYPE (v) = type;
|
||
return v;
|
||
}
|
||
}
|
||
|
||
/* Look in the type of the target to see if it contains the
|
||
type of the source as a superclass. If so, we'll need to
|
||
offset the pointer rather than just change its type.
|
||
FIXME: This fails silently with virtual inheritance. */
|
||
if (TYPE_NAME (t2) != NULL)
|
||
{
|
||
v = search_struct_field (type_name_no_tag (t2),
|
||
value_zero (t1, not_lval), 0, t1, 1);
|
||
if (v)
|
||
{
|
||
CORE_ADDR addr2 = value_as_address (arg2);
|
||
addr2 -= (VALUE_ADDRESS (v)
|
||
+ VALUE_OFFSET (v)
|
||
+ VALUE_EMBEDDED_OFFSET (v));
|
||
return value_from_pointer (type, addr2);
|
||
}
|
||
}
|
||
}
|
||
/* No superclass found, just fall through to change ptr type. */
|
||
}
|
||
VALUE_TYPE (arg2) = type;
|
||
arg2 = value_change_enclosing_type (arg2, type);
|
||
VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
|
||
return arg2;
|
||
}
|
||
else if (VALUE_LVAL (arg2) == lval_memory)
|
||
{
|
||
return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
|
||
VALUE_BFD_SECTION (arg2));
|
||
}
|
||
else if (code1 == TYPE_CODE_VOID)
|
||
{
|
||
return value_zero (builtin_type_void, not_lval);
|
||
}
|
||
else
|
||
{
|
||
error ("Invalid cast.");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Create a value of type TYPE that is zero, and return it. */
|
||
|
||
struct value *
|
||
value_zero (struct type *type, enum lval_type lv)
|
||
{
|
||
struct value *val = allocate_value (type);
|
||
|
||
memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
|
||
VALUE_LVAL (val) = lv;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return a value with type TYPE located at ADDR.
|
||
|
||
Call value_at only if the data needs to be fetched immediately;
|
||
if we can be 'lazy' and defer the fetch, perhaps indefinately, call
|
||
value_at_lazy instead. value_at_lazy simply records the address of
|
||
the data and sets the lazy-evaluation-required flag. The lazy flag
|
||
is tested in the VALUE_CONTENTS macro, which is used if and when
|
||
the contents are actually required.
|
||
|
||
Note: value_at does *NOT* handle embedded offsets; perform such
|
||
adjustments before or after calling it. */
|
||
|
||
struct value *
|
||
value_at (struct type *type, CORE_ADDR addr, asection *sect)
|
||
{
|
||
struct value *val;
|
||
|
||
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
||
error ("Attempt to dereference a generic pointer.");
|
||
|
||
val = allocate_value (type);
|
||
|
||
read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = addr;
|
||
VALUE_BFD_SECTION (val) = sect;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
|
||
|
||
struct value *
|
||
value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
|
||
{
|
||
struct value *val;
|
||
|
||
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
||
error ("Attempt to dereference a generic pointer.");
|
||
|
||
val = allocate_value (type);
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = addr;
|
||
VALUE_LAZY (val) = 1;
|
||
VALUE_BFD_SECTION (val) = sect;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
|
||
if the current data for a variable needs to be loaded into
|
||
VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
|
||
clears the lazy flag to indicate that the data in the buffer is valid.
|
||
|
||
If the value is zero-length, we avoid calling read_memory, which would
|
||
abort. We mark the value as fetched anyway -- all 0 bytes of it.
|
||
|
||
This function returns a value because it is used in the VALUE_CONTENTS
|
||
macro as part of an expression, where a void would not work. The
|
||
value is ignored. */
|
||
|
||
int
|
||
value_fetch_lazy (struct value *val)
|
||
{
|
||
CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
|
||
int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
|
||
|
||
struct type *type = VALUE_TYPE (val);
|
||
if (length)
|
||
read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
|
||
|
||
VALUE_LAZY (val) = 0;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Store the contents of FROMVAL into the location of TOVAL.
|
||
Return a new value with the location of TOVAL and contents of FROMVAL. */
|
||
|
||
struct value *
|
||
value_assign (struct value *toval, struct value *fromval)
|
||
{
|
||
struct type *type;
|
||
struct value *val;
|
||
char raw_buffer[MAX_REGISTER_SIZE];
|
||
int use_buffer = 0;
|
||
struct frame_id old_frame;
|
||
|
||
if (!toval->modifiable)
|
||
error ("Left operand of assignment is not a modifiable lvalue.");
|
||
|
||
COERCE_REF (toval);
|
||
|
||
type = VALUE_TYPE (toval);
|
||
if (VALUE_LVAL (toval) != lval_internalvar)
|
||
fromval = value_cast (type, fromval);
|
||
else
|
||
COERCE_ARRAY (fromval);
|
||
CHECK_TYPEDEF (type);
|
||
|
||
/* Since modifying a register can trash the frame chain, and modifying memory
|
||
can trash the frame cache, we save the old frame and then restore the new
|
||
frame afterwards. */
|
||
old_frame = get_frame_id (deprecated_selected_frame);
|
||
|
||
switch (VALUE_LVAL (toval))
|
||
{
|
||
case lval_internalvar:
|
||
set_internalvar (VALUE_INTERNALVAR (toval), fromval);
|
||
val = value_copy (VALUE_INTERNALVAR (toval)->value);
|
||
val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
|
||
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
|
||
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
|
||
return val;
|
||
|
||
case lval_internalvar_component:
|
||
set_internalvar_component (VALUE_INTERNALVAR (toval),
|
||
VALUE_OFFSET (toval),
|
||
VALUE_BITPOS (toval),
|
||
VALUE_BITSIZE (toval),
|
||
fromval);
|
||
break;
|
||
|
||
case lval_memory:
|
||
{
|
||
char *dest_buffer;
|
||
CORE_ADDR changed_addr;
|
||
int changed_len;
|
||
|
||
if (VALUE_BITSIZE (toval))
|
||
{
|
||
char buffer[sizeof (LONGEST)];
|
||
/* We assume that the argument to read_memory is in units of
|
||
host chars. FIXME: Is that correct? */
|
||
changed_len = (VALUE_BITPOS (toval)
|
||
+ VALUE_BITSIZE (toval)
|
||
+ HOST_CHAR_BIT - 1)
|
||
/ HOST_CHAR_BIT;
|
||
|
||
if (changed_len > (int) sizeof (LONGEST))
|
||
error ("Can't handle bitfields which don't fit in a %d bit word.",
|
||
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
||
|
||
read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
buffer, changed_len);
|
||
modify_field (buffer, value_as_long (fromval),
|
||
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
||
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
||
dest_buffer = buffer;
|
||
}
|
||
else if (use_buffer)
|
||
{
|
||
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
||
changed_len = use_buffer;
|
||
dest_buffer = raw_buffer;
|
||
}
|
||
else
|
||
{
|
||
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
||
changed_len = TYPE_LENGTH (type);
|
||
dest_buffer = VALUE_CONTENTS (fromval);
|
||
}
|
||
|
||
write_memory (changed_addr, dest_buffer, changed_len);
|
||
if (deprecated_memory_changed_hook)
|
||
deprecated_memory_changed_hook (changed_addr, changed_len);
|
||
}
|
||
break;
|
||
|
||
case lval_reg_frame_relative:
|
||
case lval_register:
|
||
{
|
||
struct frame_info *frame;
|
||
int value_reg;
|
||
|
||
/* Figure out which frame this is in currently. */
|
||
if (VALUE_LVAL (toval) == lval_register)
|
||
{
|
||
frame = get_current_frame ();
|
||
value_reg = VALUE_REGNO (toval);
|
||
}
|
||
else
|
||
{
|
||
frame = frame_find_by_id (VALUE_FRAME_ID (toval));
|
||
value_reg = VALUE_FRAME_REGNUM (toval);
|
||
}
|
||
|
||
if (!frame)
|
||
error ("Value being assigned to is no longer active.");
|
||
|
||
if (VALUE_LVAL (toval) == lval_reg_frame_relative
|
||
&& CONVERT_REGISTER_P (VALUE_FRAME_REGNUM (toval), type))
|
||
{
|
||
/* If TOVAL is a special machine register requiring
|
||
conversion of program values to a special raw format. */
|
||
VALUE_TO_REGISTER (frame, VALUE_FRAME_REGNUM (toval),
|
||
type, VALUE_CONTENTS (fromval));
|
||
}
|
||
else
|
||
{
|
||
/* TOVAL is stored in a series of registers in the frame
|
||
specified by the structure. Copy that value out,
|
||
modify it, and copy it back in. */
|
||
int amount_copied;
|
||
int amount_to_copy;
|
||
char *buffer;
|
||
int reg_offset;
|
||
int byte_offset;
|
||
int regno;
|
||
|
||
/* Locate the first register that falls in the value that
|
||
needs to be transfered. Compute the offset of the
|
||
value in that register. */
|
||
{
|
||
int offset;
|
||
for (reg_offset = value_reg, offset = 0;
|
||
offset + DEPRECATED_REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
|
||
reg_offset++);
|
||
byte_offset = VALUE_OFFSET (toval) - offset;
|
||
}
|
||
|
||
/* Compute the number of register aligned values that need
|
||
to be copied. */
|
||
if (VALUE_BITSIZE (toval))
|
||
amount_to_copy = byte_offset + 1;
|
||
else
|
||
amount_to_copy = byte_offset + TYPE_LENGTH (type);
|
||
|
||
/* And a bounce buffer. Be slightly over generous. */
|
||
buffer = (char *) alloca (amount_to_copy + MAX_REGISTER_SIZE);
|
||
|
||
/* Copy it in. */
|
||
for (regno = reg_offset, amount_copied = 0;
|
||
amount_copied < amount_to_copy;
|
||
amount_copied += DEPRECATED_REGISTER_RAW_SIZE (regno), regno++)
|
||
frame_register_read (frame, regno, buffer + amount_copied);
|
||
|
||
/* Modify what needs to be modified. */
|
||
if (VALUE_BITSIZE (toval))
|
||
modify_field (buffer + byte_offset,
|
||
value_as_long (fromval),
|
||
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
||
else if (use_buffer)
|
||
memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
|
||
else
|
||
memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (type));
|
||
|
||
/* Copy it out. */
|
||
for (regno = reg_offset, amount_copied = 0;
|
||
amount_copied < amount_to_copy;
|
||
amount_copied += DEPRECATED_REGISTER_RAW_SIZE (regno), regno++)
|
||
put_frame_register (frame, regno, buffer + amount_copied);
|
||
|
||
}
|
||
if (deprecated_register_changed_hook)
|
||
deprecated_register_changed_hook (-1);
|
||
observer_notify_target_changed (¤t_target);
|
||
break;
|
||
}
|
||
|
||
default:
|
||
error ("Left operand of assignment is not an lvalue.");
|
||
}
|
||
|
||
/* Assigning to the stack pointer, frame pointer, and other
|
||
(architecture and calling convention specific) registers may
|
||
cause the frame cache to be out of date. Assigning to memory
|
||
also can. We just do this on all assignments to registers or
|
||
memory, for simplicity's sake; I doubt the slowdown matters. */
|
||
switch (VALUE_LVAL (toval))
|
||
{
|
||
case lval_memory:
|
||
case lval_register:
|
||
case lval_reg_frame_relative:
|
||
|
||
reinit_frame_cache ();
|
||
|
||
/* Having destoroyed the frame cache, restore the selected frame. */
|
||
|
||
/* FIXME: cagney/2002-11-02: There has to be a better way of
|
||
doing this. Instead of constantly saving/restoring the
|
||
frame. Why not create a get_selected_frame() function that,
|
||
having saved the selected frame's ID can automatically
|
||
re-find the previously selected frame automatically. */
|
||
|
||
{
|
||
struct frame_info *fi = frame_find_by_id (old_frame);
|
||
if (fi != NULL)
|
||
select_frame (fi);
|
||
}
|
||
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
||
If the field is signed, and is negative, then sign extend. */
|
||
if ((VALUE_BITSIZE (toval) > 0)
|
||
&& (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
|
||
{
|
||
LONGEST fieldval = value_as_long (fromval);
|
||
LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
|
||
|
||
fieldval &= valmask;
|
||
if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
|
||
fieldval |= ~valmask;
|
||
|
||
fromval = value_from_longest (type, fieldval);
|
||
}
|
||
|
||
val = value_copy (toval);
|
||
memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (type));
|
||
VALUE_TYPE (val) = type;
|
||
val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
|
||
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
|
||
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Extend a value VAL to COUNT repetitions of its type. */
|
||
|
||
struct value *
|
||
value_repeat (struct value *arg1, int count)
|
||
{
|
||
struct value *val;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Only values in memory can be extended with '@'.");
|
||
if (count < 1)
|
||
error ("Invalid number %d of repetitions.", count);
|
||
|
||
val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
|
||
|
||
read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
|
||
VALUE_CONTENTS_ALL_RAW (val),
|
||
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
|
||
|
||
return val;
|
||
}
|
||
|
||
struct value *
|
||
value_of_variable (struct symbol *var, struct block *b)
|
||
{
|
||
struct value *val;
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (!b)
|
||
frame = NULL; /* Use selected frame. */
|
||
else if (symbol_read_needs_frame (var))
|
||
{
|
||
frame = block_innermost_frame (b);
|
||
if (!frame)
|
||
{
|
||
if (BLOCK_FUNCTION (b)
|
||
&& SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
|
||
error ("No frame is currently executing in block %s.",
|
||
SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
|
||
else
|
||
error ("No frame is currently executing in specified block");
|
||
}
|
||
}
|
||
|
||
val = read_var_value (var, frame);
|
||
if (!val)
|
||
error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Given a value which is an array, return a value which is a pointer to its
|
||
first element, regardless of whether or not the array has a nonzero lower
|
||
bound.
|
||
|
||
FIXME: A previous comment here indicated that this routine should be
|
||
substracting the array's lower bound. It's not clear to me that this
|
||
is correct. Given an array subscripting operation, it would certainly
|
||
work to do the adjustment here, essentially computing:
|
||
|
||
(&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
|
||
|
||
However I believe a more appropriate and logical place to account for
|
||
the lower bound is to do so in value_subscript, essentially computing:
|
||
|
||
(&array[0] + ((index - lowerbound) * sizeof array[0]))
|
||
|
||
As further evidence consider what would happen with operations other
|
||
than array subscripting, where the caller would get back a value that
|
||
had an address somewhere before the actual first element of the array,
|
||
and the information about the lower bound would be lost because of
|
||
the coercion to pointer type.
|
||
*/
|
||
|
||
struct value *
|
||
value_coerce_array (struct value *arg1)
|
||
{
|
||
struct type *type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
(VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
||
}
|
||
|
||
/* Given a value which is a function, return a value which is a pointer
|
||
to it. */
|
||
|
||
struct value *
|
||
value_coerce_function (struct value *arg1)
|
||
{
|
||
struct value *retval;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
|
||
(VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
||
VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
|
||
return retval;
|
||
}
|
||
|
||
/* Return a pointer value for the object for which ARG1 is the contents. */
|
||
|
||
struct value *
|
||
value_addr (struct value *arg1)
|
||
{
|
||
struct value *arg2;
|
||
|
||
struct type *type = check_typedef (VALUE_TYPE (arg1));
|
||
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
{
|
||
/* Copy the value, but change the type from (T&) to (T*).
|
||
We keep the same location information, which is efficient,
|
||
and allows &(&X) to get the location containing the reference. */
|
||
arg2 = value_copy (arg1);
|
||
VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
||
return arg2;
|
||
}
|
||
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
||
return value_coerce_function (arg1);
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
/* Get target memory address */
|
||
arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
|
||
(VALUE_ADDRESS (arg1)
|
||
+ VALUE_OFFSET (arg1)
|
||
+ VALUE_EMBEDDED_OFFSET (arg1)));
|
||
|
||
/* This may be a pointer to a base subobject; so remember the
|
||
full derived object's type ... */
|
||
arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
|
||
/* ... and also the relative position of the subobject in the full object */
|
||
VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
|
||
VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
|
||
return arg2;
|
||
}
|
||
|
||
/* Given a value of a pointer type, apply the C unary * operator to it. */
|
||
|
||
struct value *
|
||
value_ind (struct value *arg1)
|
||
{
|
||
struct type *base_type;
|
||
struct value *arg2;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
|
||
base_type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member types in value_ind");
|
||
|
||
/* Allow * on an integer so we can cast it to whatever we want.
|
||
This returns an int, which seems like the most C-like thing
|
||
to do. "long long" variables are rare enough that
|
||
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_INT)
|
||
return value_at_lazy (builtin_type_int,
|
||
(CORE_ADDR) value_as_long (arg1),
|
||
VALUE_BFD_SECTION (arg1));
|
||
else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
|
||
{
|
||
struct type *enc_type;
|
||
/* We may be pointing to something embedded in a larger object */
|
||
/* Get the real type of the enclosing object */
|
||
enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
|
||
enc_type = TYPE_TARGET_TYPE (enc_type);
|
||
/* Retrieve the enclosing object pointed to */
|
||
arg2 = value_at_lazy (enc_type,
|
||
value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
|
||
VALUE_BFD_SECTION (arg1));
|
||
/* Re-adjust type */
|
||
VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
|
||
/* Add embedding info */
|
||
arg2 = value_change_enclosing_type (arg2, enc_type);
|
||
VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
|
||
|
||
/* We may be pointing to an object of some derived type */
|
||
arg2 = value_full_object (arg2, NULL, 0, 0, 0);
|
||
return arg2;
|
||
}
|
||
|
||
error ("Attempt to take contents of a non-pointer value.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
|
||
/* Pushing small parts of stack frames. */
|
||
|
||
/* Push one word (the size of object that a register holds). */
|
||
|
||
CORE_ADDR
|
||
push_word (CORE_ADDR sp, ULONGEST word)
|
||
{
|
||
int len = DEPRECATED_REGISTER_SIZE;
|
||
char buffer[MAX_REGISTER_SIZE];
|
||
|
||
store_unsigned_integer (buffer, len, word);
|
||
if (INNER_THAN (1, 2))
|
||
{
|
||
/* stack grows downward */
|
||
sp -= len;
|
||
write_memory (sp, buffer, len);
|
||
}
|
||
else
|
||
{
|
||
/* stack grows upward */
|
||
write_memory (sp, buffer, len);
|
||
sp += len;
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Push LEN bytes with data at BUFFER. */
|
||
|
||
CORE_ADDR
|
||
push_bytes (CORE_ADDR sp, char *buffer, int len)
|
||
{
|
||
if (INNER_THAN (1, 2))
|
||
{
|
||
/* stack grows downward */
|
||
sp -= len;
|
||
write_memory (sp, buffer, len);
|
||
}
|
||
else
|
||
{
|
||
/* stack grows upward */
|
||
write_memory (sp, buffer, len);
|
||
sp += len;
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Push onto the stack the specified value VALUE. Pad it correctly for
|
||
it to be an argument to a function. */
|
||
|
||
static CORE_ADDR
|
||
value_push (CORE_ADDR sp, struct value *arg)
|
||
{
|
||
int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
|
||
int container_len = len;
|
||
int offset;
|
||
|
||
/* Are we going to put it at the high or low end of the container? */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = container_len - len;
|
||
else
|
||
offset = 0;
|
||
|
||
if (INNER_THAN (1, 2))
|
||
{
|
||
/* stack grows downward */
|
||
sp -= container_len;
|
||
write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
|
||
}
|
||
else
|
||
{
|
||
/* stack grows upward */
|
||
write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
|
||
sp += container_len;
|
||
}
|
||
|
||
return sp;
|
||
}
|
||
|
||
CORE_ADDR
|
||
legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* ASSERT ( !struct_return); */
|
||
int i;
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
sp = value_push (sp, args[i]);
|
||
return sp;
|
||
}
|
||
|
||
/* Create a value for an array by allocating space in the inferior, copying
|
||
the data into that space, and then setting up an array value.
|
||
|
||
The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
|
||
populated from the values passed in ELEMVEC.
|
||
|
||
The element type of the array is inherited from the type of the
|
||
first element, and all elements must have the same size (though we
|
||
don't currently enforce any restriction on their types). */
|
||
|
||
struct value *
|
||
value_array (int lowbound, int highbound, struct value **elemvec)
|
||
{
|
||
int nelem;
|
||
int idx;
|
||
unsigned int typelength;
|
||
struct value *val;
|
||
struct type *rangetype;
|
||
struct type *arraytype;
|
||
CORE_ADDR addr;
|
||
|
||
/* Validate that the bounds are reasonable and that each of the elements
|
||
have the same size. */
|
||
|
||
nelem = highbound - lowbound + 1;
|
||
if (nelem <= 0)
|
||
{
|
||
error ("bad array bounds (%d, %d)", lowbound, highbound);
|
||
}
|
||
typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
|
||
for (idx = 1; idx < nelem; idx++)
|
||
{
|
||
if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
|
||
{
|
||
error ("array elements must all be the same size");
|
||
}
|
||
}
|
||
|
||
rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
|
||
lowbound, highbound);
|
||
arraytype = create_array_type ((struct type *) NULL,
|
||
VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
|
||
|
||
if (!current_language->c_style_arrays)
|
||
{
|
||
val = allocate_value (arraytype);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
{
|
||
memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
|
||
VALUE_CONTENTS_ALL (elemvec[idx]),
|
||
typelength);
|
||
}
|
||
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
|
||
return val;
|
||
}
|
||
|
||
/* Allocate space to store the array in the inferior, and then initialize
|
||
it by copying in each element. FIXME: Is it worth it to create a
|
||
local buffer in which to collect each value and then write all the
|
||
bytes in one operation? */
|
||
|
||
addr = allocate_space_in_inferior (nelem * typelength);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
{
|
||
write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
|
||
typelength);
|
||
}
|
||
|
||
/* Create the array type and set up an array value to be evaluated lazily. */
|
||
|
||
val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
|
||
return (val);
|
||
}
|
||
|
||
/* Create a value for a string constant by allocating space in the inferior,
|
||
copying the data into that space, and returning the address with type
|
||
TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
|
||
of characters.
|
||
Note that string types are like array of char types with a lower bound of
|
||
zero and an upper bound of LEN - 1. Also note that the string may contain
|
||
embedded null bytes. */
|
||
|
||
struct value *
|
||
value_string (char *ptr, int len)
|
||
{
|
||
struct value *val;
|
||
int lowbound = current_language->string_lower_bound;
|
||
struct type *rangetype = create_range_type ((struct type *) NULL,
|
||
builtin_type_int,
|
||
lowbound, len + lowbound - 1);
|
||
struct type *stringtype
|
||
= create_string_type ((struct type *) NULL, rangetype);
|
||
CORE_ADDR addr;
|
||
|
||
if (current_language->c_style_arrays == 0)
|
||
{
|
||
val = allocate_value (stringtype);
|
||
memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Allocate space to store the string in the inferior, and then
|
||
copy LEN bytes from PTR in gdb to that address in the inferior. */
|
||
|
||
addr = allocate_space_in_inferior (len);
|
||
write_memory (addr, ptr, len);
|
||
|
||
val = value_at_lazy (stringtype, addr, NULL);
|
||
return (val);
|
||
}
|
||
|
||
struct value *
|
||
value_bitstring (char *ptr, int len)
|
||
{
|
||
struct value *val;
|
||
struct type *domain_type = create_range_type (NULL, builtin_type_int,
|
||
0, len - 1);
|
||
struct type *type = create_set_type ((struct type *) NULL, domain_type);
|
||
TYPE_CODE (type) = TYPE_CODE_BITSTRING;
|
||
val = allocate_value (type);
|
||
memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
|
||
return val;
|
||
}
|
||
|
||
/* See if we can pass arguments in T2 to a function which takes arguments
|
||
of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
|
||
vector. If some arguments need coercion of some sort, then the coerced
|
||
values are written into T2. Return value is 0 if the arguments could be
|
||
matched, or the position at which they differ if not.
|
||
|
||
STATICP is nonzero if the T1 argument list came from a
|
||
static member function. T2 will still include the ``this'' pointer,
|
||
but it will be skipped.
|
||
|
||
For non-static member functions, we ignore the first argument,
|
||
which is the type of the instance variable. This is because we want
|
||
to handle calls with objects from derived classes. This is not
|
||
entirely correct: we should actually check to make sure that a
|
||
requested operation is type secure, shouldn't we? FIXME. */
|
||
|
||
static int
|
||
typecmp (int staticp, int varargs, int nargs,
|
||
struct field t1[], struct value *t2[])
|
||
{
|
||
int i;
|
||
|
||
if (t2 == 0)
|
||
internal_error (__FILE__, __LINE__, "typecmp: no argument list");
|
||
|
||
/* Skip ``this'' argument if applicable. T2 will always include THIS. */
|
||
if (staticp)
|
||
t2 ++;
|
||
|
||
for (i = 0;
|
||
(i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
|
||
i++)
|
||
{
|
||
struct type *tt1, *tt2;
|
||
|
||
if (!t2[i])
|
||
return i + 1;
|
||
|
||
tt1 = check_typedef (t1[i].type);
|
||
tt2 = check_typedef (VALUE_TYPE (t2[i]));
|
||
|
||
if (TYPE_CODE (tt1) == TYPE_CODE_REF
|
||
/* We should be doing hairy argument matching, as below. */
|
||
&& (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
|
||
{
|
||
if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
|
||
t2[i] = value_coerce_array (t2[i]);
|
||
else
|
||
t2[i] = value_addr (t2[i]);
|
||
continue;
|
||
}
|
||
|
||
/* djb - 20000715 - Until the new type structure is in the
|
||
place, and we can attempt things like implicit conversions,
|
||
we need to do this so you can take something like a map<const
|
||
char *>, and properly access map["hello"], because the
|
||
argument to [] will be a reference to a pointer to a char,
|
||
and the argument will be a pointer to a char. */
|
||
while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
|
||
TYPE_CODE (tt1) == TYPE_CODE_PTR)
|
||
{
|
||
tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
|
||
}
|
||
while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
|
||
TYPE_CODE(tt2) == TYPE_CODE_PTR ||
|
||
TYPE_CODE(tt2) == TYPE_CODE_REF)
|
||
{
|
||
tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
|
||
}
|
||
if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
|
||
continue;
|
||
/* Array to pointer is a `trivial conversion' according to the ARM. */
|
||
|
||
/* We should be doing much hairier argument matching (see section 13.2
|
||
of the ARM), but as a quick kludge, just check for the same type
|
||
code. */
|
||
if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
|
||
return i + 1;
|
||
}
|
||
if (varargs || t2[i] == NULL)
|
||
return 0;
|
||
return i + 1;
|
||
}
|
||
|
||
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
||
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else return NULL.
|
||
|
||
If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
|
||
look for a baseclass named NAME. */
|
||
|
||
static struct value *
|
||
search_struct_field (char *name, struct value *arg1, int offset,
|
||
struct type *type, int looking_for_baseclass)
|
||
{
|
||
int i;
|
||
int nbases = TYPE_N_BASECLASSES (type);
|
||
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (!looking_for_baseclass)
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
struct value *v;
|
||
if (TYPE_FIELD_STATIC (type, i))
|
||
{
|
||
v = value_static_field (type, i);
|
||
if (v == 0)
|
||
error ("field %s is nonexistent or has been optimised out",
|
||
name);
|
||
}
|
||
else
|
||
{
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
if (v == 0)
|
||
error ("there is no field named %s", name);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
if (t_field_name
|
||
&& (t_field_name[0] == '\0'
|
||
|| (TYPE_CODE (type) == TYPE_CODE_UNION
|
||
&& (strcmp_iw (t_field_name, "else") == 0))))
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, i);
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
||
|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
|
||
{
|
||
/* Look for a match through the fields of an anonymous union,
|
||
or anonymous struct. C++ provides anonymous unions.
|
||
|
||
In the GNU Chill (now deleted from GDB)
|
||
implementation of variant record types, each
|
||
<alternative field> has an (anonymous) union type,
|
||
each member of the union represents a <variant
|
||
alternative>. Each <variant alternative> is
|
||
represented as a struct, with a member for each
|
||
<variant field>. */
|
||
|
||
struct value *v;
|
||
int new_offset = offset;
|
||
|
||
/* This is pretty gross. In G++, the offset in an
|
||
anonymous union is relative to the beginning of the
|
||
enclosing struct. In the GNU Chill (now deleted
|
||
from GDB) implementation of variant records, the
|
||
bitpos is zero in an anonymous union field, so we
|
||
have to add the offset of the union here. */
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
|
||
|| (TYPE_NFIELDS (field_type) > 0
|
||
&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
|
||
new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
|
||
|
||
v = search_struct_field (name, arg1, new_offset, field_type,
|
||
looking_for_baseclass);
|
||
if (v)
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < nbases; i++)
|
||
{
|
||
struct value *v;
|
||
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
||
/* If we are looking for baseclasses, this is what we get when we
|
||
hit them. But it could happen that the base part's member name
|
||
is not yet filled in. */
|
||
int found_baseclass = (looking_for_baseclass
|
||
&& TYPE_BASECLASS_NAME (type, i) != NULL
|
||
&& (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
int boffset;
|
||
struct value *v2 = allocate_value (basetype);
|
||
|
||
boffset = baseclass_offset (type, i,
|
||
VALUE_CONTENTS (arg1) + offset,
|
||
VALUE_ADDRESS (arg1)
|
||
+ VALUE_OFFSET (arg1) + offset);
|
||
if (boffset == -1)
|
||
error ("virtual baseclass botch");
|
||
|
||
/* The virtual base class pointer might have been clobbered by the
|
||
user program. Make sure that it still points to a valid memory
|
||
location. */
|
||
|
||
boffset += offset;
|
||
if (boffset < 0 || boffset >= TYPE_LENGTH (type))
|
||
{
|
||
CORE_ADDR base_addr;
|
||
|
||
base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
|
||
if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
|
||
TYPE_LENGTH (basetype)) != 0)
|
||
error ("virtual baseclass botch");
|
||
VALUE_LVAL (v2) = lval_memory;
|
||
VALUE_ADDRESS (v2) = base_addr;
|
||
}
|
||
else
|
||
{
|
||
VALUE_LVAL (v2) = VALUE_LVAL (arg1);
|
||
VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
|
||
VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
|
||
if (VALUE_LAZY (arg1))
|
||
VALUE_LAZY (v2) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS_RAW (v2),
|
||
VALUE_CONTENTS_RAW (arg1) + boffset,
|
||
TYPE_LENGTH (basetype));
|
||
}
|
||
|
||
if (found_baseclass)
|
||
return v2;
|
||
v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
|
||
looking_for_baseclass);
|
||
}
|
||
else if (found_baseclass)
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
else
|
||
v = search_struct_field (name, arg1,
|
||
offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
|
||
basetype, looking_for_baseclass);
|
||
if (v)
|
||
return v;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Return the offset (in bytes) of the virtual base of type BASETYPE
|
||
* in an object pointed to by VALADDR (on the host), assumed to be of
|
||
* type TYPE. OFFSET is number of bytes beyond start of ARG to start
|
||
* looking (in case VALADDR is the contents of an enclosing object).
|
||
*
|
||
* This routine recurses on the primary base of the derived class because
|
||
* the virtual base entries of the primary base appear before the other
|
||
* virtual base entries.
|
||
*
|
||
* If the virtual base is not found, a negative integer is returned.
|
||
* The magnitude of the negative integer is the number of entries in
|
||
* the virtual table to skip over (entries corresponding to various
|
||
* ancestral classes in the chain of primary bases).
|
||
*
|
||
* Important: This assumes the HP / Taligent C++ runtime
|
||
* conventions. Use baseclass_offset() instead to deal with g++
|
||
* conventions. */
|
||
|
||
void
|
||
find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
|
||
int offset, int *boffset_p, int *skip_p)
|
||
{
|
||
int boffset; /* offset of virtual base */
|
||
int index; /* displacement to use in virtual table */
|
||
int skip;
|
||
|
||
struct value *vp;
|
||
CORE_ADDR vtbl; /* the virtual table pointer */
|
||
struct type *pbc; /* the primary base class */
|
||
|
||
/* Look for the virtual base recursively in the primary base, first.
|
||
* This is because the derived class object and its primary base
|
||
* subobject share the primary virtual table. */
|
||
|
||
boffset = 0;
|
||
pbc = TYPE_PRIMARY_BASE (type);
|
||
if (pbc)
|
||
{
|
||
find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
|
||
if (skip < 0)
|
||
{
|
||
*boffset_p = boffset;
|
||
*skip_p = -1;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
skip = 0;
|
||
|
||
|
||
/* Find the index of the virtual base according to HP/Taligent
|
||
runtime spec. (Depth-first, left-to-right.) */
|
||
index = virtual_base_index_skip_primaries (basetype, type);
|
||
|
||
if (index < 0)
|
||
{
|
||
*skip_p = skip + virtual_base_list_length_skip_primaries (type);
|
||
*boffset_p = 0;
|
||
return;
|
||
}
|
||
|
||
/* pai: FIXME -- 32x64 possible problem */
|
||
/* First word (4 bytes) in object layout is the vtable pointer */
|
||
vtbl = *(CORE_ADDR *) (valaddr + offset);
|
||
|
||
/* Before the constructor is invoked, things are usually zero'd out. */
|
||
if (vtbl == 0)
|
||
error ("Couldn't find virtual table -- object may not be constructed yet.");
|
||
|
||
|
||
/* Find virtual base's offset -- jump over entries for primary base
|
||
* ancestors, then use the index computed above. But also adjust by
|
||
* HP_ACC_VBASE_START for the vtable slots before the start of the
|
||
* virtual base entries. Offset is negative -- virtual base entries
|
||
* appear _before_ the address point of the virtual table. */
|
||
|
||
/* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
|
||
& use long type */
|
||
|
||
/* epstein : FIXME -- added param for overlay section. May not be correct */
|
||
vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
|
||
boffset = value_as_long (vp);
|
||
*skip_p = -1;
|
||
*boffset_p = boffset;
|
||
return;
|
||
}
|
||
|
||
|
||
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
||
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else if name matched and args not return (value)-1,
|
||
else return NULL. */
|
||
|
||
static struct value *
|
||
search_struct_method (char *name, struct value **arg1p,
|
||
struct value **args, int offset,
|
||
int *static_memfuncp, struct type *type)
|
||
{
|
||
int i;
|
||
struct value *v;
|
||
int name_matched = 0;
|
||
char dem_opname[64];
|
||
|
||
CHECK_TYPEDEF (type);
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
||
{
|
||
char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
/* FIXME! May need to check for ARM demangling here */
|
||
if (strncmp (t_field_name, "__", 2) == 0 ||
|
||
strncmp (t_field_name, "op", 2) == 0 ||
|
||
strncmp (t_field_name, "type", 4) == 0)
|
||
{
|
||
if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
|
||
t_field_name = dem_opname;
|
||
else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
|
||
t_field_name = dem_opname;
|
||
}
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
||
name_matched = 1;
|
||
|
||
check_stub_method_group (type, i);
|
||
if (j > 0 && args == 0)
|
||
error ("cannot resolve overloaded method `%s': no arguments supplied", name);
|
||
else if (j == 0 && args == 0)
|
||
{
|
||
v = value_fn_field (arg1p, f, j, type, offset);
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
else
|
||
while (j >= 0)
|
||
{
|
||
if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
|
||
TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
|
||
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
|
||
TYPE_FN_FIELD_ARGS (f, j), args))
|
||
{
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
return value_virtual_fn_field (arg1p, f, j, type, offset);
|
||
if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
|
||
*static_memfuncp = 1;
|
||
v = value_fn_field (arg1p, f, j, type, offset);
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
j--;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
int base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
if (TYPE_HAS_VTABLE (type))
|
||
{
|
||
/* HP aCC compiled type, search for virtual base offset
|
||
according to HP/Taligent runtime spec. */
|
||
int skip;
|
||
find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
|
||
VALUE_CONTENTS_ALL (*arg1p),
|
||
offset + VALUE_EMBEDDED_OFFSET (*arg1p),
|
||
&base_offset, &skip);
|
||
if (skip >= 0)
|
||
error ("Virtual base class offset not found in vtable");
|
||
}
|
||
else
|
||
{
|
||
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
||
char *base_valaddr;
|
||
|
||
/* The virtual base class pointer might have been clobbered by the
|
||
user program. Make sure that it still points to a valid memory
|
||
location. */
|
||
|
||
if (offset < 0 || offset >= TYPE_LENGTH (type))
|
||
{
|
||
base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
|
||
if (target_read_memory (VALUE_ADDRESS (*arg1p)
|
||
+ VALUE_OFFSET (*arg1p) + offset,
|
||
base_valaddr,
|
||
TYPE_LENGTH (baseclass)) != 0)
|
||
error ("virtual baseclass botch");
|
||
}
|
||
else
|
||
base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
|
||
|
||
base_offset =
|
||
baseclass_offset (type, i, base_valaddr,
|
||
VALUE_ADDRESS (*arg1p)
|
||
+ VALUE_OFFSET (*arg1p) + offset);
|
||
if (base_offset == -1)
|
||
error ("virtual baseclass botch");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
||
}
|
||
v = search_struct_method (name, arg1p, args, base_offset + offset,
|
||
static_memfuncp, TYPE_BASECLASS (type, i));
|
||
if (v == (struct value *) - 1)
|
||
{
|
||
name_matched = 1;
|
||
}
|
||
else if (v)
|
||
{
|
||
/* FIXME-bothner: Why is this commented out? Why is it here? */
|
||
/* *arg1p = arg1_tmp; */
|
||
return v;
|
||
}
|
||
}
|
||
if (name_matched)
|
||
return (struct value *) - 1;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Given *ARGP, a value of type (pointer to a)* structure/union,
|
||
extract the component named NAME from the ultimate target structure/union
|
||
and return it as a value with its appropriate type.
|
||
ERR is used in the error message if *ARGP's type is wrong.
|
||
|
||
C++: ARGS is a list of argument types to aid in the selection of
|
||
an appropriate method. Also, handle derived types.
|
||
|
||
STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
|
||
where the truthvalue of whether the function that was resolved was
|
||
a static member function or not is stored.
|
||
|
||
ERR is an error message to be printed in case the field is not found. */
|
||
|
||
struct value *
|
||
value_struct_elt (struct value **argp, struct value **args,
|
||
char *name, int *static_memfuncp, char *err)
|
||
{
|
||
struct type *t;
|
||
struct value *v;
|
||
|
||
COERCE_ARRAY (*argp);
|
||
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
||
{
|
||
*argp = value_ind (*argp);
|
||
/* Don't coerce fn pointer to fn and then back again! */
|
||
if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
|
||
COERCE_ARRAY (*argp);
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
}
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member type in value_struct_elt");
|
||
|
||
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Attempt to extract a component of a value that is not a %s.", err);
|
||
|
||
/* Assume it's not, unless we see that it is. */
|
||
if (static_memfuncp)
|
||
*static_memfuncp = 0;
|
||
|
||
if (!args)
|
||
{
|
||
/* if there are no arguments ...do this... */
|
||
|
||
/* Try as a field first, because if we succeed, there
|
||
is less work to be done. */
|
||
v = search_struct_field (name, *argp, 0, t, 0);
|
||
if (v)
|
||
return v;
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
if (destructor_name_p (name, t))
|
||
error ("Cannot get value of destructor");
|
||
|
||
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
||
|
||
if (v == (struct value *) - 1)
|
||
error ("Cannot take address of a method");
|
||
else if (v == 0)
|
||
{
|
||
if (TYPE_NFN_FIELDS (t))
|
||
error ("There is no member or method named %s.", name);
|
||
else
|
||
error ("There is no member named %s.", name);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
if (destructor_name_p (name, t))
|
||
{
|
||
if (!args[1])
|
||
{
|
||
/* Destructors are a special case. */
|
||
int m_index, f_index;
|
||
|
||
v = NULL;
|
||
if (get_destructor_fn_field (t, &m_index, &f_index))
|
||
{
|
||
v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
|
||
f_index, NULL, 0);
|
||
}
|
||
if (v == NULL)
|
||
error ("could not find destructor function named %s.", name);
|
||
else
|
||
return v;
|
||
}
|
||
else
|
||
{
|
||
error ("destructor should not have any argument");
|
||
}
|
||
}
|
||
else
|
||
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
||
|
||
if (v == (struct value *) - 1)
|
||
{
|
||
error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
|
||
}
|
||
else if (v == 0)
|
||
{
|
||
/* See if user tried to invoke data as function. If so,
|
||
hand it back. If it's not callable (i.e., a pointer to function),
|
||
gdb should give an error. */
|
||
v = search_struct_field (name, *argp, 0, t, 0);
|
||
}
|
||
|
||
if (!v)
|
||
error ("Structure has no component named %s.", name);
|
||
return v;
|
||
}
|
||
|
||
/* Search through the methods of an object (and its bases)
|
||
* to find a specified method. Return the pointer to the
|
||
* fn_field list of overloaded instances.
|
||
* Helper function for value_find_oload_list.
|
||
* ARGP is a pointer to a pointer to a value (the object)
|
||
* METHOD is a string containing the method name
|
||
* OFFSET is the offset within the value
|
||
* TYPE is the assumed type of the object
|
||
* NUM_FNS is the number of overloaded instances
|
||
* BASETYPE is set to the actual type of the subobject where the method is found
|
||
* BOFFSET is the offset of the base subobject where the method is found */
|
||
|
||
static struct fn_field *
|
||
find_method_list (struct value **argp, char *method, int offset,
|
||
struct type *type, int *num_fns,
|
||
struct type **basetype, int *boffset)
|
||
{
|
||
int i;
|
||
struct fn_field *f;
|
||
CHECK_TYPEDEF (type);
|
||
|
||
*num_fns = 0;
|
||
|
||
/* First check in object itself */
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
||
{
|
||
/* pai: FIXME What about operators and type conversions? */
|
||
char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
|
||
{
|
||
int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
||
|
||
*num_fns = len;
|
||
*basetype = type;
|
||
*boffset = offset;
|
||
|
||
/* Resolve any stub methods. */
|
||
check_stub_method_group (type, i);
|
||
|
||
return f;
|
||
}
|
||
}
|
||
|
||
/* Not found in object, check in base subobjects */
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
int base_offset;
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
if (TYPE_HAS_VTABLE (type))
|
||
{
|
||
/* HP aCC compiled type, search for virtual base offset
|
||
* according to HP/Taligent runtime spec. */
|
||
int skip;
|
||
find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
|
||
VALUE_CONTENTS_ALL (*argp),
|
||
offset + VALUE_EMBEDDED_OFFSET (*argp),
|
||
&base_offset, &skip);
|
||
if (skip >= 0)
|
||
error ("Virtual base class offset not found in vtable");
|
||
}
|
||
else
|
||
{
|
||
/* probably g++ runtime model */
|
||
base_offset = VALUE_OFFSET (*argp) + offset;
|
||
base_offset =
|
||
baseclass_offset (type, i,
|
||
VALUE_CONTENTS (*argp) + base_offset,
|
||
VALUE_ADDRESS (*argp) + base_offset);
|
||
if (base_offset == -1)
|
||
error ("virtual baseclass botch");
|
||
}
|
||
}
|
||
else
|
||
/* non-virtual base, simply use bit position from debug info */
|
||
{
|
||
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
||
}
|
||
f = find_method_list (argp, method, base_offset + offset,
|
||
TYPE_BASECLASS (type, i), num_fns, basetype,
|
||
boffset);
|
||
if (f)
|
||
return f;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the list of overloaded methods of a specified name.
|
||
* ARGP is a pointer to a pointer to a value (the object)
|
||
* METHOD is the method name
|
||
* OFFSET is the offset within the value contents
|
||
* NUM_FNS is the number of overloaded instances
|
||
* BASETYPE is set to the type of the base subobject that defines the method
|
||
* BOFFSET is the offset of the base subobject which defines the method */
|
||
|
||
struct fn_field *
|
||
value_find_oload_method_list (struct value **argp, char *method, int offset,
|
||
int *num_fns, struct type **basetype,
|
||
int *boffset)
|
||
{
|
||
struct type *t;
|
||
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
|
||
/* code snarfed from value_struct_elt */
|
||
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
||
{
|
||
*argp = value_ind (*argp);
|
||
/* Don't coerce fn pointer to fn and then back again! */
|
||
if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
|
||
COERCE_ARRAY (*argp);
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
}
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
||
error ("Not implemented: member type in value_find_oload_lis");
|
||
|
||
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Attempt to extract a component of a value that is not a struct or union");
|
||
|
||
return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
|
||
}
|
||
|
||
/* Given an array of argument types (ARGTYPES) (which includes an
|
||
entry for "this" in the case of C++ methods), the number of
|
||
arguments NARGS, the NAME of a function whether it's a method or
|
||
not (METHOD), and the degree of laxness (LAX) in conforming to
|
||
overload resolution rules in ANSI C++, find the best function that
|
||
matches on the argument types according to the overload resolution
|
||
rules.
|
||
|
||
In the case of class methods, the parameter OBJ is an object value
|
||
in which to search for overloaded methods.
|
||
|
||
In the case of non-method functions, the parameter FSYM is a symbol
|
||
corresponding to one of the overloaded functions.
|
||
|
||
Return value is an integer: 0 -> good match, 10 -> debugger applied
|
||
non-standard coercions, 100 -> incompatible.
|
||
|
||
If a method is being searched for, VALP will hold the value.
|
||
If a non-method is being searched for, SYMP will hold the symbol for it.
|
||
|
||
If a method is being searched for, and it is a static method,
|
||
then STATICP will point to a non-zero value.
|
||
|
||
Note: This function does *not* check the value of
|
||
overload_resolution. Caller must check it to see whether overload
|
||
resolution is permitted.
|
||
*/
|
||
|
||
int
|
||
find_overload_match (struct type **arg_types, int nargs, char *name, int method,
|
||
int lax, struct value **objp, struct symbol *fsym,
|
||
struct value **valp, struct symbol **symp, int *staticp)
|
||
{
|
||
struct value *obj = (objp ? *objp : NULL);
|
||
|
||
int oload_champ; /* Index of best overloaded function */
|
||
|
||
struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
|
||
|
||
struct value *temp = obj;
|
||
struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
|
||
struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
|
||
int num_fns = 0; /* Number of overloaded instances being considered */
|
||
struct type *basetype = NULL;
|
||
int boffset;
|
||
int ix;
|
||
int static_offset;
|
||
struct cleanup *old_cleanups = NULL;
|
||
|
||
const char *obj_type_name = NULL;
|
||
char *func_name = NULL;
|
||
enum oload_classification match_quality;
|
||
|
||
/* Get the list of overloaded methods or functions */
|
||
if (method)
|
||
{
|
||
obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
|
||
/* Hack: evaluate_subexp_standard often passes in a pointer
|
||
value rather than the object itself, so try again */
|
||
if ((!obj_type_name || !*obj_type_name) &&
|
||
(TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
|
||
obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
|
||
|
||
fns_ptr = value_find_oload_method_list (&temp, name, 0,
|
||
&num_fns,
|
||
&basetype, &boffset);
|
||
if (!fns_ptr || !num_fns)
|
||
error ("Couldn't find method %s%s%s",
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
/* If we are dealing with stub method types, they should have
|
||
been resolved by find_method_list via value_find_oload_method_list
|
||
above. */
|
||
gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
|
||
oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
|
||
fns_ptr, oload_syms, &oload_champ_bv);
|
||
}
|
||
else
|
||
{
|
||
const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
|
||
func_name = cp_func_name (qualified_name);
|
||
|
||
/* If the name is NULL this must be a C-style function.
|
||
Just return the same symbol. */
|
||
if (func_name == NULL)
|
||
{
|
||
*symp = fsym;
|
||
return 0;
|
||
}
|
||
|
||
old_cleanups = make_cleanup (xfree, func_name);
|
||
make_cleanup (xfree, oload_syms);
|
||
make_cleanup (xfree, oload_champ_bv);
|
||
|
||
oload_champ = find_oload_champ_namespace (arg_types, nargs,
|
||
func_name,
|
||
qualified_name,
|
||
&oload_syms,
|
||
&oload_champ_bv);
|
||
}
|
||
|
||
/* Check how bad the best match is. */
|
||
|
||
match_quality
|
||
= classify_oload_match (oload_champ_bv, nargs,
|
||
oload_method_static (method, fns_ptr,
|
||
oload_champ));
|
||
|
||
if (match_quality == INCOMPATIBLE)
|
||
{
|
||
if (method)
|
||
error ("Cannot resolve method %s%s%s to any overloaded instance",
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
else
|
||
error ("Cannot resolve function %s to any overloaded instance",
|
||
func_name);
|
||
}
|
||
else if (match_quality == NON_STANDARD)
|
||
{
|
||
if (method)
|
||
warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
|
||
obj_type_name,
|
||
(obj_type_name && *obj_type_name) ? "::" : "",
|
||
name);
|
||
else
|
||
warning ("Using non-standard conversion to match function %s to supplied arguments",
|
||
func_name);
|
||
}
|
||
|
||
if (method)
|
||
{
|
||
if (staticp != NULL)
|
||
*staticp = oload_method_static (method, fns_ptr, oload_champ);
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
|
||
*valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
|
||
else
|
||
*valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
|
||
}
|
||
else
|
||
{
|
||
*symp = oload_syms[oload_champ];
|
||
}
|
||
|
||
if (objp)
|
||
{
|
||
if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
|
||
{
|
||
temp = value_addr (temp);
|
||
}
|
||
*objp = temp;
|
||
}
|
||
if (old_cleanups != NULL)
|
||
do_cleanups (old_cleanups);
|
||
|
||
switch (match_quality)
|
||
{
|
||
case INCOMPATIBLE:
|
||
return 100;
|
||
case NON_STANDARD:
|
||
return 10;
|
||
default: /* STANDARD */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Find the best overload match, searching for FUNC_NAME in namespaces
|
||
contained in QUALIFIED_NAME until it either finds a good match or
|
||
runs out of namespaces. It stores the overloaded functions in
|
||
*OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
|
||
calling function is responsible for freeing *OLOAD_SYMS and
|
||
*OLOAD_CHAMP_BV. */
|
||
|
||
static int
|
||
find_oload_champ_namespace (struct type **arg_types, int nargs,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
struct symbol ***oload_syms,
|
||
struct badness_vector **oload_champ_bv)
|
||
{
|
||
int oload_champ;
|
||
|
||
find_oload_champ_namespace_loop (arg_types, nargs,
|
||
func_name,
|
||
qualified_name, 0,
|
||
oload_syms, oload_champ_bv,
|
||
&oload_champ);
|
||
|
||
return oload_champ;
|
||
}
|
||
|
||
/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
|
||
how deep we've looked for namespaces, and the champ is stored in
|
||
OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
|
||
if it isn't.
|
||
|
||
It is the caller's responsibility to free *OLOAD_SYMS and
|
||
*OLOAD_CHAMP_BV. */
|
||
|
||
static int
|
||
find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
|
||
const char *func_name,
|
||
const char *qualified_name,
|
||
int namespace_len,
|
||
struct symbol ***oload_syms,
|
||
struct badness_vector **oload_champ_bv,
|
||
int *oload_champ)
|
||
{
|
||
int next_namespace_len = namespace_len;
|
||
int searched_deeper = 0;
|
||
int num_fns = 0;
|
||
struct cleanup *old_cleanups;
|
||
int new_oload_champ;
|
||
struct symbol **new_oload_syms;
|
||
struct badness_vector *new_oload_champ_bv;
|
||
char *new_namespace;
|
||
|
||
if (next_namespace_len != 0)
|
||
{
|
||
gdb_assert (qualified_name[next_namespace_len] == ':');
|
||
next_namespace_len += 2;
|
||
}
|
||
next_namespace_len
|
||
+= cp_find_first_component (qualified_name + next_namespace_len);
|
||
|
||
/* Initialize these to values that can safely be xfree'd. */
|
||
*oload_syms = NULL;
|
||
*oload_champ_bv = NULL;
|
||
|
||
/* First, see if we have a deeper namespace we can search in. If we
|
||
get a good match there, use it. */
|
||
|
||
if (qualified_name[next_namespace_len] == ':')
|
||
{
|
||
searched_deeper = 1;
|
||
|
||
if (find_oload_champ_namespace_loop (arg_types, nargs,
|
||
func_name, qualified_name,
|
||
next_namespace_len,
|
||
oload_syms, oload_champ_bv,
|
||
oload_champ))
|
||
{
|
||
return 1;
|
||
}
|
||
};
|
||
|
||
/* If we reach here, either we're in the deepest namespace or we
|
||
didn't find a good match in a deeper namespace. But, in the
|
||
latter case, we still have a bad match in a deeper namespace;
|
||
note that we might not find any match at all in the current
|
||
namespace. (There's always a match in the deepest namespace,
|
||
because this overload mechanism only gets called if there's a
|
||
function symbol to start off with.) */
|
||
|
||
old_cleanups = make_cleanup (xfree, *oload_syms);
|
||
old_cleanups = make_cleanup (xfree, *oload_champ_bv);
|
||
new_namespace = alloca (namespace_len + 1);
|
||
strncpy (new_namespace, qualified_name, namespace_len);
|
||
new_namespace[namespace_len] = '\0';
|
||
new_oload_syms = make_symbol_overload_list (func_name,
|
||
new_namespace);
|
||
while (new_oload_syms[num_fns])
|
||
++num_fns;
|
||
|
||
new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
|
||
NULL, new_oload_syms,
|
||
&new_oload_champ_bv);
|
||
|
||
/* Case 1: We found a good match. Free earlier matches (if any),
|
||
and return it. Case 2: We didn't find a good match, but we're
|
||
not the deepest function. Then go with the bad match that the
|
||
deeper function found. Case 3: We found a bad match, and we're
|
||
the deepest function. Then return what we found, even though
|
||
it's a bad match. */
|
||
|
||
if (new_oload_champ != -1
|
||
&& classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
|
||
{
|
||
*oload_syms = new_oload_syms;
|
||
*oload_champ = new_oload_champ;
|
||
*oload_champ_bv = new_oload_champ_bv;
|
||
do_cleanups (old_cleanups);
|
||
return 1;
|
||
}
|
||
else if (searched_deeper)
|
||
{
|
||
xfree (new_oload_syms);
|
||
xfree (new_oload_champ_bv);
|
||
discard_cleanups (old_cleanups);
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (new_oload_champ != -1);
|
||
*oload_syms = new_oload_syms;
|
||
*oload_champ = new_oload_champ;
|
||
*oload_champ_bv = new_oload_champ_bv;
|
||
discard_cleanups (old_cleanups);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Look for a function to take NARGS args of types ARG_TYPES. Find
|
||
the best match from among the overloaded methods or functions
|
||
(depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
|
||
The number of methods/functions in the list is given by NUM_FNS.
|
||
Return the index of the best match; store an indication of the
|
||
quality of the match in OLOAD_CHAMP_BV.
|
||
|
||
It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
|
||
|
||
static int
|
||
find_oload_champ (struct type **arg_types, int nargs, int method,
|
||
int num_fns, struct fn_field *fns_ptr,
|
||
struct symbol **oload_syms,
|
||
struct badness_vector **oload_champ_bv)
|
||
{
|
||
int ix;
|
||
struct badness_vector *bv; /* A measure of how good an overloaded instance is */
|
||
int oload_champ = -1; /* Index of best overloaded function */
|
||
int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
|
||
/* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
|
||
|
||
*oload_champ_bv = NULL;
|
||
|
||
/* Consider each candidate in turn */
|
||
for (ix = 0; ix < num_fns; ix++)
|
||
{
|
||
int jj;
|
||
int static_offset = oload_method_static (method, fns_ptr, ix);
|
||
int nparms;
|
||
struct type **parm_types;
|
||
|
||
if (method)
|
||
{
|
||
nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
|
||
}
|
||
else
|
||
{
|
||
/* If it's not a method, this is the proper place */
|
||
nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
|
||
}
|
||
|
||
/* Prepare array of parameter types */
|
||
parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
|
||
for (jj = 0; jj < nparms; jj++)
|
||
parm_types[jj] = (method
|
||
? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
|
||
: TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
|
||
|
||
/* Compare parameter types to supplied argument types. Skip THIS for
|
||
static methods. */
|
||
bv = rank_function (parm_types, nparms, arg_types + static_offset,
|
||
nargs - static_offset);
|
||
|
||
if (!*oload_champ_bv)
|
||
{
|
||
*oload_champ_bv = bv;
|
||
oload_champ = 0;
|
||
}
|
||
else
|
||
/* See whether current candidate is better or worse than previous best */
|
||
switch (compare_badness (bv, *oload_champ_bv))
|
||
{
|
||
case 0:
|
||
oload_ambiguous = 1; /* top two contenders are equally good */
|
||
break;
|
||
case 1:
|
||
oload_ambiguous = 2; /* incomparable top contenders */
|
||
break;
|
||
case 2:
|
||
*oload_champ_bv = bv; /* new champion, record details */
|
||
oload_ambiguous = 0;
|
||
oload_champ = ix;
|
||
break;
|
||
case 3:
|
||
default:
|
||
break;
|
||
}
|
||
xfree (parm_types);
|
||
if (overload_debug)
|
||
{
|
||
if (method)
|
||
fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
|
||
else
|
||
fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
|
||
for (jj = 0; jj < nargs - static_offset; jj++)
|
||
fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
|
||
fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
|
||
}
|
||
}
|
||
|
||
return oload_champ;
|
||
}
|
||
|
||
/* Return 1 if we're looking at a static method, 0 if we're looking at
|
||
a non-static method or a function that isn't a method. */
|
||
|
||
static int
|
||
oload_method_static (int method, struct fn_field *fns_ptr, int index)
|
||
{
|
||
if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Check how good an overload match OLOAD_CHAMP_BV represents. */
|
||
|
||
static enum oload_classification
|
||
classify_oload_match (struct badness_vector *oload_champ_bv,
|
||
int nargs,
|
||
int static_offset)
|
||
{
|
||
int ix;
|
||
|
||
for (ix = 1; ix <= nargs - static_offset; ix++)
|
||
{
|
||
if (oload_champ_bv->rank[ix] >= 100)
|
||
return INCOMPATIBLE; /* truly mismatched types */
|
||
else if (oload_champ_bv->rank[ix] >= 10)
|
||
return NON_STANDARD; /* non-standard type conversions needed */
|
||
}
|
||
|
||
return STANDARD; /* Only standard conversions needed. */
|
||
}
|
||
|
||
/* C++: return 1 is NAME is a legitimate name for the destructor
|
||
of type TYPE. If TYPE does not have a destructor, or
|
||
if NAME is inappropriate for TYPE, an error is signaled. */
|
||
int
|
||
destructor_name_p (const char *name, const struct type *type)
|
||
{
|
||
/* destructors are a special case. */
|
||
|
||
if (name[0] == '~')
|
||
{
|
||
char *dname = type_name_no_tag (type);
|
||
char *cp = strchr (dname, '<');
|
||
unsigned int len;
|
||
|
||
/* Do not compare the template part for template classes. */
|
||
if (cp == NULL)
|
||
len = strlen (dname);
|
||
else
|
||
len = cp - dname;
|
||
if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
|
||
error ("name of destructor must equal name of class");
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for check_field: Given TYPE, a structure/union,
|
||
return 1 if the component named NAME from the ultimate
|
||
target structure/union is defined, otherwise, return 0. */
|
||
|
||
static int
|
||
check_field_in (struct type *type, const char *name)
|
||
{
|
||
int i;
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
return 1;
|
||
}
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
/* Destructors are a special case. */
|
||
if (destructor_name_p (name, type))
|
||
{
|
||
int m_index, f_index;
|
||
|
||
return get_destructor_fn_field (type, &m_index, &f_index);
|
||
}
|
||
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
|
||
{
|
||
if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
|
||
return 1;
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
if (check_field_in (TYPE_BASECLASS (type, i), name))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
|
||
return 1 if the component named NAME from the ultimate
|
||
target structure/union is defined, otherwise, return 0. */
|
||
|
||
int
|
||
check_field (struct value *arg1, const char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
|
||
t = VALUE_TYPE (arg1);
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
for (;;)
|
||
{
|
||
CHECK_TYPEDEF (t);
|
||
if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
|
||
break;
|
||
t = TYPE_TARGET_TYPE (t);
|
||
}
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member type in check_field");
|
||
|
||
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Internal error: `this' is not an aggregate");
|
||
|
||
return check_field_in (t, name);
|
||
}
|
||
|
||
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
||
return the appropriate member. This function is used to resolve
|
||
user expressions of the form "DOMAIN::NAME". For more details on
|
||
what happens, see the comment before
|
||
value_struct_elt_for_reference. */
|
||
|
||
struct value *
|
||
value_aggregate_elt (struct type *curtype,
|
||
char *name,
|
||
enum noside noside)
|
||
{
|
||
switch (TYPE_CODE (curtype))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
|
||
noside);
|
||
case TYPE_CODE_NAMESPACE:
|
||
return value_namespace_elt (curtype, name, noside);
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
"non-aggregate type in value_aggregate_elt");
|
||
}
|
||
}
|
||
|
||
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
||
return the address of this member as a "pointer to member"
|
||
type. If INTYPE is non-null, then it will be the type
|
||
of the member we are looking for. This will help us resolve
|
||
"pointers to member functions". This function is used
|
||
to resolve user expressions of the form "DOMAIN::NAME". */
|
||
|
||
static struct value *
|
||
value_struct_elt_for_reference (struct type *domain, int offset,
|
||
struct type *curtype, char *name,
|
||
struct type *intype,
|
||
enum noside noside)
|
||
{
|
||
struct type *t = curtype;
|
||
int i;
|
||
struct value *v;
|
||
|
||
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
|
||
|
||
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (t, i);
|
||
|
||
if (t_field_name && strcmp (t_field_name, name) == 0)
|
||
{
|
||
if (TYPE_FIELD_STATIC (t, i))
|
||
{
|
||
v = value_static_field (t, i);
|
||
if (v == NULL)
|
||
error ("static field %s has been optimized out",
|
||
name);
|
||
return v;
|
||
}
|
||
if (TYPE_FIELD_PACKED (t, i))
|
||
error ("pointers to bitfield members not allowed");
|
||
|
||
return value_from_longest
|
||
(lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
|
||
domain)),
|
||
offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
|
||
}
|
||
}
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
/* Destructors are a special case. */
|
||
if (destructor_name_p (name, t))
|
||
{
|
||
error ("member pointers to destructors not implemented yet");
|
||
}
|
||
|
||
/* Perform all necessary dereferencing. */
|
||
while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
|
||
intype = TYPE_TARGET_TYPE (intype);
|
||
|
||
for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
|
||
{
|
||
char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
|
||
char dem_opname[64];
|
||
|
||
if (strncmp (t_field_name, "__", 2) == 0 ||
|
||
strncmp (t_field_name, "op", 2) == 0 ||
|
||
strncmp (t_field_name, "type", 4) == 0)
|
||
{
|
||
if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
|
||
t_field_name = dem_opname;
|
||
else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
|
||
t_field_name = dem_opname;
|
||
}
|
||
if (t_field_name && strcmp (t_field_name, name) == 0)
|
||
{
|
||
int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
|
||
|
||
check_stub_method_group (t, i);
|
||
|
||
if (intype == 0 && j > 1)
|
||
error ("non-unique member `%s' requires type instantiation", name);
|
||
if (intype)
|
||
{
|
||
while (j--)
|
||
if (TYPE_FN_FIELD_TYPE (f, j) == intype)
|
||
break;
|
||
if (j < 0)
|
||
error ("no member function matches that type instantiation");
|
||
}
|
||
else
|
||
j = 0;
|
||
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
{
|
||
return value_from_longest
|
||
(lookup_reference_type
|
||
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
||
domain)),
|
||
(LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
|
||
}
|
||
else
|
||
{
|
||
struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
||
0, VAR_DOMAIN, 0, NULL);
|
||
if (s == NULL)
|
||
{
|
||
v = 0;
|
||
}
|
||
else
|
||
{
|
||
v = read_var_value (s, 0);
|
||
#if 0
|
||
VALUE_TYPE (v) = lookup_reference_type
|
||
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
||
domain));
|
||
#endif
|
||
}
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
|
||
{
|
||
struct value *v;
|
||
int base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (t, i))
|
||
base_offset = 0;
|
||
else
|
||
base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
|
||
v = value_struct_elt_for_reference (domain,
|
||
offset + base_offset,
|
||
TYPE_BASECLASS (t, i),
|
||
name,
|
||
intype,
|
||
noside);
|
||
if (v)
|
||
return v;
|
||
}
|
||
|
||
/* As a last chance, pretend that CURTYPE is a namespace, and look
|
||
it up that way; this (frequently) works for types nested inside
|
||
classes. */
|
||
|
||
return value_maybe_namespace_elt (curtype, name, noside);
|
||
}
|
||
|
||
/* C++: Return the member NAME of the namespace given by the type
|
||
CURTYPE. */
|
||
|
||
static struct value *
|
||
value_namespace_elt (const struct type *curtype,
|
||
char *name,
|
||
enum noside noside)
|
||
{
|
||
struct value *retval = value_maybe_namespace_elt (curtype, name,
|
||
noside);
|
||
|
||
if (retval == NULL)
|
||
error ("No symbol \"%s\" in namespace \"%s\".", name,
|
||
TYPE_TAG_NAME (curtype));
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* A helper function used by value_namespace_elt and
|
||
value_struct_elt_for_reference. It looks up NAME inside the
|
||
context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
|
||
is a class and NAME refers to a type in CURTYPE itself (as opposed
|
||
to, say, some base class of CURTYPE). */
|
||
|
||
static struct value *
|
||
value_maybe_namespace_elt (const struct type *curtype,
|
||
char *name,
|
||
enum noside noside)
|
||
{
|
||
const char *namespace_name = TYPE_TAG_NAME (curtype);
|
||
struct symbol *sym;
|
||
|
||
sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
|
||
get_selected_block (0), VAR_DOMAIN,
|
||
NULL);
|
||
|
||
if (sym == NULL)
|
||
return NULL;
|
||
else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
&& (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
|
||
return allocate_value (SYMBOL_TYPE (sym));
|
||
else
|
||
return value_of_variable (sym, get_selected_block (0));
|
||
}
|
||
|
||
/* Given a pointer value V, find the real (RTTI) type
|
||
of the object it points to.
|
||
Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
|
||
and refer to the values computed for the object pointed to. */
|
||
|
||
struct type *
|
||
value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
|
||
{
|
||
struct value *target;
|
||
|
||
target = value_ind (v);
|
||
|
||
return value_rtti_type (target, full, top, using_enc);
|
||
}
|
||
|
||
/* Given a value pointed to by ARGP, check its real run-time type, and
|
||
if that is different from the enclosing type, create a new value
|
||
using the real run-time type as the enclosing type (and of the same
|
||
type as ARGP) and return it, with the embedded offset adjusted to
|
||
be the correct offset to the enclosed object
|
||
RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
|
||
parameters, computed by value_rtti_type(). If these are available,
|
||
they can be supplied and a second call to value_rtti_type() is avoided.
|
||
(Pass RTYPE == NULL if they're not available */
|
||
|
||
struct value *
|
||
value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
|
||
int xusing_enc)
|
||
{
|
||
struct type *real_type;
|
||
int full = 0;
|
||
int top = -1;
|
||
int using_enc = 0;
|
||
struct value *new_val;
|
||
|
||
if (rtype)
|
||
{
|
||
real_type = rtype;
|
||
full = xfull;
|
||
top = xtop;
|
||
using_enc = xusing_enc;
|
||
}
|
||
else
|
||
real_type = value_rtti_type (argp, &full, &top, &using_enc);
|
||
|
||
/* If no RTTI data, or if object is already complete, do nothing */
|
||
if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
|
||
return argp;
|
||
|
||
/* If we have the full object, but for some reason the enclosing
|
||
type is wrong, set it *//* pai: FIXME -- sounds iffy */
|
||
if (full)
|
||
{
|
||
argp = value_change_enclosing_type (argp, real_type);
|
||
return argp;
|
||
}
|
||
|
||
/* Check if object is in memory */
|
||
if (VALUE_LVAL (argp) != lval_memory)
|
||
{
|
||
warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
|
||
|
||
return argp;
|
||
}
|
||
|
||
/* All other cases -- retrieve the complete object */
|
||
/* Go back by the computed top_offset from the beginning of the object,
|
||
adjusting for the embedded offset of argp if that's what value_rtti_type
|
||
used for its computation. */
|
||
new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
|
||
(using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
|
||
VALUE_BFD_SECTION (argp));
|
||
VALUE_TYPE (new_val) = VALUE_TYPE (argp);
|
||
VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
|
||
return new_val;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Return the value of the local variable, if one exists.
|
||
Flag COMPLAIN signals an error if the request is made in an
|
||
inappropriate context. */
|
||
|
||
struct value *
|
||
value_of_local (const char *name, int complain)
|
||
{
|
||
struct symbol *func, *sym;
|
||
struct block *b;
|
||
struct value * ret;
|
||
|
||
if (deprecated_selected_frame == 0)
|
||
{
|
||
if (complain)
|
||
error ("no frame selected");
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
func = get_frame_function (deprecated_selected_frame);
|
||
if (!func)
|
||
{
|
||
if (complain)
|
||
error ("no `%s' in nameless context", name);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
b = SYMBOL_BLOCK_VALUE (func);
|
||
if (dict_empty (BLOCK_DICT (b)))
|
||
{
|
||
if (complain)
|
||
error ("no args, no `%s'", name);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
|
||
symbol instead of the LOC_ARG one (if both exist). */
|
||
sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
|
||
if (sym == NULL)
|
||
{
|
||
if (complain)
|
||
error ("current stack frame does not contain a variable named `%s'", name);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
ret = read_var_value (sym, deprecated_selected_frame);
|
||
if (ret == 0 && complain)
|
||
error ("`%s' argument unreadable", name);
|
||
return ret;
|
||
}
|
||
|
||
/* C++/Objective-C: return the value of the class instance variable,
|
||
if one exists. Flag COMPLAIN signals an error if the request is
|
||
made in an inappropriate context. */
|
||
|
||
struct value *
|
||
value_of_this (int complain)
|
||
{
|
||
if (current_language->la_language == language_objc)
|
||
return value_of_local ("self", complain);
|
||
else
|
||
return value_of_local ("this", complain);
|
||
}
|
||
|
||
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
|
||
long, starting at LOWBOUND. The result has the same lower bound as
|
||
the original ARRAY. */
|
||
|
||
struct value *
|
||
value_slice (struct value *array, int lowbound, int length)
|
||
{
|
||
struct type *slice_range_type, *slice_type, *range_type;
|
||
LONGEST lowerbound, upperbound;
|
||
struct value *slice;
|
||
struct type *array_type;
|
||
array_type = check_typedef (VALUE_TYPE (array));
|
||
COERCE_VARYING_ARRAY (array, array_type);
|
||
if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
|
||
&& TYPE_CODE (array_type) != TYPE_CODE_STRING
|
||
&& TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
|
||
error ("cannot take slice of non-array");
|
||
range_type = TYPE_INDEX_TYPE (array_type);
|
||
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
||
error ("slice from bad array or bitstring");
|
||
if (lowbound < lowerbound || length < 0
|
||
|| lowbound + length - 1 > upperbound)
|
||
error ("slice out of range");
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
slice_range_type = create_range_type ((struct type *) NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
lowbound, lowbound + length - 1);
|
||
if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
|
||
{
|
||
int i;
|
||
slice_type = create_set_type ((struct type *) NULL, slice_range_type);
|
||
TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
|
||
slice = value_zero (slice_type, not_lval);
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
int element = value_bit_index (array_type,
|
||
VALUE_CONTENTS (array),
|
||
lowbound + i);
|
||
if (element < 0)
|
||
error ("internal error accessing bitstring");
|
||
else if (element > 0)
|
||
{
|
||
int j = i % TARGET_CHAR_BIT;
|
||
if (BITS_BIG_ENDIAN)
|
||
j = TARGET_CHAR_BIT - 1 - j;
|
||
VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
|
||
}
|
||
}
|
||
/* We should set the address, bitssize, and bitspos, so the clice
|
||
can be used on the LHS, but that may require extensions to
|
||
value_assign. For now, just leave as a non_lval. FIXME. */
|
||
}
|
||
else
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (array_type);
|
||
LONGEST offset
|
||
= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
|
||
slice_type = create_array_type ((struct type *) NULL, element_type,
|
||
slice_range_type);
|
||
TYPE_CODE (slice_type) = TYPE_CODE (array_type);
|
||
slice = allocate_value (slice_type);
|
||
if (VALUE_LAZY (array))
|
||
VALUE_LAZY (slice) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
|
||
TYPE_LENGTH (slice_type));
|
||
if (VALUE_LVAL (array) == lval_internalvar)
|
||
VALUE_LVAL (slice) = lval_internalvar_component;
|
||
else
|
||
VALUE_LVAL (slice) = VALUE_LVAL (array);
|
||
VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
|
||
VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
|
||
}
|
||
return slice;
|
||
}
|
||
|
||
/* Create a value for a FORTRAN complex number. Currently most of
|
||
the time values are coerced to COMPLEX*16 (i.e. a complex number
|
||
composed of 2 doubles. This really should be a smarter routine
|
||
that figures out precision inteligently as opposed to assuming
|
||
doubles. FIXME: fmb */
|
||
|
||
struct value *
|
||
value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
|
||
{
|
||
struct value *val;
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
|
||
val = allocate_value (type);
|
||
arg1 = value_cast (real_type, arg1);
|
||
arg2 = value_cast (real_type, arg2);
|
||
|
||
memcpy (VALUE_CONTENTS_RAW (val),
|
||
VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
|
||
memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
|
||
VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
|
||
return val;
|
||
}
|
||
|
||
/* Cast a value into the appropriate complex data type. */
|
||
|
||
static struct value *
|
||
cast_into_complex (struct type *type, struct value *val)
|
||
{
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
|
||
{
|
||
struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
|
||
struct value *re_val = allocate_value (val_real_type);
|
||
struct value *im_val = allocate_value (val_real_type);
|
||
|
||
memcpy (VALUE_CONTENTS_RAW (re_val),
|
||
VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
|
||
memcpy (VALUE_CONTENTS_RAW (im_val),
|
||
VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
|
||
TYPE_LENGTH (val_real_type));
|
||
|
||
return value_literal_complex (re_val, im_val, type);
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
|
||
|| TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
|
||
return value_literal_complex (val, value_zero (real_type, not_lval), type);
|
||
else
|
||
error ("cannot cast non-number to complex");
|
||
}
|
||
|
||
void
|
||
_initialize_valops (void)
|
||
{
|
||
#if 0
|
||
add_show_from_set
|
||
(add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
|
||
"Set automatic abandonment of expressions upon failure.",
|
||
&setlist),
|
||
&showlist);
|
||
#endif
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
|
||
"Set overload resolution in evaluating C++ functions.",
|
||
&setlist),
|
||
&showlist);
|
||
overload_resolution = 1;
|
||
}
|