mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-30 07:20:41 +00:00
940d596798
findvar.c, hppa-tdep.c, infcmd.c, language.c, printcmd.c, rs6000-tdep.c, symmisc.c, symtab.c: Add check_typedef/CHECK_TYPEDEF as needed.
679 lines
15 KiB
C
679 lines
15 KiB
C
/* Target-dependent code for Hitachi H8/500, for GDB.
|
|
Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "gdbcore.h"
|
|
|
|
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
|
|
|
|
static int code_size = 2;
|
|
|
|
static int data_size = 2;
|
|
|
|
/* Shape of an H8/500 frame :
|
|
|
|
arg-n
|
|
..
|
|
arg-2
|
|
arg-1
|
|
return address <2 or 4 bytes>
|
|
old fp <2 bytes>
|
|
auto-n
|
|
..
|
|
auto-1
|
|
saved registers
|
|
|
|
*/
|
|
|
|
/* an easy to debug H8 stack frame looks like:
|
|
0x6df6 push r6
|
|
0x0d76 mov.w r7,r6
|
|
0x6dfn push reg
|
|
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
|
|
0x1957 sub.w r5,sp
|
|
|
|
*/
|
|
|
|
#define IS_PUSH(x) (((x) & 0xff00)==0x6d00)
|
|
#define IS_LINK_8(x) ((x) == 0x17)
|
|
#define IS_LINK_16(x) ((x) == 0x1f)
|
|
#define IS_MOVE_FP(x) ((x) == 0x0d76)
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x0d76)
|
|
#define IS_SUB2_SP(x) ((x) == 0x1b87)
|
|
#define IS_MOVK_R5(x) ((x) == 0x7905)
|
|
#define IS_SUB_R5SP(x) ((x) == 0x1957)
|
|
|
|
#define LINK_8 0x17
|
|
#define LINK_16 0x1f
|
|
|
|
int minimum_mode = 1;
|
|
|
|
CORE_ADDR
|
|
h8500_skip_prologue (start_pc)
|
|
CORE_ADDR start_pc;
|
|
{
|
|
short int w;
|
|
|
|
w = read_memory_integer (start_pc, 1);
|
|
if (w == LINK_8)
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_integer (start_pc, 1);
|
|
}
|
|
|
|
if (w == LINK_16)
|
|
{
|
|
start_pc += 3;
|
|
w = read_memory_integer (start_pc, 2);
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
|
|
CORE_ADDR
|
|
h8500_frame_chain (thisframe)
|
|
struct frame_info *thisframe;
|
|
{
|
|
if (!inside_entry_file (thisframe->pc))
|
|
return (read_memory_integer (FRAME_FP (thisframe), PTR_SIZE));
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
|
is not the address of a valid instruction, the address of the next
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
|
of the instruction.*/
|
|
|
|
CORE_ADDR
|
|
NEXT_PROLOGUE_INSN (addr, lim, pword1)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR lim;
|
|
char *pword1;
|
|
{
|
|
if (addr < lim + 8)
|
|
{
|
|
read_memory (addr, pword1, 1);
|
|
read_memory (addr, pword1 + 1, 1);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Examine the prologue of a function. `ip' points to the first
|
|
instruction. `limit' is the limit of the prologue (e.g. the addr
|
|
of the first linenumber, or perhaps the program counter if we're
|
|
stepping through). `frame_sp' is the stack pointer value in use in
|
|
this frame. `fsr' is a pointer to a frame_saved_regs structure
|
|
into which we put info about the registers saved by this frame.
|
|
`fi' is a struct frame_info pointer; we fill in various fields in
|
|
it to reflect the offsets of the arg pointer and the locals
|
|
pointer. */
|
|
|
|
/* Return the saved PC from this frame. */
|
|
|
|
CORE_ADDR
|
|
frame_saved_pc (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
return read_memory_integer (FRAME_FP (frame) + 2, PTR_SIZE);
|
|
}
|
|
|
|
void
|
|
h8500_pop_frame ()
|
|
{
|
|
unsigned regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *frame = get_current_frame ();
|
|
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
for (regnum = 0; regnum < 8; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
write_register (regnum, read_memory_short (fsr.regs[regnum]));
|
|
|
|
flush_cached_frames ();
|
|
}
|
|
}
|
|
|
|
void
|
|
print_register_hook (regno)
|
|
int regno;
|
|
{
|
|
if (regno == CCR_REGNUM)
|
|
{
|
|
/* CCR register */
|
|
|
|
int C, Z, N, V;
|
|
unsigned char b[2];
|
|
unsigned char l;
|
|
|
|
read_relative_register_raw_bytes (regno, b);
|
|
l = b[1];
|
|
printf_unfiltered ("\t");
|
|
printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
|
|
N = (l & 0x8) != 0;
|
|
Z = (l & 0x4) != 0;
|
|
V = (l & 0x2) != 0;
|
|
C = (l & 0x1) != 0;
|
|
printf_unfiltered ("N-%d ", N);
|
|
printf_unfiltered ("Z-%d ", Z);
|
|
printf_unfiltered ("V-%d ", V);
|
|
printf_unfiltered ("C-%d ", C);
|
|
if ((C | Z) == 0)
|
|
printf_unfiltered ("u> ");
|
|
if ((C | Z) == 1)
|
|
printf_unfiltered ("u<= ");
|
|
if ((C == 0))
|
|
printf_unfiltered ("u>= ");
|
|
if (C == 1)
|
|
printf_unfiltered ("u< ");
|
|
if (Z == 0)
|
|
printf_unfiltered ("!= ");
|
|
if (Z == 1)
|
|
printf_unfiltered ("== ");
|
|
if ((N ^ V) == 0)
|
|
printf_unfiltered (">= ");
|
|
if ((N ^ V) == 1)
|
|
printf_unfiltered ("< ");
|
|
if ((Z | (N ^ V)) == 0)
|
|
printf_unfiltered ("> ");
|
|
if ((Z | (N ^ V)) == 1)
|
|
printf_unfiltered ("<= ");
|
|
}
|
|
}
|
|
|
|
int
|
|
h8500_register_size (regno)
|
|
int regno;
|
|
{
|
|
switch (regno)
|
|
{
|
|
case SEG_C_REGNUM:
|
|
case SEG_D_REGNUM:
|
|
case SEG_E_REGNUM:
|
|
case SEG_T_REGNUM:
|
|
return 1;
|
|
case R0_REGNUM:
|
|
case R1_REGNUM:
|
|
case R2_REGNUM:
|
|
case R3_REGNUM:
|
|
case R4_REGNUM:
|
|
case R5_REGNUM:
|
|
case R6_REGNUM:
|
|
case R7_REGNUM:
|
|
case CCR_REGNUM:
|
|
return 2;
|
|
|
|
case PR0_REGNUM:
|
|
case PR1_REGNUM:
|
|
case PR2_REGNUM:
|
|
case PR3_REGNUM:
|
|
case PR4_REGNUM:
|
|
case PR5_REGNUM:
|
|
case PR6_REGNUM:
|
|
case PR7_REGNUM:
|
|
case PC_REGNUM:
|
|
return 4;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
struct type *
|
|
h8500_register_virtual_type (regno)
|
|
int regno;
|
|
{
|
|
switch (regno)
|
|
{
|
|
case SEG_C_REGNUM:
|
|
case SEG_E_REGNUM:
|
|
case SEG_D_REGNUM:
|
|
case SEG_T_REGNUM:
|
|
return builtin_type_unsigned_char;
|
|
case R0_REGNUM:
|
|
case R1_REGNUM:
|
|
case R2_REGNUM:
|
|
case R3_REGNUM:
|
|
case R4_REGNUM:
|
|
case R5_REGNUM:
|
|
case R6_REGNUM:
|
|
case R7_REGNUM:
|
|
case CCR_REGNUM:
|
|
return builtin_type_unsigned_short;
|
|
case PR0_REGNUM:
|
|
case PR1_REGNUM:
|
|
case PR2_REGNUM:
|
|
case PR3_REGNUM:
|
|
case PR4_REGNUM:
|
|
case PR5_REGNUM:
|
|
case PR6_REGNUM:
|
|
case PR7_REGNUM:
|
|
case PC_REGNUM:
|
|
return builtin_type_unsigned_long;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame. */
|
|
|
|
void
|
|
frame_find_saved_regs (frame_info, frame_saved_regs)
|
|
struct frame_info *frame_info;
|
|
struct frame_saved_regs *frame_saved_regs;
|
|
{
|
|
register int regnum;
|
|
register int regmask;
|
|
register CORE_ADDR next_addr;
|
|
register CORE_ADDR pc;
|
|
unsigned char thebyte;
|
|
|
|
memset (frame_saved_regs, '\0', sizeof *frame_saved_regs);
|
|
|
|
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4
|
|
&& (frame_info)->pc <= (frame_info)->frame)
|
|
{
|
|
next_addr = (frame_info)->frame;
|
|
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4;
|
|
}
|
|
else
|
|
{
|
|
pc = get_pc_function_start ((frame_info)->pc);
|
|
/* Verify we have a link a6 instruction next;
|
|
if not we lose. If we win, find the address above the saved
|
|
regs using the amount of storage from the link instruction.
|
|
*/
|
|
|
|
thebyte = read_memory_integer (pc, 1);
|
|
if (0x1f == thebyte)
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2;
|
|
else if (0x17 == thebyte)
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 1), pc += 1;
|
|
else
|
|
goto lose;
|
|
#if 0
|
|
/* FIXME steve */
|
|
/* If have an add:g.waddal #-n, sp next, adjust next_addr. */
|
|
if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774)
|
|
next_addr += read_memory_integer (pc += 2, 4), pc += 4;
|
|
#endif
|
|
}
|
|
|
|
thebyte = read_memory_integer (pc, 1);
|
|
if (thebyte == 0x12)
|
|
{
|
|
/* Got stm */
|
|
pc++;
|
|
regmask = read_memory_integer (pc, 1);
|
|
pc++;
|
|
for (regnum = 0; regnum < 8; regnum++, regmask >>= 1)
|
|
{
|
|
if (regmask & 1)
|
|
{
|
|
(frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
|
|
}
|
|
}
|
|
thebyte = read_memory_integer (pc, 1);
|
|
}
|
|
/* Maybe got a load of pushes */
|
|
while (thebyte == 0xbf)
|
|
{
|
|
pc++;
|
|
regnum = read_memory_integer (pc, 1) & 0x7;
|
|
pc++;
|
|
(frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
|
|
thebyte = read_memory_integer (pc, 1);
|
|
}
|
|
|
|
lose:;
|
|
|
|
/* Remember the address of the frame pointer */
|
|
(frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame;
|
|
|
|
/* This is where the old sp is hidden */
|
|
(frame_saved_regs)->regs[SP_REGNUM] = (frame_info)->frame;
|
|
|
|
/* And the PC - remember the pushed FP is always two bytes long */
|
|
(frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2;
|
|
}
|
|
|
|
CORE_ADDR
|
|
saved_pc_after_call ()
|
|
{
|
|
int x;
|
|
int a = read_register (SP_REGNUM);
|
|
|
|
x = read_memory_integer (a, code_size);
|
|
if (code_size == 2)
|
|
{
|
|
/* Stick current code segement onto top */
|
|
x &= 0xffff;
|
|
x |= read_register (SEG_C_REGNUM) << 16;
|
|
}
|
|
x &= 0xffffff;
|
|
return x;
|
|
}
|
|
|
|
#if 0 /* never called */
|
|
/* Nonzero if instruction at PC is a return instruction. */
|
|
|
|
int
|
|
about_to_return (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
int b1 = read_memory_integer (pc, 1);
|
|
|
|
switch (b1)
|
|
{
|
|
case 0x14: /* rtd #8 */
|
|
case 0x1c: /* rtd #16 */
|
|
case 0x19: /* rts */
|
|
case 0x1a: /* rte */
|
|
return 1;
|
|
case 0x11:
|
|
{
|
|
int b2 = read_memory_integer (pc + 1, 1);
|
|
switch (b2)
|
|
{
|
|
case 0x18: /* prts */
|
|
case 0x14: /* prtd #8 */
|
|
case 0x16: /* prtd #16 */
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
h8500_set_pointer_size (newsize)
|
|
int newsize;
|
|
{
|
|
static int oldsize = 0;
|
|
|
|
if (oldsize != newsize)
|
|
{
|
|
printf_unfiltered ("pointer size set to %d bits\n", newsize);
|
|
oldsize = newsize;
|
|
if (newsize == 32)
|
|
{
|
|
minimum_mode = 0;
|
|
}
|
|
else
|
|
{
|
|
minimum_mode = 1;
|
|
}
|
|
_initialize_gdbtypes ();
|
|
}
|
|
}
|
|
|
|
static void
|
|
big_command ()
|
|
{
|
|
h8500_set_pointer_size (32);
|
|
code_size = 4;
|
|
data_size = 4;
|
|
}
|
|
|
|
static void
|
|
medium_command ()
|
|
{
|
|
h8500_set_pointer_size (32);
|
|
code_size = 4;
|
|
data_size = 2;
|
|
}
|
|
|
|
static void
|
|
compact_command ()
|
|
{
|
|
h8500_set_pointer_size (32);
|
|
code_size = 2;
|
|
data_size = 4;
|
|
}
|
|
|
|
static void
|
|
small_command ()
|
|
{
|
|
h8500_set_pointer_size (16);
|
|
code_size = 2;
|
|
data_size = 2;
|
|
}
|
|
|
|
static struct cmd_list_element *setmemorylist;
|
|
|
|
static void
|
|
set_memory (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
|
|
help_list (setmemorylist, "set memory ", -1, gdb_stdout);
|
|
}
|
|
|
|
/* See if variable name is ppc or pr[0-7] */
|
|
|
|
int
|
|
h8500_is_trapped_internalvar (name)
|
|
char *name;
|
|
{
|
|
if (name[0] != 'p')
|
|
return 0;
|
|
|
|
if (strcmp (name + 1, "pc") == 0)
|
|
return 1;
|
|
|
|
if (name[1] == 'r'
|
|
&& name[2] >= '0'
|
|
&& name[2] <= '7'
|
|
&& name[3] == '\000')
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
value_ptr
|
|
h8500_value_of_trapped_internalvar (var)
|
|
struct internalvar *var;
|
|
{
|
|
LONGEST regval;
|
|
unsigned char regbuf[4];
|
|
int page_regnum, regnum;
|
|
|
|
regnum = var->name[2] == 'c' ? PC_REGNUM : var->name[2] - '0';
|
|
|
|
switch (var->name[2])
|
|
{
|
|
case 'c':
|
|
page_regnum = SEG_C_REGNUM;
|
|
break;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
page_regnum = SEG_D_REGNUM;
|
|
break;
|
|
case '4':
|
|
case '5':
|
|
page_regnum = SEG_E_REGNUM;
|
|
break;
|
|
case '6':
|
|
case '7':
|
|
page_regnum = SEG_T_REGNUM;
|
|
break;
|
|
}
|
|
|
|
get_saved_register (regbuf, NULL, NULL, selected_frame, page_regnum, NULL);
|
|
regval = regbuf[0] << 16;
|
|
|
|
get_saved_register (regbuf, NULL, NULL, selected_frame, regnum, NULL);
|
|
regval |= regbuf[0] << 8 | regbuf[1]; /* XXX host/target byte order */
|
|
|
|
free (var->value); /* Free up old value */
|
|
|
|
var->value = value_from_longest (builtin_type_unsigned_long, regval);
|
|
release_value (var->value); /* Unchain new value */
|
|
|
|
VALUE_LVAL (var->value) = lval_internalvar;
|
|
VALUE_INTERNALVAR (var->value) = var;
|
|
return var->value;
|
|
}
|
|
|
|
void
|
|
h8500_set_trapped_internalvar (var, newval, bitpos, bitsize, offset)
|
|
struct internalvar *var;
|
|
int offset, bitpos, bitsize;
|
|
value_ptr newval;
|
|
{
|
|
char *page_regnum, *regnum;
|
|
char expression[100];
|
|
unsigned new_regval;
|
|
struct type *type;
|
|
enum type_code newval_type_code;
|
|
|
|
type = check_typedef (VALUE_TYPE (newval));
|
|
newval_type_code = TYPE_CODE (type);
|
|
|
|
if ((newval_type_code != TYPE_CODE_INT
|
|
&& newval_type_code != TYPE_CODE_PTR)
|
|
|| TYPE_LENGTH (type) != sizeof (new_regval))
|
|
error ("Illegal type (%s) for assignment to $%s\n",
|
|
TYPE_NAME (VALUE_TYPE (newval)), var->name);
|
|
|
|
new_regval = *(long *) VALUE_CONTENTS_RAW (newval);
|
|
|
|
regnum = var->name + 1;
|
|
|
|
switch (var->name[2])
|
|
{
|
|
case 'c':
|
|
page_regnum = "cp";
|
|
break;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
page_regnum = "dp";
|
|
break;
|
|
case '4':
|
|
case '5':
|
|
page_regnum = "ep";
|
|
break;
|
|
case '6':
|
|
case '7':
|
|
page_regnum = "tp";
|
|
break;
|
|
}
|
|
|
|
sprintf (expression, "$%s=%d", page_regnum, new_regval >> 16);
|
|
parse_and_eval (expression);
|
|
|
|
sprintf (expression, "$%s=%d", regnum, new_regval & 0xffff);
|
|
parse_and_eval (expression);
|
|
}
|
|
|
|
CORE_ADDR
|
|
h8500_read_sp ()
|
|
{
|
|
return read_register (PR7_REGNUM);
|
|
}
|
|
|
|
void
|
|
h8500_write_sp (v)
|
|
CORE_ADDR v;
|
|
{
|
|
write_register (PR7_REGNUM, v);
|
|
}
|
|
|
|
CORE_ADDR
|
|
h8500_read_pc (pid)
|
|
int pid;
|
|
{
|
|
return read_register (PC_REGNUM);
|
|
}
|
|
|
|
void
|
|
h8500_write_pc (v, pid)
|
|
CORE_ADDR v;
|
|
int pid;
|
|
{
|
|
write_register (PC_REGNUM, v);
|
|
}
|
|
|
|
CORE_ADDR
|
|
h8500_read_fp ()
|
|
{
|
|
return read_register (PR6_REGNUM);
|
|
}
|
|
|
|
void
|
|
h8500_write_fp (v)
|
|
CORE_ADDR v;
|
|
{
|
|
write_register (PR6_REGNUM, v);
|
|
}
|
|
|
|
void
|
|
_initialize_h8500_tdep ()
|
|
{
|
|
tm_print_insn = print_insn_h8500;
|
|
|
|
add_prefix_cmd ("memory", no_class, set_memory,
|
|
"set the memory model", &setmemorylist, "set memory ", 0,
|
|
&setlist);
|
|
|
|
add_cmd ("small", class_support, small_command,
|
|
"Set small memory model. (16 bit code, 16 bit data)", &setmemorylist);
|
|
|
|
add_cmd ("big", class_support, big_command,
|
|
"Set big memory model. (32 bit code, 32 bit data)", &setmemorylist);
|
|
|
|
add_cmd ("medium", class_support, medium_command,
|
|
"Set medium memory model. (32 bit code, 16 bit data)", &setmemorylist);
|
|
|
|
add_cmd ("compact", class_support, compact_command,
|
|
"Set compact memory model. (16 bit code, 32 bit data)", &setmemorylist);
|
|
|
|
}
|