mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-27 03:54:29 +00:00
495 lines
14 KiB
C
495 lines
14 KiB
C
/* Target dependent code for the Motorola 68000 series.
|
||
Copyright (C) 1990, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
void
|
||
m68k_push_dummy_frame ()
|
||
{
|
||
register CORE_ADDR sp = read_register (SP_REGNUM);
|
||
register int regnum;
|
||
char raw_buffer[12];
|
||
|
||
sp = push_word (sp, read_register (PC_REGNUM));
|
||
sp = push_word (sp, read_register (FP_REGNUM));
|
||
write_register (FP_REGNUM, sp);
|
||
#if defined (HAVE_68881)
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
||
{
|
||
read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
||
sp = push_bytes (sp, raw_buffer, 12);
|
||
}
|
||
#endif
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
||
{
|
||
sp = push_word (sp, read_register (regnum));
|
||
}
|
||
sp = push_word (sp, read_register (PS_REGNUM));
|
||
write_register (SP_REGNUM, sp);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
|
||
void
|
||
m68k_pop_frame ()
|
||
{
|
||
register FRAME frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
struct frame_saved_regs fsr;
|
||
struct frame_info *fi;
|
||
char raw_buffer[12];
|
||
|
||
fi = get_frame_info (frame);
|
||
fp = fi -> frame;
|
||
get_frame_saved_regs (fi, &fsr);
|
||
#if defined (HAVE_68881)
|
||
for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--)
|
||
{
|
||
if (fsr.regs[regnum])
|
||
{
|
||
read_memory (fsr.regs[regnum], raw_buffer, 12);
|
||
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
||
}
|
||
}
|
||
#endif
|
||
for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--)
|
||
{
|
||
if (fsr.regs[regnum])
|
||
{
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
|
||
}
|
||
}
|
||
if (fsr.regs[PS_REGNUM])
|
||
{
|
||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
|
||
}
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
||
write_register (SP_REGNUM, fp + 8);
|
||
flush_cached_frames ();
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
||
read_pc ()));
|
||
}
|
||
|
||
|
||
/* Given an ip value corresponding to the start of a function,
|
||
return the ip of the first instruction after the function
|
||
prologue. This is the generic m68k support. Machines which
|
||
require something different can override the SKIP_PROLOGUE
|
||
macro to point elsewhere.
|
||
|
||
Some instructions which typically may appear in a function
|
||
prologue include:
|
||
|
||
A link instruction, word form:
|
||
|
||
link.w %a6,&0 4e56 XXXX
|
||
|
||
A link instruction, long form:
|
||
|
||
link.l %fp,&F%1 480e XXXX XXXX
|
||
|
||
A movm instruction to preserve integer regs:
|
||
|
||
movm.l &M%1,(4,%sp) 48ef XXXX XXXX
|
||
|
||
A fmovm instruction to preserve float regs:
|
||
|
||
fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
|
||
|
||
Some profiling setup code (FIXME, not recognized yet):
|
||
|
||
lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
|
||
bsr _mcount 61ff XXXX XXXX
|
||
|
||
*/
|
||
|
||
#define P_LINK_L 0x480e
|
||
#define P_LINK_W 0x4e56
|
||
#define P_MOV_L 0x207c
|
||
#define P_JSR 0x4eb9
|
||
#define P_BSR 0x61ff
|
||
#define P_LEA_L 0x43fb
|
||
#define P_MOVM_L 0x48ef
|
||
#define P_FMOVM 0xf237
|
||
#define P_TRAP 0x4e40
|
||
|
||
CORE_ADDR
|
||
m68k_skip_prologue (ip)
|
||
CORE_ADDR ip;
|
||
{
|
||
register CORE_ADDR limit;
|
||
struct symtab_and_line sal;
|
||
register int op;
|
||
|
||
/* Find out if there is a known limit for the extent of the prologue.
|
||
If so, ensure we don't go past it. If not, assume "infinity". */
|
||
|
||
sal = find_pc_line (ip, 0);
|
||
limit = (sal.end) ? sal.end : (CORE_ADDR) ~0;
|
||
|
||
while (ip < limit)
|
||
{
|
||
op = read_memory_integer (ip, 2);
|
||
op &= 0xFFFF;
|
||
|
||
if (op == P_LINK_W)
|
||
{
|
||
ip += 4; /* Skip link.w */
|
||
}
|
||
else if (op == P_LINK_L)
|
||
{
|
||
ip += 6; /* Skip link.l */
|
||
}
|
||
else if (op == P_MOVM_L)
|
||
{
|
||
ip += 6; /* Skip movm.l */
|
||
}
|
||
else if (op == P_FMOVM)
|
||
{
|
||
ip += 10; /* Skip fmovm */
|
||
}
|
||
else
|
||
{
|
||
break; /* Found unknown code, bail out. */
|
||
}
|
||
}
|
||
return (ip);
|
||
}
|
||
|
||
void
|
||
m68k_find_saved_regs (frame_info, saved_regs)
|
||
struct frame_info *frame_info;
|
||
struct frame_saved_regs *saved_regs;
|
||
{
|
||
register int regnum;
|
||
register int regmask;
|
||
register CORE_ADDR next_addr;
|
||
register CORE_ADDR pc;
|
||
|
||
/* First possible address for a pc in a call dummy for this frame. */
|
||
CORE_ADDR possible_call_dummy_start =
|
||
(frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4
|
||
#if defined (HAVE_68881)
|
||
- 8*12
|
||
#endif
|
||
;
|
||
|
||
int nextinsn;
|
||
memset (saved_regs, 0, sizeof (*saved_regs));
|
||
if ((frame_info)->pc >= possible_call_dummy_start
|
||
&& (frame_info)->pc <= (frame_info)->frame)
|
||
{
|
||
|
||
/* It is a call dummy. We could just stop now, since we know
|
||
what the call dummy saves and where. But this code proceeds
|
||
to parse the "prologue" which is part of the call dummy.
|
||
This is needlessly complex, confusing, and also is the only
|
||
reason that the call dummy is customized based on HAVE_68881.
|
||
FIXME. */
|
||
|
||
next_addr = (frame_info)->frame;
|
||
pc = possible_call_dummy_start;
|
||
}
|
||
else
|
||
{
|
||
pc = get_pc_function_start ((frame_info)->pc);
|
||
/* Verify we have a link a6 instruction next;
|
||
if not we lose. If we win, find the address above the saved
|
||
regs using the amount of storage from the link instruction. */
|
||
if (044016 == read_memory_integer (pc, 2))
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4;
|
||
else if (047126 == read_memory_integer (pc, 2))
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2;
|
||
else goto lose;
|
||
/* If have an addal #-n, sp next, adjust next_addr. */
|
||
if ((0177777 & read_memory_integer (pc, 2)) == 0157774)
|
||
next_addr += read_memory_integer (pc += 2, 4), pc += 4;
|
||
}
|
||
regmask = read_memory_integer (pc + 2, 2);
|
||
#if defined (HAVE_68881)
|
||
/* Here can come an fmovem. Check for it. */
|
||
nextinsn = 0xffff & read_memory_integer (pc, 2);
|
||
if (0xf227 == nextinsn
|
||
&& (regmask & 0xff00) == 0xe000)
|
||
{ pc += 4; /* Regmask's low bit is for register fp7, the first pushed */
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1)
|
||
if (regmask & 1)
|
||
saved_regs->regs[regnum] = (next_addr -= 12);
|
||
regmask = read_memory_integer (pc + 2, 2); }
|
||
#endif
|
||
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */
|
||
if (0044327 == read_memory_integer (pc, 2))
|
||
{ pc += 4; /* Regmask's low bit is for register 0, the first written */
|
||
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
|
||
if (regmask & 1)
|
||
saved_regs->regs[regnum] = (next_addr += 4) - 4; }
|
||
else if (0044347 == read_memory_integer (pc, 2))
|
||
{
|
||
pc += 4; /* Regmask's low bit is for register 15, the first pushed */
|
||
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1)
|
||
if (regmask & 1)
|
||
saved_regs->regs[regnum] = (next_addr -= 4);
|
||
}
|
||
else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2)))
|
||
{
|
||
regnum = 0xf & read_memory_integer (pc, 2); pc += 2;
|
||
saved_regs->regs[regnum] = (next_addr -= 4);
|
||
/* gcc, at least, may use a pair of movel instructions when saving
|
||
exactly 2 registers. */
|
||
if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2)))
|
||
{
|
||
regnum = 0xf & read_memory_integer (pc, 2);
|
||
pc += 2;
|
||
saved_regs->regs[regnum] = (next_addr -= 4);
|
||
}
|
||
}
|
||
#if defined (HAVE_68881)
|
||
/* fmovemx to index of sp may follow. */
|
||
regmask = read_memory_integer (pc + 2, 2);
|
||
nextinsn = 0xffff & read_memory_integer (pc, 2);
|
||
if (0xf236 == nextinsn
|
||
&& (regmask & 0xff00) == 0xf000)
|
||
{ pc += 10; /* Regmask's low bit is for register fp0, the first written */
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1)
|
||
if (regmask & 1)
|
||
saved_regs->regs[regnum] = (next_addr += 12) - 12;
|
||
regmask = read_memory_integer (pc + 2, 2); }
|
||
#endif
|
||
/* clrw -(sp); movw ccr,-(sp) may follow. */
|
||
if (0x426742e7 == read_memory_integer (pc, 4))
|
||
saved_regs->regs[PS_REGNUM] = (next_addr -= 4);
|
||
lose: ;
|
||
saved_regs->regs[SP_REGNUM] = (frame_info)->frame + 8;
|
||
saved_regs->regs[FP_REGNUM] = (frame_info)->frame;
|
||
saved_regs->regs[PC_REGNUM] = (frame_info)->frame + 4;
|
||
#ifdef SIG_SP_FP_OFFSET
|
||
/* Adjust saved SP_REGNUM for fake _sigtramp frames. */
|
||
if (frame_info->signal_handler_caller && frame_info->next)
|
||
saved_regs->regs[SP_REGNUM] = frame_info->next->frame + SIG_SP_FP_OFFSET;
|
||
#endif
|
||
}
|
||
|
||
|
||
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
||
|
||
#include <sys/procfs.h>
|
||
|
||
/* The /proc interface divides the target machine's register set up into
|
||
two different sets, the general register set (gregset) and the floating
|
||
point register set (fpregset). For each set, there is an ioctl to get
|
||
the current register set and another ioctl to set the current values.
|
||
|
||
The actual structure passed through the ioctl interface is, of course,
|
||
naturally machine dependent, and is different for each set of registers.
|
||
For the m68k for example, the general register set is typically defined
|
||
by:
|
||
|
||
typedef int gregset_t[18];
|
||
|
||
#define R_D0 0
|
||
...
|
||
#define R_PS 17
|
||
|
||
and the floating point set by:
|
||
|
||
typedef struct fpregset {
|
||
int f_pcr;
|
||
int f_psr;
|
||
int f_fpiaddr;
|
||
int f_fpregs[8][3]; (8 regs, 96 bits each)
|
||
} fpregset_t;
|
||
|
||
These routines provide the packing and unpacking of gregset_t and
|
||
fpregset_t formatted data.
|
||
|
||
*/
|
||
|
||
|
||
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
||
unpack the register contents and supply them as gdb's idea of the current
|
||
register values. */
|
||
|
||
void
|
||
supply_gregset (gregsetp)
|
||
gregset_t *gregsetp;
|
||
{
|
||
register int regi;
|
||
register greg_t *regp = (greg_t *) gregsetp;
|
||
|
||
for (regi = 0 ; regi < R_PC ; regi++)
|
||
{
|
||
supply_register (regi, (char *) (regp + regi));
|
||
}
|
||
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
||
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
||
}
|
||
|
||
void
|
||
fill_gregset (gregsetp, regno)
|
||
gregset_t *gregsetp;
|
||
int regno;
|
||
{
|
||
register int regi;
|
||
register greg_t *regp = (greg_t *) gregsetp;
|
||
extern char registers[];
|
||
|
||
for (regi = 0 ; regi < R_PC ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == PS_REGNUM))
|
||
{
|
||
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == PC_REGNUM))
|
||
{
|
||
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#if defined (FP0_REGNUM)
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), unpack the register contents and supply them as gdb's
|
||
idea of the current floating point register values. */
|
||
|
||
void
|
||
supply_fpregset (fpregsetp)
|
||
fpregset_t *fpregsetp;
|
||
{
|
||
register int regi;
|
||
char *from;
|
||
|
||
for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
|
||
{
|
||
from = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
|
||
supply_register (regi, from);
|
||
}
|
||
supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr));
|
||
supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr));
|
||
supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr));
|
||
}
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
||
of the current floating point register set. If REGNO is -1, update
|
||
them all. */
|
||
|
||
void
|
||
fill_fpregset (fpregsetp, regno)
|
||
fpregset_t *fpregsetp;
|
||
int regno;
|
||
{
|
||
int regi;
|
||
char *to;
|
||
char *from;
|
||
extern char registers[];
|
||
|
||
for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
||
to = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == FPC_REGNUM))
|
||
{
|
||
fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == FPS_REGNUM))
|
||
{
|
||
fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == FPI_REGNUM))
|
||
{
|
||
fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#endif /* defined (FP0_REGNUM) */
|
||
|
||
#endif /* USE_PROC_FS */
|
||
|
||
#ifdef GET_LONGJMP_TARGET
|
||
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
||
We expect the first arg to be a pointer to the jmp_buf structure from which
|
||
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
||
This routine returns true on success. */
|
||
|
||
int
|
||
get_longjmp_target(pc)
|
||
CORE_ADDR *pc;
|
||
{
|
||
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
||
CORE_ADDR sp, jb_addr;
|
||
|
||
sp = read_register(SP_REGNUM);
|
||
|
||
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
|
||
buf,
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
||
return 0;
|
||
|
||
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
|
||
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
|
||
return 1;
|
||
}
|
||
#endif /* GET_LONGJMP_TARGET */
|
||
|
||
/* Immediately after a function call, return the saved pc before the frame
|
||
is setup. For sun3's, we check for the common case of being inside of a
|
||
system call, and if so, we know that Sun pushes the call # on the stack
|
||
prior to doing the trap. */
|
||
|
||
CORE_ADDR
|
||
m68k_saved_pc_after_call(frame)
|
||
struct frame_info *frame;
|
||
{
|
||
#ifdef GDB_TARGET_IS_SUN3
|
||
int op;
|
||
|
||
op = read_memory_integer (frame->pc, 2);
|
||
op &= 0xFFFF;
|
||
|
||
if (op == P_TRAP)
|
||
return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
|
||
else
|
||
#endif /* GDB_TARGET_IS_SUN3 */
|
||
return read_memory_integer (read_register (SP_REGNUM), 4);
|
||
}
|