darling-gdb/bfd/elf32-m68hc1x.c
Alan Modra 8423293d34 bfd/
* section.c (struct bfd_section): Replace link_order_head and
	link_order_tail with map_head and map_tail union.
	(STD_SECTION): Update.
	(_bfd_strip_section_from_output): Delete.
	* aoutx.h: Update throughout for above changes.
	* coff-ppc.c: Likewise.
	* cofflink.c: Likewise.
	* ecoff.c: Likewise.
	* elf-eh-frame.c: Likewise.
	* elf-m10300.c: Likewise.
	* elf.c: Likewise.
	* elf32-arm.c: Likewise.
	* elf32-cris.c: Likewise.
	* elf32-hppa.c: Likewise.
	* elf32-i386.c: Likewise.
	* elf32-m32r.c: Likewise.
	* elf32-m68hc1x.c: Likewise.
	* elf32-m68k.c: Likewise.
	* elf32-ppc.c: Likewise.
	* elf32-s390.c: Likewise.
	* elf32-sh.c: Likewise.
	* elf32-vax.c: Likewise.
	* elf32-xtensa.c: Likewise.
	* elf64-alpha.c: Likewise.
	* elf64-hppa.c: Likewise.
	* elf64-ppc.c: Likewise.
	* elf64-s390.c: Likewise.
	* elf64-sh64.c: Likewise.
	* elf64-x86-64.c: Likewise.
	* elflink.c: Likewise.
	* elfxx-ia64.c: Likewise.
	* elfxx-mips.c: Likewise.
	* elfxx-sparc.c: Likewise.
	* linker.c: Likewise.
	* merge.c: Likewise.
	* pdp11.c: Likewise.
	* xcofflink.c: Likewise.
	* elflink.c (bfd_boolean bfd_elf_size_dynsym_hash_dynstr): Split
	out from bfd_elf_size_dynamic_sections.
	* bfd-in.h (bfd_boolean bfd_elf_size_dynsym_hash_dynstr): Declare.
	* bfd-in2.h: Regenerate.
ld/
	* ldemul.c: Include bfdlink.h.
	(ldemul_before_allocation): Assume before_allocation is non-zero.
	(before_allocation_default): Call strip_excluded_output_sections.
	* ldlang.c (stripped_excluded_sections): New variable.
	(lang_add_section): Build input section list for each output
	section, attached via map_head and map_tail pointers.
	(strip_excluded_output_sections): Make global.  Traverse the
	input section lists to find which output sections can go.  Clear
	link_order pointers and set stripped_excluded_sections.
	(lang_process): Call strip_excluded_output_sections.
	* ldlang.h (strip_excluded_output_sections): Declare.
	* ldwrite.c: Update throuhout for link_order_head -> map_head change.
	* emultempl/aix.em (before_allocation): Call
	strip_excluded_output_sections.
	* emultempl/armcoff.em (before_allocation): Likewise.
	* emultempl/beos.em (before_allocation): Likewise.
	* emultempl/linux.em (before_allocation): Likewise.
	* emultempl/pe.em (before_allocation): Likewise.
	* emultempl/sunos.em (before_allocation): Likewise.
	* emultempl/elf32.em (before_allocation): Likewise.  Call
	bfd_elf_size_dynsym_hash_dynstr too.
	* emultempl/lnk960.em (lnk960_before_allocation): Delete.
	(ld_lnk960): Use before_allocation_default.
2005-05-04 11:00:28 +00:00

1395 lines
43 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Motorola 68HC11/HC12-specific support for 32-bit ELF
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Stephane Carrez (stcarrez@nerim.fr)
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02110-1301, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf32-m68hc1x.h"
#include "elf/m68hc11.h"
#include "opcode/m68hc11.h"
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
((struct elf32_m68hc11_stub_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
(const char *stub_name,
asection *section,
struct m68hc11_elf_link_hash_table *htab);
static struct bfd_hash_entry *stub_hash_newfunc
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
const char* name, bfd_vma value,
asection* sec);
static bfd_boolean m68hc11_elf_export_one_stub
(struct bfd_hash_entry *gen_entry, void *in_arg);
static void scan_sections_for_abi (bfd*, asection*, PTR);
struct m68hc11_scan_param
{
struct m68hc11_page_info* pinfo;
bfd_boolean use_memory_banks;
};
/* Create a 68HC11/68HC12 ELF linker hash table. */
struct m68hc11_elf_link_hash_table*
m68hc11_elf_hash_table_create (bfd *abfd)
{
struct m68hc11_elf_link_hash_table *ret;
bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
return NULL;
memset (ret, 0, amt);
if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
_bfd_elf_link_hash_newfunc))
{
free (ret);
return NULL;
}
/* Init the stub hash table too. */
amt = sizeof (struct bfd_hash_table);
ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
if (ret->stub_hash_table == NULL)
{
free (ret);
return NULL;
}
if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc))
return NULL;
ret->stub_bfd = NULL;
ret->stub_section = 0;
ret->add_stub_section = NULL;
ret->sym_sec.abfd = NULL;
return ret;
}
/* Free the derived linker hash table. */
void
m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
{
struct m68hc11_elf_link_hash_table *ret
= (struct m68hc11_elf_link_hash_table *) hash;
bfd_hash_table_free (ret->stub_hash_table);
free (ret->stub_hash_table);
_bfd_generic_link_hash_table_free (hash);
}
/* Assorted hash table functions. */
/* Initialize an entry in the stub hash table. */
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf32_m68hc11_stub_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf32_m68hc11_stub_hash_entry *eh;
/* Initialize the local fields. */
eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
eh->stub_sec = NULL;
eh->stub_offset = 0;
eh->target_value = 0;
eh->target_section = NULL;
}
return entry;
}
/* Add a new stub entry to the stub hash. Not all fields of the new
stub entry are initialised. */
static struct elf32_m68hc11_stub_hash_entry *
m68hc12_add_stub (const char *stub_name, asection *section,
struct m68hc11_elf_link_hash_table *htab)
{
struct elf32_m68hc11_stub_hash_entry *stub_entry;
/* Enter this entry into the linker stub hash table. */
stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
TRUE, FALSE);
if (stub_entry == NULL)
{
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
section->owner, stub_name);
return NULL;
}
if (htab->stub_section == 0)
{
htab->stub_section = (*htab->add_stub_section) (".tramp",
htab->tramp_section);
}
stub_entry->stub_sec = htab->stub_section;
stub_entry->stub_offset = 0;
return stub_entry;
}
/* Hook called by the linker routine which adds symbols from an object
file. We use it for identify far symbols and force a loading of
the trampoline handler. */
bfd_boolean
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
Elf_Internal_Sym *sym,
const char **namep ATTRIBUTE_UNUSED,
flagword *flagsp ATTRIBUTE_UNUSED,
asection **secp ATTRIBUTE_UNUSED,
bfd_vma *valp ATTRIBUTE_UNUSED)
{
if (sym->st_other & STO_M68HC12_FAR)
{
struct elf_link_hash_entry *h;
h = (struct elf_link_hash_entry *)
bfd_link_hash_lookup (info->hash, "__far_trampoline",
FALSE, FALSE, FALSE);
if (h == NULL)
{
struct bfd_link_hash_entry* entry = NULL;
_bfd_generic_link_add_one_symbol (info, abfd,
"__far_trampoline",
BSF_GLOBAL,
bfd_und_section_ptr,
(bfd_vma) 0, (const char*) NULL,
FALSE, FALSE, &entry);
}
}
return TRUE;
}
/* External entry points for sizing and building linker stubs. */
/* Set up various things so that we can make a list of input sections
for each output section included in the link. Returns -1 on error,
0 when no stubs will be needed, and 1 on success. */
int
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
{
bfd *input_bfd;
unsigned int bfd_count;
int top_id, top_index;
asection *section;
asection **input_list, **list;
bfd_size_type amt;
asection *text_section;
struct m68hc11_elf_link_hash_table *htab;
htab = m68hc11_elf_hash_table (info);
if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
return 0;
/* Count the number of input BFDs and find the top input section id.
Also search for an existing ".tramp" section so that we know
where generated trampolines must go. Default to ".text" if we
can't find it. */
htab->tramp_section = 0;
text_section = 0;
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next)
{
bfd_count += 1;
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
const char* name = bfd_get_section_name (input_bfd, section);
if (!strcmp (name, ".tramp"))
htab->tramp_section = section;
if (!strcmp (name, ".text"))
text_section = section;
if (top_id < section->id)
top_id = section->id;
}
}
htab->bfd_count = bfd_count;
if (htab->tramp_section == 0)
htab->tramp_section = text_section;
/* We can't use output_bfd->section_count here to find the top output
section index as some sections may have been removed, and
strip_excluded_output_sections doesn't renumber the indices. */
for (section = output_bfd->sections, top_index = 0;
section != NULL;
section = section->next)
{
if (top_index < section->index)
top_index = section->index;
}
htab->top_index = top_index;
amt = sizeof (asection *) * (top_index + 1);
input_list = (asection **) bfd_malloc (amt);
htab->input_list = input_list;
if (input_list == NULL)
return -1;
/* For sections we aren't interested in, mark their entries with a
value we can check later. */
list = input_list + top_index;
do
*list = bfd_abs_section_ptr;
while (list-- != input_list);
for (section = output_bfd->sections;
section != NULL;
section = section->next)
{
if ((section->flags & SEC_CODE) != 0)
input_list[section->index] = NULL;
}
return 1;
}
/* Determine and set the size of the stub section for a final link.
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction. */
bfd_boolean
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
struct bfd_link_info *info,
asection * (*add_stub_section) (const char*, asection*))
{
bfd *input_bfd;
asection *section;
Elf_Internal_Sym *local_syms, **all_local_syms;
unsigned int bfd_indx, bfd_count;
bfd_size_type amt;
asection *stub_sec;
struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
/* Stash our params away. */
htab->stub_bfd = stub_bfd;
htab->add_stub_section = add_stub_section;
/* Count the number of input BFDs and find the top input section id. */
for (input_bfd = info->input_bfds, bfd_count = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next)
{
bfd_count += 1;
}
/* We want to read in symbol extension records only once. To do this
we need to read in the local symbols in parallel and save them for
later use; so hold pointers to the local symbols in an array. */
amt = sizeof (Elf_Internal_Sym *) * bfd_count;
all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
if (all_local_syms == NULL)
return FALSE;
/* Walk over all the input BFDs, swapping in local symbols. */
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* We need an array of the local symbols attached to the input bfd. */
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
{
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
/* Cache them for elf_link_input_bfd. */
symtab_hdr->contents = (unsigned char *) local_syms;
}
if (local_syms == NULL)
{
free (all_local_syms);
return FALSE;
}
all_local_syms[bfd_indx] = local_syms;
}
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *local_syms;
struct elf_link_hash_entry ** sym_hashes;
sym_hashes = elf_sym_hashes (input_bfd);
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
local_syms = all_local_syms[bfd_indx];
/* Walk over each section attached to the input bfd. */
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more
to do. */
if ((section->flags & SEC_RELOC) == 0
|| section->reloc_count == 0)
continue;
/* If this section is a link-once section that will be
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
/* Get the relocs. */
internal_relocs
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
(Elf_Internal_Rela *) NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
unsigned int r_type, r_indx;
struct elf32_m68hc11_stub_hash_entry *stub_entry;
asection *sym_sec;
bfd_vma sym_value;
struct elf_link_hash_entry *hash;
const char *stub_name;
Elf_Internal_Sym *sym;
r_type = ELF32_R_TYPE (irela->r_info);
/* Only look at 16-bit relocs. */
if (r_type != (unsigned int) R_M68HC11_16)
continue;
/* Now determine the call target, its name, value,
section. */
r_indx = ELF32_R_SYM (irela->r_info);
if (r_indx < symtab_hdr->sh_info)
{
/* It's a local symbol. */
Elf_Internal_Shdr *hdr;
bfd_boolean is_far;
sym = local_syms + r_indx;
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
if (!is_far)
continue;
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
sym_sec = hdr->bfd_section;
stub_name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link,
sym->st_name));
sym_value = sym->st_value;
hash = NULL;
}
else
{
/* It's an external symbol. */
int e_indx;
e_indx = r_indx - symtab_hdr->sh_info;
hash = (struct elf_link_hash_entry *)
(sym_hashes[e_indx]);
while (hash->root.type == bfd_link_hash_indirect
|| hash->root.type == bfd_link_hash_warning)
hash = ((struct elf_link_hash_entry *)
hash->root.u.i.link);
if (hash->root.type == bfd_link_hash_defined
|| hash->root.type == bfd_link_hash_defweak
|| hash->root.type == bfd_link_hash_new)
{
if (!(hash->other & STO_M68HC12_FAR))
continue;
}
else if (hash->root.type == bfd_link_hash_undefweak)
{
continue;
}
else if (hash->root.type == bfd_link_hash_undefined)
{
continue;
}
else
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
sym_sec = hash->root.u.def.section;
sym_value = hash->root.u.def.value;
stub_name = hash->root.root.string;
}
if (!stub_name)
goto error_ret_free_internal;
stub_entry = m68hc12_stub_hash_lookup
(htab->stub_hash_table,
stub_name,
FALSE, FALSE);
if (stub_entry == NULL)
{
if (add_stub_section == 0)
continue;
stub_entry = m68hc12_add_stub (stub_name, section, htab);
if (stub_entry == NULL)
{
error_ret_free_internal:
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
goto error_ret_free_local;
}
}
stub_entry->target_value = sym_value;
stub_entry->target_section = sym_sec;
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
}
}
if (add_stub_section)
{
/* OK, we've added some stubs. Find out the new size of the
stub sections. */
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
stub_sec->size = 0;
}
bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
}
free (all_local_syms);
return TRUE;
error_ret_free_local:
free (all_local_syms);
return FALSE;
}
/* Export the trampoline addresses in the symbol table. */
static bfd_boolean
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
{
struct bfd_link_info *info;
struct m68hc11_elf_link_hash_table *htab;
struct elf32_m68hc11_stub_hash_entry *stub_entry;
char* name;
bfd_boolean result;
info = (struct bfd_link_info *) in_arg;
htab = m68hc11_elf_hash_table (info);
/* Massage our args to the form they really have. */
stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
/* Generate the trampoline according to HC11 or HC12. */
result = (* htab->build_one_stub) (gen_entry, in_arg);
/* Make a printable name that does not conflict with the real function. */
name = alloca (strlen (stub_entry->root.string) + 16);
sprintf (name, "tramp.%s", stub_entry->root.string);
/* Export the symbol for debugging/disassembling. */
m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
stub_entry->stub_offset,
stub_entry->stub_sec);
return result;
}
/* Export a symbol or set its value and section. */
static void
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
const char *name, bfd_vma value, asection *sec)
{
struct elf_link_hash_entry *h;
h = (struct elf_link_hash_entry *)
bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
if (h == NULL)
{
_bfd_generic_link_add_one_symbol (info, abfd,
name,
BSF_GLOBAL,
sec,
value,
(const char*) NULL,
TRUE, FALSE, NULL);
}
else
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.value = value;
h->root.u.def.section = sec;
}
}
/* Build all the stubs associated with the current output file. The
stubs are kept in a hash table attached to the main linker hash
table. This function is called via m68hc12elf_finish in the
linker. */
bfd_boolean
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
{
asection *stub_sec;
struct bfd_hash_table *table;
struct m68hc11_elf_link_hash_table *htab;
struct m68hc11_scan_param param;
m68hc11_elf_get_bank_parameters (info);
htab = m68hc11_elf_hash_table (info);
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
bfd_size_type size;
/* Allocate memory to hold the linker stubs. */
size = stub_sec->size;
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
if (stub_sec->contents == NULL && size != 0)
return FALSE;
stub_sec->size = 0;
}
/* Build the stubs as directed by the stub hash table. */
table = htab->stub_hash_table;
bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
/* Scan the output sections to see if we use the memory banks.
If so, export the symbols that define how the memory banks
are mapped. This is used by gdb and the simulator to obtain
the information. It can be used by programs to burn the eprom
at the good addresses. */
param.use_memory_banks = FALSE;
param.pinfo = &htab->pinfo;
bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
if (param.use_memory_banks)
{
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
htab->pinfo.bank_physical,
bfd_abs_section_ptr);
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
htab->pinfo.bank_virtual,
bfd_abs_section_ptr);
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
htab->pinfo.bank_size,
bfd_abs_section_ptr);
}
return TRUE;
}
void
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
{
unsigned i;
struct m68hc11_page_info *pinfo;
struct bfd_link_hash_entry *h;
pinfo = &m68hc11_elf_hash_table (info)->pinfo;
if (pinfo->bank_param_initialized)
return;
pinfo->bank_virtual = M68HC12_BANK_VIRT;
pinfo->bank_mask = M68HC12_BANK_MASK;
pinfo->bank_physical = M68HC12_BANK_BASE;
pinfo->bank_shift = M68HC12_BANK_SHIFT;
pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
FALSE, FALSE, TRUE);
if (h != (struct bfd_link_hash_entry*) NULL
&& h->type == bfd_link_hash_defined)
pinfo->bank_physical = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
FALSE, FALSE, TRUE);
if (h != (struct bfd_link_hash_entry*) NULL
&& h->type == bfd_link_hash_defined)
pinfo->bank_virtual = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
FALSE, FALSE, TRUE);
if (h != (struct bfd_link_hash_entry*) NULL
&& h->type == bfd_link_hash_defined)
pinfo->bank_size = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
pinfo->bank_shift = 0;
for (i = pinfo->bank_size; i != 0; i >>= 1)
pinfo->bank_shift++;
pinfo->bank_shift--;
pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
pinfo->bank_param_initialized = 1;
h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
FALSE, TRUE);
if (h != (struct bfd_link_hash_entry*) NULL
&& h->type == bfd_link_hash_defined)
pinfo->trampoline_addr = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
}
/* Return 1 if the address is in banked memory.
This can be applied to a virtual address and to a physical address. */
int
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
if (addr >= pinfo->bank_virtual)
return 1;
if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
return 1;
return 0;
}
/* Return the physical address seen by the processor, taking
into account banked memory. */
bfd_vma
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
if (addr < pinfo->bank_virtual)
return addr;
/* Map the address to the memory bank. */
addr -= pinfo->bank_virtual;
addr &= pinfo->bank_mask;
addr += pinfo->bank_physical;
return addr;
}
/* Return the page number corresponding to an address in banked memory. */
bfd_vma
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
{
if (addr < pinfo->bank_virtual)
return 0;
/* Map the address to the memory bank. */
addr -= pinfo->bank_virtual;
addr >>= pinfo->bank_shift;
addr &= 0x0ff;
return addr;
}
/* This function is used for relocs which are only used for relaxing,
which the linker should otherwise ignore. */
bfd_reloc_status_type
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry,
asymbol *symbol ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
if (output_bfd != NULL)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
bfd_reloc_status_type
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry,
asymbol *symbol,
void *data ATTRIBUTE_UNUSED,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! reloc_entry->howto->partial_inplace
|| reloc_entry->addend == 0))
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
if (output_bfd != NULL)
return bfd_reloc_continue;
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
abort();
}
asection *
elf32_m68hc11_gc_mark_hook (asection *sec,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
default:
switch (h->root.type)
{
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
return h->root.u.def.section;
case bfd_link_hash_common:
return h->root.u.c.p->section;
default:
break;
}
}
}
else
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
return NULL;
}
bfd_boolean
elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
{
/* We don't use got and plt entries for 68hc11/68hc12. */
return TRUE;
}
/* Look through the relocs for a section during the first phase.
Since we don't do .gots or .plts, we just need to consider the
virtual table relocs for gc. */
bfd_boolean
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
asection *sec, const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr * symtab_hdr;
struct elf_link_hash_entry ** sym_hashes;
struct elf_link_hash_entry ** sym_hashes_end;
const Elf_Internal_Rela * rel;
const Elf_Internal_Rela * rel_end;
if (info->relocatable)
return TRUE;
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
if (!elf_bad_symtab (abfd))
sym_hashes_end -= symtab_hdr->sh_info;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry * h;
unsigned long r_symndx;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
switch (ELF32_R_TYPE (rel->r_info))
{
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_M68HC11_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_M68HC11_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
}
}
return TRUE;
}
static bfd_boolean
m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
asection *input_section,
asection **local_sections,
Elf_Internal_Sym *local_syms,
Elf_Internal_Rela *rel,
const char **name,
bfd_vma *relocation, bfd_boolean *is_far)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
unsigned long r_symndx;
asection *sec;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
const char* stub_name = 0;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
r_symndx = ELF32_R_SYM (rel->r_info);
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
*relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
*is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
if (*is_far)
stub_name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link,
sym->st_name));
}
else
{
bfd_boolean unresolved_reloc, warned;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, *relocation, unresolved_reloc, warned);
*is_far = (h && (h->other & STO_M68HC12_FAR));
stub_name = h->root.root.string;
}
if (h != NULL)
*name = h->root.root.string;
else
{
*name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name));
if (*name == NULL || **name == '\0')
*name = bfd_section_name (input_bfd, sec);
}
if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
{
struct elf32_m68hc11_stub_hash_entry* stub;
struct m68hc11_elf_link_hash_table *htab;
htab = m68hc11_elf_hash_table (info);
stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
*name, FALSE, FALSE);
if (stub)
{
*relocation = stub->stub_offset
+ stub->stub_sec->output_section->vma
+ stub->stub_sec->output_offset;
*is_far = FALSE;
}
}
return TRUE;
}
/* Relocate a 68hc11/68hc12 ELF section. */
bfd_boolean
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info,
bfd *input_bfd, asection *input_section,
bfd_byte *contents, Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel, *relend;
const char *name = NULL;
struct m68hc11_page_info *pinfo;
const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
/* Get memory bank parameters. */
m68hc11_elf_get_bank_parameters (info);
pinfo = &m68hc11_elf_hash_table (info)->pinfo;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
arelent arel;
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma relocation = 0;
bfd_reloc_status_type r = bfd_reloc_undefined;
bfd_vma phys_page;
bfd_vma phys_addr;
bfd_vma insn_addr;
bfd_vma insn_page;
bfd_boolean is_far = FALSE;
r_symndx = ELF32_R_SYM (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == R_M68HC11_GNU_VTENTRY
|| r_type == R_M68HC11_GNU_VTINHERIT )
continue;
if (info->relocatable)
{
/* This is a relocatable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sec = local_sections[r_symndx];
rel->r_addend += sec->output_offset + sym->st_value;
}
}
continue;
}
(*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
howto = arel.howto;
m68hc11_get_relocation_value (input_bfd, info, input_section,
local_sections, local_syms,
rel, &name, &relocation, &is_far);
/* Do the memory bank mapping. */
phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
switch (r_type)
{
case R_M68HC11_24:
/* Reloc used by 68HC12 call instruction. */
bfd_put_16 (input_bfd, phys_addr,
(bfd_byte*) contents + rel->r_offset);
bfd_put_8 (input_bfd, phys_page,
(bfd_byte*) contents + rel->r_offset + 2);
r = bfd_reloc_ok;
r_type = R_M68HC11_NONE;
break;
case R_M68HC11_NONE:
r = bfd_reloc_ok;
break;
case R_M68HC11_LO16:
/* Reloc generated by %addr(expr) gas to obtain the
address as mapped in the memory bank window. */
relocation = phys_addr;
break;
case R_M68HC11_PAGE:
/* Reloc generated by %page(expr) gas to obtain the
page number associated with the address. */
relocation = phys_page;
break;
case R_M68HC11_16:
/* Get virtual address of instruction having the relocation. */
if (is_far)
{
const char* msg;
char* buf;
msg = _("Reference to the far symbol `%s' using a wrong "
"relocation may result in incorrect execution");
buf = alloca (strlen (msg) + strlen (name) + 10);
sprintf (buf, msg, name);
(* info->callbacks->warning)
(info, buf, name, input_bfd, NULL, rel->r_offset);
}
/* Get virtual address of instruction having the relocation. */
insn_addr = input_section->output_section->vma
+ input_section->output_offset
+ rel->r_offset;
insn_page = m68hc11_phys_page (pinfo, insn_addr);
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
&& m68hc11_addr_is_banked (pinfo, insn_addr)
&& phys_page != insn_page)
{
const char* msg;
char* buf;
msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
"as current banked address [%lx:%04lx] (%lx)");
buf = alloca (strlen (msg) + 128);
sprintf (buf, msg, phys_page, phys_addr,
(long) (relocation + rel->r_addend),
insn_page, m68hc11_phys_addr (pinfo, insn_addr),
(long) (insn_addr));
if (!((*info->callbacks->warning)
(info, buf, name, input_bfd, input_section,
rel->r_offset)))
return FALSE;
break;
}
if (phys_page != 0 && insn_page == 0)
{
const char* msg;
char* buf;
msg = _("reference to a banked address [%lx:%04lx] in the "
"normal address space at %04lx");
buf = alloca (strlen (msg) + 128);
sprintf (buf, msg, phys_page, phys_addr, insn_addr);
if (!((*info->callbacks->warning)
(info, buf, name, input_bfd, input_section,
insn_addr)))
return FALSE;
relocation = phys_addr;
break;
}
/* If this is a banked address use the phys_addr so that
we stay in the banked window. */
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
relocation = phys_addr;
break;
}
if (r_type != R_M68HC11_NONE)
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
if (r != bfd_reloc_ok)
{
const char * msg = (const char *) 0;
switch (r)
{
case bfd_reloc_overflow:
if (!((*info->callbacks->reloc_overflow)
(info, NULL, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return FALSE;
break;
case bfd_reloc_undefined:
if (!((*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section,
rel->r_offset, TRUE)))
return FALSE;
break;
case bfd_reloc_outofrange:
msg = _ ("internal error: out of range error");
goto common_error;
case bfd_reloc_notsupported:
msg = _ ("internal error: unsupported relocation error");
goto common_error;
case bfd_reloc_dangerous:
msg = _ ("internal error: dangerous error");
goto common_error;
default:
msg = _ ("internal error: unknown error");
/* fall through */
common_error:
if (!((*info->callbacks->warning)
(info, msg, name, input_bfd, input_section,
rel->r_offset)))
return FALSE;
break;
}
}
}
return TRUE;
}
/* Set and control ELF flags in ELF header. */
bfd_boolean
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
{
BFD_ASSERT (!elf_flags_init (abfd)
|| elf_elfheader (abfd)->e_flags == flags);
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
bfd_boolean
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword old_flags;
flagword new_flags;
bfd_boolean ok = TRUE;
/* Check if we have the same endianess */
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
return FALSE;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
new_flags = elf_elfheader (ibfd)->e_flags;
elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
old_flags = elf_elfheader (obfd)->e_flags;
if (! elf_flags_init (obfd))
{
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = new_flags;
elf_elfheader (obfd)->e_ident[EI_CLASS]
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
&& bfd_get_arch_info (obfd)->the_default)
{
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
bfd_get_mach (ibfd)))
return FALSE;
}
return TRUE;
}
/* Check ABI compatibility. */
if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
{
(*_bfd_error_handler)
(_("%B: linking files compiled for 16-bit integers (-mshort) "
"and others for 32-bit integers"), ibfd);
ok = FALSE;
}
if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
{
(*_bfd_error_handler)
(_("%B: linking files compiled for 32-bit double (-fshort-double) "
"and others for 64-bit double"), ibfd);
ok = FALSE;
}
/* Processor compatibility. */
if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
{
(*_bfd_error_handler)
(_("%B: linking files compiled for HCS12 with "
"others compiled for HC12"), ibfd);
ok = FALSE;
}
new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
| (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
elf_elfheader (obfd)->e_flags = new_flags;
new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
/* Warn about any other mismatches */
if (new_flags != old_flags)
{
(*_bfd_error_handler)
(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
ok = FALSE;
}
if (! ok)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
return TRUE;
}
bfd_boolean
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
{
FILE *file = (FILE *) ptr;
BFD_ASSERT (abfd != NULL && ptr != NULL);
/* Print normal ELF private data. */
_bfd_elf_print_private_bfd_data (abfd, ptr);
/* xgettext:c-format */
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
fprintf (file, _("[abi=32-bit int, "));
else
fprintf (file, _("[abi=16-bit int, "));
if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
fprintf (file, _("64-bit double, "));
else
fprintf (file, _("32-bit double, "));
if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
fprintf (file, _("cpu=HC11]"));
else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
fprintf (file, _("cpu=HCS12]"));
else
fprintf (file, _("cpu=HC12]"));
if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
fprintf (file, _(" [memory=bank-model]"));
else
fprintf (file, _(" [memory=flat]"));
fputc ('\n', file);
return TRUE;
}
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
asection *asect, void *arg)
{
struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
if (asect->vma >= p->pinfo->bank_virtual)
p->use_memory_banks = TRUE;
}
/* Tweak the OSABI field of the elf header. */
void
elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
{
struct m68hc11_scan_param param;
if (link_info == 0)
return;
m68hc11_elf_get_bank_parameters (link_info);
param.use_memory_banks = FALSE;
param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
if (param.use_memory_banks)
{
Elf_Internal_Ehdr * i_ehdrp;
i_ehdrp = elf_elfheader (abfd);
i_ehdrp->e_flags |= E_M68HC12_BANKS;
}
}