mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-07 12:30:32 +00:00
ae115e5114
* Makefile.in (BFD32_BACKENDS): Remove coff-arm.o. * archures.c (bfd_arch_info_type): Change mach field from long to unsigned long. (bfd_lookup_arch): Change machine parameter from long to unsigned long.
2781 lines
76 KiB
C
2781 lines
76 KiB
C
/* ELF executable support for BFD.
|
||
Copyright 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
/*
|
||
|
||
SECTION
|
||
ELF backends
|
||
|
||
BFD support for ELF formats is being worked on.
|
||
Currently, the best supported back ends are for sparc and i386
|
||
(running svr4 or Solaris 2).
|
||
|
||
Documentation of the internals of the support code still needs
|
||
to be written. The code is changing quickly enough that we
|
||
haven't bothered yet.
|
||
*/
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#define ARCH_SIZE 0
|
||
#include "libelf.h"
|
||
|
||
static file_ptr map_program_segments PARAMS ((bfd *, file_ptr,
|
||
Elf_Internal_Shdr *,
|
||
Elf_Internal_Shdr **,
|
||
bfd_size_type));
|
||
static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean));
|
||
static boolean prep_headers PARAMS ((bfd *));
|
||
static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **));
|
||
|
||
/* Standard ELF hash function. Do not change this function; you will
|
||
cause invalid hash tables to be generated. (Well, you would if this
|
||
were being used yet.) */
|
||
unsigned long
|
||
bfd_elf_hash (name)
|
||
CONST unsigned char *name;
|
||
{
|
||
unsigned long h = 0;
|
||
unsigned long g;
|
||
int ch;
|
||
|
||
while ((ch = *name++) != '\0')
|
||
{
|
||
h = (h << 4) + ch;
|
||
if ((g = (h & 0xf0000000)) != 0)
|
||
{
|
||
h ^= g >> 24;
|
||
h &= ~g;
|
||
}
|
||
}
|
||
return h;
|
||
}
|
||
|
||
/* Read a specified number of bytes at a specified offset in an ELF
|
||
file, into a newly allocated buffer, and return a pointer to the
|
||
buffer. */
|
||
|
||
static char *
|
||
elf_read (abfd, offset, size)
|
||
bfd * abfd;
|
||
long offset;
|
||
unsigned int size;
|
||
{
|
||
char *buf;
|
||
|
||
if ((buf = bfd_alloc (abfd, size)) == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
|
||
return NULL;
|
||
if (bfd_read ((PTR) buf, size, 1, abfd) != size)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_file_truncated);
|
||
return NULL;
|
||
}
|
||
return buf;
|
||
}
|
||
|
||
boolean
|
||
elf_mkobject (abfd)
|
||
bfd * abfd;
|
||
{
|
||
/* this just does initialization */
|
||
/* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
|
||
elf_tdata (abfd) = (struct elf_obj_tdata *)
|
||
bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
|
||
if (elf_tdata (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
/* since everything is done at close time, do we need any
|
||
initialization? */
|
||
|
||
return true;
|
||
}
|
||
|
||
char *
|
||
bfd_elf_get_str_section (abfd, shindex)
|
||
bfd * abfd;
|
||
unsigned int shindex;
|
||
{
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
char *shstrtab = NULL;
|
||
unsigned int offset;
|
||
unsigned int shstrtabsize;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp == 0 || i_shdrp[shindex] == 0)
|
||
return 0;
|
||
|
||
shstrtab = (char *) i_shdrp[shindex]->contents;
|
||
if (shstrtab == NULL)
|
||
{
|
||
/* No cached one, attempt to read, and cache what we read. */
|
||
offset = i_shdrp[shindex]->sh_offset;
|
||
shstrtabsize = i_shdrp[shindex]->sh_size;
|
||
shstrtab = elf_read (abfd, offset, shstrtabsize);
|
||
i_shdrp[shindex]->contents = (PTR) shstrtab;
|
||
}
|
||
return shstrtab;
|
||
}
|
||
|
||
char *
|
||
bfd_elf_string_from_elf_section (abfd, shindex, strindex)
|
||
bfd * abfd;
|
||
unsigned int shindex;
|
||
unsigned int strindex;
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
if (strindex == 0)
|
||
return "";
|
||
|
||
hdr = elf_elfsections (abfd)[shindex];
|
||
|
||
if (hdr->contents == NULL
|
||
&& bfd_elf_get_str_section (abfd, shindex) == NULL)
|
||
return NULL;
|
||
|
||
return ((char *) hdr->contents) + strindex;
|
||
}
|
||
|
||
/* Make a BFD section from an ELF section. We store a pointer to the
|
||
BFD section in the bfd_section field of the header. */
|
||
|
||
boolean
|
||
_bfd_elf_make_section_from_shdr (abfd, hdr, name)
|
||
bfd *abfd;
|
||
Elf_Internal_Shdr *hdr;
|
||
const char *name;
|
||
{
|
||
asection *newsect;
|
||
flagword flags;
|
||
|
||
if (hdr->bfd_section != NULL)
|
||
{
|
||
BFD_ASSERT (strcmp (name,
|
||
bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
|
||
return true;
|
||
}
|
||
|
||
newsect = bfd_make_section_anyway (abfd, name);
|
||
if (newsect == NULL)
|
||
return false;
|
||
|
||
newsect->filepos = hdr->sh_offset;
|
||
|
||
if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
|
||
|| ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
|
||
|| ! bfd_set_section_alignment (abfd, newsect,
|
||
bfd_log2 (hdr->sh_addralign)))
|
||
return false;
|
||
|
||
flags = SEC_NO_FLAGS;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
flags |= SEC_HAS_CONTENTS;
|
||
if ((hdr->sh_flags & SHF_ALLOC) != 0)
|
||
{
|
||
flags |= SEC_ALLOC;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
flags |= SEC_LOAD;
|
||
}
|
||
if ((hdr->sh_flags & SHF_WRITE) == 0)
|
||
flags |= SEC_READONLY;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
flags |= SEC_CODE;
|
||
else if ((flags & SEC_LOAD) != 0)
|
||
flags |= SEC_DATA;
|
||
|
||
/* The debugging sections appear to be recognized only by name, not
|
||
any sort of flag. */
|
||
if (strncmp (name, ".debug", sizeof ".debug" - 1) == 0
|
||
|| strncmp (name, ".line", sizeof ".line" - 1) == 0
|
||
|| strncmp (name, ".stab", sizeof ".stab" - 1) == 0)
|
||
flags |= SEC_DEBUGGING;
|
||
|
||
if (! bfd_set_section_flags (abfd, newsect, flags))
|
||
return false;
|
||
|
||
hdr->bfd_section = newsect;
|
||
elf_section_data (newsect)->this_hdr = *hdr;
|
||
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
INTERNAL_FUNCTION
|
||
bfd_elf_find_section
|
||
|
||
SYNOPSIS
|
||
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
|
||
|
||
DESCRIPTION
|
||
Helper functions for GDB to locate the string tables.
|
||
Since BFD hides string tables from callers, GDB needs to use an
|
||
internal hook to find them. Sun's .stabstr, in particular,
|
||
isn't even pointed to by the .stab section, so ordinary
|
||
mechanisms wouldn't work to find it, even if we had some.
|
||
*/
|
||
|
||
struct elf_internal_shdr *
|
||
bfd_elf_find_section (abfd, name)
|
||
bfd * abfd;
|
||
char *name;
|
||
{
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
char *shstrtab;
|
||
unsigned int max;
|
||
unsigned int i;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp != NULL)
|
||
{
|
||
shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx);
|
||
if (shstrtab != NULL)
|
||
{
|
||
max = elf_elfheader (abfd)->e_shnum;
|
||
for (i = 1; i < max; i++)
|
||
if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
|
||
return i_shdrp[i];
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
const char *const bfd_elf_section_type_names[] = {
|
||
"SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
|
||
"SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
|
||
"SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
|
||
};
|
||
|
||
/* ELF relocs are against symbols. If we are producing relocateable
|
||
output, and the reloc is against an external symbol, and nothing
|
||
has given us any additional addend, the resulting reloc will also
|
||
be against the same symbol. In such a case, we don't want to
|
||
change anything about the way the reloc is handled, since it will
|
||
all be done at final link time. Rather than put special case code
|
||
into bfd_perform_relocation, all the reloc types use this howto
|
||
function. It just short circuits the reloc if producing
|
||
relocateable output against an external symbol. */
|
||
|
||
/*ARGSUSED*/
|
||
bfd_reloc_status_type
|
||
bfd_elf_generic_reloc (abfd,
|
||
reloc_entry,
|
||
symbol,
|
||
data,
|
||
input_section,
|
||
output_bfd,
|
||
error_message)
|
||
bfd *abfd;
|
||
arelent *reloc_entry;
|
||
asymbol *symbol;
|
||
PTR data;
|
||
asection *input_section;
|
||
bfd *output_bfd;
|
||
char **error_message;
|
||
{
|
||
if (output_bfd != (bfd *) NULL
|
||
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
||
&& (! reloc_entry->howto->partial_inplace
|
||
|| reloc_entry->addend == 0))
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
return bfd_reloc_continue;
|
||
}
|
||
|
||
/* Display ELF-specific fields of a symbol. */
|
||
void
|
||
bfd_elf_print_symbol (ignore_abfd, filep, symbol, how)
|
||
bfd *ignore_abfd;
|
||
PTR filep;
|
||
asymbol *symbol;
|
||
bfd_print_symbol_type how;
|
||
{
|
||
FILE *file = (FILE *) filep;
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
fprintf (file, "%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf (file, "elf ");
|
||
fprintf_vma (file, symbol->value);
|
||
fprintf (file, " %lx", (long) symbol->flags);
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
CONST char *section_name;
|
||
section_name = symbol->section ? symbol->section->name : "(*none*)";
|
||
bfd_print_symbol_vandf ((PTR) file, symbol);
|
||
fprintf (file, " %s\t", section_name);
|
||
/* Print the "other" value for a symbol. For common symbols,
|
||
we've already printed the size; now print the alignment.
|
||
For other symbols, we have no specified alignment, and
|
||
we've printed the address; now print the size. */
|
||
fprintf_vma (file,
|
||
(bfd_is_com_section (symbol->section)
|
||
? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value
|
||
: ((elf_symbol_type *) symbol)->internal_elf_sym.st_size));
|
||
fprintf (file, " %s", symbol->name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Create an entry in an ELF linker hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_elf_link_hash_newfunc (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == (struct elf_link_hash_entry *) NULL)
|
||
ret = ((struct elf_link_hash_entry *)
|
||
bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)));
|
||
if (ret == (struct elf_link_hash_entry *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct elf_link_hash_entry *)
|
||
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
if (ret != (struct elf_link_hash_entry *) NULL)
|
||
{
|
||
/* Set local fields. */
|
||
ret->indx = -1;
|
||
ret->size = 0;
|
||
ret->dynindx = -1;
|
||
ret->dynstr_index = 0;
|
||
ret->weakdef = NULL;
|
||
ret->got_offset = (bfd_vma) -1;
|
||
ret->plt_offset = (bfd_vma) -1;
|
||
ret->type = STT_NOTYPE;
|
||
ret->elf_link_hash_flags = 0;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Initialize an ELF linker hash table. */
|
||
|
||
boolean
|
||
_bfd_elf_link_hash_table_init (table, abfd, newfunc)
|
||
struct elf_link_hash_table *table;
|
||
bfd *abfd;
|
||
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
|
||
struct bfd_hash_table *,
|
||
const char *));
|
||
{
|
||
table->dynamic_sections_created = false;
|
||
table->dynobj = NULL;
|
||
/* The first dynamic symbol is a dummy. */
|
||
table->dynsymcount = 1;
|
||
table->dynstr = NULL;
|
||
table->bucketcount = 0;
|
||
table->needed = NULL;
|
||
return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
|
||
}
|
||
|
||
/* Create an ELF linker hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_elf_link_hash_table_create (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_link_hash_table *ret;
|
||
|
||
ret = ((struct elf_link_hash_table *)
|
||
bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
|
||
if (ret == (struct elf_link_hash_table *) NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
|
||
if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
|
||
{
|
||
bfd_release (abfd, ret);
|
||
return NULL;
|
||
}
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
/* This is a hook for the ELF emulation code in the generic linker to
|
||
tell the backend linker what file name to use for the DT_NEEDED
|
||
entry for a dynamic object. The generic linker passes name as an
|
||
empty string to indicate that no DT_NEEDED entry should be made. */
|
||
|
||
void
|
||
bfd_elf_set_dt_needed_name (abfd, name)
|
||
bfd *abfd;
|
||
const char *name;
|
||
{
|
||
elf_dt_needed_name (abfd) = name;
|
||
}
|
||
|
||
/* Get the list of DT_NEEDED entries for a link. */
|
||
|
||
struct bfd_elf_link_needed_list *
|
||
bfd_elf_get_needed_list (abfd, info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
return elf_hash_table (info)->needed;
|
||
}
|
||
|
||
/* Allocate an ELF string table--force the first byte to be zero. */
|
||
|
||
struct bfd_strtab_hash *
|
||
_bfd_elf_stringtab_init ()
|
||
{
|
||
struct bfd_strtab_hash *ret;
|
||
|
||
ret = _bfd_stringtab_init ();
|
||
if (ret != NULL)
|
||
{
|
||
bfd_size_type loc;
|
||
|
||
loc = _bfd_stringtab_add (ret, "", true, false);
|
||
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
|
||
if (loc == (bfd_size_type) -1)
|
||
{
|
||
_bfd_stringtab_free (ret);
|
||
ret = NULL;
|
||
}
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* ELF .o/exec file reading */
|
||
|
||
/* Create a new bfd section from an ELF section header. */
|
||
|
||
boolean
|
||
bfd_section_from_shdr (abfd, shindex)
|
||
bfd *abfd;
|
||
unsigned int shindex;
|
||
{
|
||
Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
|
||
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
char *name;
|
||
|
||
name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
|
||
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_NULL:
|
||
/* Inactive section. Throw it away. */
|
||
return true;
|
||
|
||
case SHT_PROGBITS: /* Normal section with contents. */
|
||
case SHT_DYNAMIC: /* Dynamic linking information. */
|
||
case SHT_NOBITS: /* .bss section. */
|
||
case SHT_HASH: /* .hash section. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_SYMTAB: /* A symbol table */
|
||
if (elf_onesymtab (abfd) == shindex)
|
||
return true;
|
||
|
||
BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
|
||
BFD_ASSERT (elf_onesymtab (abfd) == 0);
|
||
elf_onesymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->symtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Sometimes a shared object will map in the symbol table. If
|
||
SHF_ALLOC is set, and this is a shared object, then we also
|
||
treat this section as a BFD section. We can not base the
|
||
decision purely on SHF_ALLOC, because that flag is sometimes
|
||
set in a relocateable object file, which would confuse the
|
||
linker. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) != 0
|
||
&& (abfd->flags & DYNAMIC) != 0
|
||
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
|
||
return false;
|
||
|
||
return true;
|
||
|
||
case SHT_DYNSYM: /* A dynamic symbol table */
|
||
if (elf_dynsymtab (abfd) == shindex)
|
||
return true;
|
||
|
||
BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
|
||
BFD_ASSERT (elf_dynsymtab (abfd) == 0);
|
||
elf_dynsymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->dynsymtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Besides being a symbol table, we also treat this as a regular
|
||
section, so that objcopy can handle it. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_STRTAB: /* A string table */
|
||
if (hdr->bfd_section != NULL)
|
||
return true;
|
||
if (ehdr->e_shstrndx == shindex)
|
||
{
|
||
elf_tdata (abfd)->shstrtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
|
||
return true;
|
||
}
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 1; i < ehdr->e_shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
|
||
if (hdr2->sh_link == shindex)
|
||
{
|
||
if (! bfd_section_from_shdr (abfd, i))
|
||
return false;
|
||
if (elf_onesymtab (abfd) == i)
|
||
{
|
||
elf_tdata (abfd)->strtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] =
|
||
&elf_tdata (abfd)->strtab_hdr;
|
||
return true;
|
||
}
|
||
if (elf_dynsymtab (abfd) == i)
|
||
{
|
||
elf_tdata (abfd)->dynstrtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] =
|
||
&elf_tdata (abfd)->dynstrtab_hdr;
|
||
/* We also treat this as a regular section, so
|
||
that objcopy can handle it. */
|
||
break;
|
||
}
|
||
#if 0 /* Not handling other string tables specially right now. */
|
||
hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
|
||
/* We have a strtab for some random other section. */
|
||
newsect = (asection *) hdr2->bfd_section;
|
||
if (!newsect)
|
||
break;
|
||
hdr->bfd_section = newsect;
|
||
hdr2 = &elf_section_data (newsect)->str_hdr;
|
||
*hdr2 = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr2;
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* *These* do a lot of work -- but build no sections! */
|
||
{
|
||
asection *target_sect;
|
||
Elf_Internal_Shdr *hdr2;
|
||
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
||
|
||
/* For some incomprehensible reason Oracle distributes
|
||
libraries for Solaris in which some of the objects have
|
||
bogus sh_link fields. It would be nice if we could just
|
||
reject them, but, unfortunately, some people need to use
|
||
them. We scan through the section headers; if we find only
|
||
one suitable symbol table, we clobber the sh_link to point
|
||
to it. I hope this doesn't break anything. */
|
||
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
|
||
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
|
||
{
|
||
int scan;
|
||
int found;
|
||
|
||
found = 0;
|
||
for (scan = 1; scan < ehdr->e_shnum; scan++)
|
||
{
|
||
if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
|
||
|| elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
|
||
{
|
||
if (found != 0)
|
||
{
|
||
found = 0;
|
||
break;
|
||
}
|
||
found = scan;
|
||
}
|
||
}
|
||
if (found != 0)
|
||
hdr->sh_link = found;
|
||
}
|
||
|
||
/* Get the symbol table. */
|
||
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
|
||
&& ! bfd_section_from_shdr (abfd, hdr->sh_link))
|
||
return false;
|
||
|
||
/* If this reloc section does not use the main symbol table we
|
||
don't treat it as a reloc section. BFD can't adequately
|
||
represent such a section, so at least for now, we don't
|
||
try. We just present it as a normal section. */
|
||
if (hdr->sh_link != elf_onesymtab (abfd))
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
|
||
|
||
/* Don't allow REL relocations on a machine that uses RELA and
|
||
vice versa. */
|
||
/* @@ Actually, the generic ABI does suggest that both might be
|
||
used in one file. But the four ABI Processor Supplements I
|
||
have access to right now all specify that only one is used on
|
||
each of those architectures. It's conceivable that, e.g., a
|
||
bunch of absolute 32-bit relocs might be more compact in REL
|
||
form even on a RELA machine... */
|
||
BFD_ASSERT (use_rela_p
|
||
? (hdr->sh_type == SHT_RELA
|
||
&& hdr->sh_entsize == bed->s->sizeof_rela)
|
||
: (hdr->sh_type == SHT_REL
|
||
&& hdr->sh_entsize == bed->s->sizeof_rel));
|
||
|
||
if (! bfd_section_from_shdr (abfd, hdr->sh_info))
|
||
return false;
|
||
target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
|
||
if (target_sect == NULL)
|
||
return false;
|
||
|
||
hdr2 = &elf_section_data (target_sect)->rel_hdr;
|
||
*hdr2 = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr2;
|
||
target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize;
|
||
target_sect->flags |= SEC_RELOC;
|
||
target_sect->relocation = NULL;
|
||
target_sect->rel_filepos = hdr->sh_offset;
|
||
abfd->flags |= HAS_RELOC;
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case SHT_NOTE:
|
||
#if 0
|
||
fprintf (stderr, "Note Sections not yet supported.\n");
|
||
BFD_FAIL ();
|
||
#endif
|
||
break;
|
||
|
||
case SHT_SHLIB:
|
||
#if 0
|
||
fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n");
|
||
#endif
|
||
return true;
|
||
|
||
default:
|
||
/* Check for any processor-specific section types. */
|
||
{
|
||
if (bed->elf_backend_section_from_shdr)
|
||
(*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
|
||
}
|
||
break;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Given an ELF section number, retrieve the corresponding BFD
|
||
section. */
|
||
|
||
asection *
|
||
bfd_section_from_elf_index (abfd, index)
|
||
bfd *abfd;
|
||
unsigned int index;
|
||
{
|
||
BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
|
||
if (index >= elf_elfheader (abfd)->e_shnum)
|
||
return NULL;
|
||
return elf_elfsections (abfd)[index]->bfd_section;
|
||
}
|
||
|
||
boolean
|
||
_bfd_elf_new_section_hook (abfd, sec)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
{
|
||
struct bfd_elf_section_data *sdata;
|
||
|
||
sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata));
|
||
if (!sdata)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
sec->used_by_bfd = (PTR) sdata;
|
||
memset (sdata, 0, sizeof (*sdata));
|
||
return true;
|
||
}
|
||
|
||
/* Create a new bfd section from an ELF program header.
|
||
|
||
Since program segments have no names, we generate a synthetic name
|
||
of the form segment<NUM>, where NUM is generally the index in the
|
||
program header table. For segments that are split (see below) we
|
||
generate the names segment<NUM>a and segment<NUM>b.
|
||
|
||
Note that some program segments may have a file size that is different than
|
||
(less than) the memory size. All this means is that at execution the
|
||
system must allocate the amount of memory specified by the memory size,
|
||
but only initialize it with the first "file size" bytes read from the
|
||
file. This would occur for example, with program segments consisting
|
||
of combined data+bss.
|
||
|
||
To handle the above situation, this routine generates TWO bfd sections
|
||
for the single program segment. The first has the length specified by
|
||
the file size of the segment, and the second has the length specified
|
||
by the difference between the two sizes. In effect, the segment is split
|
||
into it's initialized and uninitialized parts.
|
||
|
||
*/
|
||
|
||
boolean
|
||
bfd_section_from_phdr (abfd, hdr, index)
|
||
bfd *abfd;
|
||
Elf_Internal_Phdr *hdr;
|
||
int index;
|
||
{
|
||
asection *newsect;
|
||
char *name;
|
||
char namebuf[64];
|
||
int split;
|
||
|
||
split = ((hdr->p_memsz > 0) &&
|
||
(hdr->p_filesz > 0) &&
|
||
(hdr->p_memsz > hdr->p_filesz));
|
||
sprintf (namebuf, split ? "segment%da" : "segment%d", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
if (!name)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->vma = hdr->p_vaddr;
|
||
newsect->lma = hdr->p_paddr;
|
||
newsect->_raw_size = hdr->p_filesz;
|
||
newsect->filepos = hdr->p_offset;
|
||
newsect->flags |= SEC_HAS_CONTENTS;
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
newsect->flags |= SEC_LOAD;
|
||
if (hdr->p_flags & PF_X)
|
||
{
|
||
/* FIXME: all we known is that it has execute PERMISSION,
|
||
may be data. */
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
{
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
if (split)
|
||
{
|
||
sprintf (namebuf, "segment%db", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
if (!name)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return false;
|
||
newsect->vma = hdr->p_vaddr + hdr->p_filesz;
|
||
newsect->lma = hdr->p_paddr + hdr->p_filesz;
|
||
newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
if (hdr->p_flags & PF_X)
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Set up an ELF internal section header for a section. */
|
||
|
||
/*ARGSUSED*/
|
||
static void
|
||
elf_fake_sections (abfd, asect, failedptrarg)
|
||
bfd *abfd;
|
||
asection *asect;
|
||
PTR failedptrarg;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
boolean *failedptr = (boolean *) failedptrarg;
|
||
Elf_Internal_Shdr *this_hdr;
|
||
|
||
if (*failedptr)
|
||
{
|
||
/* We already failed; just get out of the bfd_map_over_sections
|
||
loop. */
|
||
return;
|
||
}
|
||
|
||
this_hdr = &elf_section_data (asect)->this_hdr;
|
||
|
||
this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
|
||
asect->name,
|
||
true, false);
|
||
if (this_hdr->sh_name == (unsigned long) -1)
|
||
{
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
|
||
this_hdr->sh_flags = 0;
|
||
|
||
/* FIXME: This should really use vma, rather than lma. However,
|
||
that would mean that the lma information was lost, which would
|
||
mean that the AT keyword in linker scripts would not work.
|
||
Fortunately, native scripts do not use the AT keyword, so we can
|
||
get away with using lma here. The right way to handle this is to
|
||
1) read the program headers as well as the section headers, and
|
||
set the lma fields of the BFD sections based on the p_paddr
|
||
fields of the program headers, and 2) set the p_paddr fields of
|
||
the program headers based on the section lma fields when writing
|
||
them out. */
|
||
if ((asect->flags & SEC_ALLOC) != 0)
|
||
this_hdr->sh_addr = asect->lma;
|
||
else
|
||
this_hdr->sh_addr = 0;
|
||
|
||
this_hdr->sh_offset = 0;
|
||
this_hdr->sh_size = asect->_raw_size;
|
||
this_hdr->sh_link = 0;
|
||
this_hdr->sh_info = 0;
|
||
this_hdr->sh_addralign = 1 << asect->alignment_power;
|
||
this_hdr->sh_entsize = 0;
|
||
|
||
this_hdr->bfd_section = asect;
|
||
this_hdr->contents = NULL;
|
||
|
||
/* FIXME: This should not be based on section names. */
|
||
if (strcmp (asect->name, ".dynstr") == 0)
|
||
this_hdr->sh_type = SHT_STRTAB;
|
||
else if (strcmp (asect->name, ".hash") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_HASH;
|
||
this_hdr->sh_entsize = bed->s->arch_size / 8;
|
||
}
|
||
else if (strcmp (asect->name, ".dynsym") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_DYNSYM;
|
||
this_hdr->sh_entsize = bed->s->sizeof_sym;
|
||
}
|
||
else if (strcmp (asect->name, ".dynamic") == 0)
|
||
{
|
||
this_hdr->sh_type = SHT_DYNAMIC;
|
||
this_hdr->sh_entsize = bed->s->sizeof_dyn;
|
||
}
|
||
else if (strncmp (asect->name, ".rela", 5) == 0
|
||
&& get_elf_backend_data (abfd)->use_rela_p)
|
||
{
|
||
this_hdr->sh_type = SHT_RELA;
|
||
this_hdr->sh_entsize = bed->s->sizeof_rela;
|
||
}
|
||
else if (strncmp (asect->name, ".rel", 4) == 0
|
||
&& ! get_elf_backend_data (abfd)->use_rela_p)
|
||
{
|
||
this_hdr->sh_type = SHT_REL;
|
||
this_hdr->sh_entsize = bed->s->sizeof_rel;
|
||
}
|
||
else if (strcmp (asect->name, ".note") == 0)
|
||
this_hdr->sh_type = SHT_NOTE;
|
||
else if (strncmp (asect->name, ".stab", 5) == 0
|
||
&& strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
|
||
this_hdr->sh_type = SHT_STRTAB;
|
||
else if ((asect->flags & SEC_ALLOC) != 0
|
||
&& (asect->flags & SEC_LOAD) != 0)
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
else if ((asect->flags & SEC_ALLOC) != 0
|
||
&& ((asect->flags & SEC_LOAD) == 0))
|
||
{
|
||
BFD_ASSERT (strcmp (asect->name, ".bss") == 0
|
||
|| strcmp (asect->name, ".sbss") == 0
|
||
|| strcmp (asect->name, ".scommon") == 0
|
||
|| strcmp (asect->name, "COMMON") == 0);
|
||
this_hdr->sh_type = SHT_NOBITS;
|
||
}
|
||
else
|
||
{
|
||
/* Who knows? */
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
|
||
if ((asect->flags & SEC_ALLOC) != 0)
|
||
this_hdr->sh_flags |= SHF_ALLOC;
|
||
if ((asect->flags & SEC_READONLY) == 0)
|
||
this_hdr->sh_flags |= SHF_WRITE;
|
||
if ((asect->flags & SEC_CODE) != 0)
|
||
this_hdr->sh_flags |= SHF_EXECINSTR;
|
||
|
||
/* Check for processor-specific section types. */
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if (bed->elf_backend_fake_sections)
|
||
(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
|
||
}
|
||
|
||
/* If the section has relocs, set up a section header for the
|
||
SHT_REL[A] section. */
|
||
if ((asect->flags & SEC_RELOC) != 0)
|
||
{
|
||
Elf_Internal_Shdr *rela_hdr;
|
||
int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
|
||
char *name;
|
||
|
||
rela_hdr = &elf_section_data (asect)->rel_hdr;
|
||
name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
|
||
if (name == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
|
||
rela_hdr->sh_name =
|
||
(unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
|
||
true, false);
|
||
if (rela_hdr->sh_name == (unsigned int) -1)
|
||
{
|
||
*failedptr = true;
|
||
return;
|
||
}
|
||
rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
|
||
rela_hdr->sh_entsize = (use_rela_p
|
||
? bed->s->sizeof_rela
|
||
: bed->s->sizeof_rel);
|
||
rela_hdr->sh_addralign = bed->s->file_align;
|
||
rela_hdr->sh_flags = 0;
|
||
rela_hdr->sh_addr = 0;
|
||
rela_hdr->sh_size = 0;
|
||
rela_hdr->sh_offset = 0;
|
||
}
|
||
}
|
||
|
||
/* Assign all ELF section numbers. The dummy first section is handled here
|
||
too. The link/info pointers for the standard section types are filled
|
||
in here too, while we're at it. */
|
||
|
||
static boolean
|
||
assign_section_numbers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_obj_tdata *t = elf_tdata (abfd);
|
||
asection *sec;
|
||
unsigned int section_number;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
section_number = 1;
|
||
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
struct bfd_elf_section_data *d = elf_section_data (sec);
|
||
|
||
d->this_idx = section_number++;
|
||
if ((sec->flags & SEC_RELOC) == 0)
|
||
d->rel_idx = 0;
|
||
else
|
||
d->rel_idx = section_number++;
|
||
}
|
||
|
||
t->shstrtab_section = section_number++;
|
||
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
|
||
t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
|
||
|
||
if (abfd->symcount > 0)
|
||
{
|
||
t->symtab_section = section_number++;
|
||
t->strtab_section = section_number++;
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_shnum = section_number;
|
||
|
||
/* Set up the list of section header pointers, in agreement with the
|
||
indices. */
|
||
i_shdrp = ((Elf_Internal_Shdr **)
|
||
bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
|
||
if (i_shdrp == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
i_shdrp[0] = ((Elf_Internal_Shdr *)
|
||
bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
|
||
if (i_shdrp[0] == NULL)
|
||
{
|
||
bfd_release (abfd, i_shdrp);
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
|
||
|
||
elf_elfsections (abfd) = i_shdrp;
|
||
|
||
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
|
||
if (abfd->symcount > 0)
|
||
{
|
||
i_shdrp[t->symtab_section] = &t->symtab_hdr;
|
||
i_shdrp[t->strtab_section] = &t->strtab_hdr;
|
||
t->symtab_hdr.sh_link = t->strtab_section;
|
||
}
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
struct bfd_elf_section_data *d = elf_section_data (sec);
|
||
asection *s;
|
||
const char *name;
|
||
|
||
i_shdrp[d->this_idx] = &d->this_hdr;
|
||
if (d->rel_idx != 0)
|
||
i_shdrp[d->rel_idx] = &d->rel_hdr;
|
||
|
||
/* Fill in the sh_link and sh_info fields while we're at it. */
|
||
|
||
/* sh_link of a reloc section is the section index of the symbol
|
||
table. sh_info is the section index of the section to which
|
||
the relocation entries apply. */
|
||
if (d->rel_idx != 0)
|
||
{
|
||
d->rel_hdr.sh_link = t->symtab_section;
|
||
d->rel_hdr.sh_info = d->this_idx;
|
||
}
|
||
|
||
switch (d->this_hdr.sh_type)
|
||
{
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* A reloc section which we are treating as a normal BFD
|
||
section. sh_link is the section index of the symbol
|
||
table. sh_info is the section index of the section to
|
||
which the relocation entries apply. We assume that an
|
||
allocated reloc section uses the dynamic symbol table.
|
||
FIXME: How can we be sure? */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
|
||
/* We look up the section the relocs apply to by name. */
|
||
name = sec->name;
|
||
if (d->this_hdr.sh_type == SHT_REL)
|
||
name += 4;
|
||
else
|
||
name += 5;
|
||
s = bfd_get_section_by_name (abfd, name);
|
||
if (s != NULL)
|
||
d->this_hdr.sh_info = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_STRTAB:
|
||
/* We assume that a section named .stab*str is a stabs
|
||
string section. We look for a section with the same name
|
||
but without the trailing ``str'', and set its sh_link
|
||
field to point to this section. */
|
||
if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
|
||
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
|
||
{
|
||
size_t len;
|
||
char *alc;
|
||
|
||
len = strlen (sec->name);
|
||
alc = (char *) malloc (len - 2);
|
||
if (alc == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
strncpy (alc, sec->name, len - 3);
|
||
alc[len - 3] = '\0';
|
||
s = bfd_get_section_by_name (abfd, alc);
|
||
free (alc);
|
||
if (s != NULL)
|
||
{
|
||
elf_section_data (s)->this_hdr.sh_link = d->this_idx;
|
||
|
||
/* This is a .stab section. */
|
||
elf_section_data (s)->this_hdr.sh_entsize =
|
||
4 + 2 * (bed->s->arch_size / 8);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SHT_DYNAMIC:
|
||
case SHT_DYNSYM:
|
||
/* sh_link is the section header index of the string table
|
||
used for the dynamic entries or symbol table. */
|
||
s = bfd_get_section_by_name (abfd, ".dynstr");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_HASH:
|
||
/* sh_link is the section header index of the symbol table
|
||
this hash table is for. */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Map symbol from it's internal number to the external number, moving
|
||
all local symbols to be at the head of the list. */
|
||
|
||
static INLINE int
|
||
sym_is_global (abfd, sym)
|
||
bfd *abfd;
|
||
asymbol *sym;
|
||
{
|
||
/* If the backend has a special mapping, use it. */
|
||
if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
|
||
return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
|
||
(abfd, sym));
|
||
|
||
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (sym))
|
||
|| bfd_is_com_section (bfd_get_section (sym)));
|
||
}
|
||
|
||
static boolean
|
||
elf_map_symbols (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int symcount = bfd_get_symcount (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
asymbol **sect_syms;
|
||
int num_locals = 0;
|
||
int num_globals = 0;
|
||
int num_locals2 = 0;
|
||
int num_globals2 = 0;
|
||
int max_index = 0;
|
||
int num_sections = 0;
|
||
int idx;
|
||
asection *asect;
|
||
asymbol **new_syms;
|
||
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "elf_map_symbols\n");
|
||
fflush (stderr);
|
||
#endif
|
||
|
||
/* Add a section symbol for each BFD section. FIXME: Is this really
|
||
necessary? */
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (max_index < asect->index)
|
||
max_index = asect->index;
|
||
}
|
||
|
||
max_index++;
|
||
sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
|
||
if (sect_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
elf_section_syms (abfd) = sect_syms;
|
||
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
if ((syms[idx]->flags & BSF_SECTION_SYM) != 0
|
||
&& syms[idx]->value == 0)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = syms[idx]->section;
|
||
if (sec->owner != NULL)
|
||
{
|
||
if (sec->owner != abfd)
|
||
{
|
||
if (sec->output_offset != 0)
|
||
continue;
|
||
sec = sec->output_section;
|
||
BFD_ASSERT (sec->owner == abfd);
|
||
}
|
||
sect_syms[sec->index] = syms[idx];
|
||
}
|
||
}
|
||
}
|
||
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
asymbol *sym;
|
||
|
||
if (sect_syms[asect->index] != NULL)
|
||
continue;
|
||
|
||
sym = bfd_make_empty_symbol (abfd);
|
||
if (sym == NULL)
|
||
return false;
|
||
sym->the_bfd = abfd;
|
||
sym->name = asect->name;
|
||
sym->value = 0;
|
||
/* Set the flags to 0 to indicate that this one was newly added. */
|
||
sym->flags = 0;
|
||
sym->section = asect;
|
||
sect_syms[asect->index] = sym;
|
||
num_sections++;
|
||
#ifdef DEBUG
|
||
fprintf (stderr,
|
||
"creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n",
|
||
asect->name, (long) asect->vma, asect->index, (long) asect);
|
||
#endif
|
||
}
|
||
|
||
/* Classify all of the symbols. */
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
if (!sym_is_global (abfd, syms[idx]))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
}
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] != NULL
|
||
&& sect_syms[asect->index]->flags == 0)
|
||
{
|
||
sect_syms[asect->index]->flags = BSF_SECTION_SYM;
|
||
if (!sym_is_global (abfd, sect_syms[asect->index]))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
sect_syms[asect->index]->flags = 0;
|
||
}
|
||
}
|
||
|
||
/* Now sort the symbols so the local symbols are first. */
|
||
new_syms = ((asymbol **)
|
||
bfd_alloc (abfd,
|
||
(num_locals + num_globals) * sizeof (asymbol *)));
|
||
if (new_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
asymbol *sym = syms[idx];
|
||
int i;
|
||
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] != NULL
|
||
&& sect_syms[asect->index]->flags == 0)
|
||
{
|
||
asymbol *sym = sect_syms[asect->index];
|
||
int i;
|
||
|
||
sym->flags = BSF_SECTION_SYM;
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
}
|
||
|
||
bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
|
||
|
||
elf_num_locals (abfd) = num_locals;
|
||
elf_num_globals (abfd) = num_globals;
|
||
return true;
|
||
}
|
||
|
||
/* Compute the file positions we are going to put the sections at, and
|
||
otherwise prepare to begin writing out the ELF file. If LINK_INFO
|
||
is not NULL, this is being called by the ELF backend linker. */
|
||
|
||
boolean
|
||
_bfd_elf_compute_section_file_positions (abfd, link_info)
|
||
bfd *abfd;
|
||
struct bfd_link_info *link_info;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
boolean failed;
|
||
struct bfd_strtab_hash *strtab;
|
||
Elf_Internal_Shdr *shstrtab_hdr;
|
||
|
||
if (abfd->output_has_begun)
|
||
return true;
|
||
|
||
/* Do any elf backend specific processing first. */
|
||
if (bed->elf_backend_begin_write_processing)
|
||
(*bed->elf_backend_begin_write_processing) (abfd, link_info);
|
||
|
||
if (! prep_headers (abfd))
|
||
return false;
|
||
|
||
failed = false;
|
||
bfd_map_over_sections (abfd, elf_fake_sections, &failed);
|
||
if (failed)
|
||
return false;
|
||
|
||
if (!assign_section_numbers (abfd))
|
||
return false;
|
||
|
||
/* The backend linker builds symbol table information itself. */
|
||
if (link_info == NULL)
|
||
{
|
||
if (! swap_out_syms (abfd, &strtab))
|
||
return false;
|
||
}
|
||
|
||
shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
|
||
/* sh_name was set in prep_headers. */
|
||
shstrtab_hdr->sh_type = SHT_STRTAB;
|
||
shstrtab_hdr->sh_flags = 0;
|
||
shstrtab_hdr->sh_addr = 0;
|
||
shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
|
||
shstrtab_hdr->sh_entsize = 0;
|
||
shstrtab_hdr->sh_link = 0;
|
||
shstrtab_hdr->sh_info = 0;
|
||
/* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */
|
||
shstrtab_hdr->sh_addralign = 1;
|
||
|
||
if (!assign_file_positions_except_relocs (abfd,
|
||
link_info == NULL ? true : false))
|
||
return false;
|
||
|
||
if (link_info == NULL)
|
||
{
|
||
/* Now that we know where the .strtab section goes, write it
|
||
out. */
|
||
if ((bfd_seek (abfd, elf_tdata (abfd)->strtab_hdr.sh_offset, SEEK_SET)
|
||
!= 0)
|
||
|| ! _bfd_stringtab_emit (abfd, strtab))
|
||
return false;
|
||
_bfd_stringtab_free (strtab);
|
||
}
|
||
|
||
abfd->output_has_begun = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Align to the maximum file alignment that could be required for any
|
||
ELF data structure. */
|
||
|
||
static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
|
||
static INLINE file_ptr
|
||
align_file_position (off, align)
|
||
file_ptr off;
|
||
int align;
|
||
{
|
||
return (off + align - 1) & ~(align - 1);
|
||
}
|
||
|
||
/* Assign a file position to a section, optionally aligning to the
|
||
required section alignment. */
|
||
|
||
INLINE file_ptr
|
||
_bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
file_ptr offset;
|
||
boolean align;
|
||
{
|
||
if (align)
|
||
{
|
||
unsigned int al;
|
||
|
||
al = i_shdrp->sh_addralign;
|
||
if (al > 1)
|
||
offset = BFD_ALIGN (offset, al);
|
||
}
|
||
i_shdrp->sh_offset = offset;
|
||
if (i_shdrp->bfd_section != NULL)
|
||
i_shdrp->bfd_section->filepos = offset;
|
||
if (i_shdrp->sh_type != SHT_NOBITS)
|
||
offset += i_shdrp->sh_size;
|
||
return offset;
|
||
}
|
||
|
||
/* Get the size of the program header.
|
||
|
||
SORTED_HDRS, if non-NULL, is an array of COUNT pointers to headers sorted
|
||
by VMA. Non-allocated sections (!SHF_ALLOC) must appear last. All
|
||
section VMAs and sizes are known so we can compute the correct value.
|
||
(??? This may not be perfectly true. What cases do we miss?)
|
||
|
||
If SORTED_HDRS is NULL we assume there are two segments: text and data
|
||
(exclusive of .interp and .dynamic).
|
||
|
||
If this is called by the linker before any of the section VMA's are set, it
|
||
can't calculate the correct value for a strange memory layout. This only
|
||
happens when SIZEOF_HEADERS is used in a linker script. In this case,
|
||
SORTED_HDRS is NULL and we assume the normal scenario of one text and one
|
||
data segment (exclusive of .interp and .dynamic).
|
||
|
||
??? User written scripts must either not use SIZEOF_HEADERS, or assume there
|
||
will be two segments. */
|
||
|
||
static bfd_size_type
|
||
get_program_header_size (abfd, sorted_hdrs, count, maxpagesize)
|
||
bfd *abfd;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
unsigned int count;
|
||
bfd_vma maxpagesize;
|
||
{
|
||
size_t segs;
|
||
asection *s;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
/* We can't return a different result each time we're called. */
|
||
if (elf_tdata (abfd)->program_header_size != 0)
|
||
return elf_tdata (abfd)->program_header_size;
|
||
|
||
if (sorted_hdrs != NULL)
|
||
{
|
||
unsigned int i;
|
||
unsigned int last_type;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
/* What we think the current segment's offset is. */
|
||
bfd_vma p_offset;
|
||
/* What we think the current segment's address is. */
|
||
bfd_vma p_vaddr;
|
||
/* How big we think the current segment is. */
|
||
bfd_vma p_memsz;
|
||
/* What we think the current file offset is. */
|
||
bfd_vma file_offset;
|
||
bfd_vma next_offset;
|
||
|
||
/* Scan the headers and compute the number of segments required. This
|
||
code is intentionally similar to the code in map_program_segments.
|
||
|
||
The `sh_offset' field isn't valid at this point, so we keep our own
|
||
running total in `file_offset'.
|
||
|
||
This works because section VMAs are already known. */
|
||
|
||
segs = 1;
|
||
/* Make sure the first section goes in the first segment. */
|
||
file_offset = p_offset = sorted_hdrs[0]->sh_addr % maxpagesize;
|
||
p_vaddr = sorted_hdrs[0]->sh_addr;
|
||
p_memsz = 0;
|
||
last_type = SHT_PROGBITS;
|
||
|
||
for (i = 0, hdrpp = sorted_hdrs; i < count; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
|
||
/* Ignore any section which will not be part of the process
|
||
image. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* Keep track of where this and the next sections go.
|
||
The section VMA must equal the file position modulo
|
||
the page size. */
|
||
file_offset += (hdr->sh_addr - file_offset) % maxpagesize;
|
||
next_offset = file_offset;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
next_offset = file_offset + hdr->sh_size;
|
||
|
||
/* If this section fits in the segment we are constructing, add
|
||
it in. */
|
||
if ((file_offset - (p_offset + p_memsz)
|
||
== hdr->sh_addr - (p_vaddr + p_memsz))
|
||
&& (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS))
|
||
{
|
||
bfd_size_type adjust;
|
||
|
||
adjust = hdr->sh_addr - (p_vaddr + p_memsz);
|
||
p_memsz += hdr->sh_size + adjust;
|
||
file_offset = next_offset;
|
||
last_type = hdr->sh_type;
|
||
continue;
|
||
}
|
||
|
||
/* The section won't fit, start a new segment. */
|
||
++segs;
|
||
|
||
/* Initialize the segment. */
|
||
p_vaddr = hdr->sh_addr;
|
||
p_memsz = hdr->sh_size;
|
||
p_offset = file_offset;
|
||
file_offset = next_offset;
|
||
|
||
last_type = hdr->sh_type;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Assume we will need exactly two PT_LOAD segments: one for text
|
||
and one for data. */
|
||
segs = 2;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
/* If we have a loadable interpreter section, we need a
|
||
PT_INTERP segment. In this case, assume we also need a
|
||
PT_PHDR segment, although that may not be true for all
|
||
targets. */
|
||
segs += 2;
|
||
}
|
||
|
||
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
|
||
{
|
||
/* We need a PT_DYNAMIC segment. */
|
||
++segs;
|
||
}
|
||
|
||
/* Let the backend count up any program headers it might need. */
|
||
if (bed->elf_backend_create_program_headers)
|
||
segs = ((*bed->elf_backend_create_program_headers)
|
||
(abfd, (Elf_Internal_Phdr *) NULL, segs));
|
||
|
||
elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
|
||
return elf_tdata (abfd)->program_header_size;
|
||
}
|
||
|
||
/* Create the program header. OFF is the file offset where the
|
||
program header should be written. FIRST is the first loadable ELF
|
||
section. SORTED_HDRS is the ELF sections sorted by section
|
||
address. PHDR_SIZE is the size of the program header as returned
|
||
by get_program_header_size. */
|
||
|
||
static file_ptr
|
||
map_program_segments (abfd, off, first, sorted_hdrs, phdr_size)
|
||
bfd *abfd;
|
||
file_ptr off;
|
||
Elf_Internal_Shdr *first;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
bfd_size_type phdr_size;
|
||
{
|
||
Elf_Internal_Phdr phdrs[10];
|
||
unsigned int phdr_count;
|
||
Elf_Internal_Phdr *phdr;
|
||
int phdr_size_adjust;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
asection *sinterp, *sdyn;
|
||
unsigned int last_type;
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0);
|
||
BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr)
|
||
<= sizeof phdrs / sizeof (phdrs[0]));
|
||
|
||
phdr_count = 0;
|
||
phdr = phdrs;
|
||
|
||
if (bed->want_hdr_in_seg)
|
||
phdr_size_adjust = first->sh_offset - phdr_size;
|
||
else
|
||
phdr_size_adjust = 0;
|
||
|
||
/* If we have a loadable .interp section, we must create a PT_INTERP
|
||
segment which must precede all PT_LOAD segments. We assume that
|
||
we must also create a PT_PHDR segment, although that may not be
|
||
true for all targets. */
|
||
sinterp = bfd_get_section_by_name (abfd, ".interp");
|
||
if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0)
|
||
{
|
||
BFD_ASSERT (first != NULL);
|
||
|
||
phdr->p_type = PT_PHDR;
|
||
|
||
phdr->p_offset = off;
|
||
|
||
/* Account for any adjustment made because of the alignment of
|
||
the first loadable section. */
|
||
phdr_size_adjust = (first->sh_offset - phdr_size) - off;
|
||
BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128);
|
||
|
||
/* The program header precedes all loadable sections. This lets
|
||
us compute its loadable address. This depends on the linker
|
||
script. */
|
||
phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust);
|
||
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = phdr_size;
|
||
phdr->p_memsz = phdr_size;
|
||
|
||
/* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
|
||
phdr->p_flags = PF_R | PF_X;
|
||
|
||
phdr->p_align = bed->s->file_align;
|
||
BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % bed->s->file_align == 0);
|
||
|
||
/* Include the ELF header in the first loadable segment. */
|
||
phdr_size_adjust += off;
|
||
|
||
++phdr_count;
|
||
++phdr;
|
||
|
||
phdr->p_type = PT_INTERP;
|
||
phdr->p_offset = sinterp->filepos;
|
||
phdr->p_vaddr = sinterp->vma;
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = sinterp->_raw_size;
|
||
phdr->p_memsz = sinterp->_raw_size;
|
||
phdr->p_flags = PF_R;
|
||
phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp);
|
||
|
||
++phdr_count;
|
||
++phdr;
|
||
}
|
||
|
||
/* Look through the sections to see how they will be divided into
|
||
program segments. The sections must be arranged in order by
|
||
sh_addr for this to work correctly. */
|
||
phdr->p_type = PT_NULL;
|
||
last_type = SHT_PROGBITS;
|
||
for (i = 1, hdrpp = sorted_hdrs;
|
||
i < elf_elfheader (abfd)->e_shnum;
|
||
i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
|
||
/* Ignore any section which will not be part of the process
|
||
image. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If this section fits in the segment we are constructing, add
|
||
it in. */
|
||
if (phdr->p_type != PT_NULL
|
||
&& (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz)
|
||
== hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz))
|
||
&& (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS))
|
||
{
|
||
bfd_size_type adjust;
|
||
|
||
adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz);
|
||
phdr->p_memsz += hdr->sh_size + adjust;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
phdr->p_filesz += hdr->sh_size + adjust;
|
||
if ((hdr->sh_flags & SHF_WRITE) != 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
last_type = hdr->sh_type;
|
||
continue;
|
||
}
|
||
|
||
/* The section won't fit, start a new segment. If we're already in one,
|
||
move to the next one. */
|
||
if (phdr->p_type != PT_NULL)
|
||
{
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* Initialize the segment. */
|
||
phdr->p_type = PT_LOAD;
|
||
phdr->p_offset = hdr->sh_offset;
|
||
phdr->p_vaddr = hdr->sh_addr;
|
||
phdr->p_paddr = 0;
|
||
if (hdr->sh_type == SHT_NOBITS)
|
||
phdr->p_filesz = 0;
|
||
else
|
||
phdr->p_filesz = hdr->sh_size;
|
||
phdr->p_memsz = hdr->sh_size;
|
||
phdr->p_flags = PF_R;
|
||
if ((hdr->sh_flags & SHF_WRITE) != 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
phdr->p_align = bed->maxpagesize;
|
||
|
||
if (hdr == first
|
||
&& (bed->want_hdr_in_seg
|
||
|| (sinterp != NULL
|
||
&& (sinterp->flags & SEC_LOAD) != 0)))
|
||
{
|
||
phdr->p_offset -= phdr_size + phdr_size_adjust;
|
||
phdr->p_vaddr -= phdr_size + phdr_size_adjust;
|
||
phdr->p_filesz += phdr_size + phdr_size_adjust;
|
||
phdr->p_memsz += phdr_size + phdr_size_adjust;
|
||
}
|
||
|
||
last_type = hdr->sh_type;
|
||
}
|
||
|
||
if (phdr->p_type != PT_NULL)
|
||
{
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* If we have a .dynamic section, create a PT_DYNAMIC segment. */
|
||
sdyn = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0)
|
||
{
|
||
phdr->p_type = PT_DYNAMIC;
|
||
phdr->p_offset = sdyn->filepos;
|
||
phdr->p_vaddr = sdyn->vma;
|
||
phdr->p_paddr = 0;
|
||
phdr->p_filesz = sdyn->_raw_size;
|
||
phdr->p_memsz = sdyn->_raw_size;
|
||
phdr->p_flags = PF_R;
|
||
if ((sdyn->flags & SEC_READONLY) == 0)
|
||
phdr->p_flags |= PF_W;
|
||
if ((sdyn->flags & SEC_CODE) != 0)
|
||
phdr->p_flags |= PF_X;
|
||
phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn);
|
||
|
||
++phdr;
|
||
++phdr_count;
|
||
}
|
||
|
||
/* Let the backend create additional program headers. */
|
||
if (bed->elf_backend_create_program_headers)
|
||
phdr_count = (*bed->elf_backend_create_program_headers) (abfd,
|
||
phdrs,
|
||
phdr_count);
|
||
|
||
/* Make sure the return value from get_program_header_size matches
|
||
what we computed here. Actually, it's OK if we allocated too
|
||
much space in the program header. */
|
||
if (phdr_count > phdr_size / bed->s->sizeof_phdr)
|
||
{
|
||
((*_bfd_error_handler)
|
||
("%s: Not enough room for program headers (allocated %lu, need %u)",
|
||
bfd_get_filename (abfd),
|
||
(unsigned long) (phdr_size / bed->s->sizeof_phdr),
|
||
phdr_count));
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return (file_ptr) -1;
|
||
}
|
||
|
||
/* Set up program header information. */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_ehdrp->e_phentsize = bed->s->sizeof_phdr;
|
||
i_ehdrp->e_phoff = off;
|
||
i_ehdrp->e_phnum = phdr_count;
|
||
|
||
/* Save the program headers away. I don't think anybody uses this
|
||
information right now. */
|
||
elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *)
|
||
bfd_alloc (abfd,
|
||
(phdr_count
|
||
* sizeof (Elf_Internal_Phdr))));
|
||
if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return (file_ptr) -1;
|
||
}
|
||
memcpy (elf_tdata (abfd)->phdr, phdrs,
|
||
phdr_count * sizeof (Elf_Internal_Phdr));
|
||
|
||
/* Write out the program headers. */
|
||
if (bfd_seek (abfd, off, SEEK_SET) != 0)
|
||
return (file_ptr) -1;
|
||
|
||
if (bed->s->write_out_phdrs (abfd, phdrs, phdr_count) != 0)
|
||
return (file_ptr) -1;
|
||
|
||
return off + phdr_count * bed->s->sizeof_phdr;
|
||
}
|
||
|
||
/* Work out the file positions of all the sections. This is called by
|
||
_bfd_elf_compute_section_file_positions. All the section sizes and
|
||
VMAs must be known before this is called.
|
||
|
||
We do not consider reloc sections at this point, unless they form
|
||
part of the loadable image. Reloc sections are assigned file
|
||
positions in assign_file_positions_for_relocs, which is called by
|
||
write_object_contents and final_link.
|
||
|
||
If DOSYMS is false, we do not assign file positions for the symbol
|
||
table or the string table. */
|
||
|
||
static int elf_sort_hdrs PARAMS ((const PTR, const PTR));
|
||
|
||
static boolean
|
||
assign_file_positions_except_relocs (abfd, dosyms)
|
||
bfd *abfd;
|
||
boolean dosyms;
|
||
{
|
||
struct elf_obj_tdata * const tdata = elf_tdata (abfd);
|
||
Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
|
||
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
|
||
file_ptr off;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
/* Start after the ELF header. */
|
||
off = i_ehdrp->e_ehsize;
|
||
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
|
||
{
|
||
Elf_Internal_Shdr **hdrpp;
|
||
unsigned int i;
|
||
|
||
/* We are not creating an executable, which means that we are
|
||
not creating a program header, and that the actual order of
|
||
the sections in the file is unimportant. */
|
||
for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
if (! dosyms
|
||
&& (i == tdata->symtab_section
|
||
|| i == tdata->strtab_section))
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
file_ptr phdr_off;
|
||
bfd_size_type phdr_size;
|
||
bfd_vma maxpagesize;
|
||
size_t hdrppsize;
|
||
Elf_Internal_Shdr **sorted_hdrs;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr *first;
|
||
file_ptr phdr_map;
|
||
|
||
/* We are creating an executable. */
|
||
|
||
maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
|
||
if (maxpagesize == 0)
|
||
maxpagesize = 1;
|
||
|
||
/* We must sort the sections. The GNU linker will always create
|
||
the sections in an appropriate order, but the Irix 5 linker
|
||
will not. We don't include the dummy first section in the
|
||
sort. We sort sections which are not SHF_ALLOC to the end. */
|
||
hdrppsize = (i_ehdrp->e_shnum - 1) * sizeof (Elf_Internal_Shdr *);
|
||
sorted_hdrs = (Elf_Internal_Shdr **) malloc (hdrppsize);
|
||
if (sorted_hdrs == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
|
||
memcpy (sorted_hdrs, i_shdrpp + 1, hdrppsize);
|
||
qsort (sorted_hdrs, (size_t) i_ehdrp->e_shnum - 1,
|
||
sizeof (Elf_Internal_Shdr *), elf_sort_hdrs);
|
||
|
||
/* We can't actually create the program header until we have set the
|
||
file positions for the sections, and we can't do that until we know
|
||
how big the header is going to be. */
|
||
off = align_file_position (off, bed->s->file_align);
|
||
phdr_size = get_program_header_size (abfd,
|
||
sorted_hdrs, i_ehdrp->e_shnum - 1,
|
||
maxpagesize);
|
||
if (phdr_size == (bfd_size_type) -1)
|
||
return false;
|
||
|
||
/* Compute the file offsets of each section. */
|
||
phdr_off = off;
|
||
off += phdr_size;
|
||
first = NULL;
|
||
for (i = 1, hdrpp = sorted_hdrs; i < i_ehdrp->e_shnum; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if ((hdr->sh_flags & SHF_ALLOC) == 0)
|
||
{
|
||
if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
if (! dosyms
|
||
&& (hdr == i_shdrpp[tdata->symtab_section]
|
||
|| hdr == i_shdrpp[tdata->strtab_section]))
|
||
{
|
||
hdr->sh_offset = -1;
|
||
continue;
|
||
}
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off,
|
||
true);
|
||
}
|
||
else
|
||
{
|
||
if (first == NULL)
|
||
first = hdr;
|
||
|
||
/* The section VMA must equal the file position modulo
|
||
the page size. This is required by the program
|
||
header. */
|
||
off += (hdr->sh_addr - off) % maxpagesize;
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off,
|
||
false);
|
||
}
|
||
}
|
||
|
||
/* Create the program header. */
|
||
phdr_map = map_program_segments (abfd, phdr_off, first, sorted_hdrs,
|
||
phdr_size);
|
||
if (phdr_map == (file_ptr) -1)
|
||
return false;
|
||
BFD_ASSERT ((bfd_size_type) phdr_map
|
||
<= (bfd_size_type) phdr_off + phdr_size);
|
||
|
||
free (sorted_hdrs);
|
||
}
|
||
|
||
/* Place the section headers. */
|
||
off = align_file_position (off, bed->s->file_align);
|
||
i_ehdrp->e_shoff = off;
|
||
off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Sort the ELF headers by VMA. We sort headers which are not
|
||
SHF_ALLOC to the end. */
|
||
static int
|
||
elf_sort_hdrs (arg1, arg2)
|
||
const PTR arg1;
|
||
const PTR arg2;
|
||
{
|
||
int ret;
|
||
const Elf_Internal_Shdr *hdr1 = *(const Elf_Internal_Shdr **) arg1;
|
||
const Elf_Internal_Shdr *hdr2 = *(const Elf_Internal_Shdr **) arg2;
|
||
|
||
#define TOEND(x) (((x)->sh_flags & SHF_ALLOC)==0)
|
||
|
||
if (TOEND (hdr1))
|
||
if (TOEND (hdr2))
|
||
return 0;
|
||
else
|
||
return 1;
|
||
|
||
if (TOEND (hdr2))
|
||
return -1;
|
||
|
||
if (hdr1->sh_addr < hdr2->sh_addr)
|
||
return -1;
|
||
else if (hdr1->sh_addr > hdr2->sh_addr)
|
||
return 1;
|
||
|
||
/* Put !SHT_NOBITS sections before SHT_NOBITS ones.
|
||
The main loop in map_program_segments requires this. */
|
||
|
||
ret = (hdr1->sh_type == SHT_NOBITS) - (hdr2->sh_type == SHT_NOBITS);
|
||
|
||
if (ret != 0)
|
||
return ret;
|
||
if (hdr1->sh_size < hdr2->sh_size)
|
||
return -1;
|
||
if (hdr1->sh_size > hdr2->sh_size)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
static boolean
|
||
prep_headers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
|
||
Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
|
||
int count;
|
||
struct bfd_strtab_hash *shstrtab;
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_shdrp = elf_elfsections (abfd);
|
||
|
||
shstrtab = _bfd_elf_stringtab_init ();
|
||
if (shstrtab == NULL)
|
||
return false;
|
||
|
||
elf_shstrtab (abfd) = shstrtab;
|
||
|
||
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
|
||
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
|
||
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
|
||
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
|
||
|
||
i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
|
||
i_ehdrp->e_ident[EI_DATA] =
|
||
abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB;
|
||
i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
|
||
|
||
for (count = EI_PAD; count < EI_NIDENT; count++)
|
||
i_ehdrp->e_ident[count] = 0;
|
||
|
||
if ((abfd->flags & DYNAMIC) != 0)
|
||
i_ehdrp->e_type = ET_DYN;
|
||
else if ((abfd->flags & EXEC_P) != 0)
|
||
i_ehdrp->e_type = ET_EXEC;
|
||
else
|
||
i_ehdrp->e_type = ET_REL;
|
||
|
||
switch (bfd_get_arch (abfd))
|
||
{
|
||
case bfd_arch_unknown:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
break;
|
||
case bfd_arch_sparc:
|
||
if (bed->s->arch_size == 64)
|
||
i_ehdrp->e_machine = EM_SPARC64;
|
||
else
|
||
i_ehdrp->e_machine = EM_SPARC;
|
||
break;
|
||
case bfd_arch_i386:
|
||
i_ehdrp->e_machine = EM_386;
|
||
break;
|
||
case bfd_arch_m68k:
|
||
i_ehdrp->e_machine = EM_68K;
|
||
break;
|
||
case bfd_arch_m88k:
|
||
i_ehdrp->e_machine = EM_88K;
|
||
break;
|
||
case bfd_arch_i860:
|
||
i_ehdrp->e_machine = EM_860;
|
||
break;
|
||
case bfd_arch_mips: /* MIPS Rxxxx */
|
||
i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
|
||
break;
|
||
case bfd_arch_hppa:
|
||
i_ehdrp->e_machine = EM_PARISC;
|
||
break;
|
||
case bfd_arch_powerpc:
|
||
i_ehdrp->e_machine = EM_PPC;
|
||
break;
|
||
/* start-sanitize-arc */
|
||
case bfd_arch_arc:
|
||
i_ehdrp->e_machine = EM_CYGNUS_ARC;
|
||
break;
|
||
/* end-sanitize-arc */
|
||
/* also note that EM_M32, AT&T WE32100 is unknown to bfd */
|
||
default:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
}
|
||
i_ehdrp->e_version = bed->s->ev_current;
|
||
i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
|
||
|
||
/* no program header, for now. */
|
||
i_ehdrp->e_phoff = 0;
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_ehdrp->e_phnum = 0;
|
||
|
||
/* each bfd section is section header entry */
|
||
i_ehdrp->e_entry = bfd_get_start_address (abfd);
|
||
i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
|
||
|
||
/* if we're building an executable, we'll need a program header table */
|
||
if (abfd->flags & EXEC_P)
|
||
{
|
||
/* it all happens later */
|
||
#if 0
|
||
i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
|
||
|
||
/* elf_build_phdrs() returns a (NULL-terminated) array of
|
||
Elf_Internal_Phdrs */
|
||
i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
|
||
i_ehdrp->e_phoff = outbase;
|
||
outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_phdrp = 0;
|
||
i_ehdrp->e_phoff = 0;
|
||
}
|
||
|
||
elf_tdata (abfd)->symtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
|
||
elf_tdata (abfd)->strtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
|
||
elf_tdata (abfd)->shstrtab_hdr.sh_name =
|
||
(unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
|
||
if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Assign file positions for all the reloc sections which are not part
|
||
of the loadable file image. */
|
||
|
||
void
|
||
_bfd_elf_assign_file_positions_for_relocs (abfd)
|
||
bfd *abfd;
|
||
{
|
||
file_ptr off;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **shdrpp;
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
|
||
for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
|
||
i < elf_elfheader (abfd)->e_shnum;
|
||
i++, shdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *shdrp;
|
||
|
||
shdrp = *shdrpp;
|
||
if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
|
||
&& shdrp->sh_offset == -1)
|
||
off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
|
||
}
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
}
|
||
|
||
boolean
|
||
_bfd_elf_write_object_contents (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
boolean failed;
|
||
unsigned int count;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! _bfd_elf_compute_section_file_positions (abfd,
|
||
(struct bfd_link_info *) NULL))
|
||
return false;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
|
||
failed = false;
|
||
bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
|
||
if (failed)
|
||
return false;
|
||
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
||
|
||
/* After writing the headers, we need to write the sections too... */
|
||
for (count = 1; count < i_ehdrp->e_shnum; count++)
|
||
{
|
||
if (bed->elf_backend_section_processing)
|
||
(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
|
||
if (i_shdrp[count]->contents)
|
||
{
|
||
if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
|
||
1, abfd)
|
||
!= i_shdrp[count]->sh_size))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Write out the section header names. */
|
||
if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
|
||
return false;
|
||
|
||
if (bed->elf_backend_final_write_processing)
|
||
(*bed->elf_backend_final_write_processing) (abfd,
|
||
elf_tdata (abfd)->linker);
|
||
|
||
return bed->s->write_shdrs_and_ehdr (abfd);
|
||
}
|
||
|
||
/* given a section, search the header to find them... */
|
||
int
|
||
_bfd_elf_section_from_bfd_section (abfd, asect)
|
||
bfd *abfd;
|
||
struct sec *asect;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
|
||
int index;
|
||
Elf_Internal_Shdr *hdr;
|
||
int maxindex = elf_elfheader (abfd)->e_shnum;
|
||
|
||
for (index = 0; index < maxindex; index++)
|
||
{
|
||
hdr = i_shdrp[index];
|
||
if (hdr->bfd_section == asect)
|
||
return index;
|
||
}
|
||
|
||
if (bed->elf_backend_section_from_bfd_section)
|
||
{
|
||
for (index = 0; index < maxindex; index++)
|
||
{
|
||
int retval;
|
||
|
||
hdr = i_shdrp[index];
|
||
retval = index;
|
||
if ((*bed->elf_backend_section_from_bfd_section)
|
||
(abfd, hdr, asect, &retval))
|
||
return retval;
|
||
}
|
||
}
|
||
|
||
if (bfd_is_abs_section (asect))
|
||
return SHN_ABS;
|
||
if (bfd_is_com_section (asect))
|
||
return SHN_COMMON;
|
||
if (bfd_is_und_section (asect))
|
||
return SHN_UNDEF;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* given a symbol, return the bfd index for that symbol. */
|
||
int
|
||
_bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
|
||
bfd *abfd;
|
||
struct symbol_cache_entry **asym_ptr_ptr;
|
||
{
|
||
struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr;
|
||
int idx;
|
||
flagword flags = asym_ptr->flags;
|
||
|
||
/* When gas creates relocations against local labels, it creates its
|
||
own symbol for the section, but does put the symbol into the
|
||
symbol chain, so udata is 0. When the linker is generating
|
||
relocatable output, this section symbol may be for one of the
|
||
input sections rather than the output section. */
|
||
if (asym_ptr->udata.i == 0
|
||
&& (flags & BSF_SECTION_SYM)
|
||
&& asym_ptr->section)
|
||
{
|
||
int indx;
|
||
|
||
if (asym_ptr->section->output_section != NULL)
|
||
indx = asym_ptr->section->output_section->index;
|
||
else
|
||
indx = asym_ptr->section->index;
|
||
if (elf_section_syms (abfd)[indx])
|
||
asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
|
||
}
|
||
|
||
idx = asym_ptr->udata.i;
|
||
BFD_ASSERT (idx != 0);
|
||
|
||
#if DEBUG & 4
|
||
{
|
||
fprintf (stderr,
|
||
"elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
|
||
(long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags));
|
||
fflush (stderr);
|
||
}
|
||
#endif
|
||
|
||
return idx;
|
||
}
|
||
|
||
static boolean
|
||
swap_out_syms (abfd, sttp)
|
||
bfd *abfd;
|
||
struct bfd_strtab_hash **sttp;
|
||
{
|
||
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if (!elf_map_symbols (abfd))
|
||
return false;
|
||
|
||
/* Dump out the symtabs. */
|
||
{
|
||
int symcount = bfd_get_symcount (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
struct bfd_strtab_hash *stt;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
char *outbound_syms;
|
||
int idx;
|
||
|
||
stt = _bfd_elf_stringtab_init ();
|
||
if (stt == NULL)
|
||
return false;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_entsize = bed->s->sizeof_sym;
|
||
symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
|
||
symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
|
||
symtab_hdr->sh_addralign = bed->s->file_align;
|
||
|
||
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
outbound_syms = bfd_alloc (abfd,
|
||
(1 + symcount) * bed->s->sizeof_sym);
|
||
if (outbound_syms == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return false;
|
||
}
|
||
symtab_hdr->contents = (PTR) outbound_syms;
|
||
|
||
/* now generate the data (for "contents") */
|
||
{
|
||
/* Fill in zeroth symbol and swap it out. */
|
||
Elf_Internal_Sym sym;
|
||
sym.st_name = 0;
|
||
sym.st_value = 0;
|
||
sym.st_size = 0;
|
||
sym.st_info = 0;
|
||
sym.st_other = 0;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
|
||
outbound_syms += bed->s->sizeof_sym;
|
||
}
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
bfd_vma value = syms[idx]->value;
|
||
elf_symbol_type *type_ptr;
|
||
flagword flags = syms[idx]->flags;
|
||
|
||
if (flags & BSF_SECTION_SYM)
|
||
/* Section symbols have no names. */
|
||
sym.st_name = 0;
|
||
else
|
||
{
|
||
sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
|
||
syms[idx]->name,
|
||
true, false);
|
||
if (sym.st_name == (unsigned long) -1)
|
||
return false;
|
||
}
|
||
|
||
type_ptr = elf_symbol_from (abfd, syms[idx]);
|
||
|
||
if (bfd_is_com_section (syms[idx]->section))
|
||
{
|
||
/* ELF common symbols put the alignment into the `value' field,
|
||
and the size into the `size' field. This is backwards from
|
||
how BFD handles it, so reverse it here. */
|
||
sym.st_size = value;
|
||
if (type_ptr == NULL
|
||
|| type_ptr->internal_elf_sym.st_value == 0)
|
||
sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
|
||
else
|
||
sym.st_value = type_ptr->internal_elf_sym.st_value;
|
||
sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd,
|
||
syms[idx]->section);
|
||
}
|
||
else
|
||
{
|
||
asection *sec = syms[idx]->section;
|
||
int shndx;
|
||
|
||
if (sec->output_section)
|
||
{
|
||
value += sec->output_offset;
|
||
sec = sec->output_section;
|
||
}
|
||
value += sec->vma;
|
||
sym.st_value = value;
|
||
sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
|
||
sym.st_shndx = shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
if (shndx == -1)
|
||
{
|
||
asection *sec2;
|
||
/* Writing this would be a hell of a lot easier if we had
|
||
some decent documentation on bfd, and knew what to expect
|
||
of the library, and what to demand of applications. For
|
||
example, it appears that `objcopy' might not set the
|
||
section of a symbol to be a section that is actually in
|
||
the output file. */
|
||
sec2 = bfd_get_section_by_name (abfd, sec->name);
|
||
BFD_ASSERT (sec2 != 0);
|
||
sym.st_shndx = shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
|
||
BFD_ASSERT (shndx != -1);
|
||
}
|
||
}
|
||
|
||
if (bfd_is_com_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT);
|
||
else if (bfd_is_und_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
|
||
? STB_WEAK
|
||
: STB_GLOBAL),
|
||
((flags & BSF_FUNCTION)
|
||
? STT_FUNC
|
||
: STT_NOTYPE));
|
||
else if (flags & BSF_SECTION_SYM)
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
||
else if (flags & BSF_FILE)
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
||
else
|
||
{
|
||
int bind = STB_LOCAL;
|
||
int type = STT_OBJECT;
|
||
|
||
if (flags & BSF_LOCAL)
|
||
bind = STB_LOCAL;
|
||
else if (flags & BSF_WEAK)
|
||
bind = STB_WEAK;
|
||
else if (flags & BSF_GLOBAL)
|
||
bind = STB_GLOBAL;
|
||
|
||
if (flags & BSF_FUNCTION)
|
||
type = STT_FUNC;
|
||
|
||
sym.st_info = ELF_ST_INFO (bind, type);
|
||
}
|
||
|
||
sym.st_other = 0;
|
||
bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
|
||
outbound_syms += bed->s->sizeof_sym;
|
||
}
|
||
|
||
*sttp = stt;
|
||
symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
symstrtab_hdr->sh_flags = 0;
|
||
symstrtab_hdr->sh_addr = 0;
|
||
symstrtab_hdr->sh_entsize = 0;
|
||
symstrtab_hdr->sh_link = 0;
|
||
symstrtab_hdr->sh_info = 0;
|
||
symstrtab_hdr->sh_addralign = 1;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the number of bytes required to hold the symtab vector.
|
||
|
||
Note that we base it on the count plus 1, since we will null terminate
|
||
the vector allocated based on this size. However, the ELF symbol table
|
||
always has a dummy entry as symbol #0, so it ends up even. */
|
||
|
||
long
|
||
_bfd_elf_get_symtab_upper_bound (abfd)
|
||
bfd *abfd;
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
||
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_dynamic_symtab_upper_bound (abfd)
|
||
bfd *abfd;
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
|
||
if (elf_dynsymtab (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
||
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_reloc_upper_bound (abfd, asect)
|
||
bfd *abfd;
|
||
sec_ptr asect;
|
||
{
|
||
return (asect->reloc_count + 1) * sizeof (arelent *);
|
||
}
|
||
|
||
/* Canonicalize the relocs. */
|
||
|
||
long
|
||
_bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
arelent **relptr;
|
||
asymbol **symbols;
|
||
{
|
||
arelent *tblptr;
|
||
unsigned int i;
|
||
|
||
if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd, section, symbols))
|
||
return -1;
|
||
|
||
tblptr = section->relocation;
|
||
for (i = 0; i < section->reloc_count; i++)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = NULL;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_symtab (abfd, alocation)
|
||
bfd *abfd;
|
||
asymbol **alocation;
|
||
{
|
||
long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, false);
|
||
|
||
if (symcount >= 0)
|
||
bfd_get_symcount (abfd) = symcount;
|
||
return symcount;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
|
||
bfd *abfd;
|
||
asymbol **alocation;
|
||
{
|
||
return get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, true);
|
||
}
|
||
|
||
asymbol *
|
||
_bfd_elf_make_empty_symbol (abfd)
|
||
bfd *abfd;
|
||
{
|
||
elf_symbol_type *newsym;
|
||
|
||
newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
|
||
if (!newsym)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
newsym->symbol.the_bfd = abfd;
|
||
return &newsym->symbol;
|
||
}
|
||
}
|
||
|
||
void
|
||
_bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
|
||
bfd *ignore_abfd;
|
||
asymbol *symbol;
|
||
symbol_info *ret;
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
}
|
||
|
||
alent *
|
||
_bfd_elf_get_lineno (ignore_abfd, symbol)
|
||
bfd *ignore_abfd;
|
||
asymbol *symbol;
|
||
{
|
||
fprintf (stderr, "elf_get_lineno unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
return NULL;
|
||
}
|
||
|
||
boolean
|
||
_bfd_elf_set_arch_mach (abfd, arch, machine)
|
||
bfd *abfd;
|
||
enum bfd_architecture arch;
|
||
unsigned long machine;
|
||
{
|
||
/* If this isn't the right architecture for this backend, and this
|
||
isn't the generic backend, fail. */
|
||
if (arch != get_elf_backend_data (abfd)->arch
|
||
&& arch != bfd_arch_unknown
|
||
&& get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
|
||
return false;
|
||
|
||
return bfd_default_set_arch_mach (abfd, arch, machine);
|
||
}
|
||
|
||
/* Find the nearest line to a particular section and offset, for error
|
||
reporting. */
|
||
|
||
boolean
|
||
_bfd_elf_find_nearest_line (abfd,
|
||
section,
|
||
symbols,
|
||
offset,
|
||
filename_ptr,
|
||
functionname_ptr,
|
||
line_ptr)
|
||
bfd *abfd;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
bfd_vma offset;
|
||
CONST char **filename_ptr;
|
||
CONST char **functionname_ptr;
|
||
unsigned int *line_ptr;
|
||
{
|
||
const char *filename;
|
||
asymbol *func;
|
||
asymbol **p;
|
||
|
||
if (symbols == NULL)
|
||
return false;
|
||
|
||
filename = NULL;
|
||
func = NULL;
|
||
|
||
for (p = symbols; *p != NULL; p++)
|
||
{
|
||
elf_symbol_type *q;
|
||
|
||
q = (elf_symbol_type *) *p;
|
||
|
||
if (bfd_get_section (&q->symbol) != section)
|
||
continue;
|
||
|
||
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
|
||
{
|
||
default:
|
||
break;
|
||
case STT_FILE:
|
||
filename = bfd_asymbol_name (&q->symbol);
|
||
break;
|
||
case STT_FUNC:
|
||
if (func == NULL
|
||
|| q->symbol.value <= offset)
|
||
func = (asymbol *) q;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (func == NULL)
|
||
return false;
|
||
|
||
*filename_ptr = filename;
|
||
*functionname_ptr = bfd_asymbol_name (func);
|
||
*line_ptr = 0;
|
||
return true;
|
||
}
|
||
|
||
int
|
||
_bfd_elf_sizeof_headers (abfd, reloc)
|
||
bfd *abfd;
|
||
boolean reloc;
|
||
{
|
||
int ret;
|
||
|
||
ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
|
||
if (! reloc)
|
||
ret += get_program_header_size (abfd, (Elf_Internal_Shdr **) NULL, 0,
|
||
(bfd_vma) 0);
|
||
return ret;
|
||
}
|
||
|
||
boolean
|
||
_bfd_elf_set_section_contents (abfd, section, location, offset, count)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
PTR location;
|
||
file_ptr offset;
|
||
bfd_size_type count;
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! _bfd_elf_compute_section_file_positions (abfd,
|
||
(struct bfd_link_info *) NULL))
|
||
return false;
|
||
|
||
hdr = &elf_section_data (section)->this_hdr;
|
||
|
||
if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
|
||
return false;
|
||
if (bfd_write (location, 1, count, abfd) != count)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
_bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
|
||
bfd *abfd;
|
||
arelent *cache_ptr;
|
||
Elf_Internal_Rela *dst;
|
||
{
|
||
fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
}
|
||
|
||
#if 0
|
||
void
|
||
_bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
|
||
bfd *abfd;
|
||
arelent *cache_ptr;
|
||
Elf_Internal_Rel *dst;
|
||
{
|
||
fprintf (stderr, "elf REL relocation support for target machine unimplemented\n");
|
||
fflush (stderr);
|
||
BFD_FAIL ();
|
||
}
|
||
#endif
|