mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-07 12:30:32 +00:00
b5279eb6a9
argument. * bfd-in.h (bfd_elf32_record_link_assignment): Update prototype. (bfd_elf64_record_link_assignment): Likewise. * bfd-in2.h: Rebuild. PR 7164.
6993 lines
204 KiB
C++
6993 lines
204 KiB
C++
/* ELF executable support for BFD.
|
||
Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
||
|
||
Written by Fred Fish @ Cygnus Support, from information published
|
||
in "UNIX System V Release 4, Programmers Guide: ANSI C and
|
||
Programming Support Tools". Sufficient support for gdb.
|
||
|
||
Rewritten by Mark Eichin @ Cygnus Support, from information
|
||
published in "System V Application Binary Interface", chapters 4
|
||
and 5, as well as the various "Processor Supplement" documents
|
||
derived from it. Added support for assembler and other object file
|
||
utilities. Further work done by Ken Raeburn (Cygnus Support), Michael
|
||
Meissner (Open Software Foundation), and Peter Hoogenboom (University
|
||
of Utah) to finish and extend this.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Problems and other issues to resolve.
|
||
|
||
(1) BFD expects there to be some fixed number of "sections" in
|
||
the object file. I.E. there is a "section_count" variable in the
|
||
bfd structure which contains the number of sections. However, ELF
|
||
supports multiple "views" of a file. In particular, with current
|
||
implementations, executable files typically have two tables, a
|
||
program header table and a section header table, both of which
|
||
partition the executable.
|
||
|
||
In ELF-speak, the "linking view" of the file uses the section header
|
||
table to access "sections" within the file, and the "execution view"
|
||
uses the program header table to access "segments" within the file.
|
||
"Segments" typically may contain all the data from one or more
|
||
"sections".
|
||
|
||
Note that the section header table is optional in ELF executables,
|
||
but it is this information that is most useful to gdb. If the
|
||
section header table is missing, then gdb should probably try
|
||
to make do with the program header table. (FIXME)
|
||
|
||
(2) The code in this file is compiled twice, once in 32-bit mode and
|
||
once in 64-bit mode. More of it should be made size-independent
|
||
and moved into elf.c.
|
||
|
||
(3) ELF section symbols are handled rather sloppily now. This should
|
||
be cleaned up, and ELF section symbols reconciled with BFD section
|
||
symbols.
|
||
|
||
(4) We need a published spec for 64-bit ELF. We've got some stuff here
|
||
that we're using for SPARC V9 64-bit chips, but don't assume that
|
||
it's cast in stone.
|
||
*/
|
||
|
||
#include <string.h> /* For strrchr and friends */
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "libelf.h"
|
||
|
||
/* Renaming structures, typedefs, macros and functions to be size-specific. */
|
||
#define Elf_External_Ehdr NAME(Elf,External_Ehdr)
|
||
#define Elf_External_Sym NAME(Elf,External_Sym)
|
||
#define Elf_External_Shdr NAME(Elf,External_Shdr)
|
||
#define Elf_External_Phdr NAME(Elf,External_Phdr)
|
||
#define Elf_External_Rel NAME(Elf,External_Rel)
|
||
#define Elf_External_Rela NAME(Elf,External_Rela)
|
||
#define Elf_External_Dyn NAME(Elf,External_Dyn)
|
||
|
||
#define elf_core_file_failing_command NAME(bfd_elf,core_file_failing_command)
|
||
#define elf_core_file_failing_signal NAME(bfd_elf,core_file_failing_signal)
|
||
#define elf_core_file_matches_executable_p \
|
||
NAME(bfd_elf,core_file_matches_executable_p)
|
||
#define elf_object_p NAME(bfd_elf,object_p)
|
||
#define elf_core_file_p NAME(bfd_elf,core_file_p)
|
||
#define elf_get_symtab_upper_bound NAME(bfd_elf,get_symtab_upper_bound)
|
||
#define elf_get_dynamic_symtab_upper_bound \
|
||
NAME(bfd_elf,get_dynamic_symtab_upper_bound)
|
||
#define elf_swap_reloc_in NAME(bfd_elf,swap_reloc_in)
|
||
#define elf_swap_reloca_in NAME(bfd_elf,swap_reloca_in)
|
||
#define elf_swap_reloc_out NAME(bfd_elf,swap_reloc_out)
|
||
#define elf_swap_reloca_out NAME(bfd_elf,swap_reloca_out)
|
||
#define elf_swap_symbol_in NAME(bfd_elf,swap_symbol_in)
|
||
#define elf_swap_symbol_out NAME(bfd_elf,swap_symbol_out)
|
||
#define elf_swap_dyn_in NAME(bfd_elf,swap_dyn_in)
|
||
#define elf_swap_dyn_out NAME(bfd_elf,swap_dyn_out)
|
||
#define elf_get_reloc_upper_bound NAME(bfd_elf,get_reloc_upper_bound)
|
||
#define elf_canonicalize_reloc NAME(bfd_elf,canonicalize_reloc)
|
||
#define elf_get_symtab NAME(bfd_elf,get_symtab)
|
||
#define elf_canonicalize_dynamic_symtab \
|
||
NAME(bfd_elf,canonicalize_dynamic_symtab)
|
||
#define elf_make_empty_symbol NAME(bfd_elf,make_empty_symbol)
|
||
#define elf_get_symbol_info NAME(bfd_elf,get_symbol_info)
|
||
#define elf_get_lineno NAME(bfd_elf,get_lineno)
|
||
#define elf_set_arch_mach NAME(bfd_elf,set_arch_mach)
|
||
#define elf_find_nearest_line NAME(bfd_elf,find_nearest_line)
|
||
#define elf_sizeof_headers NAME(bfd_elf,sizeof_headers)
|
||
#define elf_set_section_contents NAME(bfd_elf,set_section_contents)
|
||
#define elf_no_info_to_howto NAME(bfd_elf,no_info_to_howto)
|
||
#define elf_no_info_to_howto_rel NAME(bfd_elf,no_info_to_howto_rel)
|
||
#define elf_new_section_hook NAME(bfd_elf,new_section_hook)
|
||
#define elf_find_section NAME(bfd_elf,find_section)
|
||
#define elf_bfd_link_add_symbols NAME(bfd_elf,bfd_link_add_symbols)
|
||
#define elf_add_dynamic_entry NAME(bfd_elf,add_dynamic_entry)
|
||
#define elf_link_create_dynamic_sections \
|
||
NAME(bfd_elf,link_create_dynamic_sections)
|
||
#define elf_link_record_dynamic_symbol \
|
||
NAME(bfd_elf,link_record_dynamic_symbol)
|
||
#define elf_bfd_final_link NAME(bfd_elf,bfd_final_link)
|
||
|
||
#if ARCH_SIZE == 64
|
||
#define ELF_R_INFO(X,Y) ELF64_R_INFO(X,Y)
|
||
#define ELF_R_SYM(X) ELF64_R_SYM(X)
|
||
#define ELF_R_TYPE(X) ELF64_R_TYPE(X)
|
||
#define ELFCLASS ELFCLASS64
|
||
#define FILE_ALIGN 8
|
||
#define LOG_FILE_ALIGN 3
|
||
#endif
|
||
#if ARCH_SIZE == 32
|
||
#define ELF_R_INFO(X,Y) ELF32_R_INFO(X,Y)
|
||
#define ELF_R_SYM(X) ELF32_R_SYM(X)
|
||
#define ELF_R_TYPE(X) ELF32_R_TYPE(X)
|
||
#define ELFCLASS ELFCLASS32
|
||
#define FILE_ALIGN 4
|
||
#define LOG_FILE_ALIGN 2
|
||
#endif
|
||
|
||
/* Forward declarations of static functions */
|
||
|
||
static struct bfd_strtab_hash *elf_stringtab_init PARAMS ((void));
|
||
static asection *section_from_elf_index PARAMS ((bfd *, unsigned int));
|
||
|
||
static int elf_section_from_bfd_section PARAMS ((bfd *, struct sec *));
|
||
|
||
static long elf_slurp_symbol_table PARAMS ((bfd *, asymbol **, boolean));
|
||
|
||
static boolean elf_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **));
|
||
|
||
static int elf_symbol_from_bfd_symbol PARAMS ((bfd *,
|
||
struct symbol_cache_entry **));
|
||
|
||
static boolean elf_compute_section_file_positions
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean prep_headers PARAMS ((bfd *));
|
||
static void write_relocs PARAMS ((bfd *, asection *, PTR));
|
||
static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
|
||
static boolean assign_section_numbers PARAMS ((bfd *));
|
||
static file_ptr align_file_position PARAMS ((file_ptr));
|
||
static file_ptr assign_file_position_for_section
|
||
PARAMS ((Elf_Internal_Shdr *, file_ptr, boolean));
|
||
static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean));
|
||
static int elf_sort_hdrs PARAMS ((const PTR, const PTR));
|
||
static void assign_file_positions_for_relocs PARAMS ((bfd *));
|
||
static bfd_size_type get_program_header_size PARAMS ((bfd *,
|
||
Elf_Internal_Shdr **,
|
||
unsigned int,
|
||
bfd_vma));
|
||
static file_ptr map_program_segments
|
||
PARAMS ((bfd *, file_ptr, Elf_Internal_Shdr *, Elf_Internal_Shdr **,
|
||
bfd_size_type));
|
||
|
||
static boolean elf_map_symbols PARAMS ((bfd *));
|
||
static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **));
|
||
|
||
static boolean bfd_section_from_shdr PARAMS ((bfd *, unsigned int shindex));
|
||
|
||
#ifdef DEBUG
|
||
static void elf_debug_section PARAMS ((int, Elf_Internal_Shdr *));
|
||
static void elf_debug_file PARAMS ((Elf_Internal_Ehdr *));
|
||
static char *elf_symbol_flags PARAMS ((flagword));
|
||
#endif
|
||
|
||
#define elf_string_from_elf_strtab(abfd,strindex) \
|
||
elf_string_from_elf_section(abfd,elf_elfheader(abfd)->e_shstrndx,strindex)
|
||
|
||
/* Structure swapping routines */
|
||
|
||
/* Should perhaps use put_offset, put_word, etc. For now, the two versions
|
||
can be handled by explicitly specifying 32 bits or "the long type". */
|
||
#if ARCH_SIZE == 64
|
||
#define put_word bfd_h_put_64
|
||
#define get_word bfd_h_get_64
|
||
#endif
|
||
#if ARCH_SIZE == 32
|
||
#define put_word bfd_h_put_32
|
||
#define get_word bfd_h_get_32
|
||
#endif
|
||
|
||
/* Translate an ELF symbol in external format into an ELF symbol in internal
|
||
format. */
|
||
|
||
void
|
||
elf_swap_symbol_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Sym *src;
|
||
Elf_Internal_Sym *dst;
|
||
{
|
||
dst->st_name = bfd_h_get_32 (abfd, (bfd_byte *) src->st_name);
|
||
dst->st_value = get_word (abfd, (bfd_byte *) src->st_value);
|
||
dst->st_size = get_word (abfd, (bfd_byte *) src->st_size);
|
||
dst->st_info = bfd_h_get_8 (abfd, (bfd_byte *) src->st_info);
|
||
dst->st_other = bfd_h_get_8 (abfd, (bfd_byte *) src->st_other);
|
||
dst->st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src->st_shndx);
|
||
}
|
||
|
||
/* Translate an ELF symbol in internal format into an ELF symbol in external
|
||
format. */
|
||
|
||
void
|
||
elf_swap_symbol_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Sym *src;
|
||
Elf_External_Sym *dst;
|
||
{
|
||
bfd_h_put_32 (abfd, src->st_name, dst->st_name);
|
||
put_word (abfd, src->st_value, dst->st_value);
|
||
put_word (abfd, src->st_size, dst->st_size);
|
||
bfd_h_put_8 (abfd, src->st_info, dst->st_info);
|
||
bfd_h_put_8 (abfd, src->st_other, dst->st_other);
|
||
bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx);
|
||
}
|
||
|
||
|
||
/* Translate an ELF file header in external format into an ELF file header in
|
||
internal format. */
|
||
|
||
static void
|
||
elf_swap_ehdr_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Ehdr *src;
|
||
Elf_Internal_Ehdr *dst;
|
||
{
|
||
memcpy (dst->e_ident, src->e_ident, EI_NIDENT);
|
||
dst->e_type = bfd_h_get_16 (abfd, (bfd_byte *) src->e_type);
|
||
dst->e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src->e_machine);
|
||
dst->e_version = bfd_h_get_32 (abfd, (bfd_byte *) src->e_version);
|
||
dst->e_entry = get_word (abfd, (bfd_byte *) src->e_entry);
|
||
dst->e_phoff = get_word (abfd, (bfd_byte *) src->e_phoff);
|
||
dst->e_shoff = get_word (abfd, (bfd_byte *) src->e_shoff);
|
||
dst->e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->e_flags);
|
||
dst->e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_ehsize);
|
||
dst->e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phentsize);
|
||
dst->e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phnum);
|
||
dst->e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shentsize);
|
||
dst->e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shnum);
|
||
dst->e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shstrndx);
|
||
}
|
||
|
||
/* Translate an ELF file header in internal format into an ELF file header in
|
||
external format. */
|
||
|
||
static void
|
||
elf_swap_ehdr_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Ehdr *src;
|
||
Elf_External_Ehdr *dst;
|
||
{
|
||
memcpy (dst->e_ident, src->e_ident, EI_NIDENT);
|
||
/* note that all elements of dst are *arrays of unsigned char* already... */
|
||
bfd_h_put_16 (abfd, src->e_type, dst->e_type);
|
||
bfd_h_put_16 (abfd, src->e_machine, dst->e_machine);
|
||
bfd_h_put_32 (abfd, src->e_version, dst->e_version);
|
||
put_word (abfd, src->e_entry, dst->e_entry);
|
||
put_word (abfd, src->e_phoff, dst->e_phoff);
|
||
put_word (abfd, src->e_shoff, dst->e_shoff);
|
||
bfd_h_put_32 (abfd, src->e_flags, dst->e_flags);
|
||
bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize);
|
||
bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize);
|
||
bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum);
|
||
bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize);
|
||
bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum);
|
||
bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx);
|
||
}
|
||
|
||
|
||
/* Translate an ELF section header table entry in external format into an
|
||
ELF section header table entry in internal format. */
|
||
|
||
static void
|
||
elf_swap_shdr_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Shdr *src;
|
||
Elf_Internal_Shdr *dst;
|
||
{
|
||
dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name);
|
||
dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type);
|
||
dst->sh_flags = get_word (abfd, (bfd_byte *) src->sh_flags);
|
||
dst->sh_addr = get_word (abfd, (bfd_byte *) src->sh_addr);
|
||
dst->sh_offset = get_word (abfd, (bfd_byte *) src->sh_offset);
|
||
dst->sh_size = get_word (abfd, (bfd_byte *) src->sh_size);
|
||
dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link);
|
||
dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info);
|
||
dst->sh_addralign = get_word (abfd, (bfd_byte *) src->sh_addralign);
|
||
dst->sh_entsize = get_word (abfd, (bfd_byte *) src->sh_entsize);
|
||
dst->bfd_section = NULL;
|
||
dst->contents = NULL;
|
||
}
|
||
|
||
/* Translate an ELF section header table entry in internal format into an
|
||
ELF section header table entry in external format. */
|
||
|
||
static void
|
||
elf_swap_shdr_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Shdr *src;
|
||
Elf_External_Shdr *dst;
|
||
{
|
||
/* note that all elements of dst are *arrays of unsigned char* already... */
|
||
bfd_h_put_32 (abfd, src->sh_name, dst->sh_name);
|
||
bfd_h_put_32 (abfd, src->sh_type, dst->sh_type);
|
||
put_word (abfd, src->sh_flags, dst->sh_flags);
|
||
put_word (abfd, src->sh_addr, dst->sh_addr);
|
||
put_word (abfd, src->sh_offset, dst->sh_offset);
|
||
put_word (abfd, src->sh_size, dst->sh_size);
|
||
bfd_h_put_32 (abfd, src->sh_link, dst->sh_link);
|
||
bfd_h_put_32 (abfd, src->sh_info, dst->sh_info);
|
||
put_word (abfd, src->sh_addralign, dst->sh_addralign);
|
||
put_word (abfd, src->sh_entsize, dst->sh_entsize);
|
||
}
|
||
|
||
|
||
/* Translate an ELF program header table entry in external format into an
|
||
ELF program header table entry in internal format. */
|
||
|
||
static void
|
||
elf_swap_phdr_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Phdr *src;
|
||
Elf_Internal_Phdr *dst;
|
||
{
|
||
dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type);
|
||
dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags);
|
||
dst->p_offset = get_word (abfd, (bfd_byte *) src->p_offset);
|
||
dst->p_vaddr = get_word (abfd, (bfd_byte *) src->p_vaddr);
|
||
dst->p_paddr = get_word (abfd, (bfd_byte *) src->p_paddr);
|
||
dst->p_filesz = get_word (abfd, (bfd_byte *) src->p_filesz);
|
||
dst->p_memsz = get_word (abfd, (bfd_byte *) src->p_memsz);
|
||
dst->p_align = get_word (abfd, (bfd_byte *) src->p_align);
|
||
}
|
||
|
||
static void
|
||
elf_swap_phdr_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Phdr *src;
|
||
Elf_External_Phdr *dst;
|
||
{
|
||
/* note that all elements of dst are *arrays of unsigned char* already... */
|
||
bfd_h_put_32 (abfd, src->p_type, dst->p_type);
|
||
put_word (abfd, src->p_offset, dst->p_offset);
|
||
put_word (abfd, src->p_vaddr, dst->p_vaddr);
|
||
put_word (abfd, src->p_paddr, dst->p_paddr);
|
||
put_word (abfd, src->p_filesz, dst->p_filesz);
|
||
put_word (abfd, src->p_memsz, dst->p_memsz);
|
||
bfd_h_put_32 (abfd, src->p_flags, dst->p_flags);
|
||
put_word (abfd, src->p_align, dst->p_align);
|
||
}
|
||
|
||
/* Translate an ELF reloc from external format to internal format. */
|
||
INLINE void
|
||
elf_swap_reloc_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Rel *src;
|
||
Elf_Internal_Rel *dst;
|
||
{
|
||
dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset);
|
||
dst->r_info = get_word (abfd, (bfd_byte *) src->r_info);
|
||
}
|
||
|
||
INLINE void
|
||
elf_swap_reloca_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_External_Rela *src;
|
||
Elf_Internal_Rela *dst;
|
||
{
|
||
dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset);
|
||
dst->r_info = get_word (abfd, (bfd_byte *) src->r_info);
|
||
dst->r_addend = get_word (abfd, (bfd_byte *) src->r_addend);
|
||
}
|
||
|
||
/* Translate an ELF reloc from internal format to external format. */
|
||
INLINE void
|
||
elf_swap_reloc_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Rel *src;
|
||
Elf_External_Rel *dst;
|
||
{
|
||
put_word (abfd, src->r_offset, dst->r_offset);
|
||
put_word (abfd, src->r_info, dst->r_info);
|
||
}
|
||
|
||
INLINE void
|
||
elf_swap_reloca_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
Elf_Internal_Rela *src;
|
||
Elf_External_Rela *dst;
|
||
{
|
||
put_word (abfd, src->r_offset, dst->r_offset);
|
||
put_word (abfd, src->r_info, dst->r_info);
|
||
put_word (abfd, src->r_addend, dst->r_addend);
|
||
}
|
||
|
||
INLINE void
|
||
elf_swap_dyn_in (abfd, src, dst)
|
||
bfd *abfd;
|
||
const Elf_External_Dyn *src;
|
||
Elf_Internal_Dyn *dst;
|
||
{
|
||
dst->d_tag = get_word (abfd, src->d_tag);
|
||
dst->d_un.d_val = get_word (abfd, src->d_un.d_val);
|
||
}
|
||
|
||
INLINE void
|
||
elf_swap_dyn_out (abfd, src, dst)
|
||
bfd *abfd;
|
||
const Elf_Internal_Dyn *src;
|
||
Elf_External_Dyn *dst;
|
||
{
|
||
put_word (abfd, src->d_tag, dst->d_tag);
|
||
put_word (abfd, src->d_un.d_val, dst->d_un.d_val);
|
||
}
|
||
|
||
/* Allocate an ELF string table--force the first byte to be zero. */
|
||
|
||
static struct bfd_strtab_hash *
|
||
elf_stringtab_init ()
|
||
{
|
||
struct bfd_strtab_hash *ret;
|
||
|
||
ret = _bfd_stringtab_init ();
|
||
if (ret != NULL)
|
||
{
|
||
bfd_size_type loc;
|
||
|
||
loc = _bfd_stringtab_add (ret, "", true, false);
|
||
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
|
||
if (loc == (bfd_size_type) -1)
|
||
{
|
||
_bfd_stringtab_free (ret);
|
||
ret = NULL;
|
||
}
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* ELF .o/exec file reading */
|
||
|
||
/* Create a new bfd section from an ELF section header. */
|
||
|
||
static boolean
|
||
bfd_section_from_shdr (abfd, shindex)
|
||
bfd *abfd;
|
||
unsigned int shindex;
|
||
{
|
||
Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
|
||
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
|
||
char *name;
|
||
|
||
name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
|
||
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_NULL:
|
||
/* Inactive section. Throw it away. */
|
||
return true;
|
||
|
||
case SHT_PROGBITS: /* Normal section with contents. */
|
||
case SHT_DYNAMIC: /* Dynamic linking information. */
|
||
case SHT_NOBITS: /* .bss section. */
|
||
case SHT_HASH: /* .hash section. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_SYMTAB: /* A symbol table */
|
||
if (elf_onesymtab (abfd) == shindex)
|
||
return true;
|
||
|
||
BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
|
||
BFD_ASSERT (elf_onesymtab (abfd) == 0);
|
||
elf_onesymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->symtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Sometimes a shared object will map in the symbol table. If
|
||
SHF_ALLOC is set, and this is a shared object, then we also
|
||
treat this section as a BFD section. We can not base the
|
||
decision purely on SHF_ALLOC, because that flag is sometimes
|
||
set in a relocateable object file, which would confuse the
|
||
linker. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) != 0
|
||
&& (abfd->flags & DYNAMIC) != 0
|
||
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
|
||
return false;
|
||
|
||
return true;
|
||
|
||
case SHT_DYNSYM: /* A dynamic symbol table */
|
||
if (elf_dynsymtab (abfd) == shindex)
|
||
return true;
|
||
|
||
BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
|
||
BFD_ASSERT (elf_dynsymtab (abfd) == 0);
|
||
elf_dynsymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->dynsymtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Besides being a symbol table, we also treat this as a regular
|
||
section, so that objcopy can handle it. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_STRTAB: /* A string table */
|
||
if (hdr->bfd_section != NULL)
|
||
return true;
|
||
if (ehdr->e_shstrndx == shindex)
|
||
{
|
||
elf_tdata (abfd)->shstrtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
|
||
return true;
|
||
}
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 1; i < ehdr->e_shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
|
||
if (hdr2->sh_link == shindex)
|
||
{
|
||
if (! bfd_section_from_shdr (abfd, i))
|
||
return false;
|
||
if (elf_onesymtab (abfd) == i)
|
||
{
|
||
elf_tdata (abfd)->strtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] =
|
||
&elf_tdata (abfd)->strtab_hdr;
|
||
return true;
|
||
}
|
||
if (elf_dynsymtab (abfd) == i)
|
||
{
|
||
elf_tdata (abfd)->dynstrtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] =
|
||
&elf_tdata (abfd)->dynstrtab_hdr;
|
||
/* We also treat this as a regular section, so
|
||
that objcopy can handle it. */
|
||
break;
|
||
}
|
||
#if 0 /* Not handling other string tables specially right now. */
|
||
hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
|
||
/* We have a strtab for some random other section. */
|
||
newsect = (asection *) hdr2->bfd_section;
|
||
if (!newsect)
|
||
break;
|
||
hdr->bfd_section = newsect;
|
||
hdr2 = &elf_section_data (newsect)->str_hdr;
|
||
*hdr2 = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr2;
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* *These* do a lot of work -- but build no sections! */
|
||
{
|
||
asection *target_sect;
|
||
Elf_Internal_Shdr *hdr2;
|
||
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
||
|
||
/* Get the symbol table. */
|
||
if (! bfd_section_from_shdr (abfd, hdr->sh_link))
|
||
return false;
|
||
|
||
/* If this reloc section does not use the main symbol table we
|
||
don't treat it as a reloc section. BFD can't adequately
|
||
represent such a section, so at least for now, we don't
|
||
try. We just present it as a normal section. */
|
||
if (hdr->sh_link != elf_onesymtab (abfd))
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
/* Don't allow REL relocations on a machine that uses RELA and
|
||
vice versa. */
|
||
/* @@ Actually, the generic ABI does suggest that both might be
|
||
used in one file. But the four ABI Processor Supplements I
|
||
have access to right now all specify that only one is used on
|
||
each of those architectures. It's conceivable that, e.g., a
|
||
bunch of absolute 32-bit relocs might be more compact in REL
|
||
form even on a RELA machine... */
|
||
BFD_ASSERT (use_rela_p
|
||
? (hdr->sh_type == SHT_RELA
|
||
&& hdr->sh_entsize == sizeof (Elf_External_Rela))
|
||
: (hdr->sh_type == SHT_REL
|
||
&& hdr->sh_entsize == sizeof (Elf_External_Rel)));
|
||
|
||
if (! bfd_section_from_shdr (abfd, hdr->sh_info))
|
||
return false;
|
||
target_sect = section_from_elf_index (abfd, hdr->sh_info);
|
||
if (target_sect == NULL)
|
||
return false;
|
||
|
||
hdr2 = &elf_section_data (target_sect)->rel_hdr;
|
||
*hdr2 = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr2;
|
||
target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize;
|
||
target_sect->flags |= SEC_RELOC;
|
||
target_sect->relocation = NULL;
|
||
target_sect->rel_filepos = hdr->sh_offset;
|
||
abfd->flags |= HAS_RELOC;
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case SHT_NOTE:
|
||
#if 0
|
||
fprintf (stderr, "Note Sections not yet supported.\n");
|
||
BFD_FAIL ();
|
||
#endif
|
||
break;
|
||
|
||
case SHT_SHLIB:
|
||
#if 0
|
||
fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n");
|
||
#endif
|
||
return true;
|
||
|
||
default:
|
||
/* Check for any processor-specific section types. */
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if (bed->elf_backend_section_from_shdr)
|
||
(*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
|
||
}
|
||
break;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
boolean
|
||
elf_new_section_hook (abfd, sec)
|
||
bfd *abfd
|
||
;
|
||
asection *sec;
|
||
{
|
||
struct bfd_elf_section_data *sdata;
|
||
|
||
sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata));
|
||
if (!sdata)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
sec->used_by_bfd = (PTR) sdata;
|
||
memset (sdata, 0, sizeof (*sdata));
|
||
return true;
|
||
}
|
||
|
||
/* Create a new bfd section from an ELF program header.
|
||
|
||
Since program segments have no names, we generate a synthetic name
|
||
of the form segment<NUM>, where NUM is generally the index in the
|
||
program header table. For segments that are split (see below) we
|
||
generate the names segment<NUM>a and segment<NUM>b.
|
||
|
||
Note that some program segments may have a file size that is different than
|
||
(less than) the memory size. All this means is that at execution the
|
||
system must allocate the amount of memory specified by the memory size,
|
||
but only initialize it with the first "file size" bytes read from the
|
||
file. This would occur for example, with program segments consisting
|
||
of combined data+bss.
|
||
|
||
To handle the above situation, this routine generates TWO bfd sections
|
||
for the single program segment. The first has the length specified by
|
||
the file size of the segment, and the second has the length specified
|
||
by the difference between the two sizes. In effect, the segment is split
|
||
into it's initialized and uninitialized parts.
|
||
|
||
*/
|
||
|
||
static boolean
|
||
bfd_section_from_phdr (abfd, hdr, index)
|
||
bfd *abfd;
|
||
Elf_Internal_Phdr *hdr;
|
||
int index;
|
||
{
|
||
asection *newsect;
|
||
char *name;
|
||
char namebuf[64];
|
||
int split;
|
||
|
||
split = ((hdr->p_memsz > 0) &&
|
||
(hdr->p_filesz > 0) &&
|
||
(hdr->p_memsz > hdr->p_filesz));
|
||
sprintf (namebuf, split ? "segment%da" : "segment%d", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
if (!name)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->vma = hdr->p_vaddr;
|
||
newsect->_raw_size = hdr->p_filesz;
|
||
newsect->filepos = hdr->p_offset;
|
||
newsect->flags |= SEC_HAS_CONTENTS;
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
newsect->flags |= SEC_LOAD;
|
||
if (hdr->p_flags & PF_X)
|
||
{
|
||
/* FIXME: all we known is that it has execute PERMISSION,
|
||
may be data. */
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
{
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
if (split)
|
||
{
|
||
sprintf (namebuf, "segment%db", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
if (!name)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->vma = hdr->p_vaddr + hdr->p_filesz;
|
||
newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
if (hdr->p_flags & PF_X)
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Begin processing a given object.
|
||
|
||
First we validate the file by reading in the ELF header and checking
|
||
the magic number. */
|
||
|
||
static INLINE boolean
|
||
elf_file_p (x_ehdrp)
|
||
Elf_External_Ehdr *x_ehdrp;
|
||
{
|
||
return ((x_ehdrp->e_ident[EI_MAG0] == ELFMAG0)
|
||
&& (x_ehdrp->e_ident[EI_MAG1] == ELFMAG1)
|
||
&& (x_ehdrp->e_ident[EI_MAG2] == ELFMAG2)
|
||
&& (x_ehdrp->e_ident[EI_MAG3] == ELFMAG3));
|
||
}
|
||
|
||
/* Check to see if the file associated with ABFD matches the target vector
|
||
that ABFD points to.
|
||
|
||
Note that we may be called several times with the same ABFD, but different
|
||
target vectors, most of which will not match. We have to avoid leaving
|
||
any side effects in ABFD, or any data it points to (like tdata), if the
|
||
file does not match the target vector. */
|
||
|
||
const bfd_target *
|
||
elf_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Shdr x_shdr; /* Section header table entry, external form */
|
||
Elf_Internal_Shdr *i_shdrp = NULL; /* Section header table, internal form */
|
||
unsigned int shindex;
|
||
char *shstrtab; /* Internal copy of section header stringtab */
|
||
struct elf_backend_data *ebd;
|
||
struct elf_obj_tdata *preserved_tdata = elf_tdata (abfd);
|
||
struct elf_obj_tdata *new_tdata = NULL;
|
||
|
||
/* Read in the ELF header in external format. */
|
||
|
||
if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
goto got_wrong_format_error;
|
||
else
|
||
goto got_no_match;
|
||
}
|
||
|
||
/* Now check to see if we have a valid ELF file, and one that BFD can
|
||
make use of. The magic number must match, the address size ('class')
|
||
and byte-swapping must match our XVEC entry, and it must have a
|
||
section header table (FIXME: See comments re sections at top of this
|
||
file). */
|
||
|
||
if ((elf_file_p (&x_ehdr) == false) ||
|
||
(x_ehdr.e_ident[EI_VERSION] != EV_CURRENT) ||
|
||
(x_ehdr.e_ident[EI_CLASS] != ELFCLASS))
|
||
goto got_wrong_format_error;
|
||
|
||
/* Check that file's byte order matches xvec's */
|
||
switch (x_ehdr.e_ident[EI_DATA])
|
||
{
|
||
case ELFDATA2MSB: /* Big-endian */
|
||
if (!abfd->xvec->header_byteorder_big_p)
|
||
goto got_wrong_format_error;
|
||
break;
|
||
case ELFDATA2LSB: /* Little-endian */
|
||
if (abfd->xvec->header_byteorder_big_p)
|
||
goto got_wrong_format_error;
|
||
break;
|
||
case ELFDATANONE: /* No data encoding specified */
|
||
default: /* Unknown data encoding specified */
|
||
goto got_wrong_format_error;
|
||
}
|
||
|
||
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
|
||
the tdata pointer in the bfd. */
|
||
|
||
new_tdata = ((struct elf_obj_tdata *)
|
||
bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)));
|
||
if (new_tdata == NULL)
|
||
goto got_no_memory_error;
|
||
elf_tdata (abfd) = new_tdata;
|
||
|
||
/* Now that we know the byte order, swap in the rest of the header */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
|
||
#if DEBUG & 1
|
||
elf_debug_file (i_ehdrp);
|
||
#endif
|
||
|
||
/* If there is no section header table, we're hosed. */
|
||
if (i_ehdrp->e_shoff == 0)
|
||
goto got_wrong_format_error;
|
||
|
||
/* As a simple sanity check, verify that the what BFD thinks is the
|
||
size of each section header table entry actually matches the size
|
||
recorded in the file. */
|
||
if (i_ehdrp->e_shentsize != sizeof (x_shdr))
|
||
goto got_wrong_format_error;
|
||
|
||
ebd = get_elf_backend_data (abfd);
|
||
|
||
/* Check that the ELF e_machine field matches what this particular
|
||
BFD format expects. */
|
||
if (ebd->elf_machine_code != i_ehdrp->e_machine
|
||
&& (ebd->elf_machine_alt1 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt1)
|
||
&& (ebd->elf_machine_alt2 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt2))
|
||
{
|
||
const bfd_target * const *target_ptr;
|
||
|
||
if (ebd->elf_machine_code != EM_NONE)
|
||
goto got_wrong_format_error;
|
||
|
||
/* This is the generic ELF target. Let it match any ELF target
|
||
for which we do not have a specific backend. */
|
||
for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++)
|
||
{
|
||
struct elf_backend_data *back;
|
||
|
||
if ((*target_ptr)->flavour != bfd_target_elf_flavour)
|
||
continue;
|
||
back = (struct elf_backend_data *) (*target_ptr)->backend_data;
|
||
if (back->elf_machine_code == i_ehdrp->e_machine)
|
||
{
|
||
/* target_ptr is an ELF backend which matches this
|
||
object file, so reject the generic ELF target. */
|
||
goto got_wrong_format_error;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (i_ehdrp->e_type == ET_EXEC)
|
||
abfd->flags |= EXEC_P;
|
||
else if (i_ehdrp->e_type == ET_DYN)
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
if (i_ehdrp->e_phnum > 0)
|
||
abfd->flags |= D_PAGED;
|
||
|
||
if (! bfd_default_set_arch_mach (abfd, ebd->arch, 0))
|
||
goto got_no_match;
|
||
|
||
/* Remember the entry point specified in the ELF file header. */
|
||
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
|
||
|
||
/* Allocate space for a copy of the section header table in
|
||
internal form, seek to the section header table in the file,
|
||
read it in, and convert it to internal form. */
|
||
i_shdrp = ((Elf_Internal_Shdr *)
|
||
bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum));
|
||
elf_elfsections (abfd) = ((Elf_Internal_Shdr **)
|
||
bfd_alloc (abfd,
|
||
sizeof (i_shdrp) * i_ehdrp->e_shnum));
|
||
if (!i_shdrp || !elf_elfsections (abfd))
|
||
goto got_no_memory_error;
|
||
if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) != 0)
|
||
goto got_no_match;
|
||
for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++)
|
||
{
|
||
if (bfd_read ((PTR) & x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr))
|
||
goto got_no_match;
|
||
elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex);
|
||
elf_elfsections (abfd)[shindex] = i_shdrp + shindex;
|
||
}
|
||
if (i_ehdrp->e_shstrndx)
|
||
{
|
||
if (! bfd_section_from_shdr (abfd, i_ehdrp->e_shstrndx))
|
||
goto got_no_match;
|
||
}
|
||
|
||
/* Read in the string table containing the names of the sections. We
|
||
will need the base pointer to this table later. */
|
||
/* We read this inline now, so that we don't have to go through
|
||
bfd_section_from_shdr with it (since this particular strtab is
|
||
used to find all of the ELF section names.) */
|
||
|
||
shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx);
|
||
if (!shstrtab)
|
||
goto got_no_match;
|
||
|
||
/* Once all of the section headers have been read and converted, we
|
||
can start processing them. Note that the first section header is
|
||
a dummy placeholder entry, so we ignore it. */
|
||
|
||
for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++)
|
||
{
|
||
if (! bfd_section_from_shdr (abfd, shindex))
|
||
goto got_no_match;
|
||
}
|
||
|
||
/* Let the backend double check the format and override global
|
||
information. */
|
||
if (ebd->elf_backend_object_p)
|
||
{
|
||
if ((*ebd->elf_backend_object_p) (abfd) == false)
|
||
goto got_wrong_format_error;
|
||
}
|
||
|
||
return (abfd->xvec);
|
||
|
||
got_wrong_format_error:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
goto got_no_match;
|
||
got_no_memory_error:
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto got_no_match;
|
||
got_no_match:
|
||
if (new_tdata != NULL
|
||
&& new_tdata->elf_sect_ptr != NULL)
|
||
bfd_release (abfd, new_tdata->elf_sect_ptr);
|
||
if (i_shdrp != NULL)
|
||
bfd_release (abfd, i_shdrp);
|
||
if (new_tdata != NULL)
|
||
bfd_release (abfd, new_tdata);
|
||
elf_tdata (abfd) = preserved_tdata;
|
||
return (NULL);
|
||
}
|
||
|
||
|
||
/* ELF .o/exec file writing */
|
||
|
||
/* Takes a bfd and a symbol, returns a pointer to the elf specific area
|
||
of the symbol if there is one. */
|
||
static INLINE elf_symbol_type *
|
||
elf_symbol_from (ignore_abfd, symbol)
|
||
bfd *ignore_abfd;
|
||
asymbol *symbol;
|
||
{
|
||
if (symbol->the_bfd->xvec->flavour != bfd_target_elf_flavour)
|
||
return 0;
|
||
|
||
if (symbol->the_bfd->tdata.elf_obj_data == (struct elf_obj_tdata *) NULL)
|
||
return 0;
|
||
|
||
return (elf_symbol_type *) symbol;
|
||
}
|
||
|
||
static void
|
||
write_relocs (abfd, sec, data)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
PTR data;
|
||
{
|
||
boolean *failedp = (boolean *) data;
|
||
Elf_Internal_Shdr *rela_hdr;
|
||
Elf_External_Rela *outbound_relocas;
|
||
Elf_External_Rel *outbound_relocs;
|
||
int idx;
|
||
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
||
asymbol *last_sym = 0;
|
||
int last_sym_idx = 9999999; /* should always be written before use */
|
||
|
||
/* If we have already failed, don't do anything. */
|
||
if (*failedp)
|
||
return;
|
||
|
||
if ((sec->flags & SEC_RELOC) == 0)
|
||
return;
|
||
|
||
/* The linker backend writes the relocs out itself, and sets the
|
||
reloc_count field to zero to inhibit writing them here. Also,
|
||
sometimes the SEC_RELOC flag gets set even when there aren't any
|
||
relocs. */
|
||
if (sec->reloc_count == 0)
|
||
return;
|
||
|
||
rela_hdr = &elf_section_data (sec)->rel_hdr;
|
||
|
||
rela_hdr->sh_size = rela_hdr->sh_entsize * sec->reloc_count;
|
||
rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
|
||
if (rela_hdr->contents == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
*failedp = true;
|
||
return;
|
||
}
|
||
|
||
/* orelocation has the data, reloc_count has the count... */
|
||
if (use_rela_p)
|
||
{
|
||
outbound_relocas = (Elf_External_Rela *) rela_hdr->contents;
|
||
|
||
for (idx = 0; idx < sec->reloc_count; idx++)
|
||
{
|
||
Elf_Internal_Rela dst_rela;
|
||
Elf_External_Rela *src_rela;
|
||
arelent *ptr;
|
||
asymbol *sym;
|
||
int n;
|
||
|
||
ptr = sec->orelocation[idx];
|
||
src_rela = outbound_relocas + idx;
|
||
|
||
/* The address of an ELF reloc is section relative for an object
|
||
file, and absolute for an executable file or shared library.
|
||
The address of a BFD reloc is always section relative. */
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
|
||
dst_rela.r_offset = ptr->address;
|
||
else
|
||
dst_rela.r_offset = ptr->address + sec->vma;
|
||
|
||
sym = *ptr->sym_ptr_ptr;
|
||
if (sym == last_sym)
|
||
n = last_sym_idx;
|
||
else
|
||
{
|
||
last_sym = sym;
|
||
last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym);
|
||
}
|
||
dst_rela.r_info = ELF_R_INFO (n, ptr->howto->type);
|
||
|
||
dst_rela.r_addend = ptr->addend;
|
||
elf_swap_reloca_out (abfd, &dst_rela, src_rela);
|
||
}
|
||
}
|
||
else
|
||
/* REL relocations */
|
||
{
|
||
outbound_relocs = (Elf_External_Rel *) rela_hdr->contents;
|
||
|
||
for (idx = 0; idx < sec->reloc_count; idx++)
|
||
{
|
||
Elf_Internal_Rel dst_rel;
|
||
Elf_External_Rel *src_rel;
|
||
arelent *ptr;
|
||
int n;
|
||
asymbol *sym;
|
||
|
||
ptr = sec->orelocation[idx];
|
||
sym = *ptr->sym_ptr_ptr;
|
||
src_rel = outbound_relocs + idx;
|
||
|
||
/* The address of an ELF reloc is section relative for an object
|
||
file, and absolute for an executable file or shared library.
|
||
The address of a BFD reloc is always section relative. */
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
|
||
dst_rel.r_offset = ptr->address;
|
||
else
|
||
dst_rel.r_offset = ptr->address + sec->vma;
|
||
|
||
if (sym == last_sym)
|
||
n = last_sym_idx;
|
||
else
|
||
{
|
||
last_sym = sym;
|
||
last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym);
|
||
}
|
||
dst_rel.r_info = ELF_R_INFO (n, ptr->howto->type);
|
||
|
||
elf_swap_reloc_out (abfd, &dst_rel, src_rel);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set up an ELF internal section header for a section. */
|
||
|
||
/*ARGSUSED*/
|
||
static void
|
||
elf_fake_sections (abfd, asect, failedptrarg)
|
||
bfd *abfd;
|
||
asection *asect;
|
||
PTR failedptrarg;
|
||
{
|
||
boolean *failedptr = (boolean *) failedptrarg;
|
||
Elf_Internal_Shdr *this_hdr;
|
||
|
||
if (*failedptr)
|
||
{
|
||
/* We already failed; just get out of the bfd_map_over_sections
|
||
loop. */
|
||
return;
|
||
}
|
||
|
||
this_hdr = &elf_section_data (asect)->this_hdr;
|
||
|
||
this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
|
||
asect->name,
|
||
true, false);
|
||
if (this_hdr->sh_name == (unsigned long) -1)
|
||
{
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
|
||
this_hdr->sh_flags = 0;
|
||
if ((asect->flags & SEC_ALLOC) != 0)
|
||
this_hdr->sh_addr = asect->vma;
|
||
else
|
||
this_hdr->sh_addr = 0;
|
||
this_hdr->sh_offset = 0;
|
||
this_hdr->sh_size = asect->_raw_size;
|
||
this_hdr->sh_link = 0;
|
||
this_hdr->sh_info = 0;
|
||
this_hdr->sh_addralign = 1 << asect->alignment_power;
|
||
this_hdr->sh_entsize = 0;
|
||
|
||
this_hdr->bfd_section = asect;
|
||
this_hdr->contents = NULL;
|
||
|
||
/* FIXME: This should not be based on section names. */
|
||
if (strcmp (asect->name, ".dynstr") == 0)
|
||
this_hdr->sh_type = SHT_STRTAB;
|
||
else if (strcmp (asect->name, ".hash") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_HASH;
|
||
this_hdr->sh_entsize = ARCH_SIZE / 8;
|
||
}
|
||
else if (strcmp (asect->name, ".dynsym") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_DYNSYM;
|
||
this_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
}
|
||
else if (strcmp (asect->name, ".dynamic") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_DYNAMIC;
|
||
this_hdr->sh_entsize = sizeof (Elf_External_Dyn);
|
||
}
|
||
else if (strncmp (asect->name, ".rela", 5) == 0
|
||
&& get_elf_backend_data (abfd)->use_rela_p)
|
||
{
|
||
this_hdr->sh_type = SHT_RELA;
|
||
this_hdr->sh_entsize = sizeof (Elf_External_Rela);
|
||
}
|
||
else if (strncmp (asect->name, ".rel", 4) == 0
|
||
&& ! get_elf_backend_data (abfd)->use_rela_p)
|
||
{
|
||
this_hdr->sh_type = SHT_REL;
|
||
this_hdr->sh_entsize = sizeof (Elf_External_Rel);
|
||
}
|
||
else if (strcmp (asect->name, ".note") == 0)
|
||
this_hdr->sh_type = SHT_NOTE;
|
||
else if (strncmp (asect->name, ".stab", 5) == 0
|
||
&& strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
|
||
this_hdr->sh_type = SHT_STRTAB;
|
||
else if ((asect->flags & SEC_ALLOC) != 0
|
||
&& (asect->flags & SEC_LOAD) != 0)
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
else if ((asect->flags & SEC_ALLOC) != 0
|
||
&& ((asect->flags & SEC_LOAD) == 0))
|
||
{
|
||
BFD_ASSERT (strcmp (asect->name, ".bss") == 0
|
||
|| strcmp (asect->name, ".sbss") == 0
|
||
|| strcmp (asect->name, ".scommon") == 0
|
||
|| strcmp (asect->name, "COMMON") == 0);
|
||
this_hdr->sh_type = SHT_NOBITS;
|
||
}
|
||
else
|
||
{
|
||
/* Who knows? */
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
|
||
if ((asect->flags & SEC_ALLOC) != 0)
|
||
this_hdr->sh_flags |= SHF_ALLOC;
|
||
if ((asect->flags & SEC_READONLY) == 0)
|
||
this_hdr->sh_flags |= SHF_WRITE;
|
||
if ((asect->flags & SEC_CODE) != 0)
|
||
this_hdr->sh_flags |= SHF_EXECINSTR;
|
||
|
||
/* Check for processor-specific section types. */
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if (bed->elf_backend_fake_sections)
|
||
(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
|
||
}
|
||
|
||
/* If the section has relocs, set up a section header for the
|
||
SHT_REL[A] section. */
|
||
if ((asect->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Shdr *rela_hdr;
|
||
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
||
char *name;
|
||
|
||
rela_hdr = &elf_section_data (asect)->rel_hdr;
|
||
name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
|
||
if (name == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
|
||
rela_hdr->sh_name =
|
||
(unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
|
||
true, false);
|
||
if (rela_hdr->sh_name == (unsigned int) -1)
|
||
{
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
|
||
rela_hdr->sh_entsize = (use_rela_p
|
||
? sizeof (Elf_External_Rela)
|
||
: sizeof (Elf_External_Rel));
|
||
rela_hdr->sh_addralign = FILE_ALIGN;
|
||
rela_hdr->sh_flags = 0;
|
||
rela_hdr->sh_addr = 0;
|
||
rela_hdr->sh_size = 0;
|
||
rela_hdr->sh_offset = 0;
|
||
}
|
||
}
|
||
|
||
/* Assign all ELF section numbers. The dummy first section is handled here
|
||
too. The link/info pointers for the standard section types are filled
|
||
in here too, while we're at it. */
|
||
|
||
static boolean
|
||
assign_section_numbers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_obj_tdata *t = elf_tdata (abfd);
|
||
asection *sec;
|
||
unsigned int section_number;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
|
||
section_number = 1;
|
||
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
struct bfd_elf_section_data *d = elf_section_data (sec);
|
||
|
||
d->this_idx = section_number++;
|
||
if ((sec->flags & SEC_RELOC) == 0)
|
||
d->rel_idx = 0;
|
||
else
|
||
d->rel_idx = section_number++;
|
||
}
|
||
|
||
t->shstrtab_section = section_number++;
|
||
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
|
||
t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
|
||
|
||
if (abfd->symcount > 0)
|
||
{
|
||
t->symtab_section = section_number++;
|
||
t->strtab_section = section_number++;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_shnum = section_number;
|
||
|
||
/* Set up the list of section header pointers, in agreement with the
|
||
indices. */
|
||
i_shdrp = ((Elf_Internal_Shdr **)
|
||
bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
|
||
if (i_shdrp == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
i_shdrp[0] = ((Elf_Internal_Shdr *)
|
||
bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
|
||
if (i_shdrp[0] == NULL)
|
||
{
|
||
bfd_release (abfd, i_shdrp);
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
|
||
|
||
elf_elfsections (abfd) = i_shdrp;
|
||
|
||
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
|
||
if (abfd->symcount > 0)
|
||
{
|
||
i_shdrp[t->symtab_section] = &t->symtab_hdr;
|
||
i_shdrp[t->strtab_section] = &t->strtab_hdr;
|
||
t->symtab_hdr.sh_link = t->strtab_section;
|
||
}
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
struct bfd_elf_section_data *d = elf_section_data (sec);
|
||
asection *s;
|
||
const char *name;
|
||
|
||
i_shdrp[d->this_idx] = &d->this_hdr;
|
||
if (d->rel_idx != 0)
|
||
i_shdrp[d->rel_idx] = &d->rel_hdr;
|
||
|
||
/* Fill in the sh_link and sh_info fields while we're at it. */
|
||
|
||
/* sh_link of a reloc section is the section index of the symbol
|
||
table. sh_info is the section index of the section to which
|
||
the relocation entries apply. */
|
||
if (d->rel_idx != 0)
|
||
{
|
||
d->rel_hdr.sh_link = t->symtab_section;
|
||
d->rel_hdr.sh_info = d->this_idx;
|
||
}
|
||
|
||
switch (d->this_hdr.sh_type)
|
||
{
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* A reloc section which we are treating as a normal BFD
|
||
section. sh_link is the section index of the symbol
|
||
table. sh_info is the section index of the section to
|
||
which the relocation entries apply. We assume that an
|
||
allocated reloc section uses the dynamic symbol table.
|
||
FIXME: How can we be sure? */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
|
||
/* We look up the section the relocs apply to by name. */
|
||
name = sec->name;
|
||
if (d->this_hdr.sh_type == SHT_REL)
|
||
name += 4;
|
||
else
|
||
name += 5;
|
||
s = bfd_get_section_by_name (abfd, name);
|
||
if (s != NULL)
|
||
d->this_hdr.sh_info = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_STRTAB:
|
||
/* We assume that a section named .stab*str is a stabs
|
||
string section. We look for a section with the same name
|
||
but without the trailing ``str'', and set its sh_link
|
||
field to point to this section. */
|
||
if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
|
||
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
|
||
{
|
||
size_t len;
|
||
char *alc;
|
||
|
||
len = strlen (sec->name);
|
||
alc = (char *) malloc (len - 2);
|
||
if (alc == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strncpy (alc, sec->name, len - 3);
|
||
alc[len - 3] = '\0';
|
||
s = bfd_get_section_by_name (abfd, alc);
|
||
free (alc);
|
||
if (s != NULL)
|
||
{
|
||
elf_section_data (s)->this_hdr.sh_link = d->this_idx;
|
||
|
||
/* This is a .stab section. */
|
||
elf_section_data (s)->this_hdr.sh_entsize =
|
||
4 + 2 * (ARCH_SIZE / 8);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SHT_DYNAMIC:
|
||
case SHT_DYNSYM:
|
||
/* sh_link is the section header index of the string table
|
||
used for the dynamic entries or symbol table. */
|
||
s = bfd_get_section_by_name (abfd, ".dynstr");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_HASH:
|
||
/* sh_link is the section header index of the symbol table
|
||
this hash table is for. */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Map symbol from it's internal number to the external number, moving
|
||
all local symbols to be at the head of the list. */
|
||
|
||
static INLINE int
|
||
sym_is_global (abfd, sym)
|
||
bfd *abfd;
|
||
asymbol *sym;
|
||
{
|
||
/* If the backend has a special mapping, use it. */
|
||
if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
|
||
return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
|
||
(abfd, sym));
|
||
|
||
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (sym))
|
||
|| bfd_is_com_section (bfd_get_section (sym)));
|
||
}
|
||
|
||
static boolean
|
||
elf_map_symbols (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int symcount = bfd_get_symcount (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
asymbol **sect_syms;
|
||
int num_locals = 0;
|
||
int num_globals = 0;
|
||
int num_locals2 = 0;
|
||
int num_globals2 = 0;
|
||
int max_index = 0;
|
||
int num_sections = 0;
|
||
int idx;
|
||
asection *asect;
|
||
asymbol **new_syms;
|
||
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "elf_map_symbols\n");
|
||
fflush (stderr);
|
||
#endif
|
||
|
||
/* Add a section symbol for each BFD section. FIXME: Is this really
|
||
necessary? */
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (max_index < asect->index)
|
||
max_index = asect->index;
|
||
}
|
||
|
||
max_index++;
|
||
sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
|
||
if (sect_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
elf_section_syms (abfd) = sect_syms;
|
||
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
if ((syms[idx]->flags & BSF_SECTION_SYM) != 0
|
||
&& syms[idx]->value == 0)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = syms[idx]->section;
|
||
if (sec->owner != NULL)
|
||
{
|
||
if (sec->owner != abfd)
|
||
{
|
||
if (sec->output_offset != 0)
|
||
continue;
|
||
sec = sec->output_section;
|
||
BFD_ASSERT (sec->owner == abfd);
|
||
}
|
||
sect_syms[sec->index] = syms[idx];
|
||
}
|
||
}
|
||
}
|
||
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
asymbol *sym;
|
||
|
||
if (sect_syms[asect->index] != NULL)
|
||
continue;
|
||
|
||
sym = bfd_make_empty_symbol (abfd);
|
||
if (sym == NULL)
|
||
return false;
|
||
sym->the_bfd = abfd;
|
||
sym->name = asect->name;
|
||
sym->value = 0;
|
||
/* Set the flags to 0 to indicate that this one was newly added. */
|
||
sym->flags = 0;
|
||
sym->section = asect;
|
||
sect_syms[asect->index] = sym;
|
||
num_sections++;
|
||
#ifdef DEBUG
|
||
fprintf (stderr,
|
||
"creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n",
|
||
asect->name, (long) asect->vma, asect->index, (long) asect);
|
||
#endif
|
||
}
|
||
|
||
/* Classify all of the symbols. */
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
if (!sym_is_global (abfd, syms[idx]))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
}
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] != NULL
|
||
&& sect_syms[asect->index]->flags == 0)
|
||
{
|
||
sect_syms[asect->index]->flags = BSF_SECTION_SYM;
|
||
if (!sym_is_global (abfd, sect_syms[asect->index]))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
sect_syms[asect->index]->flags = 0;
|
||
}
|
||
}
|
||
|
||
/* Now sort the symbols so the local symbols are first. */
|
||
new_syms = ((asymbol **)
|
||
bfd_alloc (abfd,
|
||
(num_locals + num_globals) * sizeof (asymbol *)));
|
||
if (new_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
asymbol *sym = syms[idx];
|
||
int i;
|
||
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] != NULL
|
||
&& sect_syms[asect->index]->flags == 0)
|
||
{
|
||
asymbol *sym = sect_syms[asect->index];
|
||
int i;
|
||
|
||
sym->flags = BSF_SECTION_SYM;
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
}
|
||
|
||
bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
|
||
|
||
elf_num_locals (abfd) = num_locals;
|
||
elf_num_globals (abfd) = num_globals;
|
||
return true;
|
||
}
|
||
|
||
/* Compute the file positions we are going to put the sections at, and
|
||
otherwise prepare to begin writing out the ELF file. If LINK_INFO
|
||
is not NULL, this is being called by the ELF backend linker. */
|
||
|
||
static boolean
|
||
elf_compute_section_file_positions (abfd, link_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
boolean failed;
|
||
struct bfd_strtab_hash *strtab;
|
||
Elf_Internal_Shdr *shstrtab_hdr;
|
||
|
||
if (abfd->output_has_begun)
|
||
return true;
|
||
|
||
/* Do any elf backend specific processing first. */
|
||
if (bed->elf_backend_begin_write_processing)
|
||
(*bed->elf_backend_begin_write_processing) (abfd, link_info);
|
||
|
||
if (! prep_headers (abfd))
|
||
return false;
|
||
|
||
failed = false;
|
||
bfd_map_over_sections (abfd, elf_fake_sections, &failed);
|
||
if (failed)
|
||
return false;
|
||
|
||
if (!assign_section_numbers (abfd))
|
||
return false;
|
||
|
||
/* The backend linker builds symbol table information itself. */
|
||
if (link_info == NULL)
|
||
{
|
||
if (! swap_out_syms (abfd, &strtab))
|
||
return false;
|
||
}
|
||
|
||
shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
|
||
/* sh_name was set in prep_headers. */
|
||
shstrtab_hdr->sh_type = SHT_STRTAB;
|
||
shstrtab_hdr->sh_flags = 0;
|
||
shstrtab_hdr->sh_addr = 0;
|
||
shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
|
||
shstrtab_hdr->sh_entsize = 0;
|
||
shstrtab_hdr->sh_link = 0;
|
||
shstrtab_hdr->sh_info = 0;
|
||
/* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */
|
||
shstrtab_hdr->sh_addralign = 1;
|
||
|
||
if (!assign_file_positions_except_relocs (abfd,
|
||
link_info == NULL ? true : false))
|
||
return false;
|
||
|
||
if (link_info == NULL)
|
||
{
|
||
/* Now that we know where the .strtab section goes, write it
|
||
out. */
|
||
if ((bfd_seek (abfd, elf_tdata (abfd)->strtab_hdr.sh_offset, SEEK_SET)
|
||
!= 0)
|
||
|| ! _bfd_stringtab_emit (abfd, strtab))
|
||
return false;
|
||
_bfd_stringtab_free (strtab);
|
||
}
|
||
|
||
abfd->output_has_begun = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Align to the maximum file alignment that could be required for any
|
||
ELF data structure. */
|
||
|
||
static INLINE file_ptr
|
||
align_file_position (off)
|
||
file_ptr off;
|
||
{
|
||
return (off + FILE_ALIGN - 1) & ~(FILE_ALIGN - 1);
|
||
}
|
||
|
||
/* Assign a file position to a section, optionally aligning to the
|
||
required section alignment. */
|
||
|
||
static INLINE file_ptr
|
||
assign_file_position_for_section (i_shdrp, offset, align)
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
file_ptr offset;
|
||
boolean align;
|
||
{
|
||
if (align)
|
||
{
|
||
unsigned int al;
|
||
|
||
al = i_shdrp->sh_addralign;
|
||
if (al > 1)
|
||
offset = BFD_ALIGN (offset, al);
|
||
}
|
||
i_shdrp->sh_offset = offset;
|
||
if (i_shdrp->bfd_section != NULL)
|
||
i_shdrp->bfd_section->filepos = offset;
|
||
if (i_shdrp->sh_type != SHT_NOBITS)
|
||
offset += i_shdrp->sh_size;
|
||
return offset;
|
||
}
|
||
|
||
/* Get the size of the program header.
|
||
|
||
SORTED_HDRS, if non-NULL, is an array of COUNT pointers to headers sorted
|
||
by VMA. Non-allocated sections (!SHF_ALLOC) must appear last. All
|
||
section VMAs and sizes are known so we can compute the correct value.
|
||
(??? This may not be perfectly true. What cases do we miss?)
|
||
|
||
If SORTED_HDRS is NULL we assume there are two segments: text and data
|
||
(exclusive of .interp and .dynamic).
|
||
|
||
If this is called by the linker before any of the section VMA's are set, it
|
||
can't calculate the correct value for a strange memory layout. This only
|
||
happens when SIZEOF_HEADERS is used in a linker script. In this case,
|
||
SORTED_HDRS is NULL and we assume the normal scenario of one text and one
|
||
data segment (exclusive of .interp and .dynamic).
|
||
|
||
??? User written scripts must either not use SIZEOF_HEADERS, or assume there
|
||
will be two segments. */
|
||
|
||
static bfd_size_type
|
||
get_program_header_size (abfd, sorted_hdrs, count, maxpagesize)
|
||
bfd *abfd;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
unsigned int count;
|
||
bfd_vma maxpagesize;
|
||
{
|
||
size_t segs;
|
||
asection *s;
|
||
|
||
/* We can't return a different result each time we're called. */
|
||
if (elf_tdata (abfd)->program_header_size != 0)
|
||
return elf_tdata (abfd)->program_header_size;
|
||
|
||
if (sorted_hdrs != NULL)
|
||
{
|
||
unsigned int i;
|
||
unsigned int last_type;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
/* What we think the current segment's offset is. */
|
||
bfd_vma p_offset;
|
||
/* What we think the current segment's address is. */
|
||
bfd_vma p_vaddr;
|
||
/* How big we think the current segment is. */
|
||
bfd_vma p_memsz;
|
||
/* What we think the current file offset is. */
|
||
bfd_vma file_offset;
|
||
bfd_vma next_offset;
|
||
|
||
/* Scan the headers and compute the number of segments required. This
|
||
code is intentionally similar to the code in map_program_segments.
|
||
|
||
The `sh_offset' field isn't valid at this point, so we keep our own
|
||
running total in `file_offset'.
|
||
|
||
This works because section VMAs are already known. */
|
||
|
||
segs = 1;
|
||
/* Make sure the first section goes in the first segment. */
|
||
file_offset = p_offset = sorted_hdrs[0]->sh_addr % maxpagesize;
|
||
p_vaddr = sorted_hdrs[0]->sh_addr;
|
||
p_memsz = 0;
|
||
last_type = SHT_PROGBITS;
|
||
|
||
for (i = 0, hdrpp = sorted_hdrs; i < count; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
|
||
/* Ignore any section which will not be part of the process
|
||
image. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* Keep track of where this and the next sections go.
|
||
The section VMA must equal the file position modulo
|
||
the page size. */
|
||
file_offset += (hdr->sh_addr - file_offset) % maxpagesize;
|
||
next_offset = file_offset;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
next_offset = file_offset + hdr->sh_size;
|
||
|
||
/* If this section fits in the segment we are constructing, add
|
||
it in. */
|
||
if ((file_offset - (p_offset + p_memsz)
|
||
== hdr->sh_addr - (p_vaddr + p_memsz))
|
||
&& (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS))
|
||
{
|
||
bfd_size_type adjust;
|
||
|
||
adjust = hdr->sh_addr - (p_vaddr + p_memsz);
|
||
p_memsz += hdr->sh_size + adjust;
|
||
file_offset = next_offset;
|
||
last_type = hdr->sh_type;
|
||
continue;
|
||
}
|
||
|
||
/* The section won't fit, start a new segment. */
|
||
++segs;
|
||
|
||
/* Initialize the segment. */
|
||
p_vaddr = hdr->sh_addr;
|
||
p_memsz = hdr->sh_size;
|
||
p_offset = file_offset;
|
||
file_offset = next_offset;
|
||
|
||
last_type = hdr->sh_type;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Assume we will need exactly two PT_LOAD segments: one for text
|
||
and one for data. */
|
||
segs = 2;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
/* If we have a loadable interpreter section, we need a
|
||
PT_INTERP segment. In this case, assume we also need a
|
||
PT_PHDR segment, although that may not be true for all
|
||
targets. */
|
||
segs += 2;
|
||
}
|
||
|
||
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
|
||
{
|
||
/* We need a PT_DYNAMIC segment. */
|
||
++segs;
|
||
}
|
||
|
||
elf_tdata (abfd)->program_header_size = segs * sizeof (Elf_External_Phdr);
|
||
return elf_tdata (abfd)->program_header_size;
|
||
}
|
||
|
||
/* Create the program header. OFF is the file offset where the
|
||
program header should be written. FIRST is the first loadable ELF
|
||
section. SORTED_HDRS is the ELF sections sorted by section
|
||
address. PHDR_SIZE is the size of the program header as returned
|
||
by get_program_header_size. */
|
||
|
||
static file_ptr
|
||
map_program_segments (abfd, off, first, sorted_hdrs, phdr_size)
|
||
bfd *abfd;
|
||
file_ptr off;
|
||
Elf_Internal_Shdr *first;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
bfd_size_type phdr_size;
|
||
{
|
||
Elf_Internal_Phdr phdrs[10];
|
||
unsigned int phdr_count;
|
||
Elf_Internal_Phdr *phdr;
|
||
int phdr_size_adjust;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
asection *sinterp, *sdyn;
|
||
unsigned int last_type;
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
|
||
BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0);
|
||
BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr)
|
||
<= sizeof phdrs / sizeof (phdrs[0]));
|
||
|
||
phdr_count = 0;
|
||
phdr = phdrs;
|
||
|
||
phdr_size_adjust = 0;
|
||
|
||
/* If we have a loadable .interp section, we must create a PT_INTERP
|
||
segment which must precede all PT_LOAD segments. We assume that
|
||
we must also create a PT_PHDR segment, although that may not be
|
||
true for all targets. */
|
||
sinterp = bfd_get_section_by_name (abfd, ".interp");
|
||
if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0)
|
||
{
|
||
BFD_ASSERT (first != NULL);
|
||
|
||
phdr->p_type = PT_PHDR;
|
||
|
||
phdr->p_offset = off;
|
||
|
||
/* Account for any adjustment made because of the alignment of
|
||
the first loadable section. */
|
||
phdr_size_adjust = (first->sh_offset - phdr_size) - off;
|
||
BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128);
|
||
|
||
/* The program header precedes all loadable sections. This lets
|
||
us compute its loadable address. This depends on the linker
|
||
script. */
|
||
phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust);
|
||
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = phdr_size;
|
||
phdr->p_memsz = phdr_size;
|
||
|
||
/* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
|
||
phdr->p_flags = PF_R | PF_X;
|
||
|
||
phdr->p_align = FILE_ALIGN;
|
||
BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % FILE_ALIGN == 0);
|
||
|
||
/* Include the ELF header in the first loadable segment. */
|
||
phdr_size_adjust += off;
|
||
|
||
++phdr_count;
|
||
++phdr;
|
||
|
||
phdr->p_type = PT_INTERP;
|
||
phdr->p_offset = sinterp->filepos;
|
||
phdr->p_vaddr = sinterp->vma;
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = sinterp->_raw_size;
|
||
phdr->p_memsz = sinterp->_raw_size;
|
||
phdr->p_flags = PF_R;
|
||
phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp);
|
||
|
||
++phdr_count;
|
||
++phdr;
|
||
}
|
||
|
||
/* Look through the sections to see how they will be divided into
|
||
program segments. The sections must be arranged in order by
|
||
sh_addr for this to work correctly. */
|
||
phdr->p_type = PT_NULL;
|
||
last_type = SHT_PROGBITS;
|
||
for (i = 1, hdrpp = sorted_hdrs;
|
||
i < elf_elfheader (abfd)->e_shnum;
|
||
i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
|
||
/* Ignore any section which will not be part of the process
|
||
image. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If this section fits in the segment we are constructing, add
|
||
it in. */
|
||
if (phdr->p_type != PT_NULL
|
||
&& (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz)
|
||
== hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz))
|
||
&& (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS))
|
||
{
|
||
bfd_size_type adjust;
|
||
|
||
adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz);
|
||
phdr->p_memsz += hdr->sh_size + adjust;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
phdr->p_filesz += hdr->sh_size + adjust;
|
||
if ((hdr->sh_flags & SHF_WRITE) != 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
last_type = hdr->sh_type;
|
||
continue;
|
||
}
|
||
|
||
/* The section won't fit, start a new segment. If we're already in one,
|
||
move to the next one. */
|
||
if (phdr->p_type != PT_NULL)
|
||
{
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* Initialize the segment. */
|
||
phdr->p_type = PT_LOAD;
|
||
phdr->p_offset = hdr->sh_offset;
|
||
phdr->p_vaddr = hdr->sh_addr;
|
||
phdr->p_paddr = 0;
|
||
if (hdr->sh_type == SHT_NOBITS)
|
||
phdr->p_filesz = 0;
|
||
else
|
||
phdr->p_filesz = hdr->sh_size;
|
||
phdr->p_memsz = hdr->sh_size;
|
||
phdr->p_flags = PF_R;
|
||
if ((hdr->sh_flags & SHF_WRITE) != 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
phdr->p_align = get_elf_backend_data (abfd)->maxpagesize;
|
||
|
||
if (hdr == first
|
||
&& sinterp != NULL
|
||
&& (sinterp->flags & SEC_LOAD) != 0)
|
||
{
|
||
phdr->p_offset -= phdr_size + phdr_size_adjust;
|
||
phdr->p_vaddr -= phdr_size + phdr_size_adjust;
|
||
phdr->p_filesz += phdr_size + phdr_size_adjust;
|
||
phdr->p_memsz += phdr_size + phdr_size_adjust;
|
||
}
|
||
|
||
last_type = hdr->sh_type;
|
||
}
|
||
|
||
if (phdr->p_type != PT_NULL)
|
||
{
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* If we have a .dynamic section, create a PT_DYNAMIC segment. */
|
||
sdyn = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0)
|
||
{
|
||
phdr->p_type = PT_DYNAMIC;
|
||
phdr->p_offset = sdyn->filepos;
|
||
phdr->p_vaddr = sdyn->vma;
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = sdyn->_raw_size;
|
||
phdr->p_memsz = sdyn->_raw_size;
|
||
phdr->p_flags = PF_R;
|
||
if ((sdyn->flags & SEC_READONLY) == 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((sdyn->flags & SEC_CODE) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn);
|
||
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* Make sure the return value from get_program_header_size matches
|
||
what we computed here. Actually, it's OK if we allocated too
|
||
much space in the program header. */
|
||
if (phdr_count > phdr_size / sizeof (Elf_External_Phdr))
|
||
{
|
||
((*_bfd_error_handler)
|
||
("%s: Not enough room for program headers (allocated %lu, need %u)",
|
||
bfd_get_filename (abfd),
|
||
(unsigned long) (phdr_size / sizeof (Elf_External_Phdr)),
|
||
phdr_count));
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return (file_ptr) -1;
|
||
}
|
||
|
||
/* Set up program header information. */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
|
||
i_ehdrp->e_phoff = off;
|
||
i_ehdrp->e_phnum = phdr_count;
|
||
|
||
/* Save the program headers away. I don't think anybody uses this
|
||
information right now. */
|
||
elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *)
|
||
bfd_alloc (abfd,
|
||
(phdr_count
|
||
* sizeof (Elf_Internal_Phdr))));
|
||
if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return (file_ptr) -1;
|
||
}
|
||
memcpy (elf_tdata (abfd)->phdr, phdrs,
|
||
phdr_count * sizeof (Elf_Internal_Phdr));
|
||
|
||
/* Write out the program headers. */
|
||
if (bfd_seek (abfd, off, SEEK_SET) != 0)
|
||
return (file_ptr) -1;
|
||
|
||
for (i = 0, phdr = phdrs; i < phdr_count; i++, phdr++)
|
||
{
|
||
Elf_External_Phdr extphdr;
|
||
|
||
elf_swap_phdr_out (abfd, phdr, &extphdr);
|
||
if (bfd_write (&extphdr, sizeof (Elf_External_Phdr), 1, abfd)
|
||
!= sizeof (Elf_External_Phdr))
|
||
return (file_ptr) -1;
|
||
}
|
||
|
||
return off + phdr_count * sizeof (Elf_External_Phdr);
|
||
}
|
||
|
||
/* Work out the file positions of all the sections. This is called by
|
||
elf_compute_section_file_positions. All the section sizes and VMAs
|
||
must be known before this is called.
|
||
|
||
We do not consider reloc sections at this point, unless they form
|
||
part of the loadable image. Reloc sections are assigned file
|
||
positions in assign_file_positions_for_relocs, which is called by
|
||
write_object_contents and final_link.
|
||
|
||
If DOSYMS is false, we do not assign file positions for the symbol
|
||
table or the string table. */
|
||
|
||
static boolean
|
||
assign_file_positions_except_relocs (abfd, dosyms)
|
||
bfd *abfd;
|
||
boolean dosyms;
|
||
{
|
||
struct elf_obj_tdata * const tdata = elf_tdata (abfd);
|
||
Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
|
||
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
|
||
file_ptr off;
|
||
|
||
/* Start after the ELF header. */
|
||
off = i_ehdrp->e_ehsize;
|
||
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
|
||
{
|
||
Elf_Internal_Shdr **hdrpp;
|
||
unsigned int i;
|
||
|
||
/* We are not creating an executable, which means that we are
|
||
not creating a program header, and that the actual order of
|
||
the sections in the file is unimportant. */
|
||
for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
if (! dosyms
|
||
&& (i == tdata->symtab_section
|
||
|| i == tdata->strtab_section))
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
|
||
off = assign_file_position_for_section (hdr, off, true);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
file_ptr phdr_off;
|
||
bfd_size_type phdr_size;
|
||
bfd_vma maxpagesize;
|
||
size_t hdrppsize;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr *first;
|
||
file_ptr phdr_map;
|
||
|
||
/* We are creating an executable. */
|
||
|
||
maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
|
||
if (maxpagesize == 0)
|
||
maxpagesize = 1;
|
||
|
||
/* We must sort the sections. The GNU linker will always create
|
||
the sections in an appropriate order, but the Irix 5 linker
|
||
will not. We don't include the dummy first section in the
|
||
sort. We sort sections which are not SHF_ALLOC to the end. */
|
||
hdrppsize = (i_ehdrp->e_shnum - 1) * sizeof (Elf_Internal_Shdr *);
|
||
sorted_hdrs = (Elf_Internal_Shdr **) malloc (hdrppsize);
|
||
if (sorted_hdrs == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
memcpy (sorted_hdrs, i_shdrpp + 1, hdrppsize);
|
||
qsort (sorted_hdrs, i_ehdrp->e_shnum - 1, sizeof (Elf_Internal_Shdr *),
|
||
elf_sort_hdrs);
|
||
|
||
/* We can't actually create the program header until we have set the
|
||
file positions for the sections, and we can't do that until we know
|
||
how big the header is going to be. */
|
||
off = align_file_position (off);
|
||
phdr_size = get_program_header_size (abfd,
|
||
sorted_hdrs, i_ehdrp->e_shnum - 1,
|
||
maxpagesize);
|
||
if (phdr_size == (file_ptr) -1)
|
||
return false;
|
||
|
||
/* Compute the file offsets of each section. */
|
||
phdr_off = off;
|
||
off += phdr_size;
|
||
first = NULL;
|
||
for (i = 1, hdrpp = sorted_hdrs; i < i_ehdrp->e_shnum; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
{
|
||
if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
if (! dosyms
|
||
&& (hdr == i_shdrpp[tdata->symtab_section]
|
||
|| hdr == i_shdrpp[tdata->strtab_section]))
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (first == NULL)
|
||
first = hdr;
|
||
|
||
/* The section VMA must equal the file position modulo
|
||
the page size. This is required by the program
|
||
header. */
|
||
off += (hdr->sh_addr - off) % maxpagesize;
|
||
}
|
||
|
||
off = assign_file_position_for_section (hdr, off, false);
|
||
}
|
||
|
||
/* Create the program header. */
|
||
phdr_map = map_program_segments (abfd, phdr_off, first, sorted_hdrs,
|
||
phdr_size);
|
||
if (phdr_map == (file_ptr) -1)
|
||
return false;
|
||
BFD_ASSERT ((bfd_size_type) phdr_map <= (bfd_size_type) phdr_off + phdr_size);
|
||
|
||
free (sorted_hdrs);
|
||
}
|
||
|
||
/* Place the section headers. */
|
||
off = align_file_position (off);
|
||
i_ehdrp->e_shoff = off;
|
||
off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Sort the ELF headers by VMA. We sort headers which are not
|
||
SHF_ALLOC to the end. */
|
||
|
||
|
||
static int
|
||
elf_sort_hdrs (arg1, arg2)
|
||
const PTR arg1;
|
||
const PTR arg2;
|
||
{
|
||
int ret;
|
||
const Elf_Internal_Shdr *hdr1 = *(const Elf_Internal_Shdr **) arg1;
|
||
const Elf_Internal_Shdr *hdr2 = *(const Elf_Internal_Shdr **) arg2;
|
||
|
||
#define TOEND(x) (((x)->sh_flags & SHF_ALLOC)==0)
|
||
|
||
if (TOEND (hdr1))
|
||
if (TOEND (hdr2))
|
||
return 0;
|
||
else
|
||
return 1;
|
||
|
||
if (TOEND (hdr2))
|
||
return -1;
|
||
|
||
if (hdr1->sh_addr < hdr2->sh_addr)
|
||
return -1;
|
||
else if (hdr1->sh_addr > hdr2->sh_addr)
|
||
return 1;
|
||
|
||
/* Put !SHT_NOBITS sections before SHT_NOBITS ones.
|
||
The main loop in map_program_segments requires this. */
|
||
|
||
ret = (hdr1->sh_type == SHT_NOBITS) - (hdr2->sh_type == SHT_NOBITS);
|
||
|
||
if (ret != 0)
|
||
return ret;
|
||
if (hdr1->sh_size < hdr2->sh_size)
|
||
return -1;
|
||
if (hdr1->sh_size > hdr2->sh_size)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
static boolean
|
||
prep_headers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
|
||
Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
|
||
int count;
|
||
struct bfd_strtab_hash *shstrtab;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_shdrp = elf_elfsections (abfd);
|
||
|
||
shstrtab = elf_stringtab_init ();
|
||
if (shstrtab == NULL)
|
||
return false;
|
||
|
||
elf_shstrtab (abfd) = shstrtab;
|
||
|
||
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
|
||
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
|
||
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
|
||
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
|
||
|
||
i_ehdrp->e_ident[EI_CLASS] = ELFCLASS;
|
||
i_ehdrp->e_ident[EI_DATA] =
|
||
abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB;
|
||
i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT;
|
||
|
||
for (count = EI_PAD; count < EI_NIDENT; count++)
|
||
i_ehdrp->e_ident[count] = 0;
|
||
|
||
if ((abfd->flags & DYNAMIC) != 0)
|
||
i_ehdrp->e_type = ET_DYN;
|
||
else if ((abfd->flags & EXEC_P) != 0)
|
||
i_ehdrp->e_type = ET_EXEC;
|
||
else
|
||
i_ehdrp->e_type = ET_REL;
|
||
|
||
switch (bfd_get_arch (abfd))
|
||
{
|
||
case bfd_arch_unknown:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
break;
|
||
case bfd_arch_sparc:
|
||
#if ARCH_SIZE == 64
|
||
i_ehdrp->e_machine = EM_SPARC64;
|
||
#else
|
||
i_ehdrp->e_machine = EM_SPARC;
|
||
#endif
|
||
break;
|
||
case bfd_arch_i386:
|
||
i_ehdrp->e_machine = EM_386;
|
||
break;
|
||
case bfd_arch_m68k:
|
||
i_ehdrp->e_machine = EM_68K;
|
||
break;
|
||
case bfd_arch_m88k:
|
||
i_ehdrp->e_machine = EM_88K;
|
||
break;
|
||
case bfd_arch_i860:
|
||
i_ehdrp->e_machine = EM_860;
|
||
break;
|
||
case bfd_arch_mips: /* MIPS Rxxxx */
|
||
i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
|
||
break;
|
||
case bfd_arch_hppa:
|
||
i_ehdrp->e_machine = EM_PARISC;
|
||
break;
|
||
case bfd_arch_powerpc:
|
||
i_ehdrp->e_machine = EM_PPC;
|
||
break;
|
||
/* start-sanitize-arc */
|
||
case bfd_arch_arc:
|
||
i_ehdrp->e_machine = EM_CYGNUS_ARC;
|
||
break;
|
||
/* end-sanitize-arc */
|
||
/* also note that EM_M32, AT&T WE32100 is unknown to bfd */
|
||
default:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
}
|
||
i_ehdrp->e_version = EV_CURRENT;
|
||
i_ehdrp->e_ehsize = sizeof (Elf_External_Ehdr);
|
||
|
||
/* no program header, for now. */
|
||
i_ehdrp->e_phoff = 0;
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_ehdrp->e_phnum = 0;
|
||
|
||
/* each bfd section is section header entry */
|
||
i_ehdrp->e_entry = bfd_get_start_address (abfd);
|
||
i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr);
|
||
|
||
/* if we're building an executable, we'll need a program header table */
|
||
if (abfd->flags & EXEC_P)
|
||
{
|
||
/* it all happens later */
|
||
#if 0
|
||
i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
|
||
|
||
/* elf_build_phdrs() returns a (NULL-terminated) array of
|
||
Elf_Internal_Phdrs */
|
||
i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
|
||
i_ehdrp->e_phoff = outbase;
|
||
outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_phdrp = 0;
|
||
i_ehdrp->e_phoff = 0;
|
||
}
|
||
|
||
elf_tdata (abfd)->symtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
|
||
elf_tdata (abfd)->strtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
|
||
elf_tdata (abfd)->shstrtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
|
||
if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
swap_out_syms (abfd, sttp)
|
||
bfd *abfd;
|
||
struct bfd_strtab_hash **sttp;
|
||
{
|
||
if (!elf_map_symbols (abfd))
|
||
return false;
|
||
|
||
/* Dump out the symtabs. */
|
||
{
|
||
int symcount = bfd_get_symcount (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
struct bfd_strtab_hash *stt;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
Elf_External_Sym *outbound_syms;
|
||
int idx;
|
||
|
||
stt = elf_stringtab_init ();
|
||
if (stt == NULL)
|
||
return false;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
|
||
symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
|
||
symtab_hdr->sh_addralign = FILE_ALIGN;
|
||
|
||
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
outbound_syms = ((Elf_External_Sym *)
|
||
bfd_alloc (abfd,
|
||
(1 + symcount) * sizeof (Elf_External_Sym)));
|
||
if (outbound_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
symtab_hdr->contents = (PTR) outbound_syms;
|
||
|
||
/* now generate the data (for "contents") */
|
||
{
|
||
/* Fill in zeroth symbol and swap it out. */
|
||
Elf_Internal_Sym sym;
|
||
sym.st_name = 0;
|
||
sym.st_value = 0;
|
||
sym.st_size = 0;
|
||
sym.st_info = 0;
|
||
sym.st_other = 0;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
elf_swap_symbol_out (abfd, &sym, outbound_syms);
|
||
++outbound_syms;
|
||
}
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
bfd_vma value = syms[idx]->value;
|
||
elf_symbol_type *type_ptr;
|
||
flagword flags = syms[idx]->flags;
|
||
|
||
if (flags & BSF_SECTION_SYM)
|
||
/* Section symbols have no names. */
|
||
sym.st_name = 0;
|
||
else
|
||
{
|
||
sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
|
||
syms[idx]->name,
|
||
true, false);
|
||
if (sym.st_name == (unsigned long) -1)
|
||
return false;
|
||
}
|
||
|
||
type_ptr = elf_symbol_from (abfd, syms[idx]);
|
||
|
||
if (bfd_is_com_section (syms[idx]->section))
|
||
{
|
||
/* ELF common symbols put the alignment into the `value' field,
|
||
and the size into the `size' field. This is backwards from
|
||
how BFD handles it, so reverse it here. */
|
||
sym.st_size = value;
|
||
if (type_ptr == NULL
|
||
|| type_ptr->internal_elf_sym.st_value == 0)
|
||
sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
|
||
else
|
||
sym.st_value = type_ptr->internal_elf_sym.st_value;
|
||
sym.st_shndx = elf_section_from_bfd_section (abfd,
|
||
syms[idx]->section);
|
||
}
|
||
else
|
||
{
|
||
asection *sec = syms[idx]->section;
|
||
int shndx;
|
||
|
||
if (sec->output_section)
|
||
{
|
||
value += sec->output_offset;
|
||
sec = sec->output_section;
|
||
}
|
||
value += sec->vma;
|
||
sym.st_value = value;
|
||
sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
|
||
sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec);
|
||
if (shndx == -1)
|
||
{
|
||
asection *sec2;
|
||
/* Writing this would be a hell of a lot easier if we had
|
||
some decent documentation on bfd, and knew what to expect
|
||
of the library, and what to demand of applications. For
|
||
example, it appears that `objcopy' might not set the
|
||
section of a symbol to be a section that is actually in
|
||
the output file. */
|
||
sec2 = bfd_get_section_by_name (abfd, sec->name);
|
||
BFD_ASSERT (sec2 != 0);
|
||
sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec2);
|
||
BFD_ASSERT (shndx != -1);
|
||
}
|
||
}
|
||
|
||
if (bfd_is_com_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT);
|
||
else if (bfd_is_und_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
|
||
? STB_WEAK
|
||
: STB_GLOBAL),
|
||
((flags & BSF_FUNCTION)
|
||
? STT_FUNC
|
||
: STT_NOTYPE));
|
||
else if (flags & BSF_SECTION_SYM)
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
||
else if (flags & BSF_FILE)
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
||
else
|
||
{
|
||
int bind = STB_LOCAL;
|
||
int type = STT_OBJECT;
|
||
|
||
if (flags & BSF_LOCAL)
|
||
bind = STB_LOCAL;
|
||
else if (flags & BSF_WEAK)
|
||
bind = STB_WEAK;
|
||
else if (flags & BSF_GLOBAL)
|
||
bind = STB_GLOBAL;
|
||
|
||
if (flags & BSF_FUNCTION)
|
||
type = STT_FUNC;
|
||
|
||
sym.st_info = ELF_ST_INFO (bind, type);
|
||
}
|
||
|
||
sym.st_other = 0;
|
||
elf_swap_symbol_out (abfd, &sym, outbound_syms);
|
||
++outbound_syms;
|
||
}
|
||
|
||
*sttp = stt;
|
||
symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
symstrtab_hdr->sh_flags = 0;
|
||
symstrtab_hdr->sh_addr = 0;
|
||
symstrtab_hdr->sh_entsize = 0;
|
||
symstrtab_hdr->sh_link = 0;
|
||
symstrtab_hdr->sh_info = 0;
|
||
symstrtab_hdr->sh_addralign = 1;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
write_shdrs_and_ehdr (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Shdr *x_shdrp; /* Section header table, external form */
|
||
Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
|
||
unsigned int count;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_shdrp = elf_elfsections (abfd);
|
||
|
||
/* swap the header before spitting it out... */
|
||
|
||
#if DEBUG & 1
|
||
elf_debug_file (i_ehdrp);
|
||
#endif
|
||
elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr);
|
||
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
|
||
|| (bfd_write ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd)
|
||
!= sizeof (x_ehdr)))
|
||
return false;
|
||
|
||
/* at this point we've concocted all the ELF sections... */
|
||
x_shdrp = (Elf_External_Shdr *)
|
||
bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum));
|
||
if (!x_shdrp)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
for (count = 0; count < i_ehdrp->e_shnum; count++)
|
||
{
|
||
#if DEBUG & 2
|
||
elf_debug_section (count, i_shdrp[count]);
|
||
#endif
|
||
elf_swap_shdr_out (abfd, i_shdrp[count], x_shdrp + count);
|
||
}
|
||
if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0
|
||
|| (bfd_write ((PTR) x_shdrp, sizeof (*x_shdrp), i_ehdrp->e_shnum, abfd)
|
||
!= sizeof (*x_shdrp) * i_ehdrp->e_shnum))
|
||
return false;
|
||
|
||
/* need to dump the string table too... */
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Assign file positions for all the reloc sections which are not part
|
||
of the loadable file image. */
|
||
|
||
static void
|
||
assign_file_positions_for_relocs (abfd)
|
||
bfd *abfd;
|
||
{
|
||
file_ptr off;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **shdrpp;
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
|
||
for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
|
||
i < elf_elfheader (abfd)->e_shnum;
|
||
i++, shdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *shdrp;
|
||
|
||
shdrp = *shdrpp;
|
||
if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
|
||
&& shdrp->sh_offset == -1)
|
||
off = assign_file_position_for_section (shdrp, off, true);
|
||
}
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
}
|
||
|
||
boolean
|
||
NAME(bfd_elf,write_object_contents) (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
boolean failed;
|
||
unsigned int count;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! elf_compute_section_file_positions (abfd,
|
||
(struct bfd_link_info *) NULL))
|
||
return false;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
|
||
failed = false;
|
||
bfd_map_over_sections (abfd, write_relocs, &failed);
|
||
if (failed)
|
||
return false;
|
||
assign_file_positions_for_relocs (abfd);
|
||
|
||
/* After writing the headers, we need to write the sections too... */
|
||
for (count = 1; count < i_ehdrp->e_shnum; count++)
|
||
{
|
||
if (bed->elf_backend_section_processing)
|
||
(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
|
||
if (i_shdrp[count]->contents)
|
||
{
|
||
if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
|
||
1, abfd)
|
||
!= i_shdrp[count]->sh_size))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Write out the section header names. */
|
||
if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
|
||
return false;
|
||
|
||
if (bed->elf_backend_final_write_processing)
|
||
(*bed->elf_backend_final_write_processing) (abfd,
|
||
elf_tdata (abfd)->linker);
|
||
|
||
return write_shdrs_and_ehdr (abfd);
|
||
}
|
||
|
||
/* Given an ELF section number, retrieve the corresponding BFD
|
||
section. */
|
||
|
||
static asection *
|
||
section_from_elf_index (abfd, index)
|
||
bfd *abfd;
|
||
unsigned int index;
|
||
{
|
||
BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
|
||
if (index >= elf_elfheader (abfd)->e_shnum)
|
||
return NULL;
|
||
return elf_elfsections (abfd)[index]->bfd_section;
|
||
}
|
||
|
||
/* given a section, search the header to find them... */
|
||
static int
|
||
elf_section_from_bfd_section (abfd, asect)
|
||
bfd *abfd;
|
||
struct sec *asect;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
|
||
int index;
|
||
Elf_Internal_Shdr *hdr;
|
||
int maxindex = elf_elfheader (abfd)->e_shnum;
|
||
|
||
for (index = 0; index < maxindex; index++)
|
||
{
|
||
hdr = i_shdrp[index];
|
||
if (hdr->bfd_section == asect)
|
||
return index;
|
||
}
|
||
|
||
if (bed->elf_backend_section_from_bfd_section)
|
||
{
|
||
for (index = 0; index < maxindex; index++)
|
||
{
|
||
int retval;
|
||
|
||
hdr = i_shdrp[index];
|
||
retval = index;
|
||
if ((*bed->elf_backend_section_from_bfd_section)
|
||
(abfd, hdr, asect, &retval))
|
||
return retval;
|
||
}
|
||
}
|
||
|
||
if (bfd_is_abs_section (asect))
|
||
return SHN_ABS;
|
||
if (bfd_is_com_section (asect))
|
||
return SHN_COMMON;
|
||
if (bfd_is_und_section (asect))
|
||
return SHN_UNDEF;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* given a symbol, return the bfd index for that symbol. */
|
||
static int
|
||
elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
|
||
bfd *abfd;
|
||
struct symbol_cache_entry **asym_ptr_ptr;
|
||
{
|
||
struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr;
|
||
int idx;
|
||
flagword flags = asym_ptr->flags;
|
||
|
||
/* When gas creates relocations against local labels, it creates its
|
||
own symbol for the section, but does put the symbol into the
|
||
symbol chain, so udata is 0. When the linker is generating
|
||
relocatable output, this section symbol may be for one of the
|
||
input sections rather than the output section. */
|
||
if (asym_ptr->udata.i == 0
|
||
&& (flags & BSF_SECTION_SYM)
|
||
&& asym_ptr->section)
|
||
{
|
||
int indx;
|
||
|
||
if (asym_ptr->section->output_section != NULL)
|
||
indx = asym_ptr->section->output_section->index;
|
||
else
|
||
indx = asym_ptr->section->index;
|
||
if (elf_section_syms (abfd)[indx])
|
||
asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
|
||
}
|
||
|
||
idx = asym_ptr->udata.i;
|
||
BFD_ASSERT (idx != 0);
|
||
|
||
#if DEBUG & 4
|
||
{
|
||
|
||
fprintf (stderr,
|
||
"elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
|
||
(long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags));
|
||
fflush (stderr);
|
||
}
|
||
#endif
|
||
|
||
return idx;
|
||
}
|
||
|
||
static long
|
||
elf_slurp_symbol_table (abfd, symptrs, dynamic)
|
||
bfd *abfd;
|
||
asymbol **symptrs; /* Buffer for generated bfd symbols */
|
||
boolean dynamic;
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
long symcount; /* Number of external ELF symbols */
|
||
elf_symbol_type *sym; /* Pointer to current bfd symbol */
|
||
elf_symbol_type *symbase; /* Buffer for generated bfd symbols */
|
||
Elf_Internal_Sym i_sym;
|
||
Elf_External_Sym *x_symp = NULL;
|
||
|
||
/* Read each raw ELF symbol, converting from external ELF form to
|
||
internal ELF form, and then using the information to create a
|
||
canonical bfd symbol table entry.
|
||
|
||
Note that we allocate the initial bfd canonical symbol buffer
|
||
based on a one-to-one mapping of the ELF symbols to canonical
|
||
symbols. We actually use all the ELF symbols, so there will be no
|
||
space left over at the end. When we have all the symbols, we
|
||
build the caller's pointer vector. */
|
||
|
||
if (dynamic)
|
||
hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
else
|
||
hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
|
||
return -1;
|
||
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
|
||
if (symcount == 0)
|
||
sym = symbase = NULL;
|
||
else
|
||
{
|
||
long i;
|
||
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
|
||
return -1;
|
||
|
||
symbase = ((elf_symbol_type *)
|
||
bfd_zalloc (abfd, symcount * sizeof (elf_symbol_type)));
|
||
if (symbase == (elf_symbol_type *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return -1;
|
||
}
|
||
sym = symbase;
|
||
|
||
/* Temporarily allocate room for the raw ELF symbols. */
|
||
x_symp = ((Elf_External_Sym *)
|
||
malloc (symcount * sizeof (Elf_External_Sym)));
|
||
if (x_symp == NULL && symcount != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd)
|
||
!= symcount * sizeof (Elf_External_Sym))
|
||
goto error_return;
|
||
/* Skip first symbol, which is a null dummy. */
|
||
for (i = 1; i < symcount; i++)
|
||
{
|
||
elf_swap_symbol_in (abfd, x_symp + i, &i_sym);
|
||
memcpy (&sym->internal_elf_sym, &i_sym, sizeof (Elf_Internal_Sym));
|
||
#ifdef ELF_KEEP_EXTSYM
|
||
memcpy (&sym->native_elf_sym, x_symp + i, sizeof (Elf_External_Sym));
|
||
#endif
|
||
sym->symbol.the_bfd = abfd;
|
||
|
||
sym->symbol.name = elf_string_from_elf_section (abfd, hdr->sh_link,
|
||
i_sym.st_name);
|
||
|
||
sym->symbol.value = i_sym.st_value;
|
||
|
||
if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERVE)
|
||
{
|
||
sym->symbol.section = section_from_elf_index (abfd,
|
||
i_sym.st_shndx);
|
||
if (sym->symbol.section == NULL)
|
||
{
|
||
/* This symbol is in a section for which we did not
|
||
create a BFD section. Just use bfd_abs_section,
|
||
although it is wrong. FIXME. */
|
||
sym->symbol.section = bfd_abs_section_ptr;
|
||
}
|
||
}
|
||
else if (i_sym.st_shndx == SHN_ABS)
|
||
{
|
||
sym->symbol.section = bfd_abs_section_ptr;
|
||
}
|
||
else if (i_sym.st_shndx == SHN_COMMON)
|
||
{
|
||
sym->symbol.section = bfd_com_section_ptr;
|
||
/* Elf puts the alignment into the `value' field, and
|
||
the size into the `size' field. BFD wants to see the
|
||
size in the value field, and doesn't care (at the
|
||
moment) about the alignment. */
|
||
sym->symbol.value = i_sym.st_size;
|
||
}
|
||
else if (i_sym.st_shndx == SHN_UNDEF)
|
||
{
|
||
sym->symbol.section = bfd_und_section_ptr;
|
||
}
|
||
else
|
||
sym->symbol.section = bfd_abs_section_ptr;
|
||
|
||
sym->symbol.value -= sym->symbol.section->vma;
|
||
|
||
switch (ELF_ST_BIND (i_sym.st_info))
|
||
{
|
||
case STB_LOCAL:
|
||
sym->symbol.flags |= BSF_LOCAL;
|
||
break;
|
||
case STB_GLOBAL:
|
||
if (i_sym.st_shndx != SHN_UNDEF
|
||
&& i_sym.st_shndx != SHN_COMMON)
|
||
sym->symbol.flags |= BSF_GLOBAL;
|
||
break;
|
||
case STB_WEAK:
|
||
sym->symbol.flags |= BSF_WEAK;
|
||
break;
|
||
}
|
||
|
||
switch (ELF_ST_TYPE (i_sym.st_info))
|
||
{
|
||
case STT_SECTION:
|
||
sym->symbol.flags |= BSF_SECTION_SYM | BSF_DEBUGGING;
|
||
break;
|
||
case STT_FILE:
|
||
sym->symbol.flags |= BSF_FILE | BSF_DEBUGGING;
|
||
break;
|
||
case STT_FUNC:
|
||
sym->symbol.flags |= BSF_FUNCTION;
|
||
break;
|
||
}
|
||
|
||
if (dynamic)
|
||
sym->symbol.flags |= BSF_DYNAMIC;
|
||
|
||
/* Do some backend-specific processing on this symbol. */
|
||
{
|
||
struct elf_backend_data *ebd = get_elf_backend_data (abfd);
|
||
if (ebd->elf_backend_symbol_processing)
|
||
(*ebd->elf_backend_symbol_processing) (abfd, &sym->symbol);
|
||
}
|
||
|
||
sym++;
|
||
}
|
||
}
|
||
|
||
/* Do some backend-specific processing on this symbol table. */
|
||
{
|
||
struct elf_backend_data *ebd = get_elf_backend_data (abfd);
|
||
if (ebd->elf_backend_symbol_table_processing)
|
||
(*ebd->elf_backend_symbol_table_processing) (abfd, symbase, symcount);
|
||
}
|
||
|
||
/* We rely on the zalloc to clear out the final symbol entry. */
|
||
|
||
symcount = sym - symbase;
|
||
|
||
/* Fill in the user's symbol pointer vector if needed. */
|
||
if (symptrs)
|
||
{
|
||
long l = symcount;
|
||
|
||
sym = symbase;
|
||
while (l-- > 0)
|
||
{
|
||
*symptrs++ = &sym->symbol;
|
||
sym++;
|
||
}
|
||
*symptrs = 0; /* Final null pointer */
|
||
}
|
||
|
||
if (x_symp != NULL)
|
||
free (x_symp);
|
||
return symcount;
|
||
error_return:
|
||
if (x_symp != NULL)
|
||
free (x_symp);
|
||
return -1;
|
||
}
|
||
|
||
/* Return the number of bytes required to hold the symtab vector.
|
||
|
||
Note that we base it on the count plus 1, since we will null terminate
|
||
the vector allocated based on this size. However, the ELF symbol table
|
||
always has a dummy entry as symbol #0, so it ends up even. */
|
||
|
||
long
|
||
elf_get_symtab_upper_bound (abfd)
|
||
bfd *abfd;
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
elf_get_dynamic_symtab_upper_bound (abfd)
|
||
bfd *abfd;
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
|
||
if (elf_dynsymtab (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
elf_get_reloc_upper_bound (abfd, asect)
|
||
bfd *abfd;
|
||
sec_ptr asect;
|
||
{
|
||
return (asect->reloc_count + 1) * sizeof (arelent *);
|
||
}
|
||
|
||
/* Read in and swap the external relocs. */
|
||
|
||
static boolean
|
||
elf_slurp_reloc_table (abfd, asect, symbols)
|
||
bfd *abfd;
|
||
asection *asect;
|
||
asymbol **symbols;
|
||
{
|
||
struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
|
||
struct bfd_elf_section_data * const d = elf_section_data (asect);
|
||
PTR allocated = NULL;
|
||
bfd_byte *native_relocs;
|
||
arelent *relents;
|
||
arelent *relent;
|
||
unsigned int i;
|
||
int entsize;
|
||
|
||
if (asect->relocation != NULL
|
||
|| (asect->flags & SEC_RELOC) == 0
|
||
|| asect->reloc_count == 0)
|
||
return true;
|
||
|
||
BFD_ASSERT (asect->rel_filepos == d->rel_hdr.sh_offset
|
||
&& (asect->reloc_count
|
||
== d->rel_hdr.sh_size / d->rel_hdr.sh_entsize));
|
||
|
||
allocated = (PTR) malloc (d->rel_hdr.sh_size);
|
||
if (allocated == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0
|
||
|| (bfd_read (allocated, 1, d->rel_hdr.sh_size, abfd)
|
||
!= d->rel_hdr.sh_size))
|
||
goto error_return;
|
||
|
||
native_relocs = (bfd_byte *) allocated;
|
||
|
||
relents = ((arelent *)
|
||
bfd_alloc (abfd, asect->reloc_count * sizeof (arelent)));
|
||
if (relents == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
entsize = d->rel_hdr.sh_entsize;
|
||
BFD_ASSERT (entsize == sizeof (Elf_External_Rel)
|
||
|| entsize == sizeof (Elf_External_Rela));
|
||
|
||
for (i = 0, relent = relents;
|
||
i < asect->reloc_count;
|
||
i++, relent++, native_relocs += entsize)
|
||
{
|
||
Elf_Internal_Rela rela;
|
||
Elf_Internal_Rel rel;
|
||
|
||
if (entsize == sizeof (Elf_External_Rela))
|
||
elf_swap_reloca_in (abfd, (Elf_External_Rela *) native_relocs, &rela);
|
||
else
|
||
{
|
||
elf_swap_reloc_in (abfd, (Elf_External_Rel *) native_relocs, &rel);
|
||
rela.r_offset = rel.r_offset;
|
||
rela.r_info = rel.r_info;
|
||
rela.r_addend = 0;
|
||
}
|
||
|
||
/* The address of an ELF reloc is section relative for an object
|
||
file, and absolute for an executable file or shared library.
|
||
The address of a BFD reloc is always section relative. */
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
|
||
relent->address = rela.r_offset;
|
||
else
|
||
relent->address = rela.r_offset - asect->vma;
|
||
|
||
if (ELF_R_SYM (rela.r_info) == 0)
|
||
relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
|
||
else
|
||
{
|
||
asymbol **ps, *s;
|
||
|
||
ps = symbols + ELF_R_SYM (rela.r_info) - 1;
|
||
s = *ps;
|
||
|
||
/* Canonicalize ELF section symbols. FIXME: Why? */
|
||
if ((s->flags & BSF_SECTION_SYM) == 0)
|
||
relent->sym_ptr_ptr = ps;
|
||
else
|
||
relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
|
||
}
|
||
|
||
relent->addend = rela.r_addend;
|
||
|
||
if (entsize == sizeof (Elf_External_Rela))
|
||
(*ebd->elf_info_to_howto) (abfd, relent, &rela);
|
||
else
|
||
(*ebd->elf_info_to_howto_rel) (abfd, relent, &rel);
|
||
}
|
||
|
||
asect->relocation = relents;
|
||
|
||
if (allocated != NULL)
|
||
free (allocated);
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (allocated != NULL)
|
||
free (allocated);
|
||
return false;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
static void
|
||
elf_debug_section (num, hdr)
|
||
int num;
|
||
Elf_Internal_Shdr *hdr;
|
||
{
|
||
fprintf (stderr, "\nSection#%d '%s' 0x%.8lx\n", num,
|
||
hdr->bfd_section != NULL ? hdr->bfd_section->name : "",
|
||
(long) hdr);
|
||
fprintf (stderr,
|
||
"sh_name = %ld\tsh_type = %ld\tsh_flags = %ld\n",
|
||
(long) hdr->sh_name,
|
||
(long) hdr->sh_type,
|
||
(long) hdr->sh_flags);
|
||
fprintf (stderr,
|
||
"sh_addr = %ld\tsh_offset = %ld\tsh_size = %ld\n",
|
||
(long) hdr->sh_addr,
|
||
(long) hdr->sh_offset,
|
||
(long) hdr->sh_size);
|
||
fprintf (stderr,
|
||
"sh_link = %ld\tsh_info = %ld\tsh_addralign = %ld\n",
|
||
(long) hdr->sh_link,
|
||
(long) hdr->sh_info,
|
||
(long) hdr->sh_addralign);
|
||
fprintf (stderr, "sh_entsize = %ld\n",
|
||
(long) hdr->sh_entsize);
|
||
fflush (stderr);
|
||
}
|
||
|
||
static void
|
||
elf_debug_file (ehdrp)
|
||
Elf_Internal_Ehdr *ehdrp;
|
||
{
|
||
fprintf (stderr, "e_entry = 0x%.8lx\n", (long) ehdrp->e_entry);
|
||
fprintf (stderr, "e_phoff = %ld\n", (long) ehdrp->e_phoff);
|
||
fprintf (stderr, "e_phnum = %ld\n", (long) ehdrp->e_phnum);
|
||
fprintf (stderr, "e_phentsize = %ld\n", (long) ehdrp->e_phentsize);
|
||
fprintf (stderr, "e_shoff = %ld\n", (long) ehdrp->e_shoff);
|
||
fprintf (stderr, "e_shnum = %ld\n", (long) ehdrp->e_shnum);
|
||
fprintf (stderr, "e_shentsize = %ld\n", (long) ehdrp->e_shentsize);
|
||
}
|
||
|
||
static char *
|
||
elf_symbol_flags (flags)
|
||
flagword flags;
|
||
{
|
||
static char buffer[1024];
|
||
|
||
buffer[0] = '\0';
|
||
if (flags & BSF_LOCAL)
|
||
strcat (buffer, " local");
|
||
|
||
if (flags & BSF_GLOBAL)
|
||
strcat (buffer, " global");
|
||
|
||
if (flags & BSF_DEBUGGING)
|
||
strcat (buffer, " debug");
|
||
|
||
if (flags & BSF_FUNCTION)
|
||
strcat (buffer, " function");
|
||
|
||
if (flags & BSF_KEEP)
|
||
strcat (buffer, " keep");
|
||
|
||
if (flags & BSF_KEEP_G)
|
||
strcat (buffer, " keep_g");
|
||
|
||
if (flags & BSF_WEAK)
|
||
strcat (buffer, " weak");
|
||
|
||
if (flags & BSF_SECTION_SYM)
|
||
strcat (buffer, " section-sym");
|
||
|
||
if (flags & BSF_OLD_COMMON)
|
||
strcat (buffer, " old-common");
|
||
|
||
if (flags & BSF_NOT_AT_END)
|
||
strcat (buffer, " not-at-end");
|
||
|
||
if (flags & BSF_CONSTRUCTOR)
|
||
strcat (buffer, " constructor");
|
||
|
||
if (flags & BSF_WARNING)
|
||
strcat (buffer, " warning");
|
||
|
||
if (flags & BSF_INDIRECT)
|
||
strcat (buffer, " indirect");
|
||
|
||
if (flags & BSF_FILE)
|
||
strcat (buffer, " file");
|
||
|
||
if (flags & DYNAMIC)
|
||
strcat (buffer, " dynamic");
|
||
|
||
if (flags & ~(BSF_LOCAL
|
||
| BSF_GLOBAL
|
||
| BSF_DEBUGGING
|
||
| BSF_FUNCTION
|
||
| BSF_KEEP
|
||
| BSF_KEEP_G
|
||
| BSF_WEAK
|
||
| BSF_SECTION_SYM
|
||
| BSF_OLD_COMMON
|
||
| BSF_NOT_AT_END
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WARNING
|
||
| BSF_INDIRECT
|
||
| BSF_FILE
|
||
| BSF_DYNAMIC))
|
||
strcat (buffer, " unknown-bits");
|
||
|
||
return buffer;
|
||
}
|
||
#endif
|
||
|
||
/* Canonicalize the relocs. */
|
||
|
||
long
|
||
elf_canonicalize_reloc (abfd, section, relptr, symbols)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
arelent **relptr;
|
||
asymbol **symbols;
|
||
{
|
||
arelent *tblptr;
|
||
unsigned int i;
|
||
|
||
if (! elf_slurp_reloc_table (abfd, section, symbols))
|
||
return -1;
|
||
|
||
tblptr = section->relocation;
|
||
for (i = 0; i < section->reloc_count; i++)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = NULL;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
long
|
||
elf_get_symtab (abfd, alocation)
|
||
bfd *abfd;
|
||
asymbol **alocation;
|
||
{
|
||
long symcount = elf_slurp_symbol_table (abfd, alocation, false);
|
||
|
||
if (symcount >= 0)
|
||
bfd_get_symcount (abfd) = symcount;
|
||
return symcount;
|
||
}
|
||
|
||
long
|
||
elf_canonicalize_dynamic_symtab (abfd, alocation)
|
||
bfd *abfd;
|
||
asymbol **alocation;
|
||
{
|
||
return elf_slurp_symbol_table (abfd, alocation, true);
|
||
}
|
||
|
||
asymbol *
|
||
elf_make_empty_symbol (abfd)
|
||
bfd *abfd;
|
||
{
|
||
elf_symbol_type *newsym;
|
||
|
||
newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
|
||
if (!newsym)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
newsym->symbol.the_bfd = abfd;
|
||
return &newsym->symbol;
|
||
}
|
||
}
|
||
|
||
void
|
||
elf_get_symbol_info (ignore_abfd, symbol, ret)
|
||
bfd *ignore_abfd;
|
||
asymbol *symbol;
|
||
symbol_info *ret;
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
}
|
||
|
||
alent *
|
||
elf_get_lineno (ignore_abfd, symbol)
|
||
bfd *ignore_abfd;
|
||
asymbol *symbol;
|
||
{
|
||
fprintf (stderr, "elf_get_lineno unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
return NULL;
|
||
}
|
||
|
||
boolean
|
||
elf_set_arch_mach (abfd, arch, machine)
|
||
bfd *abfd;
|
||
enum bfd_architecture arch;
|
||
unsigned long machine;
|
||
{
|
||
/* If this isn't the right architecture for this backend, and this
|
||
isn't the generic backend, fail. */
|
||
if (arch != get_elf_backend_data (abfd)->arch
|
||
&& arch != bfd_arch_unknown
|
||
&& get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
|
||
return false;
|
||
|
||
return bfd_default_set_arch_mach (abfd, arch, machine);
|
||
}
|
||
|
||
boolean
|
||
elf_find_nearest_line (abfd,
|
||
section,
|
||
symbols,
|
||
offset,
|
||
filename_ptr,
|
||
functionname_ptr,
|
||
line_ptr)
|
||
bfd *abfd;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
bfd_vma offset;
|
||
CONST char **filename_ptr;
|
||
CONST char **functionname_ptr;
|
||
unsigned int *line_ptr;
|
||
{
|
||
return false;
|
||
}
|
||
|
||
int
|
||
elf_sizeof_headers (abfd, reloc)
|
||
bfd *abfd;
|
||
boolean reloc;
|
||
{
|
||
int ret;
|
||
|
||
ret = sizeof (Elf_External_Ehdr);
|
||
if (! reloc)
|
||
ret += get_program_header_size (abfd, (Elf_Internal_Shdr **) NULL, 0,
|
||
(bfd_vma) 0);
|
||
return ret;
|
||
}
|
||
|
||
boolean
|
||
elf_set_section_contents (abfd, section, location, offset, count)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
PTR location;
|
||
file_ptr offset;
|
||
bfd_size_type count;
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! elf_compute_section_file_positions (abfd,
|
||
(struct bfd_link_info *) NULL))
|
||
return false;
|
||
|
||
hdr = &elf_section_data (section)->this_hdr;
|
||
|
||
if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
|
||
return false;
|
||
if (bfd_write (location, 1, count, abfd) != count)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
elf_no_info_to_howto (abfd, cache_ptr, dst)
|
||
bfd *abfd;
|
||
arelent *cache_ptr;
|
||
Elf_Internal_Rela *dst;
|
||
{
|
||
fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
}
|
||
|
||
void
|
||
elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
|
||
bfd *abfd;
|
||
arelent *cache_ptr;
|
||
Elf_Internal_Rel *dst;
|
||
{
|
||
fprintf (stderr, "elf REL relocation support for target machine unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
}
|
||
|
||
|
||
/* Core file support */
|
||
|
||
#ifdef HAVE_PROCFS /* Some core file support requires host /proc files */
|
||
#include <sys/procfs.h>
|
||
#else
|
||
#define bfd_prstatus(abfd, descdata, descsz, filepos) true
|
||
#define bfd_fpregset(abfd, descdata, descsz, filepos) true
|
||
#define bfd_prpsinfo(abfd, descdata, descsz, filepos) true
|
||
#endif
|
||
|
||
#ifdef HAVE_PROCFS
|
||
|
||
static boolean
|
||
bfd_prstatus (abfd, descdata, descsz, filepos)
|
||
bfd *abfd;
|
||
char *descdata;
|
||
int descsz;
|
||
long filepos;
|
||
{
|
||
asection *newsect;
|
||
prstatus_t *status = (prstatus_t *) 0;
|
||
|
||
if (descsz == sizeof (prstatus_t))
|
||
{
|
||
newsect = bfd_make_section (abfd, ".reg");
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->_raw_size = sizeof (status->pr_reg);
|
||
newsect->filepos = filepos + (long) &status->pr_reg;
|
||
newsect->flags = SEC_HAS_CONTENTS;
|
||
newsect->alignment_power = 2;
|
||
if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL)
|
||
{
|
||
memcpy (core_prstatus (abfd), descdata, descsz);
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Stash a copy of the prpsinfo structure away for future use. */
|
||
|
||
static boolean
|
||
bfd_prpsinfo (abfd, descdata, descsz, filepos)
|
||
bfd *abfd;
|
||
char *descdata;
|
||
int descsz;
|
||
long filepos;
|
||
{
|
||
if (descsz == sizeof (prpsinfo_t))
|
||
{
|
||
if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
memcpy (core_prpsinfo (abfd), descdata, descsz);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
bfd_fpregset (abfd, descdata, descsz, filepos)
|
||
bfd *abfd;
|
||
char *descdata;
|
||
int descsz;
|
||
long filepos;
|
||
{
|
||
asection *newsect;
|
||
|
||
newsect = bfd_make_section (abfd, ".reg2");
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->_raw_size = descsz;
|
||
newsect->filepos = filepos;
|
||
newsect->flags = SEC_HAS_CONTENTS;
|
||
newsect->alignment_power = 2;
|
||
return true;
|
||
}
|
||
|
||
#endif /* HAVE_PROCFS */
|
||
|
||
/* Return a pointer to the args (including the command name) that were
|
||
seen by the program that generated the core dump. Note that for
|
||
some reason, a spurious space is tacked onto the end of the args
|
||
in some (at least one anyway) implementations, so strip it off if
|
||
it exists. */
|
||
|
||
char *
|
||
elf_core_file_failing_command (abfd)
|
||
bfd *abfd;
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
if (core_prpsinfo (abfd))
|
||
{
|
||
prpsinfo_t *p = core_prpsinfo (abfd);
|
||
char *scan = p->pr_psargs;
|
||
while (*scan++)
|
||
{;
|
||
}
|
||
scan -= 2;
|
||
if ((scan > p->pr_psargs) && (*scan == ' '))
|
||
{
|
||
*scan = '\000';
|
||
}
|
||
return p->pr_psargs;
|
||
}
|
||
#endif
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the number of the signal that caused the core dump. Presumably,
|
||
since we have a core file, we got a signal of some kind, so don't bother
|
||
checking the other process status fields, just return the signal number.
|
||
*/
|
||
|
||
int
|
||
elf_core_file_failing_signal (abfd)
|
||
bfd *abfd;
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
if (core_prstatus (abfd))
|
||
{
|
||
return ((prstatus_t *) (core_prstatus (abfd)))->pr_cursig;
|
||
}
|
||
#endif
|
||
return -1;
|
||
}
|
||
|
||
/* Check to see if the core file could reasonably be expected to have
|
||
come for the current executable file. Note that by default we return
|
||
true unless we find something that indicates that there might be a
|
||
problem.
|
||
*/
|
||
|
||
boolean
|
||
elf_core_file_matches_executable_p (core_bfd, exec_bfd)
|
||
bfd *core_bfd;
|
||
bfd *exec_bfd;
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
char *corename;
|
||
char *execname;
|
||
#endif
|
||
|
||
/* First, xvecs must match since both are ELF files for the same target. */
|
||
|
||
if (core_bfd->xvec != exec_bfd->xvec)
|
||
{
|
||
bfd_set_error (bfd_error_system_call);
|
||
return false;
|
||
}
|
||
|
||
#ifdef HAVE_PROCFS
|
||
|
||
/* If no prpsinfo, just return true. Otherwise, grab the last component
|
||
of the exec'd pathname from the prpsinfo. */
|
||
|
||
if (core_prpsinfo (core_bfd))
|
||
{
|
||
corename = (((prpsinfo_t *) core_prpsinfo (core_bfd))->pr_fname);
|
||
}
|
||
else
|
||
{
|
||
return true;
|
||
}
|
||
|
||
/* Find the last component of the executable pathname. */
|
||
|
||
if ((execname = strrchr (exec_bfd->filename, '/')) != NULL)
|
||
{
|
||
execname++;
|
||
}
|
||
else
|
||
{
|
||
execname = (char *) exec_bfd->filename;
|
||
}
|
||
|
||
/* See if they match */
|
||
|
||
return strcmp (execname, corename) ? false : true;
|
||
|
||
#else
|
||
|
||
return true;
|
||
|
||
#endif /* HAVE_PROCFS */
|
||
}
|
||
|
||
/* ELF core files contain a segment of type PT_NOTE, that holds much of
|
||
the information that would normally be available from the /proc interface
|
||
for the process, at the time the process dumped core. Currently this
|
||
includes copies of the prstatus, prpsinfo, and fpregset structures.
|
||
|
||
Since these structures are potentially machine dependent in size and
|
||
ordering, bfd provides two levels of support for them. The first level,
|
||
available on all machines since it does not require that the host
|
||
have /proc support or the relevant include files, is to create a bfd
|
||
section for each of the prstatus, prpsinfo, and fpregset structures,
|
||
without any interpretation of their contents. With just this support,
|
||
the bfd client will have to interpret the structures itself. Even with
|
||
/proc support, it might want these full structures for it's own reasons.
|
||
|
||
In the second level of support, where HAVE_PROCFS is defined, bfd will
|
||
pick apart the structures to gather some additional information that
|
||
clients may want, such as the general register set, the name of the
|
||
exec'ed file and its arguments, the signal (if any) that caused the
|
||
core dump, etc.
|
||
|
||
*/
|
||
|
||
static boolean
|
||
elf_corefile_note (abfd, hdr)
|
||
bfd *abfd;
|
||
Elf_Internal_Phdr *hdr;
|
||
{
|
||
Elf_External_Note *x_note_p; /* Elf note, external form */
|
||
Elf_Internal_Note i_note; /* Elf note, internal form */
|
||
char *buf = NULL; /* Entire note segment contents */
|
||
char *namedata; /* Name portion of the note */
|
||
char *descdata; /* Descriptor portion of the note */
|
||
char *sectname; /* Name to use for new section */
|
||
long filepos; /* File offset to descriptor data */
|
||
asection *newsect;
|
||
|
||
if (hdr->p_filesz > 0
|
||
&& (buf = (char *) malloc (hdr->p_filesz)) != NULL
|
||
&& bfd_seek (abfd, hdr->p_offset, SEEK_SET) != -1
|
||
&& bfd_read ((PTR) buf, hdr->p_filesz, 1, abfd) == hdr->p_filesz)
|
||
{
|
||
x_note_p = (Elf_External_Note *) buf;
|
||
while ((char *) x_note_p < (buf + hdr->p_filesz))
|
||
{
|
||
i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->namesz);
|
||
i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->descsz);
|
||
i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->type);
|
||
namedata = x_note_p->name;
|
||
descdata = namedata + BFD_ALIGN (i_note.namesz, 4);
|
||
filepos = hdr->p_offset + (descdata - buf);
|
||
switch (i_note.type)
|
||
{
|
||
case NT_PRSTATUS:
|
||
/* process descdata as prstatus info */
|
||
if (! bfd_prstatus (abfd, descdata, i_note.descsz, filepos))
|
||
return false;
|
||
sectname = ".prstatus";
|
||
break;
|
||
case NT_FPREGSET:
|
||
/* process descdata as fpregset info */
|
||
if (! bfd_fpregset (abfd, descdata, i_note.descsz, filepos))
|
||
return false;
|
||
sectname = ".fpregset";
|
||
break;
|
||
case NT_PRPSINFO:
|
||
/* process descdata as prpsinfo */
|
||
if (! bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos))
|
||
return false;
|
||
sectname = ".prpsinfo";
|
||
break;
|
||
default:
|
||
/* Unknown descriptor, just ignore it. */
|
||
sectname = NULL;
|
||
break;
|
||
}
|
||
if (sectname != NULL)
|
||
{
|
||
newsect = bfd_make_section (abfd, sectname);
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->_raw_size = i_note.descsz;
|
||
newsect->filepos = filepos;
|
||
newsect->flags = SEC_ALLOC | SEC_HAS_CONTENTS;
|
||
newsect->alignment_power = 2;
|
||
}
|
||
x_note_p = (Elf_External_Note *)
|
||
(descdata + BFD_ALIGN (i_note.descsz, 4));
|
||
}
|
||
}
|
||
if (buf != NULL)
|
||
{
|
||
free (buf);
|
||
}
|
||
else if (hdr->p_filesz > 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
return true;
|
||
|
||
}
|
||
|
||
/* Core files are simply standard ELF formatted files that partition
|
||
the file using the execution view of the file (program header table)
|
||
rather than the linking view. In fact, there is no section header
|
||
table in a core file.
|
||
|
||
The process status information (including the contents of the general
|
||
register set) and the floating point register set are stored in a
|
||
segment of type PT_NOTE. We handcraft a couple of extra bfd sections
|
||
that allow standard bfd access to the general registers (.reg) and the
|
||
floating point registers (.reg2).
|
||
|
||
*/
|
||
|
||
const bfd_target *
|
||
elf_core_file_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Phdr x_phdr; /* Program header table entry, external form */
|
||
Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
|
||
unsigned int phindex;
|
||
struct elf_backend_data *ebd;
|
||
|
||
/* Read in the ELF header in external format. */
|
||
|
||
if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
/* Now check to see if we have a valid ELF file, and one that BFD can
|
||
make use of. The magic number must match, the address size ('class')
|
||
and byte-swapping must match our XVEC entry, and it must have a
|
||
program header table (FIXME: See comments re segments at top of this
|
||
file). */
|
||
|
||
if (elf_file_p (&x_ehdr) == false)
|
||
{
|
||
wrong:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
/* FIXME, Check EI_VERSION here ! */
|
||
|
||
{
|
||
#if ARCH_SIZE == 32
|
||
int desired_address_size = ELFCLASS32;
|
||
#endif
|
||
#if ARCH_SIZE == 64
|
||
int desired_address_size = ELFCLASS64;
|
||
#endif
|
||
|
||
if (x_ehdr.e_ident[EI_CLASS] != desired_address_size)
|
||
goto wrong;
|
||
}
|
||
|
||
/* Switch xvec to match the specified byte order. */
|
||
switch (x_ehdr.e_ident[EI_DATA])
|
||
{
|
||
case ELFDATA2MSB: /* Big-endian */
|
||
if (abfd->xvec->byteorder_big_p == false)
|
||
goto wrong;
|
||
break;
|
||
case ELFDATA2LSB: /* Little-endian */
|
||
if (abfd->xvec->byteorder_big_p == true)
|
||
goto wrong;
|
||
break;
|
||
case ELFDATANONE: /* No data encoding specified */
|
||
default: /* Unknown data encoding specified */
|
||
goto wrong;
|
||
}
|
||
|
||
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
|
||
the tdata pointer in the bfd. */
|
||
|
||
elf_tdata (abfd) =
|
||
(struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
|
||
if (elf_tdata (abfd) == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
|
||
/* FIXME, `wrong' returns from this point onward, leak memory. */
|
||
|
||
/* Now that we know the byte order, swap in the rest of the header */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
|
||
#if DEBUG & 1
|
||
elf_debug_file (i_ehdrp);
|
||
#endif
|
||
|
||
ebd = get_elf_backend_data (abfd);
|
||
|
||
/* Check that the ELF e_machine field matches what this particular
|
||
BFD format expects. */
|
||
if (ebd->elf_machine_code != i_ehdrp->e_machine
|
||
&& (ebd->elf_machine_alt1 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt1)
|
||
&& (ebd->elf_machine_alt2 == 0 || i_ehdrp->e_machine != ebd->elf_machine_alt2))
|
||
{
|
||
const bfd_target * const *target_ptr;
|
||
|
||
if (ebd->elf_machine_code != EM_NONE)
|
||
goto wrong;
|
||
|
||
/* This is the generic ELF target. Let it match any ELF target
|
||
for which we do not have a specific backend. */
|
||
for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++)
|
||
{
|
||
struct elf_backend_data *back;
|
||
|
||
if ((*target_ptr)->flavour != bfd_target_elf_flavour)
|
||
continue;
|
||
back = (struct elf_backend_data *) (*target_ptr)->backend_data;
|
||
if (back->elf_machine_code == i_ehdrp->e_machine)
|
||
{
|
||
/* target_ptr is an ELF backend which matches this
|
||
object file, so reject the generic ELF target. */
|
||
goto wrong;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If there is no program header, or the type is not a core file, then
|
||
we are hosed. */
|
||
if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE)
|
||
goto wrong;
|
||
|
||
/* Allocate space for a copy of the program header table in
|
||
internal form, seek to the program header table in the file,
|
||
read it in, and convert it to internal form. As a simple sanity
|
||
check, verify that the what BFD thinks is the size of each program
|
||
header table entry actually matches the size recorded in the file. */
|
||
|
||
if (i_ehdrp->e_phentsize != sizeof (x_phdr))
|
||
goto wrong;
|
||
i_phdrp = (Elf_Internal_Phdr *)
|
||
bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum);
|
||
if (!i_phdrp)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1)
|
||
return NULL;
|
||
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
|
||
{
|
||
if (bfd_read ((PTR) & x_phdr, sizeof (x_phdr), 1, abfd)
|
||
!= sizeof (x_phdr))
|
||
return NULL;
|
||
elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex);
|
||
}
|
||
|
||
/* Once all of the program headers have been read and converted, we
|
||
can start processing them. */
|
||
|
||
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
|
||
{
|
||
bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex);
|
||
if ((i_phdrp + phindex)->p_type == PT_NOTE)
|
||
{
|
||
if (! elf_corefile_note (abfd, i_phdrp + phindex))
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Remember the entry point specified in the ELF file header. */
|
||
|
||
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
|
||
|
||
return abfd->xvec;
|
||
}
|
||
|
||
/* ELF linker code. */
|
||
|
||
static boolean elf_link_add_object_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static boolean elf_link_add_archive_symbols
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static Elf_Internal_Rela *elf_link_read_relocs
|
||
PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean));
|
||
static boolean elf_export_symbol
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean elf_adjust_dynamic_symbol
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
|
||
/* This struct is used to pass information to routines called via
|
||
elf_link_hash_traverse which must return failure. */
|
||
|
||
struct elf_info_failed
|
||
{
|
||
boolean failed;
|
||
struct bfd_link_info *info;
|
||
};
|
||
|
||
/* Given an ELF BFD, add symbols to the global hash table as
|
||
appropriate. */
|
||
|
||
boolean
|
||
elf_bfd_link_add_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *first;
|
||
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
return elf_link_add_object_symbols (abfd, info);
|
||
case bfd_archive:
|
||
first = bfd_openr_next_archived_file (abfd, (bfd *) NULL);
|
||
if (first == NULL)
|
||
{
|
||
/* It's OK to have an empty archive. */
|
||
return true;
|
||
}
|
||
if (! bfd_check_format (first, bfd_object))
|
||
return false;
|
||
if (bfd_get_flavour (first) != bfd_target_elf_flavour)
|
||
{
|
||
/* On Linux, we may have an a.out archive which got
|
||
recognized as an ELF archive. Therefore, we treat all
|
||
archives as though they were actually of the flavour of
|
||
their first element. */
|
||
return (*first->xvec->_bfd_link_add_symbols) (abfd, info);
|
||
}
|
||
return elf_link_add_archive_symbols (abfd, info);
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Add symbols from an ELF archive file to the linker hash table. We
|
||
don't use _bfd_generic_link_add_archive_symbols because of a
|
||
problem which arises on UnixWare. The UnixWare libc.so is an
|
||
archive which includes an entry libc.so.1 which defines a bunch of
|
||
symbols. The libc.so archive also includes a number of other
|
||
object files, which also define symbols, some of which are the same
|
||
as those defined in libc.so.1. Correct linking requires that we
|
||
consider each object file in turn, and include it if it defines any
|
||
symbols we need. _bfd_generic_link_add_archive_symbols does not do
|
||
this; it looks through the list of undefined symbols, and includes
|
||
any object file which defines them. When this algorithm is used on
|
||
UnixWare, it winds up pulling in libc.so.1 early and defining a
|
||
bunch of symbols. This means that some of the other objects in the
|
||
archive are not included in the link, which is incorrect since they
|
||
precede libc.so.1 in the archive.
|
||
|
||
Fortunately, ELF archive handling is simpler than that done by
|
||
_bfd_generic_link_add_archive_symbols, which has to allow for a.out
|
||
oddities. In ELF, if we find a symbol in the archive map, and the
|
||
symbol is currently undefined, we know that we must pull in that
|
||
object file.
|
||
|
||
Unfortunately, we do have to make multiple passes over the symbol
|
||
table until nothing further is resolved. */
|
||
|
||
static boolean
|
||
elf_link_add_archive_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
symindex c;
|
||
boolean *defined = NULL;
|
||
boolean *included = NULL;
|
||
carsym *symdefs;
|
||
boolean loop;
|
||
|
||
if (! bfd_has_map (abfd))
|
||
{
|
||
/* An empty archive is a special case. */
|
||
if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
|
||
return true;
|
||
bfd_set_error (bfd_error_no_armap);
|
||
return false;
|
||
}
|
||
|
||
/* Keep track of all symbols we know to be already defined, and all
|
||
files we know to be already included. This is to speed up the
|
||
second and subsequent passes. */
|
||
c = bfd_ardata (abfd)->symdef_count;
|
||
if (c == 0)
|
||
return true;
|
||
defined = (boolean *) malloc (c * sizeof (boolean));
|
||
included = (boolean *) malloc (c * sizeof (boolean));
|
||
if (defined == (boolean *) NULL || included == (boolean *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
memset (defined, 0, c * sizeof (boolean));
|
||
memset (included, 0, c * sizeof (boolean));
|
||
|
||
symdefs = bfd_ardata (abfd)->symdefs;
|
||
|
||
do
|
||
{
|
||
file_ptr last;
|
||
symindex i;
|
||
carsym *symdef;
|
||
carsym *symdefend;
|
||
|
||
loop = false;
|
||
last = -1;
|
||
|
||
symdef = symdefs;
|
||
symdefend = symdef + c;
|
||
for (i = 0; symdef < symdefend; symdef++, i++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
bfd *element;
|
||
struct bfd_link_hash_entry *undefs_tail;
|
||
symindex mark;
|
||
|
||
if (defined[i] || included[i])
|
||
continue;
|
||
if (symdef->file_offset == last)
|
||
{
|
||
included[i] = true;
|
||
continue;
|
||
}
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
|
||
false, false, false);
|
||
if (h == (struct elf_link_hash_entry *) NULL)
|
||
continue;
|
||
if (h->root.type != bfd_link_hash_undefined)
|
||
{
|
||
defined[i] = true;
|
||
continue;
|
||
}
|
||
|
||
/* We need to include this archive member. */
|
||
|
||
element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
||
if (element == (bfd *) NULL)
|
||
goto error_return;
|
||
|
||
if (! bfd_check_format (element, bfd_object))
|
||
goto error_return;
|
||
|
||
/* Doublecheck that we have not included this object
|
||
already--it should be impossible, but there may be
|
||
something wrong with the archive. */
|
||
if (element->archive_pass != 0)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_return;
|
||
}
|
||
element->archive_pass = 1;
|
||
|
||
undefs_tail = info->hash->undefs_tail;
|
||
|
||
if (! (*info->callbacks->add_archive_element) (info, element,
|
||
symdef->name))
|
||
goto error_return;
|
||
if (! elf_link_add_object_symbols (element, info))
|
||
goto error_return;
|
||
|
||
/* If there are any new undefined symbols, we need to make
|
||
another pass through the archive in order to see whether
|
||
they can be defined. FIXME: This isn't perfect, because
|
||
common symbols wind up on undefs_tail and because an
|
||
undefined symbol which is defined later on in this pass
|
||
does not require another pass. This isn't a bug, but it
|
||
does make the code less efficient than it could be. */
|
||
if (undefs_tail != info->hash->undefs_tail)
|
||
loop = true;
|
||
|
||
/* Look backward to mark all symbols from this object file
|
||
which we have already seen in this pass. */
|
||
mark = i;
|
||
do
|
||
{
|
||
included[mark] = true;
|
||
if (mark == 0)
|
||
break;
|
||
--mark;
|
||
}
|
||
while (symdefs[mark].file_offset == symdef->file_offset);
|
||
|
||
/* We mark subsequent symbols from this object file as we go
|
||
on through the loop. */
|
||
last = symdef->file_offset;
|
||
}
|
||
}
|
||
while (loop);
|
||
|
||
free (defined);
|
||
free (included);
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (defined != (boolean *) NULL)
|
||
free (defined);
|
||
if (included != (boolean *) NULL)
|
||
free (included);
|
||
return false;
|
||
}
|
||
|
||
/* Record a new dynamic symbol. We record the dynamic symbols as we
|
||
read the input files, since we need to have a list of all of them
|
||
before we can determine the final sizes of the output sections.
|
||
Note that we may actually call this function even though we are not
|
||
going to output any dynamic symbols; in some cases we know that a
|
||
symbol should be in the dynamic symbol table, but only if there is
|
||
one. */
|
||
|
||
boolean
|
||
elf_link_record_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
if (h->dynindx == -1)
|
||
{
|
||
struct bfd_strtab_hash *dynstr;
|
||
|
||
h->dynindx = elf_hash_table (info)->dynsymcount;
|
||
++elf_hash_table (info)->dynsymcount;
|
||
|
||
dynstr = elf_hash_table (info)->dynstr;
|
||
if (dynstr == NULL)
|
||
{
|
||
/* Create a strtab to hold the dynamic symbol names. */
|
||
elf_hash_table (info)->dynstr = dynstr = elf_stringtab_init ();
|
||
if (dynstr == NULL)
|
||
return false;
|
||
}
|
||
|
||
h->dynstr_index = ((unsigned long)
|
||
_bfd_stringtab_add (dynstr, h->root.root.string,
|
||
true, false));
|
||
if (h->dynstr_index == (unsigned long) -1)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add symbols from an ELF object file to the linker hash table. */
|
||
|
||
static boolean
|
||
elf_link_add_object_symbols (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
|
||
const Elf_Internal_Sym *,
|
||
const char **, flagword *,
|
||
asection **, bfd_vma *));
|
||
boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
|
||
asection *, const Elf_Internal_Rela *));
|
||
boolean collect;
|
||
Elf_Internal_Shdr *hdr;
|
||
size_t symcount;
|
||
size_t extsymcount;
|
||
size_t extsymoff;
|
||
Elf_External_Sym *buf = NULL;
|
||
struct elf_link_hash_entry **sym_hash;
|
||
boolean dynamic;
|
||
Elf_External_Dyn *dynbuf = NULL;
|
||
struct elf_link_hash_entry *weaks;
|
||
Elf_External_Sym *esym;
|
||
Elf_External_Sym *esymend;
|
||
|
||
add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
|
||
collect = get_elf_backend_data (abfd)->collect;
|
||
|
||
/* A stripped shared library might only have a dynamic symbol table,
|
||
not a regular symbol table. In that case we can still go ahead
|
||
and link using the dynamic symbol table. */
|
||
if (elf_onesymtab (abfd) == 0
|
||
&& elf_dynsymtab (abfd) != 0)
|
||
{
|
||
elf_onesymtab (abfd) = elf_dynsymtab (abfd);
|
||
elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
|
||
}
|
||
|
||
hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
|
||
/* The sh_info field of the symtab header tells us where the
|
||
external symbols start. We don't care about the local symbols at
|
||
this point. */
|
||
if (elf_bad_symtab (abfd))
|
||
{
|
||
extsymcount = symcount;
|
||
extsymoff = 0;
|
||
}
|
||
else
|
||
{
|
||
extsymcount = symcount - hdr->sh_info;
|
||
extsymoff = hdr->sh_info;
|
||
}
|
||
|
||
buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym));
|
||
if (buf == NULL && extsymcount != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
/* We store a pointer to the hash table entry for each external
|
||
symbol. */
|
||
sym_hash = ((struct elf_link_hash_entry **)
|
||
bfd_alloc (abfd,
|
||
extsymcount * sizeof (struct elf_link_hash_entry *)));
|
||
if (sym_hash == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
elf_sym_hashes (abfd) = sym_hash;
|
||
|
||
if (elf_elfheader (abfd)->e_type != ET_DYN)
|
||
{
|
||
dynamic = false;
|
||
|
||
/* If we are creating a shared library, create all the dynamic
|
||
sections immediately. We need to attach them to something,
|
||
so we attach them to this BFD, provided it is the right
|
||
format. FIXME: If there are no input BFD's of the same
|
||
format as the output, we can't make a shared library. */
|
||
if (info->shared
|
||
&& ! elf_hash_table (info)->dynamic_sections_created
|
||
&& abfd->xvec == info->hash->creator)
|
||
{
|
||
if (! elf_link_create_dynamic_sections (abfd, info))
|
||
goto error_return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *s;
|
||
boolean add_needed;
|
||
const char *name;
|
||
bfd_size_type oldsize;
|
||
bfd_size_type strindex;
|
||
|
||
dynamic = true;
|
||
|
||
/* You can't use -r against a dynamic object. Also, there's no
|
||
hope of using a dynamic object which does not exactly match
|
||
the format of the output file. */
|
||
if (info->relocateable
|
||
|| info->hash->creator != abfd->xvec)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
goto error_return;
|
||
}
|
||
|
||
/* Find the name to use in a DT_NEEDED entry that refers to this
|
||
object. If the object has a DT_SONAME entry, we use it.
|
||
Otherwise, if the generic linker stuck something in
|
||
elf_dt_needed_name, we use that. Otherwise, we just use the
|
||
file name. If the generic linker put a null string into
|
||
elf_dt_needed_name, we don't make a DT_NEEDED entry at all,
|
||
even if there is a DT_SONAME entry. */
|
||
add_needed = true;
|
||
name = bfd_get_filename (abfd);
|
||
if (elf_dt_needed_name (abfd) != NULL)
|
||
{
|
||
name = elf_dt_needed_name (abfd);
|
||
if (*name == '\0')
|
||
add_needed = false;
|
||
}
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s != NULL)
|
||
{
|
||
Elf_External_Dyn *extdyn;
|
||
Elf_External_Dyn *extdynend;
|
||
int elfsec;
|
||
unsigned long link;
|
||
|
||
dynbuf = (Elf_External_Dyn *) malloc (s->_raw_size);
|
||
if (dynbuf == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
|
||
(file_ptr) 0, s->_raw_size))
|
||
goto error_return;
|
||
|
||
elfsec = elf_section_from_bfd_section (abfd, s);
|
||
if (elfsec == -1)
|
||
goto error_return;
|
||
link = elf_elfsections (abfd)[elfsec]->sh_link;
|
||
|
||
extdyn = dynbuf;
|
||
extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
|
||
for (; extdyn < extdynend; extdyn++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
elf_swap_dyn_in (abfd, extdyn, &dyn);
|
||
if (add_needed && dyn.d_tag == DT_SONAME)
|
||
{
|
||
name = elf_string_from_elf_section (abfd, link,
|
||
dyn.d_un.d_val);
|
||
if (name == NULL)
|
||
goto error_return;
|
||
}
|
||
if (dyn.d_tag == DT_NEEDED)
|
||
{
|
||
struct bfd_elf_link_needed_list *n, **pn;
|
||
char *fnm, *anm;
|
||
|
||
n = bfd_alloc (abfd,
|
||
sizeof (struct bfd_elf_link_needed_list));
|
||
fnm = elf_string_from_elf_section (abfd, link,
|
||
dyn.d_un.d_val);
|
||
if (n == NULL || fnm == NULL)
|
||
goto error_return;
|
||
anm = bfd_alloc (abfd, strlen (fnm) + 1);
|
||
if (anm == NULL)
|
||
goto error_return;
|
||
strcpy (anm, fnm);
|
||
n->name = anm;
|
||
n->by = abfd;
|
||
n->next = NULL;
|
||
for (pn = &elf_hash_table (info)->needed;
|
||
*pn != NULL;
|
||
pn = &(*pn)->next)
|
||
;
|
||
*pn = n;
|
||
}
|
||
}
|
||
|
||
free (dynbuf);
|
||
dynbuf = NULL;
|
||
}
|
||
|
||
/* We do not want to include any of the sections in a dynamic
|
||
object in the output file. We hack by simply clobbering the
|
||
list of sections in the BFD. This could be handled more
|
||
cleanly by, say, a new section flag; the existing
|
||
SEC_NEVER_LOAD flag is not the one we want, because that one
|
||
still implies that the section takes up space in the output
|
||
file. */
|
||
abfd->sections = NULL;
|
||
|
||
/* If this is the first dynamic object found in the link, create
|
||
the special sections required for dynamic linking. */
|
||
if (! elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
if (! elf_link_create_dynamic_sections (abfd, info))
|
||
goto error_return;
|
||
}
|
||
|
||
if (add_needed)
|
||
{
|
||
/* Add a DT_NEEDED entry for this dynamic object. */
|
||
oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
|
||
true, false);
|
||
if (strindex == (bfd_size_type) -1)
|
||
goto error_return;
|
||
|
||
if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
|
||
{
|
||
asection *sdyn;
|
||
Elf_External_Dyn *dyncon, *dynconend;
|
||
|
||
/* The hash table size did not change, which means that
|
||
the dynamic object name was already entered. If we
|
||
have already included this dynamic object in the
|
||
link, just ignore it. There is no reason to include
|
||
a particular dynamic object more than once. */
|
||
sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
||
".dynamic");
|
||
BFD_ASSERT (sdyn != NULL);
|
||
|
||
dyncon = (Elf_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf_External_Dyn *) (sdyn->contents +
|
||
sdyn->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
|
||
&dyn);
|
||
if (dyn.d_tag == DT_NEEDED
|
||
&& dyn.d_un.d_val == strindex)
|
||
{
|
||
if (buf != NULL)
|
||
free (buf);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
if (bfd_seek (abfd,
|
||
hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
|
||
SEEK_SET) != 0
|
||
|| (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
|
||
!= extsymcount * sizeof (Elf_External_Sym)))
|
||
goto error_return;
|
||
|
||
weaks = NULL;
|
||
|
||
esymend = buf + extsymcount;
|
||
for (esym = buf; esym < esymend; esym++, sym_hash++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
int bind;
|
||
bfd_vma value;
|
||
asection *sec;
|
||
flagword flags;
|
||
const char *name;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
boolean definition;
|
||
|
||
elf_swap_symbol_in (abfd, esym, &sym);
|
||
|
||
flags = BSF_NO_FLAGS;
|
||
sec = NULL;
|
||
value = sym.st_value;
|
||
*sym_hash = NULL;
|
||
|
||
bind = ELF_ST_BIND (sym.st_info);
|
||
if (bind == STB_LOCAL)
|
||
{
|
||
/* This should be impossible, since ELF requires that all
|
||
global symbols follow all local symbols, and that sh_info
|
||
point to the first global symbol. Unfortunatealy, Irix 5
|
||
screws this up. */
|
||
continue;
|
||
}
|
||
else if (bind == STB_GLOBAL)
|
||
{
|
||
if (sym.st_shndx != SHN_UNDEF
|
||
&& sym.st_shndx != SHN_COMMON)
|
||
flags = BSF_GLOBAL;
|
||
else
|
||
flags = 0;
|
||
}
|
||
else if (bind == STB_WEAK)
|
||
flags = BSF_WEAK;
|
||
else
|
||
{
|
||
/* Leave it up to the processor backend. */
|
||
}
|
||
|
||
if (sym.st_shndx == SHN_UNDEF)
|
||
sec = bfd_und_section_ptr;
|
||
else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
|
||
{
|
||
sec = section_from_elf_index (abfd, sym.st_shndx);
|
||
if (sec != NULL)
|
||
value -= sec->vma;
|
||
else
|
||
sec = bfd_abs_section_ptr;
|
||
}
|
||
else if (sym.st_shndx == SHN_ABS)
|
||
sec = bfd_abs_section_ptr;
|
||
else if (sym.st_shndx == SHN_COMMON)
|
||
{
|
||
sec = bfd_com_section_ptr;
|
||
/* What ELF calls the size we call the value. What ELF
|
||
calls the value we call the alignment. */
|
||
value = sym.st_size;
|
||
}
|
||
else
|
||
{
|
||
/* Leave it up to the processor backend. */
|
||
}
|
||
|
||
name = elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
|
||
if (name == (const char *) NULL)
|
||
goto error_return;
|
||
|
||
if (add_symbol_hook)
|
||
{
|
||
if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
|
||
&value))
|
||
goto error_return;
|
||
|
||
/* The hook function sets the name to NULL if this symbol
|
||
should be skipped for some reason. */
|
||
if (name == (const char *) NULL)
|
||
continue;
|
||
}
|
||
|
||
/* Sanity check that all possibilities were handled. */
|
||
if (sec == (asection *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_return;
|
||
}
|
||
|
||
if (bfd_is_und_section (sec)
|
||
|| bfd_is_com_section (sec))
|
||
definition = false;
|
||
else
|
||
definition = true;
|
||
|
||
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
||
{
|
||
/* We need to look up the symbol now in order to get some of
|
||
the dynamic object handling right. We pass the hash
|
||
table entry in to _bfd_generic_link_add_one_symbol so
|
||
that it does not have to look it up again. */
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
||
true, false, false);
|
||
if (h == NULL)
|
||
goto error_return;
|
||
*sym_hash = h;
|
||
|
||
/* If we are looking at a dynamic object, and this is a
|
||
definition, we need to see if it has already been defined
|
||
by some other object. If it has, we want to use the
|
||
existing definition, and we do not want to report a
|
||
multiple symbol definition error; we do this by
|
||
clobbering sec to be bfd_und_section_ptr. */
|
||
if (dynamic && definition)
|
||
{
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
sec = bfd_und_section_ptr;
|
||
}
|
||
|
||
/* Similarly, if we are not looking at a dynamic object, and
|
||
we have a definition, we want to override any definition
|
||
we may have from a dynamic object. Symbols from regular
|
||
files always take precedence over symbols from dynamic
|
||
objects, even if they are defined after the dynamic
|
||
object in the link. */
|
||
if (! dynamic
|
||
&& definition
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
||
== bfd_target_elf_flavour)
|
||
&& (elf_elfheader (h->root.u.def.section->owner)->e_type
|
||
== ET_DYN))
|
||
{
|
||
/* Change the hash table entry to undefined, and let
|
||
_bfd_generic_link_add_one_symbol do the right thing
|
||
with the new definition. */
|
||
h->root.type = bfd_link_hash_undefined;
|
||
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
||
}
|
||
}
|
||
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, flags, sec, value, (const char *) NULL,
|
||
false, collect, (struct bfd_link_hash_entry **) sym_hash)))
|
||
goto error_return;
|
||
|
||
if (dynamic
|
||
&& definition
|
||
&& (flags & BSF_WEAK) != 0
|
||
&& ELF_ST_TYPE (sym.st_info) != STT_FUNC
|
||
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
||
&& (*sym_hash)->weakdef == NULL)
|
||
{
|
||
/* Keep a list of all weak defined non function symbols from
|
||
a dynamic object, using the weakdef field. Later in this
|
||
function we will set the weakdef field to the correct
|
||
value. We only put non-function symbols from dynamic
|
||
objects on this list, because that happens to be the only
|
||
time we need to know the normal symbol corresponding to a
|
||
weak symbol, and the information is time consuming to
|
||
figure out. If the weakdef field is not already NULL,
|
||
then this symbol was already defined by some previous
|
||
dynamic object, and we will be using that previous
|
||
definition anyhow. */
|
||
|
||
(*sym_hash)->weakdef = weaks;
|
||
weaks = *sym_hash;
|
||
}
|
||
|
||
/* Get the alignment of a common symbol. */
|
||
if (sym.st_shndx == SHN_COMMON
|
||
&& (*sym_hash)->root.type == bfd_link_hash_common)
|
||
(*sym_hash)->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
|
||
|
||
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
||
{
|
||
int old_flags;
|
||
boolean dynsym;
|
||
int new_flag;
|
||
|
||
/* Remember the symbol size and type. */
|
||
if (sym.st_size != 0)
|
||
{
|
||
/* FIXME: We should probably somehow give a warning if
|
||
the symbol size changes. */
|
||
h->size = sym.st_size;
|
||
}
|
||
if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE)
|
||
{
|
||
/* FIXME: We should probably somehow give a warning if
|
||
the symbol type changes. */
|
||
h->type = ELF_ST_TYPE (sym.st_info);
|
||
}
|
||
|
||
/* Set a flag in the hash table entry indicating the type of
|
||
reference or definition we just found. Keep a count of
|
||
the number of dynamic symbols we find. A dynamic symbol
|
||
is one which is referenced or defined by both a regular
|
||
object and a shared object, or one which is referenced or
|
||
defined by more than one shared object. */
|
||
old_flags = h->elf_link_hash_flags;
|
||
dynsym = false;
|
||
if (! dynamic)
|
||
{
|
||
if (! definition)
|
||
new_flag = ELF_LINK_HASH_REF_REGULAR;
|
||
else
|
||
new_flag = ELF_LINK_HASH_DEF_REGULAR;
|
||
if (info->shared
|
||
|| (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
||
| ELF_LINK_HASH_REF_DYNAMIC)) != 0)
|
||
dynsym = true;
|
||
}
|
||
else
|
||
{
|
||
if (! definition)
|
||
new_flag = ELF_LINK_HASH_REF_DYNAMIC;
|
||
else
|
||
new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
|
||
if ((old_flags & new_flag) != 0
|
||
|| (old_flags & (ELF_LINK_HASH_DEF_REGULAR
|
||
| ELF_LINK_HASH_REF_REGULAR)) != 0)
|
||
dynsym = true;
|
||
}
|
||
|
||
h->elf_link_hash_flags |= new_flag;
|
||
if (dynsym && h->dynindx == -1)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (info, h))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now set the weakdefs field correctly for all the weak defined
|
||
symbols we found. The only way to do this is to search all the
|
||
symbols. Since we only need the information for non functions in
|
||
dynamic objects, that's the only time we actually put anything on
|
||
the list WEAKS. We need this information so that if a regular
|
||
object refers to a symbol defined weakly in a dynamic object, the
|
||
real symbol in the dynamic object is also put in the dynamic
|
||
symbols; we also must arrange for both symbols to point to the
|
||
same memory location. We could handle the general case of symbol
|
||
aliasing, but a general symbol alias can only be generated in
|
||
assembler code, handling it correctly would be very time
|
||
consuming, and other ELF linkers don't handle general aliasing
|
||
either. */
|
||
while (weaks != NULL)
|
||
{
|
||
struct elf_link_hash_entry *hlook;
|
||
asection *slook;
|
||
bfd_vma vlook;
|
||
struct elf_link_hash_entry **hpp;
|
||
struct elf_link_hash_entry **hppend;
|
||
|
||
hlook = weaks;
|
||
weaks = hlook->weakdef;
|
||
hlook->weakdef = NULL;
|
||
|
||
BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
|
||
|| hlook->root.type == bfd_link_hash_defweak
|
||
|| hlook->root.type == bfd_link_hash_common
|
||
|| hlook->root.type == bfd_link_hash_indirect);
|
||
slook = hlook->root.u.def.section;
|
||
vlook = hlook->root.u.def.value;
|
||
|
||
hpp = elf_sym_hashes (abfd);
|
||
hppend = hpp + extsymcount;
|
||
for (; hpp < hppend; hpp++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = *hpp;
|
||
if (h != NULL && h != hlook
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
&& h->root.u.def.section == slook
|
||
&& h->root.u.def.value == vlook)
|
||
{
|
||
hlook->weakdef = h;
|
||
|
||
/* If the weak definition is in the list of dynamic
|
||
symbols, make sure the real definition is put there
|
||
as well. */
|
||
if (hlook->dynindx != -1
|
||
&& h->dynindx == -1)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (info, h))
|
||
goto error_return;
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (buf != NULL)
|
||
{
|
||
free (buf);
|
||
buf = NULL;
|
||
}
|
||
|
||
/* If this object is the same format as the output object, and it is
|
||
not a shared library, then let the backend look through the
|
||
relocs.
|
||
|
||
This is required to build global offset table entries and to
|
||
arrange for dynamic relocs. It is not required for the
|
||
particular common case of linking non PIC code, even when linking
|
||
against shared libraries, but unfortunately there is no way of
|
||
knowing whether an object file has been compiled PIC or not.
|
||
Looking through the relocs is not particularly time consuming.
|
||
The problem is that we must either (1) keep the relocs in memory,
|
||
which causes the linker to require additional runtime memory or
|
||
(2) read the relocs twice from the input file, which wastes time.
|
||
This would be a good case for using mmap.
|
||
|
||
I have no idea how to handle linking PIC code into a file of a
|
||
different format. It probably can't be done. */
|
||
check_relocs = get_elf_backend_data (abfd)->check_relocs;
|
||
if (! dynamic
|
||
&& abfd->xvec == info->hash->creator
|
||
&& check_relocs != NULL)
|
||
{
|
||
asection *o;
|
||
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
boolean ok;
|
||
|
||
if ((o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0)
|
||
continue;
|
||
|
||
/* I believe we can ignore the relocs for any section which
|
||
does not form part of the final process image, such as a
|
||
debugging section. */
|
||
if ((o->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
ok = (*check_relocs) (abfd, info, o, internal_relocs);
|
||
|
||
if (! info->keep_memory)
|
||
free (internal_relocs);
|
||
|
||
if (! ok)
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (buf != NULL)
|
||
free (buf);
|
||
if (dynbuf != NULL)
|
||
free (dynbuf);
|
||
return false;
|
||
}
|
||
|
||
/* Create some sections which will be filled in with dynamic linking
|
||
information. ABFD is an input file which requires dynamic sections
|
||
to be created. The dynamic sections take up virtual memory space
|
||
when the final executable is run, so we need to create them before
|
||
addresses are assigned to the output sections. We work out the
|
||
actual contents and size of these sections later. */
|
||
|
||
boolean
|
||
elf_link_create_dynamic_sections (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
flagword flags;
|
||
register asection *s;
|
||
struct elf_link_hash_entry *h;
|
||
struct elf_backend_data *bed;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
return true;
|
||
|
||
/* Make sure that all dynamic sections use the same input BFD. */
|
||
if (elf_hash_table (info)->dynobj == NULL)
|
||
elf_hash_table (info)->dynobj = abfd;
|
||
else
|
||
abfd = elf_hash_table (info)->dynobj;
|
||
|
||
/* Note that we set the SEC_IN_MEMORY flag for all of these
|
||
sections. */
|
||
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
|
||
|
||
/* A dynamically linked executable has a .interp section, but a
|
||
shared library does not. */
|
||
if (! info->shared)
|
||
{
|
||
s = bfd_make_section (abfd, ".interp");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
||
return false;
|
||
}
|
||
|
||
s = bfd_make_section (abfd, ".dynsym");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
s = bfd_make_section (abfd, ".dynstr");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
||
return false;
|
||
|
||
/* Create a strtab to hold the dynamic symbol names. */
|
||
if (elf_hash_table (info)->dynstr == NULL)
|
||
{
|
||
elf_hash_table (info)->dynstr = elf_stringtab_init ();
|
||
if (elf_hash_table (info)->dynstr == NULL)
|
||
return false;
|
||
}
|
||
|
||
s = bfd_make_section (abfd, ".dynamic");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
/* The special symbol _DYNAMIC is always set to the start of the
|
||
.dynamic section. This call occurs before we have processed the
|
||
symbols for any dynamic object, so we don't have to worry about
|
||
overriding a dynamic definition. We could set _DYNAMIC in a
|
||
linker script, but we only want to define it if we are, in fact,
|
||
creating a .dynamic section. We don't want to define it if there
|
||
is no .dynamic section, since on some ELF platforms the start up
|
||
code examines it to decide how to initialize the process. */
|
||
h = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
|
||
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
|
||
(struct bfd_link_hash_entry **) &h)))
|
||
return false;
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (info->shared
|
||
&& ! elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
s = bfd_make_section (abfd, ".hash");
|
||
if (s == NULL
|
||
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
||
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
||
return false;
|
||
|
||
/* Let the backend create the rest of the sections. This lets the
|
||
backend set the right flags. The backend will normally create
|
||
the .got and .plt sections. */
|
||
bed = get_elf_backend_data (abfd);
|
||
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
|
||
return false;
|
||
|
||
elf_hash_table (info)->dynamic_sections_created = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add an entry to the .dynamic table. */
|
||
|
||
boolean
|
||
elf_add_dynamic_entry (info, tag, val)
|
||
struct bfd_link_info *info;
|
||
bfd_vma tag;
|
||
bfd_vma val;
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
size_t newsize;
|
||
bfd_byte *newcontents;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
newsize = s->_raw_size + sizeof (Elf_External_Dyn);
|
||
if (s->contents == NULL)
|
||
newcontents = (bfd_byte *) malloc (newsize);
|
||
else
|
||
newcontents = (bfd_byte *) realloc (s->contents, newsize);
|
||
if (newcontents == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
dyn.d_tag = tag;
|
||
dyn.d_un.d_val = val;
|
||
elf_swap_dyn_out (dynobj, &dyn,
|
||
(Elf_External_Dyn *) (newcontents + s->_raw_size));
|
||
|
||
s->_raw_size = newsize;
|
||
s->contents = newcontents;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Read and swap the relocs for a section. They may have been cached.
|
||
If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
|
||
they are used as buffers to read into. They are known to be large
|
||
enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
|
||
value is allocated using either malloc or bfd_alloc, according to
|
||
the KEEP_MEMORY argument. */
|
||
|
||
static Elf_Internal_Rela *
|
||
elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory)
|
||
bfd *abfd;
|
||
asection *o;
|
||
PTR external_relocs;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
boolean keep_memory;
|
||
{
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
PTR alloc1 = NULL;
|
||
Elf_Internal_Rela *alloc2 = NULL;
|
||
|
||
if (elf_section_data (o)->relocs != NULL)
|
||
return elf_section_data (o)->relocs;
|
||
|
||
if (o->reloc_count == 0)
|
||
return NULL;
|
||
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
|
||
if (internal_relocs == NULL)
|
||
{
|
||
size_t size;
|
||
|
||
size = o->reloc_count * sizeof (Elf_Internal_Rela);
|
||
if (keep_memory)
|
||
internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
|
||
else
|
||
internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size);
|
||
if (internal_relocs == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
if (external_relocs == NULL)
|
||
{
|
||
alloc1 = (PTR) malloc (rel_hdr->sh_size);
|
||
if (alloc1 == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
external_relocs = alloc1;
|
||
}
|
||
|
||
if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
|
||
|| (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
|
||
!= rel_hdr->sh_size))
|
||
goto error_return;
|
||
|
||
/* Swap in the relocs. For convenience, we always produce an
|
||
Elf_Internal_Rela array; if the relocs are Rel, we set the addend
|
||
to 0. */
|
||
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
Elf_External_Rel *erelend;
|
||
Elf_Internal_Rela *irela;
|
||
|
||
erel = (Elf_External_Rel *) external_relocs;
|
||
erelend = erel + o->reloc_count;
|
||
irela = internal_relocs;
|
||
for (; erel < erelend; erel++, irela++)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
|
||
elf_swap_reloc_in (abfd, erel, &irel);
|
||
irela->r_offset = irel.r_offset;
|
||
irela->r_info = irel.r_info;
|
||
irela->r_addend = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
Elf_External_Rela *erelaend;
|
||
Elf_Internal_Rela *irela;
|
||
|
||
BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
|
||
|
||
erela = (Elf_External_Rela *) external_relocs;
|
||
erelaend = erela + o->reloc_count;
|
||
irela = internal_relocs;
|
||
for (; erela < erelaend; erela++, irela++)
|
||
elf_swap_reloca_in (abfd, erela, irela);
|
||
}
|
||
|
||
/* Cache the results for next time, if we can. */
|
||
if (keep_memory)
|
||
elf_section_data (o)->relocs = internal_relocs;
|
||
|
||
if (alloc1 != NULL)
|
||
free (alloc1);
|
||
|
||
/* Don't free alloc2, since if it was allocated we are passing it
|
||
back (under the name of internal_relocs). */
|
||
|
||
return internal_relocs;
|
||
|
||
error_return:
|
||
if (alloc1 != NULL)
|
||
free (alloc1);
|
||
if (alloc2 != NULL)
|
||
free (alloc2);
|
||
return NULL;
|
||
}
|
||
|
||
/* Record an assignment to a symbol made by a linker script. We need
|
||
this in case some dynamic object refers to this symbol. */
|
||
|
||
/*ARGSUSED*/
|
||
boolean
|
||
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
const char *name;
|
||
boolean provide;
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
||
return true;
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
|
||
if (h == NULL)
|
||
return false;
|
||
|
||
/* If this symbol is being provided by the linker script, and it is
|
||
currently defined by a dynamic object, but not by a regular
|
||
object, then mark it as undefined so that the generic linker will
|
||
force the correct value. */
|
||
if (provide
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
||
h->root.type = bfd_link_hash_undefined;
|
||
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
||
h->type = STT_OBJECT;
|
||
|
||
if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
||
| ELF_LINK_HASH_REF_DYNAMIC)) != 0
|
||
|| info->shared)
|
||
&& h->dynindx == -1)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (info, h))
|
||
return false;
|
||
|
||
/* If this is a weak defined symbol, and we know a corresponding
|
||
real symbol from the same dynamic object, make sure the real
|
||
symbol is also made into a dynamic symbol. */
|
||
if (h->weakdef != NULL
|
||
&& h->weakdef->dynindx == -1)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (info, h->weakdef))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Array used to determine the number of hash table buckets to use
|
||
based on the number of symbols there are. If there are fewer than
|
||
3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
|
||
fewer than 37 we use 17 buckets, and so forth. We never use more
|
||
than 521 buckets. */
|
||
|
||
static const size_t elf_buckets[] =
|
||
{
|
||
1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
|
||
};
|
||
|
||
/* Set up the sizes and contents of the ELF dynamic sections. This is
|
||
called by the ELF linker emulation before_allocation routine. We
|
||
must set the sizes of the sections before the linker sets the
|
||
addresses of the various sections. */
|
||
|
||
boolean
|
||
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
|
||
export_dynamic, info, sinterpptr)
|
||
bfd *output_bfd;
|
||
const char *soname;
|
||
const char *rpath;
|
||
boolean export_dynamic;
|
||
struct bfd_link_info *info;
|
||
asection **sinterpptr;
|
||
{
|
||
bfd *dynobj;
|
||
struct elf_backend_data *bed;
|
||
|
||
*sinterpptr = NULL;
|
||
|
||
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
||
return true;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
/* If there were no dynamic objects in the link, there is nothing to
|
||
do here. */
|
||
if (dynobj == NULL)
|
||
return true;
|
||
|
||
/* If we are supposed to export all symbols into the dynamic symbol
|
||
table (this is not the normal case), then do so. */
|
||
if (export_dynamic)
|
||
{
|
||
struct elf_info_failed eif;
|
||
|
||
eif.failed = false;
|
||
eif.info = info;
|
||
elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
struct elf_info_failed eif;
|
||
bfd_size_type strsize;
|
||
|
||
*sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (*sinterpptr != NULL || info->shared);
|
||
|
||
if (soname != NULL)
|
||
{
|
||
bfd_size_type indx;
|
||
|
||
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
|
||
true, true);
|
||
if (indx == (bfd_size_type) -1
|
||
|| ! elf_add_dynamic_entry (info, DT_SONAME, indx))
|
||
return false;
|
||
}
|
||
|
||
if (rpath != NULL)
|
||
{
|
||
bfd_size_type indx;
|
||
|
||
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
|
||
true, true);
|
||
if (indx == (bfd_size_type) -1
|
||
|| ! elf_add_dynamic_entry (info, DT_RPATH, indx))
|
||
return false;
|
||
}
|
||
|
||
/* Find all symbols which were defined in a dynamic object and make
|
||
the backend pick a reasonable value for them. */
|
||
eif.failed = false;
|
||
eif.info = info;
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_adjust_dynamic_symbol,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
|
||
/* Add some entries to the .dynamic section. We fill in some of the
|
||
values later, in elf_bfd_final_link, but we must add the entries
|
||
now so that we know the final size of the .dynamic section. */
|
||
if (elf_link_hash_lookup (elf_hash_table (info), "_init", false,
|
||
false, false) != NULL)
|
||
{
|
||
if (! elf_add_dynamic_entry (info, DT_INIT, 0))
|
||
return false;
|
||
}
|
||
if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
|
||
false, false) != NULL)
|
||
{
|
||
if (! elf_add_dynamic_entry (info, DT_FINI, 0))
|
||
return false;
|
||
}
|
||
strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
if (! elf_add_dynamic_entry (info, DT_HASH, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
|
||
|| ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
|
||
|| ! elf_add_dynamic_entry (info, DT_SYMENT,
|
||
sizeof (Elf_External_Sym)))
|
||
return false;
|
||
}
|
||
|
||
/* The backend must work out the sizes of all the other dynamic
|
||
sections. */
|
||
bed = get_elf_backend_data (output_bfd);
|
||
if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
|
||
return false;
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
size_t dynsymcount;
|
||
asection *s;
|
||
size_t i;
|
||
size_t bucketcount;
|
||
Elf_Internal_Sym isym;
|
||
|
||
/* Set the size of the .dynsym and .hash sections. We counted
|
||
the number of dynamic symbols in elf_link_add_object_symbols.
|
||
We will build the contents of .dynsym and .hash when we build
|
||
the final symbol table, because until then we do not know the
|
||
correct value to give the symbols. We built the .dynstr
|
||
section as we went along in elf_link_add_object_symbols. */
|
||
dynsymcount = elf_hash_table (info)->dynsymcount;
|
||
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
|
||
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
||
if (s->contents == NULL && s->_raw_size != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
/* The first entry in .dynsym is a dummy symbol. */
|
||
isym.st_value = 0;
|
||
isym.st_size = 0;
|
||
isym.st_name = 0;
|
||
isym.st_info = 0;
|
||
isym.st_other = 0;
|
||
isym.st_shndx = 0;
|
||
elf_swap_symbol_out (output_bfd, &isym,
|
||
(Elf_External_Sym *) s->contents);
|
||
|
||
for (i = 0; elf_buckets[i] != 0; i++)
|
||
{
|
||
bucketcount = elf_buckets[i];
|
||
if (dynsymcount < elf_buckets[i + 1])
|
||
break;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".hash");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
|
||
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
||
if (s->contents == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
memset (s->contents, 0, s->_raw_size);
|
||
|
||
put_word (output_bfd, bucketcount, s->contents);
|
||
put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
|
||
|
||
elf_hash_table (info)->bucketcount = bucketcount;
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
||
BFD_ASSERT (s != NULL);
|
||
s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
||
|
||
if (! elf_add_dynamic_entry (info, DT_NULL, 0))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This routine is used to export all defined symbols into the dynamic
|
||
symbol table. It is called via elf_link_hash_traverse. */
|
||
|
||
static boolean
|
||
elf_export_symbol (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
||
|
||
if (h->dynindx == -1
|
||
&& (h->elf_link_hash_flags
|
||
& (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
|
||
{
|
||
if (! elf_link_record_dynamic_symbol (eif->info, h))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Make the backend pick a good value for a dynamic symbol. This is
|
||
called via elf_link_hash_traverse, and also calls itself
|
||
recursively. */
|
||
|
||
static boolean
|
||
elf_adjust_dynamic_symbol (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
||
bfd *dynobj;
|
||
struct elf_backend_data *bed;
|
||
|
||
/* If this symbol does not require a PLT entry, and it is not
|
||
defined by a dynamic object, or is not referenced by a regular
|
||
object, ignore it. FIXME: Do we need to worry about symbols
|
||
which are defined by one dynamic object and referenced by another
|
||
one? */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
|
||
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0))
|
||
return true;
|
||
|
||
/* If we've already adjusted this symbol, don't do it again. This
|
||
can happen via a recursive call. */
|
||
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
|
||
return true;
|
||
|
||
/* Don't look at this symbol again. Note that we must set this
|
||
after checking the above conditions, because we may look at a
|
||
symbol once, decide not to do anything, and then get called
|
||
recursively later after REF_REGULAR is set below. */
|
||
h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
|
||
|
||
/* If this is a weak definition, and we know a real definition, and
|
||
the real symbol is not itself defined by a regular object file,
|
||
then get a good value for the real definition. We handle the
|
||
real symbol first, for the convenience of the backend routine.
|
||
|
||
Note that there is a confusing case here. If the real definition
|
||
is defined by a regular object file, we don't get the real symbol
|
||
from the dynamic object, but we do get the weak symbol. If the
|
||
processor backend uses a COPY reloc, then if some routine in the
|
||
dynamic object changes the real symbol, we will not see that
|
||
change in the corresponding weak symbol. This is the way other
|
||
ELF linkers work as well, and seems to be a result of the shared
|
||
library model.
|
||
|
||
I will clarify this issue. Most SVR4 shared libraries define the
|
||
variable _timezone and define timezone as a weak synonym. The
|
||
tzset call changes _timezone. If you write
|
||
extern int timezone;
|
||
int _timezone = 5;
|
||
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
|
||
you might expect that, since timezone is a synonym for _timezone,
|
||
the same number will print both times. However, if the processor
|
||
backend uses a COPY reloc, then actually timezone will be copied
|
||
into your process image, and, since you define _timezone
|
||
yourself, _timezone will not. Thus timezone and _timezone will
|
||
wind up at different memory locations. The tzset call will set
|
||
_timezone, leaving timezone unchanged. */
|
||
|
||
if (h->weakdef != NULL)
|
||
{
|
||
struct elf_link_hash_entry *weakdef;
|
||
|
||
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak);
|
||
weakdef = h->weakdef;
|
||
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|
||
|| weakdef->root.type == bfd_link_hash_defweak);
|
||
BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
|
||
if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
||
{
|
||
/* This symbol is defined by a regular object file, so we
|
||
will not do anything special. Clear weakdef for the
|
||
convenience of the processor backend. */
|
||
h->weakdef = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* There is an implicit reference by a regular object file
|
||
via the weak symbol. */
|
||
weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
||
if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
dynobj = elf_hash_table (eif->info)->dynobj;
|
||
bed = get_elf_backend_data (dynobj);
|
||
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Final phase of ELF linker. */
|
||
|
||
/* A structure we use to avoid passing large numbers of arguments. */
|
||
|
||
struct elf_final_link_info
|
||
{
|
||
/* General link information. */
|
||
struct bfd_link_info *info;
|
||
/* Output BFD. */
|
||
bfd *output_bfd;
|
||
/* Symbol string table. */
|
||
struct bfd_strtab_hash *symstrtab;
|
||
/* .dynsym section. */
|
||
asection *dynsym_sec;
|
||
/* .hash section. */
|
||
asection *hash_sec;
|
||
/* Buffer large enough to hold contents of any section. */
|
||
bfd_byte *contents;
|
||
/* Buffer large enough to hold external relocs of any section. */
|
||
PTR external_relocs;
|
||
/* Buffer large enough to hold internal relocs of any section. */
|
||
Elf_Internal_Rela *internal_relocs;
|
||
/* Buffer large enough to hold external local symbols of any input
|
||
BFD. */
|
||
Elf_External_Sym *external_syms;
|
||
/* Buffer large enough to hold internal local symbols of any input
|
||
BFD. */
|
||
Elf_Internal_Sym *internal_syms;
|
||
/* Array large enough to hold a symbol index for each local symbol
|
||
of any input BFD. */
|
||
long *indices;
|
||
/* Array large enough to hold a section pointer for each local
|
||
symbol of any input BFD. */
|
||
asection **sections;
|
||
/* Buffer to hold swapped out symbols. */
|
||
Elf_External_Sym *symbuf;
|
||
/* Number of swapped out symbols in buffer. */
|
||
size_t symbuf_count;
|
||
/* Number of symbols which fit in symbuf. */
|
||
size_t symbuf_size;
|
||
};
|
||
|
||
static boolean elf_link_output_sym
|
||
PARAMS ((struct elf_final_link_info *, const char *,
|
||
Elf_Internal_Sym *, asection *));
|
||
static boolean elf_link_flush_output_syms
|
||
PARAMS ((struct elf_final_link_info *));
|
||
static boolean elf_link_output_extsym
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static boolean elf_link_input_bfd
|
||
PARAMS ((struct elf_final_link_info *, bfd *));
|
||
static boolean elf_reloc_link_order
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
struct bfd_link_order *));
|
||
|
||
/* This struct is used to pass information to routines called via
|
||
elf_link_hash_traverse which must return failure. */
|
||
|
||
struct elf_finfo_failed
|
||
{
|
||
boolean failed;
|
||
struct elf_final_link_info *finfo;
|
||
};
|
||
|
||
/* Do the final step of an ELF link. */
|
||
|
||
boolean
|
||
elf_bfd_final_link (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
boolean dynamic;
|
||
bfd *dynobj;
|
||
struct elf_final_link_info finfo;
|
||
register asection *o;
|
||
register struct bfd_link_order *p;
|
||
register bfd *sub;
|
||
size_t max_contents_size;
|
||
size_t max_external_reloc_size;
|
||
size_t max_internal_reloc_count;
|
||
size_t max_sym_count;
|
||
file_ptr off;
|
||
Elf_Internal_Sym elfsym;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
struct elf_finfo_failed eif;
|
||
|
||
if (info->shared)
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
dynamic = elf_hash_table (info)->dynamic_sections_created;
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
finfo.info = info;
|
||
finfo.output_bfd = abfd;
|
||
finfo.symstrtab = elf_stringtab_init ();
|
||
if (finfo.symstrtab == NULL)
|
||
return false;
|
||
if (! dynamic)
|
||
{
|
||
finfo.dynsym_sec = NULL;
|
||
finfo.hash_sec = NULL;
|
||
}
|
||
else
|
||
{
|
||
finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
|
||
finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
|
||
BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
|
||
}
|
||
finfo.contents = NULL;
|
||
finfo.external_relocs = NULL;
|
||
finfo.internal_relocs = NULL;
|
||
finfo.external_syms = NULL;
|
||
finfo.internal_syms = NULL;
|
||
finfo.indices = NULL;
|
||
finfo.sections = NULL;
|
||
finfo.symbuf = NULL;
|
||
finfo.symbuf_count = 0;
|
||
|
||
/* Count up the number of relocations we will output for each output
|
||
section, so that we know the sizes of the reloc sections. We
|
||
also figure out some maximum sizes. */
|
||
max_contents_size = 0;
|
||
max_external_reloc_size = 0;
|
||
max_internal_reloc_count = 0;
|
||
max_sym_count = 0;
|
||
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
||
{
|
||
o->reloc_count = 0;
|
||
|
||
for (p = o->link_order_head; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
++o->reloc_count;
|
||
else if (p->type == bfd_indirect_link_order)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = p->u.indirect.section;
|
||
|
||
if (info->relocateable)
|
||
o->reloc_count += sec->reloc_count;
|
||
|
||
if (sec->_raw_size > max_contents_size)
|
||
max_contents_size = sec->_raw_size;
|
||
if (sec->_cooked_size > max_contents_size)
|
||
max_contents_size = sec->_cooked_size;
|
||
|
||
/* We are interested in just local symbols, not all
|
||
symbols. */
|
||
if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
|
||
{
|
||
size_t sym_count;
|
||
|
||
if (elf_bad_symtab (sec->owner))
|
||
sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
|
||
/ sizeof (Elf_External_Sym));
|
||
else
|
||
sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
|
||
|
||
if (sym_count > max_sym_count)
|
||
max_sym_count = sym_count;
|
||
|
||
if ((sec->flags & SEC_RELOC) != 0)
|
||
{
|
||
size_t ext_size;
|
||
|
||
ext_size = elf_section_data (sec)->rel_hdr.sh_size;
|
||
if (ext_size > max_external_reloc_size)
|
||
max_external_reloc_size = ext_size;
|
||
if (sec->reloc_count > max_internal_reloc_count)
|
||
max_internal_reloc_count = sec->reloc_count;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (o->reloc_count > 0)
|
||
o->flags |= SEC_RELOC;
|
||
else
|
||
{
|
||
/* Explicitly clear the SEC_RELOC flag. The linker tends to
|
||
set it (this is probably a bug) and if it is set
|
||
assign_section_numbers will create a reloc section. */
|
||
o->flags &=~ SEC_RELOC;
|
||
}
|
||
|
||
/* If the SEC_ALLOC flag is not set, force the section VMA to
|
||
zero. This is done in elf_fake_sections as well, but forcing
|
||
the VMA to 0 here will ensure that relocs against these
|
||
sections are handled correctly. */
|
||
if ((o->flags & SEC_ALLOC) == 0)
|
||
o->vma = 0;
|
||
}
|
||
|
||
/* Figure out the file positions for everything but the symbol table
|
||
and the relocs. We set symcount to force assign_section_numbers
|
||
to create a symbol table. */
|
||
abfd->symcount = info->strip == strip_all ? 0 : 1;
|
||
BFD_ASSERT (! abfd->output_has_begun);
|
||
if (! elf_compute_section_file_positions (abfd, info))
|
||
goto error_return;
|
||
|
||
/* That created the reloc sections. Set their sizes, and assign
|
||
them file positions, and allocate some buffers. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
register struct elf_link_hash_entry **p, **pend;
|
||
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
|
||
rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
|
||
|
||
/* The contents field must last into write_object_contents,
|
||
so we allocate it with bfd_alloc rather than malloc. */
|
||
rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
|
||
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
p = ((struct elf_link_hash_entry **)
|
||
malloc (o->reloc_count
|
||
* sizeof (struct elf_link_hash_entry *)));
|
||
if (p == NULL && o->reloc_count != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
elf_section_data (o)->rel_hashes = p;
|
||
pend = p + o->reloc_count;
|
||
for (; p < pend; p++)
|
||
*p = NULL;
|
||
|
||
/* Use the reloc_count field as an index when outputting the
|
||
relocs. */
|
||
o->reloc_count = 0;
|
||
}
|
||
}
|
||
|
||
assign_file_positions_for_relocs (abfd);
|
||
|
||
/* We have now assigned file positions for all the sections except
|
||
.symtab and .strtab. We start the .symtab section at the current
|
||
file position, and write directly to it. We build the .strtab
|
||
section in memory. When we add .dynsym support, we will build
|
||
that in memory as well (.dynsym is smaller than .symtab). */
|
||
abfd->symcount = 0;
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
/* sh_name is set in prep_headers. */
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_flags = 0;
|
||
symtab_hdr->sh_addr = 0;
|
||
symtab_hdr->sh_size = 0;
|
||
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
/* sh_link is set in assign_section_numbers. */
|
||
/* sh_info is set below. */
|
||
/* sh_offset is set just below. */
|
||
symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
off = assign_file_position_for_section (symtab_hdr, off, true);
|
||
|
||
/* Note that at this point elf_tdata (abfd)->next_file_pos is
|
||
incorrect. We do not yet know the size of the .symtab section.
|
||
We correct next_file_pos below, after we do know the size. */
|
||
|
||
/* Allocate a buffer to hold swapped out symbols. This is to avoid
|
||
continuously seeking to the right position in the file. */
|
||
if (! info->keep_memory || max_sym_count < 20)
|
||
finfo.symbuf_size = 20;
|
||
else
|
||
finfo.symbuf_size = max_sym_count;
|
||
finfo.symbuf = ((Elf_External_Sym *)
|
||
malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
|
||
if (finfo.symbuf == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
/* Start writing out the symbol table. The first symbol is always a
|
||
dummy symbol. */
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = 0;
|
||
elfsym.st_other = 0;
|
||
elfsym.st_shndx = SHN_UNDEF;
|
||
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
||
&elfsym, bfd_und_section_ptr))
|
||
goto error_return;
|
||
|
||
#if 0
|
||
/* Some standard ELF linkers do this, but we don't because it causes
|
||
bootstrap comparison failures. */
|
||
/* Output a file symbol for the output file as the second symbol.
|
||
We output this even if we are discarding local symbols, although
|
||
I'm not sure if this is correct. */
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
||
elfsym.st_other = 0;
|
||
elfsym.st_shndx = SHN_ABS;
|
||
if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
|
||
&elfsym, bfd_abs_section_ptr))
|
||
goto error_return;
|
||
#endif
|
||
|
||
/* Output a symbol for each section. We output these even if we are
|
||
discarding local symbols, since they are used for relocs. These
|
||
symbols have no names. We store the index of each one in the
|
||
index field of the section, so that we can find it again when
|
||
outputting relocs. */
|
||
elfsym.st_value = 0;
|
||
elfsym.st_size = 0;
|
||
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
||
elfsym.st_other = 0;
|
||
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
||
{
|
||
o = section_from_elf_index (abfd, i);
|
||
if (o != NULL)
|
||
o->target_index = abfd->symcount;
|
||
elfsym.st_shndx = i;
|
||
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
||
&elfsym, o))
|
||
goto error_return;
|
||
}
|
||
|
||
/* Allocate some memory to hold information read in from the input
|
||
files. */
|
||
finfo.contents = (bfd_byte *) malloc (max_contents_size);
|
||
finfo.external_relocs = (PTR) malloc (max_external_reloc_size);
|
||
finfo.internal_relocs = ((Elf_Internal_Rela *)
|
||
malloc (max_internal_reloc_count
|
||
* sizeof (Elf_Internal_Rela)));
|
||
finfo.external_syms = ((Elf_External_Sym *)
|
||
malloc (max_sym_count * sizeof (Elf_External_Sym)));
|
||
finfo.internal_syms = ((Elf_Internal_Sym *)
|
||
malloc (max_sym_count * sizeof (Elf_Internal_Sym)));
|
||
finfo.indices = (long *) malloc (max_sym_count * sizeof (long));
|
||
finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *));
|
||
if ((finfo.contents == NULL && max_contents_size != 0)
|
||
|| (finfo.external_relocs == NULL && max_external_reloc_size != 0)
|
||
|| (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
|
||
|| (finfo.external_syms == NULL && max_sym_count != 0)
|
||
|| (finfo.internal_syms == NULL && max_sym_count != 0)
|
||
|| (finfo.indices == NULL && max_sym_count != 0)
|
||
|| (finfo.sections == NULL && max_sym_count != 0))
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
goto error_return;
|
||
}
|
||
|
||
/* Since ELF permits relocations to be against local symbols, we
|
||
must have the local symbols available when we do the relocations.
|
||
Since we would rather only read the local symbols once, and we
|
||
would rather not keep them in memory, we handle all the
|
||
relocations for a single input file at the same time.
|
||
|
||
Unfortunately, there is no way to know the total number of local
|
||
symbols until we have seen all of them, and the local symbol
|
||
indices precede the global symbol indices. This means that when
|
||
we are generating relocateable output, and we see a reloc against
|
||
a global symbol, we can not know the symbol index until we have
|
||
finished examining all the local symbols to see which ones we are
|
||
going to output. To deal with this, we keep the relocations in
|
||
memory, and don't output them until the end of the link. This is
|
||
an unfortunate waste of memory, but I don't see a good way around
|
||
it. Fortunately, it only happens when performing a relocateable
|
||
link, which is not the common case. FIXME: If keep_memory is set
|
||
we could write the relocs out and then read them again; I don't
|
||
know how bad the memory loss will be. */
|
||
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->next)
|
||
sub->output_has_begun = false;
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->link_order_head; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_indirect_link_order
|
||
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
||
== bfd_target_elf_flavour))
|
||
{
|
||
sub = p->u.indirect.section->owner;
|
||
if (! sub->output_has_begun)
|
||
{
|
||
if (! elf_link_input_bfd (&finfo, sub))
|
||
goto error_return;
|
||
sub->output_has_begun = true;
|
||
}
|
||
}
|
||
else if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
{
|
||
if (! elf_reloc_link_order (abfd, info, o, p))
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* That wrote out all the local symbols. Finish up the symbol table
|
||
with the global symbols. */
|
||
|
||
/* The sh_info field records the index of the first non local
|
||
symbol. */
|
||
symtab_hdr->sh_info = abfd->symcount;
|
||
if (dynamic)
|
||
elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
|
||
|
||
/* We get the global symbols from the hash table. */
|
||
eif.failed = false;
|
||
eif.finfo = &finfo;
|
||
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
||
(PTR) &eif);
|
||
if (eif.failed)
|
||
return false;
|
||
|
||
/* Flush all symbols to the file. */
|
||
if (! elf_link_flush_output_syms (&finfo))
|
||
return false;
|
||
|
||
/* Now we know the size of the symtab section. */
|
||
off += symtab_hdr->sh_size;
|
||
|
||
/* Finish up and write out the symbol string table (.strtab)
|
||
section. */
|
||
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
/* sh_name was set in prep_headers. */
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
symstrtab_hdr->sh_flags = 0;
|
||
symstrtab_hdr->sh_addr = 0;
|
||
symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
|
||
symstrtab_hdr->sh_entsize = 0;
|
||
symstrtab_hdr->sh_link = 0;
|
||
symstrtab_hdr->sh_info = 0;
|
||
/* sh_offset is set just below. */
|
||
symstrtab_hdr->sh_addralign = 1;
|
||
|
||
off = assign_file_position_for_section (symstrtab_hdr, off, true);
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
|
||
return false;
|
||
|
||
/* Adjust the relocs to have the correct symbol indices. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
struct elf_link_hash_entry **rel_hash;
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
|
||
if ((o->flags & SEC_RELOC) == 0)
|
||
continue;
|
||
|
||
rel_hash = elf_section_data (o)->rel_hashes;
|
||
rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
for (i = 0; i < o->reloc_count; i++, rel_hash++)
|
||
{
|
||
if (*rel_hash == NULL)
|
||
continue;
|
||
|
||
BFD_ASSERT ((*rel_hash)->indx >= 0);
|
||
|
||
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
Elf_Internal_Rel irel;
|
||
|
||
erel = (Elf_External_Rel *) rel_hdr->contents + i;
|
||
elf_swap_reloc_in (abfd, erel, &irel);
|
||
irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
||
ELF_R_TYPE (irel.r_info));
|
||
elf_swap_reloc_out (abfd, &irel, erel);
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
Elf_Internal_Rela irela;
|
||
|
||
BFD_ASSERT (rel_hdr->sh_entsize
|
||
== sizeof (Elf_External_Rela));
|
||
|
||
erela = (Elf_External_Rela *) rel_hdr->contents + i;
|
||
elf_swap_reloca_in (abfd, erela, &irela);
|
||
irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
||
ELF_R_TYPE (irela.r_info));
|
||
elf_swap_reloca_out (abfd, &irela, erela);
|
||
}
|
||
}
|
||
|
||
/* Set the reloc_count field to 0 to prevent write_relocs from
|
||
trying to swap the relocs out itself. */
|
||
o->reloc_count = 0;
|
||
}
|
||
|
||
/* If we are linking against a dynamic object, or generating a
|
||
shared library, finish up the dynamic linking information. */
|
||
if (dynamic)
|
||
{
|
||
Elf_External_Dyn *dyncon, *dynconend;
|
||
|
||
/* Fix up .dynamic entries. */
|
||
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
BFD_ASSERT (o != NULL);
|
||
|
||
dyncon = (Elf_External_Dyn *) o->contents;
|
||
dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
unsigned int type;
|
||
|
||
elf_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
/* SVR4 linkers seem to set DT_INIT and DT_FINI based on
|
||
magic _init and _fini symbols. This is pretty ugly,
|
||
but we are compatible. */
|
||
case DT_INIT:
|
||
name = "_init";
|
||
goto get_sym;
|
||
case DT_FINI:
|
||
name = "_fini";
|
||
get_sym:
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
||
false, false, true);
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
{
|
||
dyn.d_un.d_val = h->root.u.def.value;
|
||
o = h->root.u.def.section;
|
||
if (o->output_section != NULL)
|
||
dyn.d_un.d_val += (o->output_section->vma
|
||
+ o->output_offset);
|
||
else
|
||
/* The symbol is imported from another shared
|
||
library and does not apply to this one. */
|
||
dyn.d_un.d_val = 0;
|
||
}
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
}
|
||
break;
|
||
|
||
case DT_HASH:
|
||
name = ".hash";
|
||
goto get_vma;
|
||
case DT_STRTAB:
|
||
name = ".dynstr";
|
||
goto get_vma;
|
||
case DT_SYMTAB:
|
||
name = ".dynsym";
|
||
get_vma:
|
||
o = bfd_get_section_by_name (abfd, name);
|
||
BFD_ASSERT (o != NULL);
|
||
dyn.d_un.d_ptr = o->vma;
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_REL:
|
||
case DT_RELA:
|
||
case DT_RELSZ:
|
||
case DT_RELASZ:
|
||
if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
||
type = SHT_REL;
|
||
else
|
||
type = SHT_RELA;
|
||
dyn.d_un.d_val = 0;
|
||
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = elf_elfsections (abfd)[i];
|
||
if (hdr->sh_type == type
|
||
&& (hdr->sh_flags & SHF_ALLOC) != 0)
|
||
{
|
||
if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
|
||
dyn.d_un.d_val += hdr->sh_size;
|
||
else
|
||
{
|
||
if (dyn.d_un.d_val == 0
|
||
|| hdr->sh_addr < dyn.d_un.d_val)
|
||
dyn.d_un.d_val = hdr->sh_addr;
|
||
}
|
||
}
|
||
}
|
||
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have created any dynamic sections, then output them. */
|
||
if (dynobj != NULL)
|
||
{
|
||
if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
|
||
goto error_return;
|
||
|
||
for (o = dynobj->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
||
|| o->_raw_size == 0)
|
||
continue;
|
||
if ((o->flags & SEC_IN_MEMORY) == 0)
|
||
{
|
||
/* At this point, we are only interested in sections
|
||
created by elf_link_create_dynamic_sections. FIXME:
|
||
This test is fragile. */
|
||
continue;
|
||
}
|
||
if ((elf_section_data (o->output_section)->this_hdr.sh_type
|
||
!= SHT_STRTAB)
|
||
|| strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
|
||
{
|
||
if (! bfd_set_section_contents (abfd, o->output_section,
|
||
o->contents, o->output_offset,
|
||
o->_raw_size))
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
file_ptr off;
|
||
|
||
/* The contents of the .dynstr section are actually in a
|
||
stringtab. */
|
||
off = elf_section_data (o->output_section)->this_hdr.sh_offset;
|
||
if (bfd_seek (abfd, off, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd,
|
||
elf_hash_table (info)->dynstr))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (finfo.symstrtab != NULL)
|
||
_bfd_stringtab_free (finfo.symstrtab);
|
||
if (finfo.contents != NULL)
|
||
free (finfo.contents);
|
||
if (finfo.external_relocs != NULL)
|
||
free (finfo.external_relocs);
|
||
if (finfo.internal_relocs != NULL)
|
||
free (finfo.internal_relocs);
|
||
if (finfo.external_syms != NULL)
|
||
free (finfo.external_syms);
|
||
if (finfo.internal_syms != NULL)
|
||
free (finfo.internal_syms);
|
||
if (finfo.indices != NULL)
|
||
free (finfo.indices);
|
||
if (finfo.sections != NULL)
|
||
free (finfo.sections);
|
||
if (finfo.symbuf != NULL)
|
||
free (finfo.symbuf);
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0
|
||
&& elf_section_data (o)->rel_hashes != NULL)
|
||
free (elf_section_data (o)->rel_hashes);
|
||
}
|
||
|
||
elf_tdata (abfd)->linker = true;
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (finfo.symstrtab != NULL)
|
||
_bfd_stringtab_free (finfo.symstrtab);
|
||
if (finfo.contents != NULL)
|
||
free (finfo.contents);
|
||
if (finfo.external_relocs != NULL)
|
||
free (finfo.external_relocs);
|
||
if (finfo.internal_relocs != NULL)
|
||
free (finfo.internal_relocs);
|
||
if (finfo.external_syms != NULL)
|
||
free (finfo.external_syms);
|
||
if (finfo.internal_syms != NULL)
|
||
free (finfo.internal_syms);
|
||
if (finfo.indices != NULL)
|
||
free (finfo.indices);
|
||
if (finfo.sections != NULL)
|
||
free (finfo.sections);
|
||
if (finfo.symbuf != NULL)
|
||
free (finfo.symbuf);
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_RELOC) != 0
|
||
&& elf_section_data (o)->rel_hashes != NULL)
|
||
free (elf_section_data (o)->rel_hashes);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Add a symbol to the output symbol table. */
|
||
|
||
static boolean
|
||
elf_link_output_sym (finfo, name, elfsym, input_sec)
|
||
struct elf_final_link_info *finfo;
|
||
const char *name;
|
||
Elf_Internal_Sym *elfsym;
|
||
asection *input_sec;
|
||
{
|
||
boolean (*output_symbol_hook) PARAMS ((bfd *,
|
||
struct bfd_link_info *info,
|
||
const char *,
|
||
Elf_Internal_Sym *,
|
||
asection *));
|
||
|
||
output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
|
||
elf_backend_link_output_symbol_hook;
|
||
if (output_symbol_hook != NULL)
|
||
{
|
||
if (! ((*output_symbol_hook)
|
||
(finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
|
||
return false;
|
||
}
|
||
|
||
if (name == (const char *) NULL || *name == '\0')
|
||
elfsym->st_name = 0;
|
||
else
|
||
{
|
||
elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
|
||
name, true,
|
||
false);
|
||
if (elfsym->st_name == (unsigned long) -1)
|
||
return false;
|
||
}
|
||
|
||
if (finfo->symbuf_count >= finfo->symbuf_size)
|
||
{
|
||
if (! elf_link_flush_output_syms (finfo))
|
||
return false;
|
||
}
|
||
|
||
elf_swap_symbol_out (finfo->output_bfd, elfsym,
|
||
finfo->symbuf + finfo->symbuf_count);
|
||
++finfo->symbuf_count;
|
||
|
||
++finfo->output_bfd->symcount;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Flush the output symbols to the file. */
|
||
|
||
static boolean
|
||
elf_link_flush_output_syms (finfo)
|
||
struct elf_final_link_info *finfo;
|
||
{
|
||
Elf_Internal_Shdr *symtab;
|
||
|
||
symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
|
||
|
||
if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
|
||
SEEK_SET) != 0
|
||
|| (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
|
||
sizeof (Elf_External_Sym), finfo->output_bfd)
|
||
!= finfo->symbuf_count * sizeof (Elf_External_Sym)))
|
||
return false;
|
||
|
||
symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
|
||
|
||
finfo->symbuf_count = 0;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Add an external symbol to the symbol table. This is called from
|
||
the hash table traversal routine. */
|
||
|
||
static boolean
|
||
elf_link_output_extsym (h, data)
|
||
struct elf_link_hash_entry *h;
|
||
PTR data;
|
||
{
|
||
struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
|
||
struct elf_final_link_info *finfo = eif->finfo;
|
||
boolean strip;
|
||
Elf_Internal_Sym sym;
|
||
asection *input_sec;
|
||
|
||
/* If we are not creating a shared library, and this symbol is
|
||
referenced by a shared library but is not defined anywhere, then
|
||
warn that it is undefined. If we do not do this, the runtime
|
||
linker will complain that the symbol is undefined when the
|
||
program is run. We don't have to worry about symbols that are
|
||
referenced by regular files, because we will already have issued
|
||
warnings for them. */
|
||
if (! finfo->info->relocateable
|
||
&& ! finfo->info->shared
|
||
&& h->root.type == bfd_link_hash_undefined
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
||
{
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, h->root.root.string, h->root.u.undef.abfd,
|
||
(asection *) NULL, 0)))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* We don't want to output symbols that have never been mentioned by
|
||
a regular file, or that we have been told to strip. However, if
|
||
h->indx is set to -2, the symbol is used by a reloc and we must
|
||
output it. */
|
||
if (h->indx == -2)
|
||
strip = false;
|
||
else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
||
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
||
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
||
strip = true;
|
||
else if (finfo->info->strip == strip_all
|
||
|| (finfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (finfo->info->keep_hash,
|
||
h->root.root.string,
|
||
false, false) == NULL))
|
||
strip = true;
|
||
else
|
||
strip = false;
|
||
|
||
/* If we're stripping it, and it's not a dynamic symbol, there's
|
||
nothing else to do. */
|
||
if (strip && h->dynindx == -1)
|
||
return true;
|
||
|
||
sym.st_value = 0;
|
||
sym.st_size = h->size;
|
||
sym.st_other = 0;
|
||
if (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
|
||
else
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_new:
|
||
abort ();
|
||
return false;
|
||
|
||
case bfd_link_hash_undefined:
|
||
input_sec = bfd_und_section_ptr;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
break;
|
||
|
||
case bfd_link_hash_undefweak:
|
||
input_sec = bfd_und_section_ptr;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
break;
|
||
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
{
|
||
input_sec = h->root.u.def.section;
|
||
if (input_sec->output_section != NULL)
|
||
{
|
||
sym.st_shndx =
|
||
elf_section_from_bfd_section (finfo->output_bfd,
|
||
input_sec->output_section);
|
||
if (sym.st_shndx == (unsigned short) -1)
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
/* ELF symbols in relocateable files are section relative,
|
||
but in nonrelocateable files they are virtual
|
||
addresses. */
|
||
sym.st_value = h->root.u.def.value + input_sec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
sym.st_value += input_sec->output_section->vma;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
|
||
== bfd_target_elf_flavour)
|
||
&& elf_elfheader (input_sec->owner)->e_type == ET_DYN);
|
||
sym.st_shndx = SHN_UNDEF;
|
||
input_sec = bfd_und_section_ptr;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case bfd_link_hash_common:
|
||
input_sec = bfd_com_section_ptr;
|
||
sym.st_shndx = SHN_COMMON;
|
||
sym.st_value = 1 << h->root.u.c.p->alignment_power;
|
||
break;
|
||
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
/* I have no idea how these should be handled. */
|
||
return true;
|
||
}
|
||
|
||
/* If this symbol should be put in the .dynsym section, then put it
|
||
there now. We have already know the symbol index. We also fill
|
||
in the entry in the .hash section. */
|
||
if (h->dynindx != -1
|
||
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
||
{
|
||
struct elf_backend_data *bed;
|
||
size_t bucketcount;
|
||
size_t bucket;
|
||
bfd_byte *bucketpos;
|
||
bfd_vma chain;
|
||
|
||
sym.st_name = h->dynstr_index;
|
||
|
||
/* Give the processor backend a chance to tweak the symbol
|
||
value, and also to finish up anything that needs to be done
|
||
for this symbol. */
|
||
bed = get_elf_backend_data (finfo->output_bfd);
|
||
if (! ((*bed->elf_backend_finish_dynamic_symbol)
|
||
(finfo->output_bfd, finfo->info, h, &sym)))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
elf_swap_symbol_out (finfo->output_bfd, &sym,
|
||
((Elf_External_Sym *) finfo->dynsym_sec->contents
|
||
+ h->dynindx));
|
||
|
||
bucketcount = elf_hash_table (finfo->info)->bucketcount;
|
||
bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
|
||
% bucketcount);
|
||
bucketpos = ((bfd_byte *) finfo->hash_sec->contents
|
||
+ (bucket + 2) * (ARCH_SIZE / 8));
|
||
chain = get_word (finfo->output_bfd, bucketpos);
|
||
put_word (finfo->output_bfd, h->dynindx, bucketpos);
|
||
put_word (finfo->output_bfd, chain,
|
||
((bfd_byte *) finfo->hash_sec->contents
|
||
+ (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
|
||
}
|
||
|
||
/* If we're stripping it, then it was just a dynamic symbol, and
|
||
there's nothing else to do. */
|
||
if (strip)
|
||
return true;
|
||
|
||
h->indx = finfo->output_bfd->symcount;
|
||
|
||
if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
|
||
{
|
||
eif->failed = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Link an input file into the linker output file. This function
|
||
handles all the sections and relocations of the input file at once.
|
||
This is so that we only have to read the local symbols once, and
|
||
don't have to keep them in memory. */
|
||
|
||
static boolean
|
||
elf_link_input_bfd (finfo, input_bfd)
|
||
struct elf_final_link_info *finfo;
|
||
bfd *input_bfd;
|
||
{
|
||
boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
|
||
bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *,
|
||
Elf_Internal_Sym *, asection **));
|
||
bfd *output_bfd;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
size_t locsymcount;
|
||
size_t extsymoff;
|
||
Elf_External_Sym *esym;
|
||
Elf_External_Sym *esymend;
|
||
Elf_Internal_Sym *isym;
|
||
long *pindex;
|
||
asection **ppsection;
|
||
asection *o;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
relocate_section =
|
||
get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
|
||
|
||
/* If this is a dynamic object, we don't want to do anything here:
|
||
we don't want the local symbols, and we don't want the section
|
||
contents. */
|
||
if (elf_elfheader (input_bfd)->e_type == ET_DYN)
|
||
return true;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (elf_bad_symtab (input_bfd))
|
||
{
|
||
locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
||
extsymoff = 0;
|
||
}
|
||
else
|
||
{
|
||
locsymcount = symtab_hdr->sh_info;
|
||
extsymoff = symtab_hdr->sh_info;
|
||
}
|
||
|
||
/* Read the local symbols. */
|
||
if (locsymcount > 0
|
||
&& (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym),
|
||
locsymcount, input_bfd)
|
||
!= locsymcount * sizeof (Elf_External_Sym))))
|
||
return false;
|
||
|
||
/* Swap in the local symbols and write out the ones which we know
|
||
are going into the output file. */
|
||
esym = finfo->external_syms;
|
||
esymend = esym + locsymcount;
|
||
isym = finfo->internal_syms;
|
||
pindex = finfo->indices;
|
||
ppsection = finfo->sections;
|
||
for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
|
||
{
|
||
asection *isec;
|
||
const char *name;
|
||
Elf_Internal_Sym osym;
|
||
|
||
elf_swap_symbol_in (input_bfd, esym, isym);
|
||
*pindex = -1;
|
||
|
||
if (elf_bad_symtab (input_bfd))
|
||
{
|
||
if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
|
||
{
|
||
*ppsection = NULL;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
isec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
|
||
isec = section_from_elf_index (input_bfd, isym->st_shndx);
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
isec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
isec = bfd_com_section_ptr;
|
||
else
|
||
{
|
||
/* Who knows? */
|
||
isec = NULL;
|
||
}
|
||
|
||
*ppsection = isec;
|
||
|
||
/* Don't output the first, undefined, symbol. */
|
||
if (esym == finfo->external_syms)
|
||
continue;
|
||
|
||
/* If we are stripping all symbols, we don't want to output this
|
||
one. */
|
||
if (finfo->info->strip == strip_all)
|
||
continue;
|
||
|
||
/* We never output section symbols. Instead, we use the section
|
||
symbol of the corresponding section in the output file. */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
continue;
|
||
|
||
/* If we are discarding all local symbols, we don't want to
|
||
output this one. If we are generating a relocateable output
|
||
file, then some of the local symbols may be required by
|
||
relocs; we output them below as we discover that they are
|
||
needed. */
|
||
if (finfo->info->discard == discard_all)
|
||
continue;
|
||
|
||
/* Get the name of the symbol. */
|
||
name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
|
||
isym->st_name);
|
||
if (name == NULL)
|
||
return false;
|
||
|
||
/* See if we are discarding symbols with this name. */
|
||
if ((finfo->info->strip == strip_some
|
||
&& (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
||
== NULL))
|
||
|| (finfo->info->discard == discard_l
|
||
&& strncmp (name, finfo->info->lprefix,
|
||
finfo->info->lprefix_len) == 0))
|
||
continue;
|
||
|
||
/* If we get here, we are going to output this symbol. */
|
||
|
||
osym = *isym;
|
||
|
||
/* Adjust the section index for the output file. */
|
||
osym.st_shndx = elf_section_from_bfd_section (output_bfd,
|
||
isec->output_section);
|
||
if (osym.st_shndx == (unsigned short) -1)
|
||
return false;
|
||
|
||
*pindex = output_bfd->symcount;
|
||
|
||
/* ELF symbols in relocateable files are section relative, but
|
||
in executable files they are virtual addresses. Note that
|
||
this code assumes that all ELF sections have an associated
|
||
BFD section with a reasonable value for output_offset; below
|
||
we assume that they also have a reasonable value for
|
||
output_section. Any special sections must be set up to meet
|
||
these requirements. */
|
||
osym.st_value += isec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
osym.st_value += isec->output_section->vma;
|
||
|
||
if (! elf_link_output_sym (finfo, name, &osym, isec))
|
||
return false;
|
||
}
|
||
|
||
/* Relocate the contents of each section. */
|
||
for (o = input_bfd->sections; o != NULL; o = o->next)
|
||
{
|
||
if ((o->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
if ((o->flags & SEC_IN_MEMORY) != 0
|
||
&& input_bfd == elf_hash_table (finfo->info)->dynobj)
|
||
{
|
||
/* Section was created by elf_link_create_dynamic_sections.
|
||
FIXME: This test is fragile. */
|
||
continue;
|
||
}
|
||
|
||
/* Read the contents of the section. */
|
||
if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
|
||
(file_ptr) 0, o->_raw_size))
|
||
return false;
|
||
|
||
if ((o->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
|
||
/* Get the swapped relocs. */
|
||
internal_relocs = elf_link_read_relocs (input_bfd, o,
|
||
finfo->external_relocs,
|
||
finfo->internal_relocs,
|
||
false);
|
||
if (internal_relocs == NULL
|
||
&& o->reloc_count > 0)
|
||
return false;
|
||
|
||
/* Relocate the section by invoking a back end routine.
|
||
|
||
The back end routine is responsible for adjusting the
|
||
section contents as necessary, and (if using Rela relocs
|
||
and generating a relocateable output file) adjusting the
|
||
reloc addend as necessary.
|
||
|
||
The back end routine does not have to worry about setting
|
||
the reloc address or the reloc symbol index.
|
||
|
||
The back end routine is given a pointer to the swapped in
|
||
internal symbols, and can access the hash table entries
|
||
for the external symbols via elf_sym_hashes (input_bfd).
|
||
|
||
When generating relocateable output, the back end routine
|
||
must handle STB_LOCAL/STT_SECTION symbols specially. The
|
||
output symbol is going to be a section symbol
|
||
corresponding to the output section, which will require
|
||
the addend to be adjusted. */
|
||
|
||
if (! (*relocate_section) (output_bfd, finfo->info,
|
||
input_bfd, o,
|
||
finfo->contents,
|
||
internal_relocs,
|
||
finfo->internal_syms,
|
||
finfo->sections))
|
||
return false;
|
||
|
||
if (finfo->info->relocateable)
|
||
{
|
||
Elf_Internal_Rela *irela;
|
||
Elf_Internal_Rela *irelaend;
|
||
struct elf_link_hash_entry **rel_hash;
|
||
Elf_Internal_Shdr *input_rel_hdr;
|
||
Elf_Internal_Shdr *output_rel_hdr;
|
||
|
||
/* Adjust the reloc addresses and symbol indices. */
|
||
|
||
irela = internal_relocs;
|
||
irelaend = irela + o->reloc_count;
|
||
rel_hash = (elf_section_data (o->output_section)->rel_hashes
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, rel_hash++)
|
||
{
|
||
long r_symndx;
|
||
Elf_Internal_Sym *isym;
|
||
asection *sec;
|
||
|
||
irela->r_offset += o->output_offset;
|
||
|
||
r_symndx = ELF_R_SYM (irela->r_info);
|
||
|
||
if (r_symndx == 0)
|
||
continue;
|
||
|
||
if (r_symndx >= locsymcount
|
||
|| (elf_bad_symtab (input_bfd)
|
||
&& finfo->sections[r_symndx] == NULL))
|
||
{
|
||
long indx;
|
||
|
||
/* This is a reloc against a global symbol. We
|
||
have not yet output all the local symbols, so
|
||
we do not know the symbol index of any global
|
||
symbol. We set the rel_hash entry for this
|
||
reloc to point to the global hash table entry
|
||
for this symbol. The symbol index is then
|
||
set at the end of elf_bfd_final_link. */
|
||
indx = r_symndx - extsymoff;
|
||
*rel_hash = elf_sym_hashes (input_bfd)[indx];
|
||
|
||
/* Setting the index to -2 tells
|
||
elf_link_output_extsym that this symbol is
|
||
used by a reloc. */
|
||
BFD_ASSERT ((*rel_hash)->indx < 0);
|
||
(*rel_hash)->indx = -2;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* This is a reloc against a local symbol. */
|
||
|
||
*rel_hash = NULL;
|
||
isym = finfo->internal_syms + r_symndx;
|
||
sec = finfo->sections[r_symndx];
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
||
{
|
||
/* I suppose the backend ought to fill in the
|
||
section of any STT_SECTION symbol against a
|
||
processor specific section. */
|
||
if (sec != NULL && bfd_is_abs_section (sec))
|
||
r_symndx = 0;
|
||
else if (sec == NULL || sec->owner == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
r_symndx = sec->output_section->target_index;
|
||
BFD_ASSERT (r_symndx != 0);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (finfo->indices[r_symndx] == -1)
|
||
{
|
||
unsigned long link;
|
||
const char *name;
|
||
asection *osec;
|
||
|
||
if (finfo->info->strip == strip_all)
|
||
{
|
||
/* You can't do ld -r -s. */
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return false;
|
||
}
|
||
|
||
/* This symbol was skipped earlier, but
|
||
since it is needed by a reloc, we
|
||
must output it now. */
|
||
link = symtab_hdr->sh_link;
|
||
name = elf_string_from_elf_section (input_bfd,
|
||
link,
|
||
isym->st_name);
|
||
if (name == NULL)
|
||
return false;
|
||
|
||
osec = sec->output_section;
|
||
isym->st_shndx =
|
||
elf_section_from_bfd_section (output_bfd,
|
||
osec);
|
||
if (isym->st_shndx == (unsigned short) -1)
|
||
return false;
|
||
|
||
isym->st_value += sec->output_offset;
|
||
if (! finfo->info->relocateable)
|
||
isym->st_value += osec->vma;
|
||
|
||
finfo->indices[r_symndx] = output_bfd->symcount;
|
||
|
||
if (! elf_link_output_sym (finfo, name, isym, sec))
|
||
return false;
|
||
}
|
||
|
||
r_symndx = finfo->indices[r_symndx];
|
||
}
|
||
|
||
irela->r_info = ELF_R_INFO (r_symndx,
|
||
ELF_R_TYPE (irela->r_info));
|
||
}
|
||
|
||
/* Swap out the relocs. */
|
||
input_rel_hdr = &elf_section_data (o)->rel_hdr;
|
||
output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
|
||
BFD_ASSERT (output_rel_hdr->sh_entsize
|
||
== input_rel_hdr->sh_entsize);
|
||
irela = internal_relocs;
|
||
irelaend = irela + o->reloc_count;
|
||
if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
||
{
|
||
Elf_External_Rel *erel;
|
||
|
||
erel = ((Elf_External_Rel *) output_rel_hdr->contents
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, erel++)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
|
||
irel.r_offset = irela->r_offset;
|
||
irel.r_info = irela->r_info;
|
||
BFD_ASSERT (irela->r_addend == 0);
|
||
elf_swap_reloc_out (output_bfd, &irel, erel);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Elf_External_Rela *erela;
|
||
|
||
BFD_ASSERT (input_rel_hdr->sh_entsize
|
||
== sizeof (Elf_External_Rela));
|
||
erela = ((Elf_External_Rela *) output_rel_hdr->contents
|
||
+ o->output_section->reloc_count);
|
||
for (; irela < irelaend; irela++, erela++)
|
||
elf_swap_reloca_out (output_bfd, irela, erela);
|
||
}
|
||
|
||
o->output_section->reloc_count += o->reloc_count;
|
||
}
|
||
}
|
||
|
||
/* Write out the modified section contents. */
|
||
if (! bfd_set_section_contents (output_bfd, o->output_section,
|
||
finfo->contents, o->output_offset,
|
||
(o->_cooked_size != 0
|
||
? o->_cooked_size
|
||
: o->_raw_size)))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Generate a reloc when linking an ELF file. This is a reloc
|
||
requested by the linker, and does come from any input file. This
|
||
is used to build constructor and destructor tables when linking
|
||
with -Ur. */
|
||
|
||
static boolean
|
||
elf_reloc_link_order (output_bfd, info, output_section, link_order)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
asection *output_section;
|
||
struct bfd_link_order *link_order;
|
||
{
|
||
reloc_howto_type *howto;
|
||
long indx;
|
||
bfd_vma offset;
|
||
struct elf_link_hash_entry **rel_hash_ptr;
|
||
Elf_Internal_Shdr *rel_hdr;
|
||
|
||
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
|
||
if (howto == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return false;
|
||
}
|
||
|
||
/* If this is an inplace reloc, we must write the addend into the
|
||
object file. */
|
||
if (howto->partial_inplace
|
||
&& link_order->u.reloc.p->addend != 0)
|
||
{
|
||
bfd_size_type size;
|
||
bfd_reloc_status_type rstat;
|
||
bfd_byte *buf;
|
||
boolean ok;
|
||
|
||
size = bfd_get_reloc_size (howto);
|
||
buf = (bfd_byte *) bfd_zmalloc (size);
|
||
if (buf == (bfd_byte *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
rstat = _bfd_relocate_contents (howto, output_bfd,
|
||
link_order->u.reloc.p->addend, buf);
|
||
switch (rstat)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info,
|
||
(link_order->type == bfd_section_reloc_link_order
|
||
? bfd_section_name (output_bfd,
|
||
link_order->u.reloc.p->u.section)
|
||
: link_order->u.reloc.p->u.name),
|
||
howto->name, link_order->u.reloc.p->addend,
|
||
(bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
|
||
{
|
||
free (buf);
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
|
||
(file_ptr) link_order->offset, size);
|
||
free (buf);
|
||
if (! ok)
|
||
return false;
|
||
}
|
||
|
||
/* Figure out the symbol index. */
|
||
rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
|
||
+ output_section->reloc_count);
|
||
if (link_order->type == bfd_section_reloc_link_order)
|
||
{
|
||
indx = link_order->u.reloc.p->u.section->target_index;
|
||
BFD_ASSERT (indx != 0);
|
||
*rel_hash_ptr = NULL;
|
||
}
|
||
else
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = elf_link_hash_lookup (elf_hash_table (info),
|
||
link_order->u.reloc.p->u.name,
|
||
false, false, true);
|
||
if (h != NULL)
|
||
{
|
||
/* Setting the index to -2 tells elf_link_output_extsym that
|
||
this symbol is used by a reloc. */
|
||
h->indx = -2;
|
||
*rel_hash_ptr = h;
|
||
indx = 0;
|
||
}
|
||
else
|
||
{
|
||
if (! ((*info->callbacks->unattached_reloc)
|
||
(info, link_order->u.reloc.p->u.name, (bfd *) NULL,
|
||
(asection *) NULL, (bfd_vma) 0)))
|
||
return false;
|
||
indx = 0;
|
||
}
|
||
}
|
||
|
||
/* The address of a reloc is relative to the section in a
|
||
relocateable file, and is a virtual address in an executable
|
||
file. */
|
||
offset = link_order->offset;
|
||
if (! info->relocateable)
|
||
offset += output_section->vma;
|
||
|
||
rel_hdr = &elf_section_data (output_section)->rel_hdr;
|
||
|
||
if (rel_hdr->sh_type == SHT_REL)
|
||
{
|
||
Elf_Internal_Rel irel;
|
||
Elf_External_Rel *erel;
|
||
|
||
irel.r_offset = offset;
|
||
irel.r_info = ELF_R_INFO (indx, howto->type);
|
||
erel = ((Elf_External_Rel *) rel_hdr->contents
|
||
+ output_section->reloc_count);
|
||
elf_swap_reloc_out (output_bfd, &irel, erel);
|
||
}
|
||
else
|
||
{
|
||
Elf_Internal_Rela irela;
|
||
Elf_External_Rela *erela;
|
||
|
||
irela.r_offset = offset;
|
||
irela.r_info = ELF_R_INFO (indx, howto->type);
|
||
irela.r_addend = link_order->u.reloc.p->addend;
|
||
erela = ((Elf_External_Rela *) rel_hdr->contents
|
||
+ output_section->reloc_count);
|
||
elf_swap_reloca_out (output_bfd, &irela, erela);
|
||
}
|
||
|
||
++output_section->reloc_count;
|
||
|
||
return true;
|
||
}
|