mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 13:09:48 +00:00
249 lines
7.1 KiB
C
249 lines
7.1 KiB
C
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
|
|
Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "target.h"
|
|
|
|
#include <sys/ptrace.h>
|
|
#include <sys/reg.h>
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/dir.h>
|
|
#include <sys/user.h>
|
|
#include <signal.h>
|
|
#include <sys/ioctl.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <a.out.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/core.h>
|
|
|
|
extern int errno;
|
|
|
|
static void
|
|
exec_one_dummy_insn PARAMS ((void));
|
|
|
|
/* Conversion from gdb-to-system special purpose register numbers.. */
|
|
|
|
static int special_regs[] = {
|
|
IAR, /* PC_REGNUM */
|
|
MSR, /* PS_REGNUM */
|
|
CR, /* CR_REGNUM */
|
|
LR, /* LR_REGNUM */
|
|
CTR, /* CTR_REGNUM */
|
|
XER, /* XER_REGNUM */
|
|
MQ /* MQ_REGNUM */
|
|
};
|
|
|
|
void
|
|
fetch_inferior_registers (regno)
|
|
int regno;
|
|
{
|
|
int ii;
|
|
extern char registers[];
|
|
|
|
if (regno < 0) { /* for all registers */
|
|
|
|
/* read 32 general purpose registers. */
|
|
|
|
for (ii=0; ii < 32; ++ii)
|
|
*(int*)®isters[REGISTER_BYTE (ii)] =
|
|
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0);
|
|
|
|
/* read general purpose floating point registers. */
|
|
|
|
for (ii=0; ii < 32; ++ii)
|
|
ptrace (PT_READ_FPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (FP0_REGNUM+ii)],
|
|
FPR0+ii, 0);
|
|
|
|
/* read special registers. */
|
|
for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii)
|
|
*(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] =
|
|
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii],
|
|
0, 0);
|
|
|
|
registers_fetched ();
|
|
return;
|
|
}
|
|
|
|
/* else an individual register is addressed. */
|
|
|
|
else if (regno < FP0_REGNUM) { /* a GPR */
|
|
*(int*)®isters[REGISTER_BYTE (regno)] =
|
|
ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0);
|
|
}
|
|
else if (regno <= FPLAST_REGNUM) { /* a FPR */
|
|
ptrace (PT_READ_FPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (regno)],
|
|
(regno-FP0_REGNUM+FPR0), 0);
|
|
}
|
|
else if (regno <= LAST_SP_REGNUM) { /* a special register */
|
|
*(int*)®isters[REGISTER_BYTE (regno)] =
|
|
ptrace (PT_READ_GPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) special_regs[regno-FIRST_SP_REGNUM], 0, 0);
|
|
}
|
|
else
|
|
fprintf (stderr, "gdb error: register no %d not implemented.\n", regno);
|
|
|
|
register_valid [regno] = 1;
|
|
}
|
|
|
|
/* Store our register values back into the inferior.
|
|
If REGNO is -1, do this for all registers.
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
|
|
|
void
|
|
store_inferior_registers (regno)
|
|
int regno;
|
|
{
|
|
extern char registers[];
|
|
|
|
errno = 0;
|
|
|
|
if (regno == -1) { /* for all registers.. */
|
|
int ii;
|
|
|
|
/* execute one dummy instruction (which is a breakpoint) in inferior
|
|
process. So give kernel a chance to do internal house keeping.
|
|
Otherwise the following ptrace(2) calls will mess up user stack
|
|
since kernel will get confused about the bottom of the stack (%sp) */
|
|
|
|
exec_one_dummy_insn ();
|
|
|
|
/* write general purpose registers first! */
|
|
for ( ii=GPR0; ii<=GPR31; ++ii) {
|
|
ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii,
|
|
*(int*)®isters[REGISTER_BYTE (ii)], 0);
|
|
if ( errno ) {
|
|
perror ("ptrace write_gpr"); errno = 0;
|
|
}
|
|
}
|
|
|
|
/* write floating point registers now. */
|
|
for ( ii=0; ii < 32; ++ii) {
|
|
ptrace (PT_WRITE_FPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (FP0_REGNUM+ii)],
|
|
FPR0+ii, 0);
|
|
if ( errno ) {
|
|
perror ("ptrace write_fpr"); errno = 0;
|
|
}
|
|
}
|
|
|
|
/* write special registers. */
|
|
for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) {
|
|
ptrace (PT_WRITE_GPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) special_regs[ii],
|
|
*(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0);
|
|
if ( errno ) {
|
|
perror ("ptrace write_gpr"); errno = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* else, a specific register number is given... */
|
|
|
|
else if (regno < FP0_REGNUM) { /* a GPR */
|
|
|
|
ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno,
|
|
*(int*)®isters[REGISTER_BYTE (regno)], 0);
|
|
}
|
|
|
|
else if (regno <= FPLAST_REGNUM) { /* a FPR */
|
|
ptrace (PT_WRITE_FPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (regno)],
|
|
regno-FP0_REGNUM+FPR0, 0);
|
|
}
|
|
|
|
else if (regno <= LAST_SP_REGNUM) { /* a special register */
|
|
|
|
ptrace (PT_WRITE_GPR, inferior_pid,
|
|
(PTRACE_ARG3_TYPE) special_regs [regno-FIRST_SP_REGNUM],
|
|
*(int*)®isters[REGISTER_BYTE (regno)], 0);
|
|
}
|
|
|
|
else
|
|
fprintf (stderr, "Gdb error: register no %d not implemented.\n", regno);
|
|
|
|
if ( errno ) {
|
|
perror ("ptrace write"); errno = 0;
|
|
}
|
|
}
|
|
|
|
/* Execute one dummy breakpoint instruction. This way we give the kernel
|
|
a chance to do some housekeeping and update inferior's internal data,
|
|
including u_area. */
|
|
static void
|
|
exec_one_dummy_insn ()
|
|
{
|
|
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
|
|
|
|
unsigned long shadow;
|
|
unsigned int status, pid;
|
|
|
|
/* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that
|
|
this address will never be executed again by the real code. */
|
|
|
|
target_insert_breakpoint (DUMMY_INSN_ADDR, &shadow);
|
|
|
|
errno = 0;
|
|
ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) DUMMY_INSN_ADDR, 0, 0);
|
|
if (errno)
|
|
perror ("pt_continue");
|
|
|
|
do {
|
|
pid = wait (&status);
|
|
} while (pid != inferior_pid);
|
|
|
|
target_remove_breakpoint (DUMMY_INSN_ADDR, &shadow);
|
|
}
|
|
|
|
void
|
|
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
|
char *core_reg_sect;
|
|
unsigned core_reg_size;
|
|
int which;
|
|
unsigned int reg_addr; /* Unused in this version */
|
|
{
|
|
/* fetch GPRs and special registers from the first register section
|
|
in core bfd. */
|
|
if (which == 0) {
|
|
|
|
/* copy GPRs first. */
|
|
bcopy (core_reg_sect, registers, 32 * 4);
|
|
|
|
/* gdb's internal register template and bfd's register section layout
|
|
should share a common include file. FIXMEmgo */
|
|
/* then comes special registes. They are supposed to be in the same
|
|
order in gdb template and bfd `.reg' section. */
|
|
core_reg_sect += (32 * 4);
|
|
bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FIRST_SP_REGNUM)],
|
|
(LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4);
|
|
}
|
|
|
|
/* fetch floating point registers from register section 2 in core bfd. */
|
|
else if (which == 2)
|
|
bcopy (core_reg_sect, ®isters [REGISTER_BYTE (FP0_REGNUM)], 32 * 8);
|
|
|
|
else
|
|
fprintf (stderr, "Gdb error: unknown parameter to fetch_core_registers().\n");
|
|
}
|