mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-30 07:20:41 +00:00
GDB that can debug Mach-Os on Linux
f1b5deee16
This adds a test that exposes several problems fixed by earlier patches: #1 - Buffer overrun when host/target formats match, but sizes don't. https://sourceware.org/ml/gdb-patches/2016-03/msg00125.html #2 - Missing handling for FR-V FR300. https://sourceware.org/ml/gdb-patches/2016-03/msg00117.html #3 - BFD architectures with spaces in their names (v850). https://sourceware.org/ml/binutils/2016-03/msg00108.html #4 - The OS ABI names with spaces issue. https://sourceware.org/ml/gdb-patches/2016-03/msg00116.html #5 - Bogus HP/PA long double format. https://sourceware.org/ml/gdb-patches/2016-03/msg00122.html #6 - Cris big endian internal error. https://sourceware.org/ml/gdb-patches/2016-03/msg00126.html #7 - Several PowerPC bfd archs/machines not handled by gdb. https://sourceware.org/bugzilla/show_bug.cgi?id=19797 And hopefully helps catch others in the future. This started out as a test that simply did, gdb -ex "print 1.0L" to exercise #1 above. Then to cover both 32-bit target / 64-bit host and the converse, I thought of having the testcase print the floats twice, once with the architecture set to "i386" and then to "i386:x86-64". This way it wouldn't matter whether gdb was built as 32-bit or a 64-bit program. Then I thought that other archs might have similar host/target floatformat conversion issues as well. Instead of hardcoding some architectures in the test file, I thought we could just iterate over all bfd architectures and OS ABIs supported by the gdb build being tested. This is what then exposed all the other problems listed above... With an --enable-targets=all, this exercises over 14 thousand combinations. If left in a single test file, it all consistenly runs in under a minute on my machine (An Intel i7-4810MQ @ 2.8 MHZ running Fedora 23). Split in 8 chunks, as in this commit, it runs in around 25 seconds, with make -j8. To avoid flooding the gdb.sum file, it avoids calling "pass" on each tested combination/iteration. I'm explicitly not implementing that by passing an empty message to gdb_test / gdb_test_multiple, because I still want a FAIL to be logged in gdb.sum. So instead this puts the internal passes in the gdb.log file, only, prefixed "IPASS:", for internal pass. TBC, if some iteration fails, it'll still show up as FAIL in gdb.sum. If this is an approach that takes on, I can see us extending the common bits to support it for all testcases. gdb/testsuite/ChangeLog: 2016-12-09 Pedro Alves <palves@redhat.com> * gdb.base/all-architectures-0.exp: New file. * gdb.base/all-architectures-1.exp: New file. * gdb.base/all-architectures-2.exp: New file. * gdb.base/all-architectures-3.exp: New file. * gdb.base/all-architectures-4.exp: New file. * gdb.base/all-architectures-5.exp: New file. * gdb.base/all-architectures-6.exp: New file. * gdb.base/all-architectures-7.exp: New file. * gdb.base/all-architectures.exp.in: New file. |
||
---|---|---|
bfd | ||
binutils | ||
config | ||
cpu | ||
elfcpp | ||
etc | ||
gas | ||
gdb | ||
gold | ||
gprof | ||
include | ||
intl | ||
ld | ||
libdecnumber | ||
libiberty | ||
opcodes | ||
readline | ||
sim | ||
texinfo | ||
zlib | ||
.cvsignore | ||
.gitattributes | ||
.gitignore | ||
ChangeLog | ||
compile | ||
config-ml.in | ||
config.guess | ||
config.rpath | ||
config.sub | ||
configure | ||
configure.ac | ||
COPYING | ||
COPYING3 | ||
COPYING3.LIB | ||
COPYING.LIB | ||
COPYING.LIBGLOSS | ||
COPYING.NEWLIB | ||
depcomp | ||
djunpack.bat | ||
install-sh | ||
libtool.m4 | ||
lt~obsolete.m4 | ||
ltgcc.m4 | ||
ltmain.sh | ||
ltoptions.m4 | ||
ltsugar.m4 | ||
ltversion.m4 | ||
MAINTAINERS | ||
Makefile.def | ||
Makefile.in | ||
Makefile.tpl | ||
makefile.vms | ||
missing | ||
mkdep | ||
mkinstalldirs | ||
move-if-change | ||
README | ||
README-maintainer-mode | ||
setup.com | ||
src-release.sh | ||
symlink-tree | ||
ylwrap |
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.