mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-06 19:37:09 +00:00
7f4b89d1b6
(deprecated_annotate_stopped_hook): Remove. (deprecated_annotate_exited_hook): Remove. * Makefile.in (annotate.o): Depend on observer_h. * top.c (deprecated_delete_breakpoint_hook): Remove. (deprecated_create_breakpoint_hook): Likewise. (deprecated_modify_breakpoint_hook): Likewise. * interps.c (clear_interpreter_hooks): Update for removed hooks. * breakpoint.c (mention): Don't call removed hook. (delete_breakpoint): Likewise. (disable_breakpoint): Likewise. (do_enable_breakpoint): Likewise. * annotate.c: Include observer.h. (breakpoint_changed): Change type of argument. (_initialize_annotate): Register observers. (deprecated_annotate_starting_hook): Remove. (deprecated_annotate_stopped_hook): Remove. (deprecated_annotate_exited_hook): Remove. (annotate_starting): Update for hook removal. (annotate_stopped): Likewise. (annotate_exited): Likewise. * defs.h (deprecated_delete_breakpoint_hook): Remove. (deprecated_create_breakpoint_hook): Likewise. (deprecated_modify_breakpoint_hook): Likewise.
8625 lines
248 KiB
C
8625 lines
248 KiB
C
/* Everything about breakpoints, for GDB.
|
||
|
||
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
||
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
||
2008 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "hashtab.h"
|
||
#include "symtab.h"
|
||
#include "frame.h"
|
||
#include "breakpoint.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "value.h"
|
||
#include "command.h"
|
||
#include "inferior.h"
|
||
#include "gdbthread.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "gdb_string.h"
|
||
#include "demangle.h"
|
||
#include "annotate.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "source.h"
|
||
#include "linespec.h"
|
||
#include "completer.h"
|
||
#include "gdb.h"
|
||
#include "ui-out.h"
|
||
#include "cli/cli-script.h"
|
||
#include "gdb_assert.h"
|
||
#include "block.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "observer.h"
|
||
#include "exceptions.h"
|
||
#include "memattr.h"
|
||
#include "ada-lang.h"
|
||
#include "top.h"
|
||
#include "wrapper.h"
|
||
|
||
#include "mi/mi-common.h"
|
||
|
||
/* Prototypes for local functions. */
|
||
|
||
static void catch_command_1 (char *, int, int);
|
||
|
||
static void enable_delete_command (char *, int);
|
||
|
||
static void enable_delete_breakpoint (struct breakpoint *);
|
||
|
||
static void enable_once_command (char *, int);
|
||
|
||
static void enable_once_breakpoint (struct breakpoint *);
|
||
|
||
static void disable_command (char *, int);
|
||
|
||
static void enable_command (char *, int);
|
||
|
||
static void map_breakpoint_numbers (char *, void (*)(struct breakpoint *));
|
||
|
||
static void ignore_command (char *, int);
|
||
|
||
static int breakpoint_re_set_one (void *);
|
||
|
||
static void clear_command (char *, int);
|
||
|
||
static void catch_command (char *, int);
|
||
|
||
static void watch_command (char *, int);
|
||
|
||
static int can_use_hardware_watchpoint (struct value *);
|
||
|
||
static void break_command_1 (char *, int, int);
|
||
|
||
static void mention (struct breakpoint *);
|
||
|
||
struct breakpoint *set_raw_breakpoint (struct symtab_and_line, enum bptype);
|
||
|
||
static void check_duplicates (struct breakpoint *);
|
||
|
||
static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
|
||
|
||
static CORE_ADDR adjust_breakpoint_address (CORE_ADDR bpaddr,
|
||
enum bptype bptype);
|
||
|
||
static void describe_other_breakpoints (CORE_ADDR, asection *, int);
|
||
|
||
static void breakpoints_info (char *, int);
|
||
|
||
static void breakpoint_1 (int, int);
|
||
|
||
static bpstat bpstat_alloc (const struct bp_location *, bpstat);
|
||
|
||
static int breakpoint_cond_eval (void *);
|
||
|
||
static void cleanup_executing_breakpoints (void *);
|
||
|
||
static void commands_command (char *, int);
|
||
|
||
static void condition_command (char *, int);
|
||
|
||
static int get_number_trailer (char **, int);
|
||
|
||
void set_breakpoint_count (int);
|
||
|
||
typedef enum
|
||
{
|
||
mark_inserted,
|
||
mark_uninserted
|
||
}
|
||
insertion_state_t;
|
||
|
||
static int remove_breakpoint (struct bp_location *, insertion_state_t);
|
||
|
||
static enum print_stop_action print_it_typical (bpstat);
|
||
|
||
static enum print_stop_action print_bp_stop_message (bpstat bs);
|
||
|
||
static int watchpoint_check (void *);
|
||
|
||
static void maintenance_info_breakpoints (char *, int);
|
||
|
||
static void create_overlay_event_breakpoint (char *);
|
||
|
||
static int hw_breakpoint_used_count (void);
|
||
|
||
static int hw_watchpoint_used_count (enum bptype, int *);
|
||
|
||
static void hbreak_command (char *, int);
|
||
|
||
static void thbreak_command (char *, int);
|
||
|
||
static void watch_command_1 (char *, int, int);
|
||
|
||
static void rwatch_command (char *, int);
|
||
|
||
static void awatch_command (char *, int);
|
||
|
||
static void do_enable_breakpoint (struct breakpoint *, enum bpdisp);
|
||
|
||
static void create_fork_vfork_event_catchpoint (int tempflag,
|
||
char *cond_string,
|
||
enum bptype bp_kind);
|
||
|
||
static void stop_command (char *arg, int from_tty);
|
||
|
||
static void stopin_command (char *arg, int from_tty);
|
||
|
||
static void stopat_command (char *arg, int from_tty);
|
||
|
||
static char *ep_find_event_name_end (char *arg);
|
||
|
||
static char *ep_parse_optional_if_clause (char **arg);
|
||
|
||
static char *ep_parse_optional_filename (char **arg);
|
||
|
||
static void catch_exception_command_1 (enum exception_event_kind ex_event,
|
||
char *arg, int tempflag, int from_tty);
|
||
|
||
static void tcatch_command (char *arg, int from_tty);
|
||
|
||
static void ep_skip_leading_whitespace (char **s);
|
||
|
||
static int single_step_breakpoint_inserted_here_p (CORE_ADDR pc);
|
||
|
||
static void free_bp_location (struct bp_location *loc);
|
||
|
||
static struct bp_location *
|
||
allocate_bp_location (struct breakpoint *bpt, enum bptype bp_type);
|
||
|
||
static void update_global_location_list (int);
|
||
|
||
static void update_global_location_list_nothrow (int);
|
||
|
||
static int is_hardware_watchpoint (struct breakpoint *bpt);
|
||
|
||
static void insert_breakpoint_locations (void);
|
||
|
||
static const char *
|
||
bpdisp_text (enum bpdisp disp)
|
||
{
|
||
/* NOTE: the following values are a part of MI protocol and represent
|
||
values of 'disp' field returned when inferior stops at a breakpoint. */
|
||
static char *bpdisps[] = {"del", "dstp", "dis", "keep"};
|
||
return bpdisps[(int) disp];
|
||
}
|
||
|
||
/* Prototypes for exported functions. */
|
||
/* If FALSE, gdb will not use hardware support for watchpoints, even
|
||
if such is available. */
|
||
static int can_use_hw_watchpoints;
|
||
|
||
static void
|
||
show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Debugger's willingness to use watchpoint hardware is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
|
||
If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
|
||
for unrecognized breakpoint locations.
|
||
If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
|
||
static enum auto_boolean pending_break_support;
|
||
static void
|
||
show_pending_break_support (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Debugger's behavior regarding pending breakpoints is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If 1, gdb will automatically use hardware breakpoints for breakpoints
|
||
set with "break" but falling in read-only memory.
|
||
If 0, gdb will warn about such breakpoints, but won't automatically
|
||
use hardware breakpoints. */
|
||
static int automatic_hardware_breakpoints;
|
||
static void
|
||
show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Automatic usage of hardware breakpoints is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If 1, gdb will keep breakpoints inserted even as inferior is stopped,
|
||
and immediately insert any new breakpoints. If 0, gdb will insert
|
||
breakpoints into inferior only when resuming it, and will remove
|
||
breakpoints upon stop. */
|
||
static int always_inserted_mode = 0;
|
||
static void
|
||
show_always_inserted_mode (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"), value);
|
||
}
|
||
|
||
|
||
void _initialize_breakpoint (void);
|
||
|
||
extern int addressprint; /* Print machine addresses? */
|
||
|
||
/* Are we executing breakpoint commands? */
|
||
static int executing_breakpoint_commands;
|
||
|
||
/* Are overlay event breakpoints enabled? */
|
||
static int overlay_events_enabled;
|
||
|
||
/* Walk the following statement or block through all breakpoints.
|
||
ALL_BREAKPOINTS_SAFE does so even if the statment deletes the current
|
||
breakpoint. */
|
||
|
||
#define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
|
||
|
||
#define ALL_BREAKPOINTS_SAFE(B,TMP) \
|
||
for (B = breakpoint_chain; \
|
||
B ? (TMP=B->next, 1): 0; \
|
||
B = TMP)
|
||
|
||
/* Similar iterators for the low-level breakpoints. */
|
||
|
||
#define ALL_BP_LOCATIONS(B) for (B = bp_location_chain; B; B = B->global_next)
|
||
|
||
#define ALL_BP_LOCATIONS_SAFE(B,TMP) \
|
||
for (B = bp_location_chain; \
|
||
B ? (TMP=B->global_next, 1): 0; \
|
||
B = TMP)
|
||
|
||
/* True if breakpoint hit counts should be displayed in breakpoint info. */
|
||
|
||
int show_breakpoint_hit_counts = 1;
|
||
|
||
/* Chains of all breakpoints defined. */
|
||
|
||
struct breakpoint *breakpoint_chain;
|
||
|
||
struct bp_location *bp_location_chain;
|
||
|
||
/* The locations that no longer correspond to any breakpoint,
|
||
unlinked from bp_location_chain, but for which a hit
|
||
may still be reported by a target. */
|
||
VEC(bp_location_p) *moribund_locations = NULL;
|
||
|
||
/* Number of last breakpoint made. */
|
||
|
||
int breakpoint_count;
|
||
|
||
/* This function returns a pointer to the string representation of the
|
||
pathname of the dynamically-linked library that has just been
|
||
loaded.
|
||
|
||
This function must be used only when SOLIB_HAVE_LOAD_EVENT is TRUE,
|
||
or undefined results are guaranteed.
|
||
|
||
This string's contents are only valid immediately after the
|
||
inferior has stopped in the dynamic linker hook, and becomes
|
||
invalid as soon as the inferior is continued. Clients should make
|
||
a copy of this string if they wish to continue the inferior and
|
||
then access the string. */
|
||
|
||
#ifndef SOLIB_LOADED_LIBRARY_PATHNAME
|
||
#define SOLIB_LOADED_LIBRARY_PATHNAME(pid) ""
|
||
#endif
|
||
|
||
/* This function returns a pointer to the string representation of the
|
||
pathname of the dynamically-linked library that has just been
|
||
unloaded.
|
||
|
||
This function must be used only when SOLIB_HAVE_UNLOAD_EVENT is
|
||
TRUE, or undefined results are guaranteed.
|
||
|
||
This string's contents are only valid immediately after the
|
||
inferior has stopped in the dynamic linker hook, and becomes
|
||
invalid as soon as the inferior is continued. Clients should make
|
||
a copy of this string if they wish to continue the inferior and
|
||
then access the string. */
|
||
|
||
#ifndef SOLIB_UNLOADED_LIBRARY_PATHNAME
|
||
#define SOLIB_UNLOADED_LIBRARY_PATHNAME(pid) ""
|
||
#endif
|
||
|
||
/* This function is called by the "catch load" command. It allows the
|
||
debugger to be notified by the dynamic linker when a specified
|
||
library file (or any library file, if filename is NULL) is loaded. */
|
||
|
||
#ifndef SOLIB_CREATE_CATCH_LOAD_HOOK
|
||
#define SOLIB_CREATE_CATCH_LOAD_HOOK(pid,tempflag,filename,cond_string) \
|
||
error (_("catch of library loads not yet implemented on this platform"))
|
||
#endif
|
||
|
||
/* This function is called by the "catch unload" command. It allows
|
||
the debugger to be notified by the dynamic linker when a specified
|
||
library file (or any library file, if filename is NULL) is
|
||
unloaded. */
|
||
|
||
#ifndef SOLIB_CREATE_CATCH_UNLOAD_HOOK
|
||
#define SOLIB_CREATE_CATCH_UNLOAD_HOOK(pid, tempflag, filename, cond_string) \
|
||
error (_("catch of library unloads not yet implemented on this platform"))
|
||
#endif
|
||
|
||
/* Return whether a breakpoint is an active enabled breakpoint. */
|
||
static int
|
||
breakpoint_enabled (struct breakpoint *b)
|
||
{
|
||
return (b->enable_state == bp_enabled);
|
||
}
|
||
|
||
/* Set breakpoint count to NUM. */
|
||
|
||
void
|
||
set_breakpoint_count (int num)
|
||
{
|
||
breakpoint_count = num;
|
||
set_internalvar (lookup_internalvar ("bpnum"),
|
||
value_from_longest (builtin_type_int, (LONGEST) num));
|
||
}
|
||
|
||
/* Used in run_command to zero the hit count when a new run starts. */
|
||
|
||
void
|
||
clear_breakpoint_hit_counts (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
b->hit_count = 0;
|
||
}
|
||
|
||
/* Default address, symtab and line to put a breakpoint at
|
||
for "break" command with no arg.
|
||
if default_breakpoint_valid is zero, the other three are
|
||
not valid, and "break" with no arg is an error.
|
||
|
||
This set by print_stack_frame, which calls set_default_breakpoint. */
|
||
|
||
int default_breakpoint_valid;
|
||
CORE_ADDR default_breakpoint_address;
|
||
struct symtab *default_breakpoint_symtab;
|
||
int default_breakpoint_line;
|
||
|
||
/* *PP is a string denoting a breakpoint. Get the number of the breakpoint.
|
||
Advance *PP after the string and any trailing whitespace.
|
||
|
||
Currently the string can either be a number or "$" followed by the name
|
||
of a convenience variable. Making it an expression wouldn't work well
|
||
for map_breakpoint_numbers (e.g. "4 + 5 + 6").
|
||
|
||
If the string is a NULL pointer, that denotes the last breakpoint.
|
||
|
||
TRAILER is a character which can be found after the number; most
|
||
commonly this is `-'. If you don't want a trailer, use \0. */
|
||
static int
|
||
get_number_trailer (char **pp, int trailer)
|
||
{
|
||
int retval = 0; /* default */
|
||
char *p = *pp;
|
||
|
||
if (p == NULL)
|
||
/* Empty line means refer to the last breakpoint. */
|
||
return breakpoint_count;
|
||
else if (*p == '$')
|
||
{
|
||
/* Make a copy of the name, so we can null-terminate it
|
||
to pass to lookup_internalvar(). */
|
||
char *varname;
|
||
char *start = ++p;
|
||
struct value *val;
|
||
|
||
while (isalnum (*p) || *p == '_')
|
||
p++;
|
||
varname = (char *) alloca (p - start + 1);
|
||
strncpy (varname, start, p - start);
|
||
varname[p - start] = '\0';
|
||
val = value_of_internalvar (lookup_internalvar (varname));
|
||
if (TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
|
||
retval = (int) value_as_long (val);
|
||
else
|
||
{
|
||
printf_filtered (_("Convenience variable must have integer value.\n"));
|
||
retval = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (*p == '-')
|
||
++p;
|
||
while (*p >= '0' && *p <= '9')
|
||
++p;
|
||
if (p == *pp)
|
||
/* There is no number here. (e.g. "cond a == b"). */
|
||
{
|
||
/* Skip non-numeric token */
|
||
while (*p && !isspace((int) *p))
|
||
++p;
|
||
/* Return zero, which caller must interpret as error. */
|
||
retval = 0;
|
||
}
|
||
else
|
||
retval = atoi (*pp);
|
||
}
|
||
if (!(isspace (*p) || *p == '\0' || *p == trailer))
|
||
{
|
||
/* Trailing junk: return 0 and let caller print error msg. */
|
||
while (!(isspace (*p) || *p == '\0' || *p == trailer))
|
||
++p;
|
||
retval = 0;
|
||
}
|
||
while (isspace (*p))
|
||
p++;
|
||
*pp = p;
|
||
return retval;
|
||
}
|
||
|
||
|
||
/* Like get_number_trailer, but don't allow a trailer. */
|
||
int
|
||
get_number (char **pp)
|
||
{
|
||
return get_number_trailer (pp, '\0');
|
||
}
|
||
|
||
/* Parse a number or a range.
|
||
* A number will be of the form handled by get_number.
|
||
* A range will be of the form <number1> - <number2>, and
|
||
* will represent all the integers between number1 and number2,
|
||
* inclusive.
|
||
*
|
||
* While processing a range, this fuction is called iteratively;
|
||
* At each call it will return the next value in the range.
|
||
*
|
||
* At the beginning of parsing a range, the char pointer PP will
|
||
* be advanced past <number1> and left pointing at the '-' token.
|
||
* Subsequent calls will not advance the pointer until the range
|
||
* is completed. The call that completes the range will advance
|
||
* pointer PP past <number2>.
|
||
*/
|
||
|
||
int
|
||
get_number_or_range (char **pp)
|
||
{
|
||
static int last_retval, end_value;
|
||
static char *end_ptr;
|
||
static int in_range = 0;
|
||
|
||
if (**pp != '-')
|
||
{
|
||
/* Default case: pp is pointing either to a solo number,
|
||
or to the first number of a range. */
|
||
last_retval = get_number_trailer (pp, '-');
|
||
if (**pp == '-')
|
||
{
|
||
char **temp;
|
||
|
||
/* This is the start of a range (<number1> - <number2>).
|
||
Skip the '-', parse and remember the second number,
|
||
and also remember the end of the final token. */
|
||
|
||
temp = &end_ptr;
|
||
end_ptr = *pp + 1;
|
||
while (isspace ((int) *end_ptr))
|
||
end_ptr++; /* skip white space */
|
||
end_value = get_number (temp);
|
||
if (end_value < last_retval)
|
||
{
|
||
error (_("inverted range"));
|
||
}
|
||
else if (end_value == last_retval)
|
||
{
|
||
/* degenerate range (number1 == number2). Advance the
|
||
token pointer so that the range will be treated as a
|
||
single number. */
|
||
*pp = end_ptr;
|
||
}
|
||
else
|
||
in_range = 1;
|
||
}
|
||
}
|
||
else if (! in_range)
|
||
error (_("negative value"));
|
||
else
|
||
{
|
||
/* pp points to the '-' that betokens a range. All
|
||
number-parsing has already been done. Return the next
|
||
integer value (one greater than the saved previous value).
|
||
Do not advance the token pointer 'pp' until the end of range
|
||
is reached. */
|
||
|
||
if (++last_retval == end_value)
|
||
{
|
||
/* End of range reached; advance token pointer. */
|
||
*pp = end_ptr;
|
||
in_range = 0;
|
||
}
|
||
}
|
||
return last_retval;
|
||
}
|
||
|
||
|
||
|
||
/* condition N EXP -- set break condition of breakpoint N to EXP. */
|
||
|
||
static void
|
||
condition_command (char *arg, int from_tty)
|
||
{
|
||
struct breakpoint *b;
|
||
char *p;
|
||
int bnum;
|
||
|
||
if (arg == 0)
|
||
error_no_arg (_("breakpoint number"));
|
||
|
||
p = arg;
|
||
bnum = get_number (&p);
|
||
if (bnum == 0)
|
||
error (_("Bad breakpoint argument: '%s'"), arg);
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->number == bnum)
|
||
{
|
||
struct bp_location *loc = b->loc;
|
||
for (; loc; loc = loc->next)
|
||
{
|
||
if (loc->cond)
|
||
{
|
||
xfree (loc->cond);
|
||
loc->cond = 0;
|
||
}
|
||
}
|
||
if (b->cond_string != NULL)
|
||
xfree (b->cond_string);
|
||
|
||
if (*p == 0)
|
||
{
|
||
b->cond_string = NULL;
|
||
if (from_tty)
|
||
printf_filtered (_("Breakpoint %d now unconditional.\n"), bnum);
|
||
}
|
||
else
|
||
{
|
||
arg = p;
|
||
/* I don't know if it matters whether this is the string the user
|
||
typed in or the decompiled expression. */
|
||
b->cond_string = savestring (arg, strlen (arg));
|
||
b->condition_not_parsed = 0;
|
||
for (loc = b->loc; loc; loc = loc->next)
|
||
{
|
||
arg = p;
|
||
loc->cond =
|
||
parse_exp_1 (&arg, block_for_pc (loc->address), 0);
|
||
if (*arg)
|
||
error (_("Junk at end of expression"));
|
||
}
|
||
}
|
||
breakpoints_changed ();
|
||
observer_notify_breakpoint_modified (b->number);
|
||
return;
|
||
}
|
||
|
||
error (_("No breakpoint number %d."), bnum);
|
||
}
|
||
|
||
static void
|
||
commands_command (char *arg, int from_tty)
|
||
{
|
||
struct breakpoint *b;
|
||
char *p;
|
||
int bnum;
|
||
struct command_line *l;
|
||
|
||
/* If we allowed this, we would have problems with when to
|
||
free the storage, if we change the commands currently
|
||
being read from. */
|
||
|
||
if (executing_breakpoint_commands)
|
||
error (_("Can't use the \"commands\" command among a breakpoint's commands."));
|
||
|
||
p = arg;
|
||
bnum = get_number (&p);
|
||
|
||
if (p && *p)
|
||
error (_("Unexpected extra arguments following breakpoint number."));
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->number == bnum)
|
||
{
|
||
char *tmpbuf = xstrprintf ("Type commands for when breakpoint %d is hit, one per line.",
|
||
bnum);
|
||
struct cleanup *cleanups = make_cleanup (xfree, tmpbuf);
|
||
l = read_command_lines (tmpbuf, from_tty);
|
||
do_cleanups (cleanups);
|
||
free_command_lines (&b->commands);
|
||
b->commands = l;
|
||
breakpoints_changed ();
|
||
observer_notify_breakpoint_modified (b->number);
|
||
return;
|
||
}
|
||
error (_("No breakpoint number %d."), bnum);
|
||
}
|
||
|
||
/* Like commands_command, but instead of reading the commands from
|
||
input stream, takes them from an already parsed command structure.
|
||
|
||
This is used by cli-script.c to DTRT with breakpoint commands
|
||
that are part of if and while bodies. */
|
||
enum command_control_type
|
||
commands_from_control_command (char *arg, struct command_line *cmd)
|
||
{
|
||
struct breakpoint *b;
|
||
char *p;
|
||
int bnum;
|
||
|
||
/* If we allowed this, we would have problems with when to
|
||
free the storage, if we change the commands currently
|
||
being read from. */
|
||
|
||
if (executing_breakpoint_commands)
|
||
error (_("Can't use the \"commands\" command among a breakpoint's commands."));
|
||
|
||
/* An empty string for the breakpoint number means the last
|
||
breakpoint, but get_number expects a NULL pointer. */
|
||
if (arg && !*arg)
|
||
p = NULL;
|
||
else
|
||
p = arg;
|
||
bnum = get_number (&p);
|
||
|
||
if (p && *p)
|
||
error (_("Unexpected extra arguments following breakpoint number."));
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->number == bnum)
|
||
{
|
||
free_command_lines (&b->commands);
|
||
if (cmd->body_count != 1)
|
||
error (_("Invalid \"commands\" block structure."));
|
||
/* We need to copy the commands because if/while will free the
|
||
list after it finishes execution. */
|
||
b->commands = copy_command_lines (cmd->body_list[0]);
|
||
breakpoints_changed ();
|
||
observer_notify_breakpoint_modified (b->number);
|
||
return simple_control;
|
||
}
|
||
error (_("No breakpoint number %d."), bnum);
|
||
}
|
||
|
||
/* Update BUF, which is LEN bytes read from the target address MEMADDR,
|
||
by replacing any memory breakpoints with their shadowed contents. */
|
||
|
||
void
|
||
breakpoint_restore_shadows (gdb_byte *buf, ULONGEST memaddr, LONGEST len)
|
||
{
|
||
struct bp_location *b;
|
||
CORE_ADDR bp_addr = 0;
|
||
int bp_size = 0;
|
||
int bptoffset = 0;
|
||
|
||
ALL_BP_LOCATIONS (b)
|
||
{
|
||
if (b->owner->type == bp_none)
|
||
warning (_("reading through apparently deleted breakpoint #%d?"),
|
||
b->owner->number);
|
||
|
||
if (b->loc_type != bp_loc_software_breakpoint)
|
||
continue;
|
||
if (!b->inserted)
|
||
continue;
|
||
/* Addresses and length of the part of the breakpoint that
|
||
we need to copy. */
|
||
bp_addr = b->target_info.placed_address;
|
||
bp_size = b->target_info.shadow_len;
|
||
if (bp_size == 0)
|
||
/* bp isn't valid, or doesn't shadow memory. */
|
||
continue;
|
||
|
||
if (bp_addr + bp_size <= memaddr)
|
||
/* The breakpoint is entirely before the chunk of memory we
|
||
are reading. */
|
||
continue;
|
||
|
||
if (bp_addr >= memaddr + len)
|
||
/* The breakpoint is entirely after the chunk of memory we are
|
||
reading. */
|
||
continue;
|
||
|
||
/* Offset within shadow_contents. */
|
||
if (bp_addr < memaddr)
|
||
{
|
||
/* Only copy the second part of the breakpoint. */
|
||
bp_size -= memaddr - bp_addr;
|
||
bptoffset = memaddr - bp_addr;
|
||
bp_addr = memaddr;
|
||
}
|
||
|
||
if (bp_addr + bp_size > memaddr + len)
|
||
{
|
||
/* Only copy the first part of the breakpoint. */
|
||
bp_size -= (bp_addr + bp_size) - (memaddr + len);
|
||
}
|
||
|
||
memcpy (buf + bp_addr - memaddr,
|
||
b->target_info.shadow_contents + bptoffset, bp_size);
|
||
}
|
||
}
|
||
|
||
|
||
/* A wrapper function for inserting catchpoints. */
|
||
static void
|
||
insert_catchpoint (struct ui_out *uo, void *args)
|
||
{
|
||
struct breakpoint *b = (struct breakpoint *) args;
|
||
int val = -1;
|
||
|
||
switch (b->type)
|
||
{
|
||
case bp_catch_fork:
|
||
target_insert_fork_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
case bp_catch_vfork:
|
||
target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
case bp_catch_exec:
|
||
target_insert_exec_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
static int
|
||
is_hardware_watchpoint (struct breakpoint *bpt)
|
||
{
|
||
return (bpt->type == bp_hardware_watchpoint
|
||
|| bpt->type == bp_read_watchpoint
|
||
|| bpt->type == bp_access_watchpoint);
|
||
}
|
||
|
||
/* Find the current value of a watchpoint on EXP. Return the value in
|
||
*VALP and *RESULTP and the chain of intermediate and final values
|
||
in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
|
||
not need them.
|
||
|
||
If an error occurs while evaluating the expression, *RESULTP will
|
||
be set to NULL. *RESULTP may be a lazy value, if the result could
|
||
not be read from memory. It is used to determine whether a value
|
||
is user-specified (we should watch the whole value) or intermediate
|
||
(we should watch only the bit used to locate the final value).
|
||
|
||
If the final value, or any intermediate value, could not be read
|
||
from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
|
||
set to any referenced values. *VALP will never be a lazy value.
|
||
This is the value which we store in struct breakpoint.
|
||
|
||
If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
|
||
value chain. The caller must free the values individually. If
|
||
VAL_CHAIN is NULL, all generated values will be left on the value
|
||
chain. */
|
||
|
||
static void
|
||
fetch_watchpoint_value (struct expression *exp, struct value **valp,
|
||
struct value **resultp, struct value **val_chain)
|
||
{
|
||
struct value *mark, *new_mark, *result;
|
||
|
||
*valp = NULL;
|
||
if (resultp)
|
||
*resultp = NULL;
|
||
if (val_chain)
|
||
*val_chain = NULL;
|
||
|
||
/* Evaluate the expression. */
|
||
mark = value_mark ();
|
||
result = NULL;
|
||
gdb_evaluate_expression (exp, &result);
|
||
new_mark = value_mark ();
|
||
if (mark == new_mark)
|
||
return;
|
||
if (resultp)
|
||
*resultp = result;
|
||
|
||
/* Make sure it's not lazy, so that after the target stops again we
|
||
have a non-lazy previous value to compare with. */
|
||
if (result != NULL
|
||
&& (!value_lazy (result) || gdb_value_fetch_lazy (result)))
|
||
*valp = result;
|
||
|
||
if (val_chain)
|
||
{
|
||
/* Return the chain of intermediate values. We use this to
|
||
decide which addresses to watch. */
|
||
*val_chain = new_mark;
|
||
value_release_to_mark (mark);
|
||
}
|
||
}
|
||
|
||
/* Assuming that B is a hardware watchpoint:
|
||
- Reparse watchpoint expression, is REPARSE is non-zero
|
||
- Evaluate expression and store the result in B->val
|
||
- Update the list of values that must be watched in B->loc.
|
||
|
||
If the watchpoint is disabled, do nothing. If this is
|
||
local watchpoint that is out of scope, delete it. */
|
||
static void
|
||
update_watchpoint (struct breakpoint *b, int reparse)
|
||
{
|
||
int within_current_scope;
|
||
struct frame_id saved_frame_id;
|
||
struct bp_location *loc;
|
||
bpstat bs;
|
||
|
||
/* We don't free locations. They are stored in
|
||
bp_location_chain and update_global_locations will
|
||
eventually delete them and remove breakpoints if
|
||
needed. */
|
||
b->loc = NULL;
|
||
|
||
if (b->disposition == disp_del_at_next_stop)
|
||
return;
|
||
|
||
/* Save the current frame's ID so we can restore it after
|
||
evaluating the watchpoint expression on its own frame. */
|
||
/* FIXME drow/2003-09-09: It would be nice if evaluate_expression
|
||
took a frame parameter, so that we didn't have to change the
|
||
selected frame. */
|
||
saved_frame_id = get_frame_id (get_selected_frame (NULL));
|
||
|
||
/* Determine if the watchpoint is within scope. */
|
||
if (b->exp_valid_block == NULL)
|
||
within_current_scope = 1;
|
||
else
|
||
{
|
||
struct frame_info *fi;
|
||
fi = frame_find_by_id (b->watchpoint_frame);
|
||
within_current_scope = (fi != NULL);
|
||
if (within_current_scope)
|
||
select_frame (fi);
|
||
}
|
||
|
||
if (within_current_scope && reparse)
|
||
{
|
||
char *s;
|
||
if (b->exp)
|
||
{
|
||
xfree (b->exp);
|
||
b->exp = NULL;
|
||
}
|
||
s = b->exp_string;
|
||
b->exp = parse_exp_1 (&s, b->exp_valid_block, 0);
|
||
/* If the meaning of expression itself changed, the old value is
|
||
no longer relevant. We don't want to report a watchpoint hit
|
||
to the user when the old value and the new value may actually
|
||
be completely different objects. */
|
||
value_free (b->val);
|
||
b->val = NULL;
|
||
b->val_valid = 0;
|
||
}
|
||
|
||
/* If we failed to parse the expression, for example because
|
||
it refers to a global variable in a not-yet-loaded shared library,
|
||
don't try to insert watchpoint. We don't automatically delete
|
||
such watchpoint, though, since failure to parse expression
|
||
is different from out-of-scope watchpoint. */
|
||
if (within_current_scope && b->exp)
|
||
{
|
||
struct value *val_chain, *v, *result, *next;
|
||
|
||
fetch_watchpoint_value (b->exp, &v, &result, &val_chain);
|
||
|
||
/* Avoid setting b->val if it's already set. The meaning of
|
||
b->val is 'the last value' user saw, and we should update
|
||
it only if we reported that last value to user. As it
|
||
happens, the code that reports it updates b->val directly. */
|
||
if (!b->val_valid)
|
||
{
|
||
b->val = v;
|
||
b->val_valid = 1;
|
||
}
|
||
|
||
/* Look at each value on the value chain. */
|
||
for (v = val_chain; v; v = next)
|
||
{
|
||
/* If it's a memory location, and GDB actually needed
|
||
its contents to evaluate the expression, then we
|
||
must watch it. If the first value returned is
|
||
still lazy, that means an error occurred reading it;
|
||
watch it anyway in case it becomes readable. */
|
||
if (VALUE_LVAL (v) == lval_memory
|
||
&& (v == val_chain || ! value_lazy (v)))
|
||
{
|
||
struct type *vtype = check_typedef (value_type (v));
|
||
|
||
/* We only watch structs and arrays if user asked
|
||
for it explicitly, never if they just happen to
|
||
appear in the middle of some value chain. */
|
||
if (v == result
|
||
|| (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
|
||
{
|
||
CORE_ADDR addr;
|
||
int len, type;
|
||
struct bp_location *loc, **tmp;
|
||
|
||
addr = VALUE_ADDRESS (v) + value_offset (v);
|
||
len = TYPE_LENGTH (value_type (v));
|
||
type = hw_write;
|
||
if (b->type == bp_read_watchpoint)
|
||
type = hw_read;
|
||
else if (b->type == bp_access_watchpoint)
|
||
type = hw_access;
|
||
|
||
loc = allocate_bp_location (b, bp_hardware_watchpoint);
|
||
for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
|
||
;
|
||
*tmp = loc;
|
||
loc->address = addr;
|
||
loc->length = len;
|
||
loc->watchpoint_type = type;
|
||
}
|
||
}
|
||
|
||
next = value_next (v);
|
||
if (v != b->val)
|
||
value_free (v);
|
||
}
|
||
|
||
/* We just regenerated the list of breakpoint locations.
|
||
The new location does not have its condition field set to anything
|
||
and therefore, we must always reparse the cond_string, independently
|
||
of the value of the reparse flag. */
|
||
if (b->cond_string != NULL)
|
||
{
|
||
char *s = b->cond_string;
|
||
b->loc->cond = parse_exp_1 (&s, b->exp_valid_block, 0);
|
||
}
|
||
}
|
||
else if (!within_current_scope)
|
||
{
|
||
printf_filtered (_("\
|
||
Hardware watchpoint %d deleted because the program has left the block \n\
|
||
in which its expression is valid.\n"),
|
||
b->number);
|
||
if (b->related_breakpoint)
|
||
b->related_breakpoint->disposition = disp_del_at_next_stop;
|
||
b->disposition = disp_del_at_next_stop;
|
||
}
|
||
|
||
/* Restore the selected frame. */
|
||
select_frame (frame_find_by_id (saved_frame_id));
|
||
}
|
||
|
||
|
||
/* Returns 1 iff breakpoint location should be
|
||
inserted in the inferior. */
|
||
static int
|
||
should_be_inserted (struct bp_location *bpt)
|
||
{
|
||
if (!breakpoint_enabled (bpt->owner))
|
||
return 0;
|
||
|
||
if (bpt->owner->disposition == disp_del_at_next_stop)
|
||
return 0;
|
||
|
||
if (!bpt->enabled || bpt->shlib_disabled || bpt->duplicate)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Insert a low-level "breakpoint" of some type. BPT is the breakpoint.
|
||
Any error messages are printed to TMP_ERROR_STREAM; and DISABLED_BREAKS,
|
||
PROCESS_WARNING, and HW_BREAKPOINT_ERROR are used to report problems.
|
||
|
||
NOTE drow/2003-09-09: This routine could be broken down to an object-style
|
||
method for each breakpoint or catchpoint type. */
|
||
static int
|
||
insert_bp_location (struct bp_location *bpt,
|
||
struct ui_file *tmp_error_stream,
|
||
int *disabled_breaks, int *process_warning,
|
||
int *hw_breakpoint_error)
|
||
{
|
||
int val = 0;
|
||
|
||
if (!should_be_inserted (bpt) || bpt->inserted)
|
||
return 0;
|
||
|
||
/* Initialize the target-specific information. */
|
||
memset (&bpt->target_info, 0, sizeof (bpt->target_info));
|
||
bpt->target_info.placed_address = bpt->address;
|
||
|
||
if (bpt->loc_type == bp_loc_software_breakpoint
|
||
|| bpt->loc_type == bp_loc_hardware_breakpoint)
|
||
{
|
||
if (bpt->owner->type != bp_hardware_breakpoint)
|
||
{
|
||
/* If the explicitly specified breakpoint type
|
||
is not hardware breakpoint, check the memory map to see
|
||
if the breakpoint address is in read only memory or not.
|
||
Two important cases are:
|
||
- location type is not hardware breakpoint, memory
|
||
is readonly. We change the type of the location to
|
||
hardware breakpoint.
|
||
- location type is hardware breakpoint, memory is read-write.
|
||
This means we've previously made the location hardware one, but
|
||
then the memory map changed, so we undo.
|
||
|
||
When breakpoints are removed, remove_breakpoints will
|
||
use location types we've just set here, the only possible
|
||
problem is that memory map has changed during running program,
|
||
but it's not going to work anyway with current gdb. */
|
||
struct mem_region *mr
|
||
= lookup_mem_region (bpt->target_info.placed_address);
|
||
|
||
if (mr)
|
||
{
|
||
if (automatic_hardware_breakpoints)
|
||
{
|
||
int changed = 0;
|
||
enum bp_loc_type new_type;
|
||
|
||
if (mr->attrib.mode != MEM_RW)
|
||
new_type = bp_loc_hardware_breakpoint;
|
||
else
|
||
new_type = bp_loc_software_breakpoint;
|
||
|
||
if (new_type != bpt->loc_type)
|
||
{
|
||
static int said = 0;
|
||
bpt->loc_type = new_type;
|
||
if (!said)
|
||
{
|
||
fprintf_filtered (gdb_stdout, _("\
|
||
Note: automatically using hardware breakpoints for read-only addresses.\n"));
|
||
said = 1;
|
||
}
|
||
}
|
||
}
|
||
else if (bpt->loc_type == bp_loc_software_breakpoint
|
||
&& mr->attrib.mode != MEM_RW)
|
||
warning (_("cannot set software breakpoint at readonly address %s"),
|
||
paddr (bpt->address));
|
||
}
|
||
}
|
||
|
||
/* First check to see if we have to handle an overlay. */
|
||
if (overlay_debugging == ovly_off
|
||
|| bpt->section == NULL
|
||
|| !(section_is_overlay (bpt->section)))
|
||
{
|
||
/* No overlay handling: just set the breakpoint. */
|
||
|
||
if (bpt->loc_type == bp_loc_hardware_breakpoint)
|
||
val = target_insert_hw_breakpoint (&bpt->target_info);
|
||
else
|
||
val = target_insert_breakpoint (&bpt->target_info);
|
||
}
|
||
else
|
||
{
|
||
/* This breakpoint is in an overlay section.
|
||
Shall we set a breakpoint at the LMA? */
|
||
if (!overlay_events_enabled)
|
||
{
|
||
/* Yes -- overlay event support is not active,
|
||
so we must try to set a breakpoint at the LMA.
|
||
This will not work for a hardware breakpoint. */
|
||
if (bpt->loc_type == bp_loc_hardware_breakpoint)
|
||
warning (_("hardware breakpoint %d not supported in overlay!"),
|
||
bpt->owner->number);
|
||
else
|
||
{
|
||
CORE_ADDR addr = overlay_unmapped_address (bpt->address,
|
||
bpt->section);
|
||
/* Set a software (trap) breakpoint at the LMA. */
|
||
bpt->overlay_target_info = bpt->target_info;
|
||
bpt->overlay_target_info.placed_address = addr;
|
||
val = target_insert_breakpoint (&bpt->overlay_target_info);
|
||
if (val != 0)
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Overlay breakpoint %d failed: in ROM?",
|
||
bpt->owner->number);
|
||
}
|
||
}
|
||
/* Shall we set a breakpoint at the VMA? */
|
||
if (section_is_mapped (bpt->section))
|
||
{
|
||
/* Yes. This overlay section is mapped into memory. */
|
||
if (bpt->loc_type == bp_loc_hardware_breakpoint)
|
||
val = target_insert_hw_breakpoint (&bpt->target_info);
|
||
else
|
||
val = target_insert_breakpoint (&bpt->target_info);
|
||
}
|
||
else
|
||
{
|
||
/* No. This breakpoint will not be inserted.
|
||
No error, but do not mark the bp as 'inserted'. */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (val)
|
||
{
|
||
/* Can't set the breakpoint. */
|
||
if (solib_address (bpt->address))
|
||
{
|
||
/* See also: disable_breakpoints_in_shlibs. */
|
||
val = 0;
|
||
bpt->shlib_disabled = 1;
|
||
if (!*disabled_breaks)
|
||
{
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Cannot insert breakpoint %d.\n",
|
||
bpt->owner->number);
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Temporarily disabling shared library breakpoints:\n");
|
||
}
|
||
*disabled_breaks = 1;
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"breakpoint #%d\n", bpt->owner->number);
|
||
}
|
||
else
|
||
{
|
||
#ifdef ONE_PROCESS_WRITETEXT
|
||
*process_warning = 1;
|
||
#endif
|
||
if (bpt->loc_type == bp_loc_hardware_breakpoint)
|
||
{
|
||
*hw_breakpoint_error = 1;
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Cannot insert hardware breakpoint %d.\n",
|
||
bpt->owner->number);
|
||
}
|
||
else
|
||
{
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Cannot insert breakpoint %d.\n",
|
||
bpt->owner->number);
|
||
fprintf_filtered (tmp_error_stream,
|
||
"Error accessing memory address ");
|
||
fputs_filtered (paddress (bpt->address), tmp_error_stream);
|
||
fprintf_filtered (tmp_error_stream, ": %s.\n",
|
||
safe_strerror (val));
|
||
}
|
||
|
||
}
|
||
}
|
||
else
|
||
bpt->inserted = 1;
|
||
|
||
return val;
|
||
}
|
||
|
||
else if (bpt->loc_type == bp_loc_hardware_watchpoint
|
||
/* NOTE drow/2003-09-08: This state only exists for removing
|
||
watchpoints. It's not clear that it's necessary... */
|
||
&& bpt->owner->disposition != disp_del_at_next_stop)
|
||
{
|
||
val = target_insert_watchpoint (bpt->address,
|
||
bpt->length,
|
||
bpt->watchpoint_type);
|
||
bpt->inserted = (val != -1);
|
||
}
|
||
|
||
else if (bpt->owner->type == bp_catch_fork
|
||
|| bpt->owner->type == bp_catch_vfork
|
||
|| bpt->owner->type == bp_catch_exec)
|
||
{
|
||
struct gdb_exception e = catch_exception (uiout, insert_catchpoint,
|
||
bpt->owner, RETURN_MASK_ERROR);
|
||
exception_fprintf (gdb_stderr, e, "warning: inserting catchpoint %d: ",
|
||
bpt->owner->number);
|
||
if (e.reason < 0)
|
||
bpt->owner->enable_state = bp_disabled;
|
||
else
|
||
bpt->inserted = 1;
|
||
|
||
/* We've already printed an error message if there was a problem
|
||
inserting this catchpoint, and we've disabled the catchpoint,
|
||
so just return success. */
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Make sure all breakpoints are inserted in inferior.
|
||
Throws exception on any error.
|
||
A breakpoint that is already inserted won't be inserted
|
||
again, so calling this function twice is safe. */
|
||
void
|
||
insert_breakpoints (void)
|
||
{
|
||
struct breakpoint *bpt;
|
||
|
||
ALL_BREAKPOINTS (bpt)
|
||
if (is_hardware_watchpoint (bpt))
|
||
update_watchpoint (bpt, 0 /* don't reparse. */);
|
||
|
||
update_global_location_list (1);
|
||
|
||
if (!always_inserted_mode && target_has_execution)
|
||
/* update_global_location_list does not insert breakpoints
|
||
when always_inserted_mode is not enabled. Explicitly
|
||
insert them now. */
|
||
insert_breakpoint_locations ();
|
||
}
|
||
|
||
/* insert_breakpoints is used when starting or continuing the program.
|
||
remove_breakpoints is used when the program stops.
|
||
Both return zero if successful,
|
||
or an `errno' value if could not write the inferior. */
|
||
|
||
static void
|
||
insert_breakpoint_locations (void)
|
||
{
|
||
struct breakpoint *bpt;
|
||
struct bp_location *b, *temp;
|
||
int error = 0;
|
||
int val = 0;
|
||
int disabled_breaks = 0;
|
||
int hw_breakpoint_error = 0;
|
||
int process_warning = 0;
|
||
|
||
struct ui_file *tmp_error_stream = mem_fileopen ();
|
||
make_cleanup_ui_file_delete (tmp_error_stream);
|
||
|
||
/* Explicitly mark the warning -- this will only be printed if
|
||
there was an error. */
|
||
fprintf_unfiltered (tmp_error_stream, "Warning:\n");
|
||
|
||
ALL_BP_LOCATIONS_SAFE (b, temp)
|
||
{
|
||
if (!should_be_inserted (b) || b->inserted)
|
||
continue;
|
||
|
||
/* There is no point inserting thread-specific breakpoints if the
|
||
thread no longer exists. */
|
||
if (b->owner->thread != -1
|
||
&& !valid_thread_id (b->owner->thread))
|
||
continue;
|
||
|
||
val = insert_bp_location (b, tmp_error_stream,
|
||
&disabled_breaks, &process_warning,
|
||
&hw_breakpoint_error);
|
||
if (val)
|
||
error = val;
|
||
}
|
||
|
||
/* If we failed to insert all locations of a watchpoint,
|
||
remove them, as half-inserted watchpoint is of limited use. */
|
||
ALL_BREAKPOINTS (bpt)
|
||
{
|
||
int some_failed = 0;
|
||
struct bp_location *loc;
|
||
|
||
if (!is_hardware_watchpoint (bpt))
|
||
continue;
|
||
|
||
if (bpt->enable_state != bp_enabled)
|
||
continue;
|
||
|
||
if (bpt->disposition == disp_del_at_next_stop)
|
||
continue;
|
||
|
||
for (loc = bpt->loc; loc; loc = loc->next)
|
||
if (!loc->inserted)
|
||
{
|
||
some_failed = 1;
|
||
break;
|
||
}
|
||
if (some_failed)
|
||
{
|
||
for (loc = bpt->loc; loc; loc = loc->next)
|
||
if (loc->inserted)
|
||
remove_breakpoint (loc, mark_uninserted);
|
||
|
||
hw_breakpoint_error = 1;
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Could not insert hardware watchpoint %d.\n",
|
||
bpt->number);
|
||
error = -1;
|
||
}
|
||
}
|
||
|
||
if (error)
|
||
{
|
||
/* If a hardware breakpoint or watchpoint was inserted, add a
|
||
message about possibly exhausted resources. */
|
||
if (hw_breakpoint_error)
|
||
{
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"Could not insert hardware breakpoints:\n\
|
||
You may have requested too many hardware breakpoints/watchpoints.\n");
|
||
}
|
||
#ifdef ONE_PROCESS_WRITETEXT
|
||
if (process_warning)
|
||
fprintf_unfiltered (tmp_error_stream,
|
||
"The same program may be running in another process.");
|
||
#endif
|
||
target_terminal_ours_for_output ();
|
||
error_stream (tmp_error_stream);
|
||
}
|
||
}
|
||
|
||
int
|
||
remove_breakpoints (void)
|
||
{
|
||
struct bp_location *b;
|
||
int val;
|
||
|
||
ALL_BP_LOCATIONS (b)
|
||
{
|
||
if (b->inserted)
|
||
{
|
||
val = remove_breakpoint (b, mark_uninserted);
|
||
if (val != 0)
|
||
return val;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
remove_hw_watchpoints (void)
|
||
{
|
||
struct bp_location *b;
|
||
int val;
|
||
|
||
ALL_BP_LOCATIONS (b)
|
||
{
|
||
if (b->inserted && b->loc_type == bp_loc_hardware_watchpoint)
|
||
{
|
||
val = remove_breakpoint (b, mark_uninserted);
|
||
if (val != 0)
|
||
return val;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
reattach_breakpoints (int pid)
|
||
{
|
||
struct bp_location *b;
|
||
int val;
|
||
struct cleanup *old_chain = save_inferior_ptid ();
|
||
struct ui_file *tmp_error_stream = mem_fileopen ();
|
||
int dummy1 = 0, dummy2 = 0, dummy3 = 0;
|
||
|
||
make_cleanup_ui_file_delete (tmp_error_stream);
|
||
|
||
inferior_ptid = pid_to_ptid (pid);
|
||
ALL_BP_LOCATIONS (b)
|
||
{
|
||
if (b->inserted)
|
||
{
|
||
b->inserted = 0;
|
||
val = insert_bp_location (b, tmp_error_stream,
|
||
&dummy1, &dummy2, &dummy3);
|
||
if (val != 0)
|
||
{
|
||
do_cleanups (old_chain);
|
||
return val;
|
||
}
|
||
}
|
||
}
|
||
do_cleanups (old_chain);
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
update_breakpoints_after_exec (void)
|
||
{
|
||
struct breakpoint *b;
|
||
struct breakpoint *temp;
|
||
struct bp_location *bploc;
|
||
|
||
/* We're about to delete breakpoints from GDB's lists. If the
|
||
INSERTED flag is true, GDB will try to lift the breakpoints by
|
||
writing the breakpoints' "shadow contents" back into memory. The
|
||
"shadow contents" are NOT valid after an exec, so GDB should not
|
||
do that. Instead, the target is responsible from marking
|
||
breakpoints out as soon as it detects an exec. We don't do that
|
||
here instead, because there may be other attempts to delete
|
||
breakpoints after detecting an exec and before reaching here. */
|
||
ALL_BP_LOCATIONS (bploc)
|
||
gdb_assert (!bploc->inserted);
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
{
|
||
/* Solib breakpoints must be explicitly reset after an exec(). */
|
||
if (b->type == bp_shlib_event)
|
||
{
|
||
delete_breakpoint (b);
|
||
continue;
|
||
}
|
||
|
||
/* Thread event breakpoints must be set anew after an exec(),
|
||
as must overlay event breakpoints. */
|
||
if (b->type == bp_thread_event || b->type == bp_overlay_event)
|
||
{
|
||
delete_breakpoint (b);
|
||
continue;
|
||
}
|
||
|
||
/* Step-resume breakpoints are meaningless after an exec(). */
|
||
if (b->type == bp_step_resume)
|
||
{
|
||
delete_breakpoint (b);
|
||
continue;
|
||
}
|
||
|
||
/* Longjmp and longjmp-resume breakpoints are also meaningless
|
||
after an exec. */
|
||
if (b->type == bp_longjmp || b->type == bp_longjmp_resume)
|
||
{
|
||
delete_breakpoint (b);
|
||
continue;
|
||
}
|
||
|
||
/* Don't delete an exec catchpoint, because else the inferior
|
||
won't stop when it ought!
|
||
|
||
Similarly, we probably ought to keep vfork catchpoints, 'cause
|
||
on this target, we may not be able to stop when the vfork is
|
||
seen, but only when the subsequent exec is seen. (And because
|
||
deleting fork catchpoints here but not vfork catchpoints will
|
||
seem mysterious to users, keep those too.) */
|
||
if ((b->type == bp_catch_exec) ||
|
||
(b->type == bp_catch_vfork) ||
|
||
(b->type == bp_catch_fork))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
/* bp_finish is a special case. The only way we ought to be able
|
||
to see one of these when an exec() has happened, is if the user
|
||
caught a vfork, and then said "finish". Ordinarily a finish just
|
||
carries them to the call-site of the current callee, by setting
|
||
a temporary bp there and resuming. But in this case, the finish
|
||
will carry them entirely through the vfork & exec.
|
||
|
||
We don't want to allow a bp_finish to remain inserted now. But
|
||
we can't safely delete it, 'cause finish_command has a handle to
|
||
the bp on a bpstat, and will later want to delete it. There's a
|
||
chance (and I've seen it happen) that if we delete the bp_finish
|
||
here, that its storage will get reused by the time finish_command
|
||
gets 'round to deleting the "use to be a bp_finish" breakpoint.
|
||
We really must allow finish_command to delete a bp_finish.
|
||
|
||
In the absense of a general solution for the "how do we know
|
||
it's safe to delete something others may have handles to?"
|
||
problem, what we'll do here is just uninsert the bp_finish, and
|
||
let finish_command delete it.
|
||
|
||
(We know the bp_finish is "doomed" in the sense that it's
|
||
momentary, and will be deleted as soon as finish_command sees
|
||
the inferior stopped. So it doesn't matter that the bp's
|
||
address is probably bogus in the new a.out, unlike e.g., the
|
||
solib breakpoints.) */
|
||
|
||
if (b->type == bp_finish)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
/* Without a symbolic address, we have little hope of the
|
||
pre-exec() address meaning the same thing in the post-exec()
|
||
a.out. */
|
||
if (b->addr_string == NULL)
|
||
{
|
||
delete_breakpoint (b);
|
||
continue;
|
||
}
|
||
}
|
||
/* FIXME what about longjmp breakpoints? Re-create them here? */
|
||
create_overlay_event_breakpoint ("_ovly_debug_event");
|
||
}
|
||
|
||
int
|
||
detach_breakpoints (int pid)
|
||
{
|
||
struct bp_location *b;
|
||
int val;
|
||
struct cleanup *old_chain = save_inferior_ptid ();
|
||
|
||
if (pid == PIDGET (inferior_ptid))
|
||
error (_("Cannot detach breakpoints of inferior_ptid"));
|
||
|
||
/* Set inferior_ptid; remove_breakpoint uses this global. */
|
||
inferior_ptid = pid_to_ptid (pid);
|
||
ALL_BP_LOCATIONS (b)
|
||
{
|
||
if (b->inserted)
|
||
{
|
||
val = remove_breakpoint (b, mark_inserted);
|
||
if (val != 0)
|
||
{
|
||
do_cleanups (old_chain);
|
||
return val;
|
||
}
|
||
}
|
||
}
|
||
do_cleanups (old_chain);
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
remove_breakpoint (struct bp_location *b, insertion_state_t is)
|
||
{
|
||
int val;
|
||
|
||
if (b->owner->enable_state == bp_permanent)
|
||
/* Permanent breakpoints cannot be inserted or removed. */
|
||
return 0;
|
||
|
||
/* The type of none suggests that owner is actually deleted.
|
||
This should not ever happen. */
|
||
gdb_assert (b->owner->type != bp_none);
|
||
|
||
if (b->loc_type == bp_loc_software_breakpoint
|
||
|| b->loc_type == bp_loc_hardware_breakpoint)
|
||
{
|
||
/* "Normal" instruction breakpoint: either the standard
|
||
trap-instruction bp (bp_breakpoint), or a
|
||
bp_hardware_breakpoint. */
|
||
|
||
/* First check to see if we have to handle an overlay. */
|
||
if (overlay_debugging == ovly_off
|
||
|| b->section == NULL
|
||
|| !(section_is_overlay (b->section)))
|
||
{
|
||
/* No overlay handling: just remove the breakpoint. */
|
||
|
||
if (b->loc_type == bp_loc_hardware_breakpoint)
|
||
val = target_remove_hw_breakpoint (&b->target_info);
|
||
else
|
||
val = target_remove_breakpoint (&b->target_info);
|
||
}
|
||
else
|
||
{
|
||
/* This breakpoint is in an overlay section.
|
||
Did we set a breakpoint at the LMA? */
|
||
if (!overlay_events_enabled)
|
||
{
|
||
/* Yes -- overlay event support is not active, so we
|
||
should have set a breakpoint at the LMA. Remove it.
|
||
*/
|
||
/* Ignore any failures: if the LMA is in ROM, we will
|
||
have already warned when we failed to insert it. */
|
||
if (b->loc_type == bp_loc_hardware_breakpoint)
|
||
target_remove_hw_breakpoint (&b->overlay_target_info);
|
||
else
|
||
target_remove_breakpoint (&b->overlay_target_info);
|
||
}
|
||
/* Did we set a breakpoint at the VMA?
|
||
If so, we will have marked the breakpoint 'inserted'. */
|
||
if (b->inserted)
|
||
{
|
||
/* Yes -- remove it. Previously we did not bother to
|
||
remove the breakpoint if the section had been
|
||
unmapped, but let's not rely on that being safe. We
|
||
don't know what the overlay manager might do. */
|
||
if (b->loc_type == bp_loc_hardware_breakpoint)
|
||
val = target_remove_hw_breakpoint (&b->target_info);
|
||
|
||
/* However, we should remove *software* breakpoints only
|
||
if the section is still mapped, or else we overwrite
|
||
wrong code with the saved shadow contents. */
|
||
else if (section_is_mapped (b->section))
|
||
val = target_remove_breakpoint (&b->target_info);
|
||
else
|
||
val = 0;
|
||
}
|
||
else
|
||
{
|
||
/* No -- not inserted, so no need to remove. No error. */
|
||
val = 0;
|
||
}
|
||
}
|
||
if (val)
|
||
return val;
|
||
b->inserted = (is == mark_inserted);
|
||
}
|
||
else if (b->loc_type == bp_loc_hardware_watchpoint)
|
||
{
|
||
struct value *v;
|
||
struct value *n;
|
||
|
||
b->inserted = (is == mark_inserted);
|
||
val = target_remove_watchpoint (b->address, b->length,
|
||
b->watchpoint_type);
|
||
|
||
/* Failure to remove any of the hardware watchpoints comes here. */
|
||
if ((is == mark_uninserted) && (b->inserted))
|
||
warning (_("Could not remove hardware watchpoint %d."),
|
||
b->owner->number);
|
||
}
|
||
else if ((b->owner->type == bp_catch_fork ||
|
||
b->owner->type == bp_catch_vfork ||
|
||
b->owner->type == bp_catch_exec)
|
||
&& breakpoint_enabled (b->owner)
|
||
&& !b->duplicate)
|
||
{
|
||
val = -1;
|
||
switch (b->owner->type)
|
||
{
|
||
case bp_catch_fork:
|
||
val = target_remove_fork_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
case bp_catch_vfork:
|
||
val = target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
case bp_catch_exec:
|
||
val = target_remove_exec_catchpoint (PIDGET (inferior_ptid));
|
||
break;
|
||
default:
|
||
warning (_("Internal error, %s line %d."), __FILE__, __LINE__);
|
||
break;
|
||
}
|
||
if (val)
|
||
return val;
|
||
b->inserted = (is == mark_inserted);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Clear the "inserted" flag in all breakpoints. */
|
||
|
||
void
|
||
mark_breakpoints_out (void)
|
||
{
|
||
struct bp_location *bpt;
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
bpt->inserted = 0;
|
||
}
|
||
|
||
/* Clear the "inserted" flag in all breakpoints and delete any
|
||
breakpoints which should go away between runs of the program.
|
||
|
||
Plus other such housekeeping that has to be done for breakpoints
|
||
between runs.
|
||
|
||
Note: this function gets called at the end of a run (by
|
||
generic_mourn_inferior) and when a run begins (by
|
||
init_wait_for_inferior). */
|
||
|
||
|
||
|
||
void
|
||
breakpoint_init_inferior (enum inf_context context)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
struct bp_location *bpt;
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
bpt->inserted = 0;
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
{
|
||
switch (b->type)
|
||
{
|
||
case bp_call_dummy:
|
||
case bp_watchpoint_scope:
|
||
|
||
/* If the call dummy breakpoint is at the entry point it will
|
||
cause problems when the inferior is rerun, so we better
|
||
get rid of it.
|
||
|
||
Also get rid of scope breakpoints. */
|
||
delete_breakpoint (b);
|
||
break;
|
||
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
|
||
/* Likewise for watchpoints on local expressions. */
|
||
if (b->exp_valid_block != NULL)
|
||
delete_breakpoint (b);
|
||
else if (context == inf_starting)
|
||
{
|
||
/* Reset val field to force reread of starting value
|
||
in insert_breakpoints. */
|
||
if (b->val)
|
||
value_free (b->val);
|
||
b->val = NULL;
|
||
b->val_valid = 0;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
|
||
exists at PC. It returns ordinary_breakpoint_here if it's an
|
||
ordinary breakpoint, or permanent_breakpoint_here if it's a
|
||
permanent breakpoint.
|
||
- When continuing from a location with an ordinary breakpoint, we
|
||
actually single step once before calling insert_breakpoints.
|
||
- When continuing from a localion with a permanent breakpoint, we
|
||
need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
|
||
the target, to advance the PC past the breakpoint. */
|
||
|
||
enum breakpoint_here
|
||
breakpoint_here_p (CORE_ADDR pc)
|
||
{
|
||
const struct bp_location *bpt;
|
||
int any_breakpoint_here = 0;
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
{
|
||
if (bpt->loc_type != bp_loc_software_breakpoint
|
||
&& bpt->loc_type != bp_loc_hardware_breakpoint)
|
||
continue;
|
||
|
||
if ((breakpoint_enabled (bpt->owner)
|
||
|| bpt->owner->enable_state == bp_permanent)
|
||
&& bpt->address == pc) /* bp is enabled and matches pc */
|
||
{
|
||
if (overlay_debugging
|
||
&& section_is_overlay (bpt->section)
|
||
&& !section_is_mapped (bpt->section))
|
||
continue; /* unmapped overlay -- can't be a match */
|
||
else if (bpt->owner->enable_state == bp_permanent)
|
||
return permanent_breakpoint_here;
|
||
else
|
||
any_breakpoint_here = 1;
|
||
}
|
||
}
|
||
|
||
return any_breakpoint_here ? ordinary_breakpoint_here : 0;
|
||
}
|
||
|
||
|
||
/* Returns non-zero if there's a breakpoint inserted at PC, which is
|
||
inserted using regular breakpoint_chain/bp_location_chain mechanism.
|
||
This does not check for single-step breakpoints, which are
|
||
inserted and removed using direct target manipulation. */
|
||
|
||
int
|
||
regular_breakpoint_inserted_here_p (CORE_ADDR pc)
|
||
{
|
||
const struct bp_location *bpt;
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
{
|
||
if (bpt->loc_type != bp_loc_software_breakpoint
|
||
&& bpt->loc_type != bp_loc_hardware_breakpoint)
|
||
continue;
|
||
|
||
if (bpt->inserted
|
||
&& bpt->address == pc) /* bp is inserted and matches pc */
|
||
{
|
||
if (overlay_debugging
|
||
&& section_is_overlay (bpt->section)
|
||
&& !section_is_mapped (bpt->section))
|
||
continue; /* unmapped overlay -- can't be a match */
|
||
else
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Returns non-zero iff there's either regular breakpoint
|
||
or a single step breakpoint inserted at PC. */
|
||
|
||
int
|
||
breakpoint_inserted_here_p (CORE_ADDR pc)
|
||
{
|
||
if (regular_breakpoint_inserted_here_p (pc))
|
||
return 1;
|
||
|
||
if (single_step_breakpoint_inserted_here_p (pc))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function returns non-zero iff there is a software breakpoint
|
||
inserted at PC. */
|
||
|
||
int
|
||
software_breakpoint_inserted_here_p (CORE_ADDR pc)
|
||
{
|
||
const struct bp_location *bpt;
|
||
int any_breakpoint_here = 0;
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
{
|
||
if (bpt->loc_type != bp_loc_software_breakpoint)
|
||
continue;
|
||
|
||
if (bpt->inserted
|
||
&& bpt->address == pc) /* bp is enabled and matches pc */
|
||
{
|
||
if (overlay_debugging
|
||
&& section_is_overlay (bpt->section)
|
||
&& !section_is_mapped (bpt->section))
|
||
continue; /* unmapped overlay -- can't be a match */
|
||
else
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Also check for software single-step breakpoints. */
|
||
if (single_step_breakpoint_inserted_here_p (pc))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
|
||
PC is valid for process/thread PTID. */
|
||
|
||
int
|
||
breakpoint_thread_match (CORE_ADDR pc, ptid_t ptid)
|
||
{
|
||
const struct bp_location *bpt;
|
||
int thread;
|
||
|
||
thread = pid_to_thread_id (ptid);
|
||
|
||
ALL_BP_LOCATIONS (bpt)
|
||
{
|
||
if (bpt->loc_type != bp_loc_software_breakpoint
|
||
&& bpt->loc_type != bp_loc_hardware_breakpoint)
|
||
continue;
|
||
|
||
if ((breakpoint_enabled (bpt->owner)
|
||
|| bpt->owner->enable_state == bp_permanent)
|
||
&& bpt->address == pc
|
||
&& (bpt->owner->thread == -1 || bpt->owner->thread == thread))
|
||
{
|
||
if (overlay_debugging
|
||
&& section_is_overlay (bpt->section)
|
||
&& !section_is_mapped (bpt->section))
|
||
continue; /* unmapped overlay -- can't be a match */
|
||
else
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* bpstat stuff. External routines' interfaces are documented
|
||
in breakpoint.h. */
|
||
|
||
int
|
||
ep_is_catchpoint (struct breakpoint *ep)
|
||
{
|
||
return
|
||
(ep->type == bp_catch_load)
|
||
|| (ep->type == bp_catch_unload)
|
||
|| (ep->type == bp_catch_fork)
|
||
|| (ep->type == bp_catch_vfork)
|
||
|| (ep->type == bp_catch_exec);
|
||
|
||
/* ??rehrauer: Add more kinds here, as are implemented... */
|
||
}
|
||
|
||
int
|
||
ep_is_shlib_catchpoint (struct breakpoint *ep)
|
||
{
|
||
return
|
||
(ep->type == bp_catch_load)
|
||
|| (ep->type == bp_catch_unload);
|
||
}
|
||
|
||
void
|
||
bpstat_free (bpstat bs)
|
||
{
|
||
if (bs->old_val != NULL)
|
||
value_free (bs->old_val);
|
||
free_command_lines (&bs->commands);
|
||
xfree (bs);
|
||
}
|
||
|
||
/* Clear a bpstat so that it says we are not at any breakpoint.
|
||
Also free any storage that is part of a bpstat. */
|
||
|
||
void
|
||
bpstat_clear (bpstat *bsp)
|
||
{
|
||
bpstat p;
|
||
bpstat q;
|
||
|
||
if (bsp == 0)
|
||
return;
|
||
p = *bsp;
|
||
while (p != NULL)
|
||
{
|
||
q = p->next;
|
||
bpstat_free (p);
|
||
p = q;
|
||
}
|
||
*bsp = NULL;
|
||
}
|
||
|
||
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
|
||
is part of the bpstat is copied as well. */
|
||
|
||
bpstat
|
||
bpstat_copy (bpstat bs)
|
||
{
|
||
bpstat p = NULL;
|
||
bpstat tmp;
|
||
bpstat retval = NULL;
|
||
|
||
if (bs == NULL)
|
||
return bs;
|
||
|
||
for (; bs != NULL; bs = bs->next)
|
||
{
|
||
tmp = (bpstat) xmalloc (sizeof (*tmp));
|
||
memcpy (tmp, bs, sizeof (*tmp));
|
||
if (bs->commands != NULL)
|
||
tmp->commands = copy_command_lines (bs->commands);
|
||
if (bs->old_val != NULL)
|
||
{
|
||
tmp->old_val = value_copy (bs->old_val);
|
||
release_value (tmp->old_val);
|
||
}
|
||
|
||
if (p == NULL)
|
||
/* This is the first thing in the chain. */
|
||
retval = tmp;
|
||
else
|
||
p->next = tmp;
|
||
p = tmp;
|
||
}
|
||
p->next = NULL;
|
||
return retval;
|
||
}
|
||
|
||
/* Find the bpstat associated with this breakpoint */
|
||
|
||
bpstat
|
||
bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
|
||
{
|
||
if (bsp == NULL)
|
||
return NULL;
|
||
|
||
for (; bsp != NULL; bsp = bsp->next)
|
||
{
|
||
if (bsp->breakpoint_at && bsp->breakpoint_at->owner == breakpoint)
|
||
return bsp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Find a step_resume breakpoint associated with this bpstat.
|
||
(If there are multiple step_resume bp's on the list, this function
|
||
will arbitrarily pick one.)
|
||
|
||
It is an error to use this function if BPSTAT doesn't contain a
|
||
step_resume breakpoint.
|
||
|
||
See wait_for_inferior's use of this function. */
|
||
struct breakpoint *
|
||
bpstat_find_step_resume_breakpoint (bpstat bsp)
|
||
{
|
||
int current_thread;
|
||
|
||
gdb_assert (bsp != NULL);
|
||
|
||
current_thread = pid_to_thread_id (inferior_ptid);
|
||
|
||
for (; bsp != NULL; bsp = bsp->next)
|
||
{
|
||
if ((bsp->breakpoint_at != NULL) &&
|
||
(bsp->breakpoint_at->owner->type == bp_step_resume) &&
|
||
(bsp->breakpoint_at->owner->thread == current_thread ||
|
||
bsp->breakpoint_at->owner->thread == -1))
|
||
return bsp->breakpoint_at->owner;
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__, _("No step_resume breakpoint found."));
|
||
}
|
||
|
||
|
||
/* Put in *NUM the breakpoint number of the first breakpoint we are stopped
|
||
at. *BSP upon return is a bpstat which points to the remaining
|
||
breakpoints stopped at (but which is not guaranteed to be good for
|
||
anything but further calls to bpstat_num).
|
||
Return 0 if passed a bpstat which does not indicate any breakpoints.
|
||
Return -1 if stopped at a breakpoint that has been deleted since
|
||
we set it.
|
||
Return 1 otherwise. */
|
||
|
||
int
|
||
bpstat_num (bpstat *bsp, int *num)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
if ((*bsp) == NULL)
|
||
return 0; /* No more breakpoint values */
|
||
|
||
/* We assume we'll never have several bpstats that
|
||
correspond to a single breakpoint -- otherwise,
|
||
this function might return the same number more
|
||
than once and this will look ugly. */
|
||
b = (*bsp)->breakpoint_at ? (*bsp)->breakpoint_at->owner : NULL;
|
||
*bsp = (*bsp)->next;
|
||
if (b == NULL)
|
||
return -1; /* breakpoint that's been deleted since */
|
||
|
||
*num = b->number; /* We have its number */
|
||
return 1;
|
||
}
|
||
|
||
/* Modify BS so that the actions will not be performed. */
|
||
|
||
void
|
||
bpstat_clear_actions (bpstat bs)
|
||
{
|
||
for (; bs != NULL; bs = bs->next)
|
||
{
|
||
free_command_lines (&bs->commands);
|
||
if (bs->old_val != NULL)
|
||
{
|
||
value_free (bs->old_val);
|
||
bs->old_val = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Stub for cleaning up our state if we error-out of a breakpoint command */
|
||
static void
|
||
cleanup_executing_breakpoints (void *ignore)
|
||
{
|
||
executing_breakpoint_commands = 0;
|
||
}
|
||
|
||
/* Execute all the commands associated with all the breakpoints at this
|
||
location. Any of these commands could cause the process to proceed
|
||
beyond this point, etc. We look out for such changes by checking
|
||
the global "breakpoint_proceeded" after each command. */
|
||
|
||
void
|
||
bpstat_do_actions (bpstat *bsp)
|
||
{
|
||
bpstat bs;
|
||
struct cleanup *old_chain;
|
||
|
||
/* Avoid endless recursion if a `source' command is contained
|
||
in bs->commands. */
|
||
if (executing_breakpoint_commands)
|
||
return;
|
||
|
||
executing_breakpoint_commands = 1;
|
||
old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
|
||
|
||
top:
|
||
/* Note that (as of this writing), our callers all appear to
|
||
be passing us the address of global stop_bpstat. And, if
|
||
our calls to execute_control_command cause the inferior to
|
||
proceed, that global (and hence, *bsp) will change.
|
||
|
||
We must be careful to not touch *bsp unless the inferior
|
||
has not proceeded. */
|
||
|
||
/* This pointer will iterate over the list of bpstat's. */
|
||
bs = *bsp;
|
||
|
||
breakpoint_proceeded = 0;
|
||
for (; bs != NULL; bs = bs->next)
|
||
{
|
||
struct command_line *cmd;
|
||
struct cleanup *this_cmd_tree_chain;
|
||
|
||
/* Take ownership of the BSP's command tree, if it has one.
|
||
|
||
The command tree could legitimately contain commands like
|
||
'step' and 'next', which call clear_proceed_status, which
|
||
frees stop_bpstat's command tree. To make sure this doesn't
|
||
free the tree we're executing out from under us, we need to
|
||
take ownership of the tree ourselves. Since a given bpstat's
|
||
commands are only executed once, we don't need to copy it; we
|
||
can clear the pointer in the bpstat, and make sure we free
|
||
the tree when we're done. */
|
||
cmd = bs->commands;
|
||
bs->commands = 0;
|
||
this_cmd_tree_chain = make_cleanup_free_command_lines (&cmd);
|
||
|
||
while (cmd != NULL)
|
||
{
|
||
execute_control_command (cmd);
|
||
|
||
if (breakpoint_proceeded)
|
||
break;
|
||
else
|
||
cmd = cmd->next;
|
||
}
|
||
|
||
/* We can free this command tree now. */
|
||
do_cleanups (this_cmd_tree_chain);
|
||
|
||
if (breakpoint_proceeded)
|
||
{
|
||
if (target_can_async_p ())
|
||
/* If we are in async mode, then the target might
|
||
be still running, not stopped at any breakpoint,
|
||
so nothing for us to do here -- just return to
|
||
the event loop. */
|
||
break;
|
||
else
|
||
/* In sync mode, when execute_control_command returns
|
||
we're already standing on the next breakpoint.
|
||
Breakpoint commands for that stop were not run,
|
||
since execute_command does not run breakpoint
|
||
commands -- only command_line_handler does, but
|
||
that one is not involved in execution of breakpoint
|
||
commands. So, we can now execute breakpoint commands.
|
||
There's an implicit assumption that we're called with
|
||
stop_bpstat, so our parameter is the new bpstat to
|
||
handle.
|
||
It should be noted that making execute_command do
|
||
bpstat actions is not an option -- in this case we'll
|
||
have recursive invocation of bpstat for each breakpoint
|
||
with a command, and can easily blow up GDB stack. */
|
||
goto top;
|
||
}
|
||
}
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Print out the (old or new) value associated with a watchpoint. */
|
||
|
||
static void
|
||
watchpoint_value_print (struct value *val, struct ui_file *stream)
|
||
{
|
||
if (val == NULL)
|
||
fprintf_unfiltered (stream, _("<unreadable>"));
|
||
else
|
||
value_print (val, stream, 0, Val_pretty_default);
|
||
}
|
||
|
||
/* This is the normal print function for a bpstat. In the future,
|
||
much of this logic could (should?) be moved to bpstat_stop_status,
|
||
by having it set different print_it values.
|
||
|
||
Current scheme: When we stop, bpstat_print() is called. It loops
|
||
through the bpstat list of things causing this stop, calling the
|
||
print_bp_stop_message function on each one. The behavior of the
|
||
print_bp_stop_message function depends on the print_it field of
|
||
bpstat. If such field so indicates, call this function here.
|
||
|
||
Return values from this routine (ultimately used by bpstat_print()
|
||
and normal_stop() to decide what to do):
|
||
PRINT_NOTHING: Means we already printed all we needed to print,
|
||
don't print anything else.
|
||
PRINT_SRC_ONLY: Means we printed something, and we do *not* desire
|
||
that something to be followed by a location.
|
||
PRINT_SCR_AND_LOC: Means we printed something, and we *do* desire
|
||
that something to be followed by a location.
|
||
PRINT_UNKNOWN: Means we printed nothing or we need to do some more
|
||
analysis. */
|
||
|
||
static enum print_stop_action
|
||
print_it_typical (bpstat bs)
|
||
{
|
||
struct cleanup *old_chain, *ui_out_chain;
|
||
struct breakpoint *b;
|
||
const struct bp_location *bl;
|
||
struct ui_stream *stb;
|
||
int bp_temp = 0;
|
||
stb = ui_out_stream_new (uiout);
|
||
old_chain = make_cleanup_ui_out_stream_delete (stb);
|
||
/* bs->breakpoint_at can be NULL if it was a momentary breakpoint
|
||
which has since been deleted. */
|
||
if (bs->breakpoint_at == NULL)
|
||
return PRINT_UNKNOWN;
|
||
bl = bs->breakpoint_at;
|
||
b = bl->owner;
|
||
|
||
switch (b->type)
|
||
{
|
||
case bp_breakpoint:
|
||
case bp_hardware_breakpoint:
|
||
bp_temp = bs->breakpoint_at->owner->disposition == disp_del;
|
||
if (bl->address != bl->requested_address)
|
||
breakpoint_adjustment_warning (bl->requested_address,
|
||
bl->address,
|
||
b->number, 1);
|
||
annotate_breakpoint (b->number);
|
||
if (bp_temp)
|
||
ui_out_text (uiout, "\nTemporary breakpoint ");
|
||
else
|
||
ui_out_text (uiout, "\nBreakpoint ");
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
ui_out_field_string (uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
|
||
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
|
||
}
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
ui_out_text (uiout, ", ");
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_shlib_event:
|
||
/* Did we stop because the user set the stop_on_solib_events
|
||
variable? (If so, we report this as a generic, "Stopped due
|
||
to shlib event" message.) */
|
||
printf_filtered (_("Stopped due to shared library event\n"));
|
||
return PRINT_NOTHING;
|
||
break;
|
||
|
||
case bp_thread_event:
|
||
/* Not sure how we will get here.
|
||
GDB should not stop for these breakpoints. */
|
||
printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
|
||
return PRINT_NOTHING;
|
||
break;
|
||
|
||
case bp_overlay_event:
|
||
/* By analogy with the thread event, GDB should not stop for these. */
|
||
printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
|
||
return PRINT_NOTHING;
|
||
break;
|
||
|
||
case bp_catch_load:
|
||
annotate_catchpoint (b->number);
|
||
printf_filtered (_("\nCatchpoint %d (loaded %s), "),
|
||
b->number,
|
||
b->triggered_dll_pathname);
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_catch_unload:
|
||
annotate_catchpoint (b->number);
|
||
printf_filtered (_("\nCatchpoint %d (unloaded %s), "),
|
||
b->number,
|
||
b->triggered_dll_pathname);
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_catch_fork:
|
||
annotate_catchpoint (b->number);
|
||
printf_filtered (_("\nCatchpoint %d (forked process %d), "),
|
||
b->number,
|
||
ptid_get_pid (b->forked_inferior_pid));
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_catch_vfork:
|
||
annotate_catchpoint (b->number);
|
||
printf_filtered (_("\nCatchpoint %d (vforked process %d), "),
|
||
b->number,
|
||
ptid_get_pid (b->forked_inferior_pid));
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_catch_exec:
|
||
annotate_catchpoint (b->number);
|
||
printf_filtered (_("\nCatchpoint %d (exec'd %s), "),
|
||
b->number,
|
||
b->exec_pathname);
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
annotate_watchpoint (b->number);
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
|
||
mention (b);
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "value");
|
||
ui_out_text (uiout, "\nOld value = ");
|
||
watchpoint_value_print (bs->old_val, stb->stream);
|
||
ui_out_field_stream (uiout, "old", stb);
|
||
ui_out_text (uiout, "\nNew value = ");
|
||
watchpoint_value_print (b->val, stb->stream);
|
||
ui_out_field_stream (uiout, "new", stb);
|
||
do_cleanups (ui_out_chain);
|
||
ui_out_text (uiout, "\n");
|
||
/* More than one watchpoint may have been triggered. */
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
case bp_read_watchpoint:
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
|
||
mention (b);
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "value");
|
||
ui_out_text (uiout, "\nValue = ");
|
||
watchpoint_value_print (b->val, stb->stream);
|
||
ui_out_field_stream (uiout, "value", stb);
|
||
do_cleanups (ui_out_chain);
|
||
ui_out_text (uiout, "\n");
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
case bp_access_watchpoint:
|
||
if (bs->old_val != NULL)
|
||
{
|
||
annotate_watchpoint (b->number);
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
|
||
mention (b);
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "value");
|
||
ui_out_text (uiout, "\nOld value = ");
|
||
watchpoint_value_print (bs->old_val, stb->stream);
|
||
ui_out_field_stream (uiout, "old", stb);
|
||
ui_out_text (uiout, "\nNew value = ");
|
||
}
|
||
else
|
||
{
|
||
mention (b);
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "value");
|
||
ui_out_text (uiout, "\nValue = ");
|
||
}
|
||
watchpoint_value_print (b->val, stb->stream);
|
||
ui_out_field_stream (uiout, "new", stb);
|
||
do_cleanups (ui_out_chain);
|
||
ui_out_text (uiout, "\n");
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
/* Fall through, we don't deal with these types of breakpoints
|
||
here. */
|
||
|
||
case bp_finish:
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
case bp_until:
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
case bp_none:
|
||
case bp_longjmp:
|
||
case bp_longjmp_resume:
|
||
case bp_step_resume:
|
||
case bp_watchpoint_scope:
|
||
case bp_call_dummy:
|
||
default:
|
||
return PRINT_UNKNOWN;
|
||
}
|
||
}
|
||
|
||
/* Generic routine for printing messages indicating why we
|
||
stopped. The behavior of this function depends on the value
|
||
'print_it' in the bpstat structure. Under some circumstances we
|
||
may decide not to print anything here and delegate the task to
|
||
normal_stop(). */
|
||
|
||
static enum print_stop_action
|
||
print_bp_stop_message (bpstat bs)
|
||
{
|
||
switch (bs->print_it)
|
||
{
|
||
case print_it_noop:
|
||
/* Nothing should be printed for this bpstat entry. */
|
||
return PRINT_UNKNOWN;
|
||
break;
|
||
|
||
case print_it_done:
|
||
/* We still want to print the frame, but we already printed the
|
||
relevant messages. */
|
||
return PRINT_SRC_AND_LOC;
|
||
break;
|
||
|
||
case print_it_normal:
|
||
{
|
||
const struct bp_location *bl = bs->breakpoint_at;
|
||
struct breakpoint *b = bl ? bl->owner : NULL;
|
||
|
||
/* Normal case. Call the breakpoint's print_it method, or
|
||
print_it_typical. */
|
||
/* FIXME: how breakpoint can ever be NULL here? */
|
||
if (b != NULL && b->ops != NULL && b->ops->print_it != NULL)
|
||
return b->ops->print_it (b);
|
||
else
|
||
return print_it_typical (bs);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("print_bp_stop_message: unrecognized enum value"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Print a message indicating what happened. This is called from
|
||
normal_stop(). The input to this routine is the head of the bpstat
|
||
list - a list of the eventpoints that caused this stop. This
|
||
routine calls the generic print routine for printing a message
|
||
about reasons for stopping. This will print (for example) the
|
||
"Breakpoint n," part of the output. The return value of this
|
||
routine is one of:
|
||
|
||
PRINT_UNKNOWN: Means we printed nothing
|
||
PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
|
||
code to print the location. An example is
|
||
"Breakpoint 1, " which should be followed by
|
||
the location.
|
||
PRINT_SRC_ONLY: Means we printed something, but there is no need
|
||
to also print the location part of the message.
|
||
An example is the catch/throw messages, which
|
||
don't require a location appended to the end.
|
||
PRINT_NOTHING: We have done some printing and we don't need any
|
||
further info to be printed.*/
|
||
|
||
enum print_stop_action
|
||
bpstat_print (bpstat bs)
|
||
{
|
||
int val;
|
||
|
||
/* Maybe another breakpoint in the chain caused us to stop.
|
||
(Currently all watchpoints go on the bpstat whether hit or not.
|
||
That probably could (should) be changed, provided care is taken
|
||
with respect to bpstat_explains_signal). */
|
||
for (; bs; bs = bs->next)
|
||
{
|
||
val = print_bp_stop_message (bs);
|
||
if (val == PRINT_SRC_ONLY
|
||
|| val == PRINT_SRC_AND_LOC
|
||
|| val == PRINT_NOTHING)
|
||
return val;
|
||
}
|
||
|
||
/* We reached the end of the chain, or we got a null BS to start
|
||
with and nothing was printed. */
|
||
return PRINT_UNKNOWN;
|
||
}
|
||
|
||
/* Evaluate the expression EXP and return 1 if value is zero.
|
||
This is used inside a catch_errors to evaluate the breakpoint condition.
|
||
The argument is a "struct expression *" that has been cast to char * to
|
||
make it pass through catch_errors. */
|
||
|
||
static int
|
||
breakpoint_cond_eval (void *exp)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
int i = !value_true (evaluate_expression ((struct expression *) exp));
|
||
value_free_to_mark (mark);
|
||
return i;
|
||
}
|
||
|
||
/* Allocate a new bpstat and chain it to the current one. */
|
||
|
||
static bpstat
|
||
bpstat_alloc (const struct bp_location *bl, bpstat cbs /* Current "bs" value */ )
|
||
{
|
||
bpstat bs;
|
||
|
||
bs = (bpstat) xmalloc (sizeof (*bs));
|
||
cbs->next = bs;
|
||
bs->breakpoint_at = bl;
|
||
/* If the condition is false, etc., don't do the commands. */
|
||
bs->commands = NULL;
|
||
bs->old_val = NULL;
|
||
bs->print_it = print_it_normal;
|
||
return bs;
|
||
}
|
||
|
||
/* The target has stopped with waitstatus WS. Check if any hardware
|
||
watchpoints have triggered, according to the target. */
|
||
|
||
int
|
||
watchpoints_triggered (struct target_waitstatus *ws)
|
||
{
|
||
int stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (*ws);
|
||
CORE_ADDR addr;
|
||
struct breakpoint *b;
|
||
|
||
if (!stopped_by_watchpoint)
|
||
{
|
||
/* We were not stopped by a watchpoint. Mark all watchpoints
|
||
as not triggered. */
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->type == bp_hardware_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint)
|
||
b->watchpoint_triggered = watch_triggered_no;
|
||
|
||
return 0;
|
||
}
|
||
|
||
if (!target_stopped_data_address (¤t_target, &addr))
|
||
{
|
||
/* We were stopped by a watchpoint, but we don't know where.
|
||
Mark all watchpoints as unknown. */
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->type == bp_hardware_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint)
|
||
b->watchpoint_triggered = watch_triggered_unknown;
|
||
|
||
return stopped_by_watchpoint;
|
||
}
|
||
|
||
/* The target could report the data address. Mark watchpoints
|
||
affected by this data address as triggered, and all others as not
|
||
triggered. */
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->type == bp_hardware_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint)
|
||
{
|
||
struct bp_location *loc;
|
||
struct value *v;
|
||
|
||
b->watchpoint_triggered = watch_triggered_no;
|
||
for (loc = b->loc; loc; loc = loc->next)
|
||
/* Exact match not required. Within range is
|
||
sufficient. */
|
||
if (target_watchpoint_addr_within_range (¤t_target,
|
||
addr, loc->address,
|
||
loc->length))
|
||
{
|
||
b->watchpoint_triggered = watch_triggered_yes;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Possible return values for watchpoint_check (this can't be an enum
|
||
because of check_errors). */
|
||
/* The watchpoint has been deleted. */
|
||
#define WP_DELETED 1
|
||
/* The value has changed. */
|
||
#define WP_VALUE_CHANGED 2
|
||
/* The value has not changed. */
|
||
#define WP_VALUE_NOT_CHANGED 3
|
||
|
||
#define BP_TEMPFLAG 1
|
||
#define BP_HARDWAREFLAG 2
|
||
|
||
/* Check watchpoint condition. */
|
||
|
||
static int
|
||
watchpoint_check (void *p)
|
||
{
|
||
bpstat bs = (bpstat) p;
|
||
struct breakpoint *b;
|
||
struct frame_info *fr;
|
||
int within_current_scope;
|
||
|
||
b = bs->breakpoint_at->owner;
|
||
|
||
if (b->exp_valid_block == NULL)
|
||
within_current_scope = 1;
|
||
else
|
||
{
|
||
/* There is no current frame at this moment. If we're going to have
|
||
any chance of handling watchpoints on local variables, we'll need
|
||
the frame chain (so we can determine if we're in scope). */
|
||
reinit_frame_cache ();
|
||
fr = frame_find_by_id (b->watchpoint_frame);
|
||
within_current_scope = (fr != NULL);
|
||
|
||
/* If we've gotten confused in the unwinder, we might have
|
||
returned a frame that can't describe this variable. */
|
||
if (within_current_scope
|
||
&& (block_linkage_function (b->exp_valid_block)
|
||
!= get_frame_function (fr)))
|
||
within_current_scope = 0;
|
||
|
||
/* in_function_epilogue_p() returns a non-zero value if we're still
|
||
in the function but the stack frame has already been invalidated.
|
||
Since we can't rely on the values of local variables after the
|
||
stack has been destroyed, we are treating the watchpoint in that
|
||
state as `not changed' without further checking.
|
||
|
||
vinschen/2003-09-04: The former implementation left out the case
|
||
that the watchpoint frame couldn't be found by frame_find_by_id()
|
||
because the current PC is currently in an epilogue. Calling
|
||
gdbarch_in_function_epilogue_p() also when fr == NULL fixes that. */
|
||
if ((!within_current_scope || fr == get_current_frame ())
|
||
&& gdbarch_in_function_epilogue_p (current_gdbarch, read_pc ()))
|
||
return WP_VALUE_NOT_CHANGED;
|
||
if (fr && within_current_scope)
|
||
/* If we end up stopping, the current frame will get selected
|
||
in normal_stop. So this call to select_frame won't affect
|
||
the user. */
|
||
select_frame (fr);
|
||
}
|
||
|
||
if (within_current_scope)
|
||
{
|
||
/* We use value_{,free_to_}mark because it could be a
|
||
*long* time before we return to the command level and
|
||
call free_all_values. We can't call free_all_values because
|
||
we might be in the middle of evaluating a function call. */
|
||
|
||
struct value *mark = value_mark ();
|
||
struct value *new_val;
|
||
|
||
fetch_watchpoint_value (b->exp, &new_val, NULL, NULL);
|
||
if ((b->val != NULL) != (new_val != NULL)
|
||
|| (b->val != NULL && !value_equal (b->val, new_val)))
|
||
{
|
||
if (new_val != NULL)
|
||
{
|
||
release_value (new_val);
|
||
value_free_to_mark (mark);
|
||
}
|
||
bs->old_val = b->val;
|
||
b->val = new_val;
|
||
b->val_valid = 1;
|
||
/* We will stop here */
|
||
return WP_VALUE_CHANGED;
|
||
}
|
||
else
|
||
{
|
||
/* Nothing changed, don't do anything. */
|
||
value_free_to_mark (mark);
|
||
/* We won't stop here */
|
||
return WP_VALUE_NOT_CHANGED;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This seems like the only logical thing to do because
|
||
if we temporarily ignored the watchpoint, then when
|
||
we reenter the block in which it is valid it contains
|
||
garbage (in the case of a function, it may have two
|
||
garbage values, one before and one after the prologue).
|
||
So we can't even detect the first assignment to it and
|
||
watch after that (since the garbage may or may not equal
|
||
the first value assigned). */
|
||
/* We print all the stop information in print_it_typical(), but
|
||
in this case, by the time we call print_it_typical() this bp
|
||
will be deleted already. So we have no choice but print the
|
||
information here. */
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_string
|
||
(uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
|
||
ui_out_text (uiout, "\nWatchpoint ");
|
||
ui_out_field_int (uiout, "wpnum", b->number);
|
||
ui_out_text (uiout, " deleted because the program has left the block in\n\
|
||
which its expression is valid.\n");
|
||
|
||
if (b->related_breakpoint)
|
||
b->related_breakpoint->disposition = disp_del_at_next_stop;
|
||
b->disposition = disp_del_at_next_stop;
|
||
|
||
return WP_DELETED;
|
||
}
|
||
}
|
||
|
||
/* Return true if it looks like target has stopped due to hitting
|
||
breakpoint location BL. This function does not check if we
|
||
should stop, only if BL explains the stop. */
|
||
static int
|
||
bpstat_check_location (const struct bp_location *bl, CORE_ADDR bp_addr)
|
||
{
|
||
struct breakpoint *b = bl->owner;
|
||
|
||
if (b->type != bp_watchpoint
|
||
&& b->type != bp_hardware_watchpoint
|
||
&& b->type != bp_read_watchpoint
|
||
&& b->type != bp_access_watchpoint
|
||
&& b->type != bp_hardware_breakpoint
|
||
&& b->type != bp_catch_fork
|
||
&& b->type != bp_catch_vfork
|
||
&& b->type != bp_catch_exec) /* a non-watchpoint bp */
|
||
{
|
||
if (bl->address != bp_addr) /* address doesn't match */
|
||
return 0;
|
||
if (overlay_debugging /* unmapped overlay section */
|
||
&& section_is_overlay (bl->section)
|
||
&& !section_is_mapped (bl->section))
|
||
return 0;
|
||
}
|
||
|
||
/* Continuable hardware watchpoints are treated as non-existent if the
|
||
reason we stopped wasn't a hardware watchpoint (we didn't stop on
|
||
some data address). Otherwise gdb won't stop on a break instruction
|
||
in the code (not from a breakpoint) when a hardware watchpoint has
|
||
been defined. Also skip watchpoints which we know did not trigger
|
||
(did not match the data address). */
|
||
|
||
if ((b->type == bp_hardware_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint)
|
||
&& b->watchpoint_triggered == watch_triggered_no)
|
||
return 0;
|
||
|
||
if (b->type == bp_hardware_breakpoint)
|
||
{
|
||
if (bl->address != bp_addr)
|
||
return 0;
|
||
if (overlay_debugging /* unmapped overlay section */
|
||
&& section_is_overlay (bl->section)
|
||
&& !section_is_mapped (bl->section))
|
||
return 0;
|
||
}
|
||
|
||
/* Is this a catchpoint of a load or unload? If so, did we
|
||
get a load or unload of the specified library? If not,
|
||
ignore it. */
|
||
if ((b->type == bp_catch_load)
|
||
#if defined(SOLIB_HAVE_LOAD_EVENT)
|
||
&& (!SOLIB_HAVE_LOAD_EVENT (PIDGET (inferior_ptid))
|
||
|| ((b->dll_pathname != NULL)
|
||
&& (strcmp (b->dll_pathname,
|
||
SOLIB_LOADED_LIBRARY_PATHNAME (
|
||
PIDGET (inferior_ptid)))
|
||
!= 0)))
|
||
#endif
|
||
)
|
||
return 0;
|
||
|
||
if ((b->type == bp_catch_unload)
|
||
#if defined(SOLIB_HAVE_UNLOAD_EVENT)
|
||
&& (!SOLIB_HAVE_UNLOAD_EVENT (PIDGET (inferior_ptid))
|
||
|| ((b->dll_pathname != NULL)
|
||
&& (strcmp (b->dll_pathname,
|
||
SOLIB_UNLOADED_LIBRARY_PATHNAME (
|
||
PIDGET (inferior_ptid)))
|
||
!= 0)))
|
||
#endif
|
||
)
|
||
return 0;
|
||
|
||
if ((b->type == bp_catch_fork)
|
||
&& !inferior_has_forked (inferior_ptid,
|
||
&b->forked_inferior_pid))
|
||
return 0;
|
||
|
||
if ((b->type == bp_catch_vfork)
|
||
&& !inferior_has_vforked (inferior_ptid,
|
||
&b->forked_inferior_pid))
|
||
return 0;
|
||
|
||
if ((b->type == bp_catch_exec)
|
||
&& !inferior_has_execd (inferior_ptid, &b->exec_pathname))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If BS refers to a watchpoint, determine if the watched values
|
||
has actually changed, and we should stop. If not, set BS->stop
|
||
to 0. */
|
||
static void
|
||
bpstat_check_watchpoint (bpstat bs)
|
||
{
|
||
const struct bp_location *bl = bs->breakpoint_at;
|
||
struct breakpoint *b = bl->owner;
|
||
|
||
if (b->type == bp_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint
|
||
|| b->type == bp_hardware_watchpoint)
|
||
{
|
||
CORE_ADDR addr;
|
||
struct value *v;
|
||
int must_check_value = 0;
|
||
|
||
if (b->type == bp_watchpoint)
|
||
/* For a software watchpoint, we must always check the
|
||
watched value. */
|
||
must_check_value = 1;
|
||
else if (b->watchpoint_triggered == watch_triggered_yes)
|
||
/* We have a hardware watchpoint (read, write, or access)
|
||
and the target earlier reported an address watched by
|
||
this watchpoint. */
|
||
must_check_value = 1;
|
||
else if (b->watchpoint_triggered == watch_triggered_unknown
|
||
&& b->type == bp_hardware_watchpoint)
|
||
/* We were stopped by a hardware watchpoint, but the target could
|
||
not report the data address. We must check the watchpoint's
|
||
value. Access and read watchpoints are out of luck; without
|
||
a data address, we can't figure it out. */
|
||
must_check_value = 1;
|
||
|
||
if (must_check_value)
|
||
{
|
||
char *message = xstrprintf ("Error evaluating expression for watchpoint %d\n",
|
||
b->number);
|
||
struct cleanup *cleanups = make_cleanup (xfree, message);
|
||
int e = catch_errors (watchpoint_check, bs, message,
|
||
RETURN_MASK_ALL);
|
||
do_cleanups (cleanups);
|
||
switch (e)
|
||
{
|
||
case WP_DELETED:
|
||
/* We've already printed what needs to be printed. */
|
||
bs->print_it = print_it_done;
|
||
/* Stop. */
|
||
break;
|
||
case WP_VALUE_CHANGED:
|
||
if (b->type == bp_read_watchpoint)
|
||
{
|
||
/* Don't stop: read watchpoints shouldn't fire if
|
||
the value has changed. This is for targets
|
||
which cannot set read-only watchpoints. */
|
||
bs->print_it = print_it_noop;
|
||
bs->stop = 0;
|
||
}
|
||
break;
|
||
case WP_VALUE_NOT_CHANGED:
|
||
if (b->type == bp_hardware_watchpoint
|
||
|| b->type == bp_watchpoint)
|
||
{
|
||
/* Don't stop: write watchpoints shouldn't fire if
|
||
the value hasn't changed. */
|
||
bs->print_it = print_it_noop;
|
||
bs->stop = 0;
|
||
}
|
||
/* Stop. */
|
||
break;
|
||
default:
|
||
/* Can't happen. */
|
||
case 0:
|
||
/* Error from catch_errors. */
|
||
printf_filtered (_("Watchpoint %d deleted.\n"), b->number);
|
||
if (b->related_breakpoint)
|
||
b->related_breakpoint->disposition = disp_del_at_next_stop;
|
||
b->disposition = disp_del_at_next_stop;
|
||
/* We've already printed what needs to be printed. */
|
||
bs->print_it = print_it_done;
|
||
break;
|
||
}
|
||
}
|
||
else /* must_check_value == 0 */
|
||
{
|
||
/* This is a case where some watchpoint(s) triggered, but
|
||
not at the address of this watchpoint, or else no
|
||
watchpoint triggered after all. So don't print
|
||
anything for this watchpoint. */
|
||
bs->print_it = print_it_noop;
|
||
bs->stop = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Check conditions (condition proper, frame, thread and ignore count)
|
||
of breakpoint referred to by BS. If we should not stop for this
|
||
breakpoint, set BS->stop to 0. */
|
||
static void
|
||
bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
|
||
{
|
||
int thread_id = pid_to_thread_id (ptid);
|
||
const struct bp_location *bl = bs->breakpoint_at;
|
||
struct breakpoint *b = bl->owner;
|
||
|
||
if (frame_id_p (b->frame_id)
|
||
&& !frame_id_eq (b->frame_id, get_frame_id (get_current_frame ())))
|
||
bs->stop = 0;
|
||
else if (bs->stop)
|
||
{
|
||
int value_is_zero = 0;
|
||
|
||
/* If this is a scope breakpoint, mark the associated
|
||
watchpoint as triggered so that we will handle the
|
||
out-of-scope event. We'll get to the watchpoint next
|
||
iteration. */
|
||
if (b->type == bp_watchpoint_scope)
|
||
b->related_breakpoint->watchpoint_triggered = watch_triggered_yes;
|
||
|
||
if (bl->cond && bl->owner->disposition != disp_del_at_next_stop)
|
||
{
|
||
/* Need to select the frame, with all that implies
|
||
so that the conditions will have the right context. */
|
||
select_frame (get_current_frame ());
|
||
value_is_zero
|
||
= catch_errors (breakpoint_cond_eval, (bl->cond),
|
||
"Error in testing breakpoint condition:\n",
|
||
RETURN_MASK_ALL);
|
||
/* FIXME-someday, should give breakpoint # */
|
||
free_all_values ();
|
||
}
|
||
if (bl->cond && value_is_zero)
|
||
{
|
||
bs->stop = 0;
|
||
}
|
||
else if (b->thread != -1 && b->thread != thread_id)
|
||
{
|
||
bs->stop = 0;
|
||
}
|
||
else if (b->ignore_count > 0)
|
||
{
|
||
b->ignore_count--;
|
||
annotate_ignore_count_change ();
|
||
bs->stop = 0;
|
||
/* Increase the hit count even though we don't
|
||
stop. */
|
||
++(b->hit_count);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Get a bpstat associated with having just stopped at address
|
||
BP_ADDR in thread PTID.
|
||
|
||
Determine whether we stopped at a breakpoint, etc, or whether we
|
||
don't understand this stop. Result is a chain of bpstat's such that:
|
||
|
||
if we don't understand the stop, the result is a null pointer.
|
||
|
||
if we understand why we stopped, the result is not null.
|
||
|
||
Each element of the chain refers to a particular breakpoint or
|
||
watchpoint at which we have stopped. (We may have stopped for
|
||
several reasons concurrently.)
|
||
|
||
Each element of the chain has valid next, breakpoint_at,
|
||
commands, FIXME??? fields. */
|
||
|
||
bpstat
|
||
bpstat_stop_status (CORE_ADDR bp_addr, ptid_t ptid)
|
||
{
|
||
struct breakpoint *b = NULL;
|
||
const struct bp_location *bl;
|
||
struct bp_location *loc;
|
||
/* Root of the chain of bpstat's */
|
||
struct bpstats root_bs[1];
|
||
/* Pointer to the last thing in the chain currently. */
|
||
bpstat bs = root_bs;
|
||
int ix;
|
||
|
||
ALL_BP_LOCATIONS (bl)
|
||
{
|
||
b = bl->owner;
|
||
gdb_assert (b);
|
||
if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
|
||
continue;
|
||
|
||
/* For hardware watchpoints, we look only at the first location.
|
||
The watchpoint_check function will work on entire expression,
|
||
not the individual locations. For read watchopints, the
|
||
watchpoints_triggered function have checked all locations
|
||
alrea
|
||
*/
|
||
if (b->type == bp_hardware_watchpoint && bl != b->loc)
|
||
continue;
|
||
|
||
if (!bpstat_check_location (bl, bp_addr))
|
||
continue;
|
||
|
||
/* Come here if it's a watchpoint, or if the break address matches */
|
||
|
||
bs = bpstat_alloc (bl, bs); /* Alloc a bpstat to explain stop */
|
||
|
||
/* Assume we stop. Should we find watchpoint that is not actually
|
||
triggered, or if condition of breakpoint is false, we'll reset
|
||
'stop' to 0. */
|
||
bs->stop = 1;
|
||
bs->print = 1;
|
||
|
||
bpstat_check_watchpoint (bs);
|
||
if (!bs->stop)
|
||
continue;
|
||
|
||
if (b->type == bp_thread_event || b->type == bp_overlay_event)
|
||
/* We do not stop for these. */
|
||
bs->stop = 0;
|
||
else
|
||
bpstat_check_breakpoint_conditions (bs, ptid);
|
||
|
||
if (bs->stop)
|
||
{
|
||
++(b->hit_count);
|
||
|
||
/* We will stop here */
|
||
if (b->disposition == disp_disable)
|
||
{
|
||
b->enable_state = bp_disabled;
|
||
update_global_location_list (0);
|
||
}
|
||
if (b->silent)
|
||
bs->print = 0;
|
||
bs->commands = b->commands;
|
||
if (bs->commands &&
|
||
(strcmp ("silent", bs->commands->line) == 0
|
||
|| (xdb_commands && strcmp ("Q", bs->commands->line) == 0)))
|
||
{
|
||
bs->commands = bs->commands->next;
|
||
bs->print = 0;
|
||
}
|
||
bs->commands = copy_command_lines (bs->commands);
|
||
}
|
||
|
||
/* Print nothing for this entry if we dont stop or if we dont print. */
|
||
if (bs->stop == 0 || bs->print == 0)
|
||
bs->print_it = print_it_noop;
|
||
}
|
||
|
||
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
|
||
{
|
||
if (loc->address == bp_addr)
|
||
{
|
||
bs = bpstat_alloc (loc, bs);
|
||
/* For hits of moribund locations, we should just proceed. */
|
||
bs->stop = 0;
|
||
bs->print = 0;
|
||
bs->print_it = print_it_noop;
|
||
}
|
||
}
|
||
|
||
bs->next = NULL; /* Terminate the chain */
|
||
bs = root_bs->next; /* Re-grab the head of the chain */
|
||
|
||
/* If we aren't stopping, the value of some hardware watchpoint may
|
||
not have changed, but the intermediate memory locations we are
|
||
watching may have. Don't bother if we're stopping; this will get
|
||
done later. */
|
||
for (bs = root_bs->next; bs != NULL; bs = bs->next)
|
||
if (bs->stop)
|
||
break;
|
||
|
||
if (bs == NULL)
|
||
for (bs = root_bs->next; bs != NULL; bs = bs->next)
|
||
if (!bs->stop
|
||
&& bs->breakpoint_at->owner
|
||
&& (bs->breakpoint_at->owner->type == bp_hardware_watchpoint
|
||
|| bs->breakpoint_at->owner->type == bp_read_watchpoint
|
||
|| bs->breakpoint_at->owner->type == bp_access_watchpoint))
|
||
{
|
||
/* remove/insert can invalidate bs->breakpoint_at, if this
|
||
location is no longer used by the watchpoint. Prevent
|
||
further code from trying to use it. */
|
||
bs->breakpoint_at = NULL;
|
||
remove_breakpoints ();
|
||
insert_breakpoints ();
|
||
break;
|
||
}
|
||
|
||
return root_bs->next;
|
||
}
|
||
|
||
/* Tell what to do about this bpstat. */
|
||
struct bpstat_what
|
||
bpstat_what (bpstat bs)
|
||
{
|
||
/* Classify each bpstat as one of the following. */
|
||
enum class
|
||
{
|
||
/* This bpstat element has no effect on the main_action. */
|
||
no_effect = 0,
|
||
|
||
/* There was a watchpoint, stop but don't print. */
|
||
wp_silent,
|
||
|
||
/* There was a watchpoint, stop and print. */
|
||
wp_noisy,
|
||
|
||
/* There was a breakpoint but we're not stopping. */
|
||
bp_nostop,
|
||
|
||
/* There was a breakpoint, stop but don't print. */
|
||
bp_silent,
|
||
|
||
/* There was a breakpoint, stop and print. */
|
||
bp_noisy,
|
||
|
||
/* We hit the longjmp breakpoint. */
|
||
long_jump,
|
||
|
||
/* We hit the longjmp_resume breakpoint. */
|
||
long_resume,
|
||
|
||
/* We hit the step_resume breakpoint. */
|
||
step_resume,
|
||
|
||
/* We hit the shared library event breakpoint. */
|
||
shlib_event,
|
||
|
||
/* We caught a shared library event. */
|
||
catch_shlib_event,
|
||
|
||
/* This is just used to count how many enums there are. */
|
||
class_last
|
||
};
|
||
|
||
/* Here is the table which drives this routine. So that we can
|
||
format it pretty, we define some abbreviations for the
|
||
enum bpstat_what codes. */
|
||
#define kc BPSTAT_WHAT_KEEP_CHECKING
|
||
#define ss BPSTAT_WHAT_STOP_SILENT
|
||
#define sn BPSTAT_WHAT_STOP_NOISY
|
||
#define sgl BPSTAT_WHAT_SINGLE
|
||
#define slr BPSTAT_WHAT_SET_LONGJMP_RESUME
|
||
#define clr BPSTAT_WHAT_CLEAR_LONGJMP_RESUME
|
||
#define sr BPSTAT_WHAT_STEP_RESUME
|
||
#define shl BPSTAT_WHAT_CHECK_SHLIBS
|
||
#define shlr BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK
|
||
|
||
/* "Can't happen." Might want to print an error message.
|
||
abort() is not out of the question, but chances are GDB is just
|
||
a bit confused, not unusable. */
|
||
#define err BPSTAT_WHAT_STOP_NOISY
|
||
|
||
/* Given an old action and a class, come up with a new action. */
|
||
/* One interesting property of this table is that wp_silent is the same
|
||
as bp_silent and wp_noisy is the same as bp_noisy. That is because
|
||
after stopping, the check for whether to step over a breakpoint
|
||
(BPSTAT_WHAT_SINGLE type stuff) is handled in proceed() without
|
||
reference to how we stopped. We retain separate wp_silent and
|
||
bp_silent codes in case we want to change that someday.
|
||
|
||
Another possibly interesting property of this table is that
|
||
there's a partial ordering, priority-like, of the actions. Once
|
||
you've decided that some action is appropriate, you'll never go
|
||
back and decide something of a lower priority is better. The
|
||
ordering is:
|
||
|
||
kc < clr sgl shl shlr slr sn sr ss
|
||
sgl < shl shlr slr sn sr ss
|
||
slr < err shl shlr sn sr ss
|
||
clr < err shl shlr sn sr ss
|
||
ss < shl shlr sn sr
|
||
sn < shl shlr sr
|
||
shl < shlr sr
|
||
shlr < sr
|
||
sr <
|
||
|
||
What I think this means is that we don't need a damned table
|
||
here. If you just put the rows and columns in the right order,
|
||
it'd look awfully regular. We could simply walk the bpstat list
|
||
and choose the highest priority action we find, with a little
|
||
logic to handle the 'err' cases. */
|
||
|
||
/* step_resume entries: a step resume breakpoint overrides another
|
||
breakpoint of signal handling (see comment in wait_for_inferior
|
||
at where we set the step_resume breakpoint). */
|
||
|
||
static const enum bpstat_what_main_action
|
||
table[(int) class_last][(int) BPSTAT_WHAT_LAST] =
|
||
{
|
||
/* old action */
|
||
/* kc ss sn sgl slr clr sr shl shlr
|
||
*/
|
||
/*no_effect */
|
||
{kc, ss, sn, sgl, slr, clr, sr, shl, shlr},
|
||
/*wp_silent */
|
||
{ss, ss, sn, ss, ss, ss, sr, shl, shlr},
|
||
/*wp_noisy */
|
||
{sn, sn, sn, sn, sn, sn, sr, shl, shlr},
|
||
/*bp_nostop */
|
||
{sgl, ss, sn, sgl, slr, slr, sr, shl, shlr},
|
||
/*bp_silent */
|
||
{ss, ss, sn, ss, ss, ss, sr, shl, shlr},
|
||
/*bp_noisy */
|
||
{sn, sn, sn, sn, sn, sn, sr, shl, shlr},
|
||
/*long_jump */
|
||
{slr, ss, sn, slr, slr, err, sr, shl, shlr},
|
||
/*long_resume */
|
||
{clr, ss, sn, err, err, err, sr, shl, shlr},
|
||
/*step_resume */
|
||
{sr, sr, sr, sr, sr, sr, sr, sr, sr},
|
||
/*shlib */
|
||
{shl, shl, shl, shl, shl, shl, sr, shl, shlr},
|
||
/*catch_shlib */
|
||
{shlr, shlr, shlr, shlr, shlr, shlr, sr, shlr, shlr}
|
||
};
|
||
|
||
#undef kc
|
||
#undef ss
|
||
#undef sn
|
||
#undef sgl
|
||
#undef slr
|
||
#undef clr
|
||
#undef err
|
||
#undef sr
|
||
#undef ts
|
||
#undef shl
|
||
#undef shlr
|
||
enum bpstat_what_main_action current_action = BPSTAT_WHAT_KEEP_CHECKING;
|
||
struct bpstat_what retval;
|
||
|
||
retval.call_dummy = 0;
|
||
for (; bs != NULL; bs = bs->next)
|
||
{
|
||
enum class bs_class = no_effect;
|
||
if (bs->breakpoint_at == NULL)
|
||
/* I suspect this can happen if it was a momentary breakpoint
|
||
which has since been deleted. */
|
||
continue;
|
||
if (bs->breakpoint_at->owner == NULL)
|
||
bs_class = bp_nostop;
|
||
else
|
||
switch (bs->breakpoint_at->owner->type)
|
||
{
|
||
case bp_none:
|
||
continue;
|
||
|
||
case bp_breakpoint:
|
||
case bp_hardware_breakpoint:
|
||
case bp_until:
|
||
case bp_finish:
|
||
if (bs->stop)
|
||
{
|
||
if (bs->print)
|
||
bs_class = bp_noisy;
|
||
else
|
||
bs_class = bp_silent;
|
||
}
|
||
else
|
||
bs_class = bp_nostop;
|
||
break;
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
if (bs->stop)
|
||
{
|
||
if (bs->print)
|
||
bs_class = wp_noisy;
|
||
else
|
||
bs_class = wp_silent;
|
||
}
|
||
else
|
||
/* There was a watchpoint, but we're not stopping.
|
||
This requires no further action. */
|
||
bs_class = no_effect;
|
||
break;
|
||
case bp_longjmp:
|
||
bs_class = long_jump;
|
||
break;
|
||
case bp_longjmp_resume:
|
||
bs_class = long_resume;
|
||
break;
|
||
case bp_step_resume:
|
||
if (bs->stop)
|
||
{
|
||
bs_class = step_resume;
|
||
}
|
||
else
|
||
/* It is for the wrong frame. */
|
||
bs_class = bp_nostop;
|
||
break;
|
||
case bp_watchpoint_scope:
|
||
bs_class = bp_nostop;
|
||
break;
|
||
case bp_shlib_event:
|
||
bs_class = shlib_event;
|
||
break;
|
||
case bp_thread_event:
|
||
case bp_overlay_event:
|
||
bs_class = bp_nostop;
|
||
break;
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
/* Only if this catchpoint triggered should we cause the
|
||
step-out-of-dld behaviour. Otherwise, we ignore this
|
||
catchpoint. */
|
||
if (bs->stop)
|
||
bs_class = catch_shlib_event;
|
||
else
|
||
bs_class = no_effect;
|
||
break;
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
case bp_catch_exec:
|
||
if (bs->stop)
|
||
{
|
||
if (bs->print)
|
||
bs_class = bp_noisy;
|
||
else
|
||
bs_class = bp_silent;
|
||
}
|
||
else
|
||
/* There was a catchpoint, but we're not stopping.
|
||
This requires no further action. */
|
||
bs_class = no_effect;
|
||
break;
|
||
case bp_call_dummy:
|
||
/* Make sure the action is stop (silent or noisy),
|
||
so infrun.c pops the dummy frame. */
|
||
bs_class = bp_silent;
|
||
retval.call_dummy = 1;
|
||
break;
|
||
}
|
||
current_action = table[(int) bs_class][(int) current_action];
|
||
}
|
||
retval.main_action = current_action;
|
||
return retval;
|
||
}
|
||
|
||
/* Nonzero if we should step constantly (e.g. watchpoints on machines
|
||
without hardware support). This isn't related to a specific bpstat,
|
||
just to things like whether watchpoints are set. */
|
||
|
||
int
|
||
bpstat_should_step (void)
|
||
{
|
||
struct breakpoint *b;
|
||
ALL_BREAKPOINTS (b)
|
||
if (breakpoint_enabled (b) && b->type == bp_watchpoint)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Given a bpstat that records zero or more triggered eventpoints, this
|
||
function returns another bpstat which contains only the catchpoints
|
||
on that first list, if any. */
|
||
void
|
||
bpstat_get_triggered_catchpoints (bpstat ep_list, bpstat *cp_list)
|
||
{
|
||
struct bpstats root_bs[1];
|
||
bpstat bs = root_bs;
|
||
struct breakpoint *ep;
|
||
char *dll_pathname;
|
||
|
||
bpstat_clear (cp_list);
|
||
root_bs->next = NULL;
|
||
|
||
for (; ep_list != NULL; ep_list = ep_list->next)
|
||
{
|
||
/* Is this eventpoint a catchpoint? If not, ignore it. */
|
||
ep = ep_list->breakpoint_at->owner;
|
||
if (ep == NULL)
|
||
break;
|
||
if ((ep->type != bp_catch_load) &&
|
||
(ep->type != bp_catch_unload))
|
||
/* pai: (temp) ADD fork/vfork here!! */
|
||
continue;
|
||
|
||
/* Yes; add it to the list. */
|
||
bs = bpstat_alloc (ep_list->breakpoint_at, bs);
|
||
*bs = *ep_list;
|
||
bs->next = NULL;
|
||
bs = root_bs->next;
|
||
|
||
#if defined(SOLIB_ADD)
|
||
/* Also, for each triggered catchpoint, tag it with the name of
|
||
the library that caused this trigger. (We copy the name now,
|
||
because it's only guaranteed to be available NOW, when the
|
||
catchpoint triggers. Clients who may wish to know the name
|
||
later must get it from the catchpoint itself.) */
|
||
if (ep->triggered_dll_pathname != NULL)
|
||
xfree (ep->triggered_dll_pathname);
|
||
if (ep->type == bp_catch_load)
|
||
dll_pathname = SOLIB_LOADED_LIBRARY_PATHNAME (
|
||
PIDGET (inferior_ptid));
|
||
else
|
||
dll_pathname = SOLIB_UNLOADED_LIBRARY_PATHNAME (
|
||
PIDGET (inferior_ptid));
|
||
#else
|
||
dll_pathname = NULL;
|
||
#endif
|
||
if (dll_pathname)
|
||
{
|
||
ep->triggered_dll_pathname = (char *)
|
||
xmalloc (strlen (dll_pathname) + 1);
|
||
strcpy (ep->triggered_dll_pathname, dll_pathname);
|
||
}
|
||
else
|
||
ep->triggered_dll_pathname = NULL;
|
||
}
|
||
|
||
*cp_list = bs;
|
||
}
|
||
|
||
static void print_breakpoint_location (struct breakpoint *b,
|
||
struct bp_location *loc,
|
||
char *wrap_indent,
|
||
struct ui_stream *stb)
|
||
{
|
||
if (b->source_file)
|
||
{
|
||
struct symbol *sym
|
||
= find_pc_sect_function (loc->address, loc->section);
|
||
if (sym)
|
||
{
|
||
ui_out_text (uiout, "in ");
|
||
ui_out_field_string (uiout, "func",
|
||
SYMBOL_PRINT_NAME (sym));
|
||
ui_out_wrap_hint (uiout, wrap_indent);
|
||
ui_out_text (uiout, " at ");
|
||
}
|
||
ui_out_field_string (uiout, "file", b->source_file);
|
||
ui_out_text (uiout, ":");
|
||
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
struct symtab_and_line sal = find_pc_line (loc->address, 0);
|
||
char *fullname = symtab_to_fullname (sal.symtab);
|
||
|
||
if (fullname)
|
||
ui_out_field_string (uiout, "fullname", fullname);
|
||
}
|
||
|
||
ui_out_field_int (uiout, "line", b->line_number);
|
||
}
|
||
else if (!b->loc)
|
||
{
|
||
ui_out_field_string (uiout, "pending", b->addr_string);
|
||
}
|
||
else
|
||
{
|
||
print_address_symbolic (loc->address, stb->stream, demangle, "");
|
||
ui_out_field_stream (uiout, "at", stb);
|
||
}
|
||
}
|
||
|
||
/* Print B to gdb_stdout. */
|
||
static void
|
||
print_one_breakpoint_location (struct breakpoint *b,
|
||
struct bp_location *loc,
|
||
int loc_number,
|
||
CORE_ADDR *last_addr)
|
||
{
|
||
struct command_line *l;
|
||
struct symbol *sym;
|
||
struct ep_type_description
|
||
{
|
||
enum bptype type;
|
||
char *description;
|
||
};
|
||
static struct ep_type_description bptypes[] =
|
||
{
|
||
{bp_none, "?deleted?"},
|
||
{bp_breakpoint, "breakpoint"},
|
||
{bp_hardware_breakpoint, "hw breakpoint"},
|
||
{bp_until, "until"},
|
||
{bp_finish, "finish"},
|
||
{bp_watchpoint, "watchpoint"},
|
||
{bp_hardware_watchpoint, "hw watchpoint"},
|
||
{bp_read_watchpoint, "read watchpoint"},
|
||
{bp_access_watchpoint, "acc watchpoint"},
|
||
{bp_longjmp, "longjmp"},
|
||
{bp_longjmp_resume, "longjmp resume"},
|
||
{bp_step_resume, "step resume"},
|
||
{bp_watchpoint_scope, "watchpoint scope"},
|
||
{bp_call_dummy, "call dummy"},
|
||
{bp_shlib_event, "shlib events"},
|
||
{bp_thread_event, "thread events"},
|
||
{bp_overlay_event, "overlay events"},
|
||
{bp_catch_load, "catch load"},
|
||
{bp_catch_unload, "catch unload"},
|
||
{bp_catch_fork, "catch fork"},
|
||
{bp_catch_vfork, "catch vfork"},
|
||
{bp_catch_exec, "catch exec"}
|
||
};
|
||
|
||
static char bpenables[] = "nynny";
|
||
char wrap_indent[80];
|
||
struct ui_stream *stb = ui_out_stream_new (uiout);
|
||
struct cleanup *old_chain = make_cleanup_ui_out_stream_delete (stb);
|
||
struct cleanup *bkpt_chain;
|
||
|
||
int header_of_multiple = 0;
|
||
int part_of_multiple = (loc != NULL);
|
||
|
||
gdb_assert (!loc || loc_number != 0);
|
||
/* See comment in print_one_breakpoint concerning
|
||
treatment of breakpoints with single disabled
|
||
location. */
|
||
if (loc == NULL
|
||
&& (b->loc != NULL
|
||
&& (b->loc->next != NULL || !b->loc->enabled)))
|
||
header_of_multiple = 1;
|
||
if (loc == NULL)
|
||
loc = b->loc;
|
||
|
||
annotate_record ();
|
||
bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
|
||
|
||
/* 1 */
|
||
annotate_field (0);
|
||
if (part_of_multiple)
|
||
{
|
||
char *formatted;
|
||
formatted = xstrprintf ("%d.%d", b->number, loc_number);
|
||
ui_out_field_string (uiout, "number", formatted);
|
||
xfree (formatted);
|
||
}
|
||
else
|
||
{
|
||
ui_out_field_int (uiout, "number", b->number);
|
||
}
|
||
|
||
/* 2 */
|
||
annotate_field (1);
|
||
if (part_of_multiple)
|
||
ui_out_field_skip (uiout, "type");
|
||
else
|
||
{
|
||
if (((int) b->type >= (sizeof (bptypes) / sizeof (bptypes[0])))
|
||
|| ((int) b->type != bptypes[(int) b->type].type))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("bptypes table does not describe type #%d."),
|
||
(int) b->type);
|
||
ui_out_field_string (uiout, "type", bptypes[(int) b->type].description);
|
||
}
|
||
|
||
/* 3 */
|
||
annotate_field (2);
|
||
if (part_of_multiple)
|
||
ui_out_field_skip (uiout, "disp");
|
||
else
|
||
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
|
||
|
||
|
||
/* 4 */
|
||
annotate_field (3);
|
||
if (part_of_multiple)
|
||
ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
|
||
else
|
||
ui_out_field_fmt (uiout, "enabled", "%c",
|
||
bpenables[(int) b->enable_state]);
|
||
ui_out_spaces (uiout, 2);
|
||
|
||
|
||
/* 5 and 6 */
|
||
strcpy (wrap_indent, " ");
|
||
if (addressprint)
|
||
{
|
||
if (gdbarch_addr_bit (current_gdbarch) <= 32)
|
||
strcat (wrap_indent, " ");
|
||
else
|
||
strcat (wrap_indent, " ");
|
||
}
|
||
|
||
if (b->ops != NULL && b->ops->print_one != NULL)
|
||
{
|
||
/* Although the print_one can possibly print
|
||
all locations, calling it here is not likely
|
||
to get any nice result. So, make sure there's
|
||
just one location. */
|
||
gdb_assert (b->loc == NULL || b->loc->next == NULL);
|
||
b->ops->print_one (b, last_addr);
|
||
}
|
||
else
|
||
switch (b->type)
|
||
{
|
||
case bp_none:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("print_one_breakpoint: bp_none encountered\n"));
|
||
break;
|
||
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
/* Field 4, the address, is omitted (which makes the columns
|
||
not line up too nicely with the headers, but the effect
|
||
is relatively readable). */
|
||
if (addressprint)
|
||
ui_out_field_skip (uiout, "addr");
|
||
annotate_field (5);
|
||
print_expression (b->exp, stb->stream);
|
||
ui_out_field_stream (uiout, "what", stb);
|
||
break;
|
||
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
/* Field 4, the address, is omitted (which makes the columns
|
||
not line up too nicely with the headers, but the effect
|
||
is relatively readable). */
|
||
if (addressprint)
|
||
ui_out_field_skip (uiout, "addr");
|
||
annotate_field (5);
|
||
if (b->dll_pathname == NULL)
|
||
{
|
||
ui_out_field_string (uiout, "what", "<any library>");
|
||
ui_out_spaces (uiout, 1);
|
||
}
|
||
else
|
||
{
|
||
ui_out_text (uiout, "library \"");
|
||
ui_out_field_string (uiout, "what", b->dll_pathname);
|
||
ui_out_text (uiout, "\" ");
|
||
}
|
||
break;
|
||
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
/* Field 4, the address, is omitted (which makes the columns
|
||
not line up too nicely with the headers, but the effect
|
||
is relatively readable). */
|
||
if (addressprint)
|
||
ui_out_field_skip (uiout, "addr");
|
||
annotate_field (5);
|
||
if (!ptid_equal (b->forked_inferior_pid, null_ptid))
|
||
{
|
||
ui_out_text (uiout, "process ");
|
||
ui_out_field_int (uiout, "what",
|
||
ptid_get_pid (b->forked_inferior_pid));
|
||
ui_out_spaces (uiout, 1);
|
||
}
|
||
break;
|
||
|
||
case bp_catch_exec:
|
||
/* Field 4, the address, is omitted (which makes the columns
|
||
not line up too nicely with the headers, but the effect
|
||
is relatively readable). */
|
||
if (addressprint)
|
||
ui_out_field_skip (uiout, "addr");
|
||
annotate_field (5);
|
||
if (b->exec_pathname != NULL)
|
||
{
|
||
ui_out_text (uiout, "program \"");
|
||
ui_out_field_string (uiout, "what", b->exec_pathname);
|
||
ui_out_text (uiout, "\" ");
|
||
}
|
||
break;
|
||
|
||
case bp_breakpoint:
|
||
case bp_hardware_breakpoint:
|
||
case bp_until:
|
||
case bp_finish:
|
||
case bp_longjmp:
|
||
case bp_longjmp_resume:
|
||
case bp_step_resume:
|
||
case bp_watchpoint_scope:
|
||
case bp_call_dummy:
|
||
case bp_shlib_event:
|
||
case bp_thread_event:
|
||
case bp_overlay_event:
|
||
if (addressprint)
|
||
{
|
||
annotate_field (4);
|
||
if (header_of_multiple)
|
||
ui_out_field_string (uiout, "addr", "<MULTIPLE>");
|
||
else if (b->loc == NULL || loc->shlib_disabled)
|
||
ui_out_field_string (uiout, "addr", "<PENDING>");
|
||
else
|
||
ui_out_field_core_addr (uiout, "addr", loc->address);
|
||
}
|
||
annotate_field (5);
|
||
if (!header_of_multiple)
|
||
print_breakpoint_location (b, loc, wrap_indent, stb);
|
||
if (b->loc)
|
||
*last_addr = b->loc->address;
|
||
break;
|
||
}
|
||
|
||
if (!part_of_multiple && b->thread != -1)
|
||
{
|
||
/* FIXME: This seems to be redundant and lost here; see the
|
||
"stop only in" line a little further down. */
|
||
ui_out_text (uiout, " thread ");
|
||
ui_out_field_int (uiout, "thread", b->thread);
|
||
}
|
||
|
||
ui_out_text (uiout, "\n");
|
||
|
||
if (part_of_multiple && frame_id_p (b->frame_id))
|
||
{
|
||
annotate_field (6);
|
||
ui_out_text (uiout, "\tstop only in stack frame at ");
|
||
/* FIXME: cagney/2002-12-01: Shouldn't be poeking around inside
|
||
the frame ID. */
|
||
ui_out_field_core_addr (uiout, "frame", b->frame_id.stack_addr);
|
||
ui_out_text (uiout, "\n");
|
||
}
|
||
|
||
if (!part_of_multiple && b->cond_string && !ada_exception_catchpoint_p (b))
|
||
{
|
||
/* We do not print the condition for Ada exception catchpoints
|
||
because the condition is an internal implementation detail
|
||
that we do not want to expose to the user. */
|
||
annotate_field (7);
|
||
ui_out_text (uiout, "\tstop only if ");
|
||
ui_out_field_string (uiout, "cond", b->cond_string);
|
||
ui_out_text (uiout, "\n");
|
||
}
|
||
|
||
if (!part_of_multiple && b->thread != -1)
|
||
{
|
||
/* FIXME should make an annotation for this */
|
||
ui_out_text (uiout, "\tstop only in thread ");
|
||
ui_out_field_int (uiout, "thread", b->thread);
|
||
ui_out_text (uiout, "\n");
|
||
}
|
||
|
||
if (!part_of_multiple && show_breakpoint_hit_counts && b->hit_count)
|
||
{
|
||
/* FIXME should make an annotation for this */
|
||
if (ep_is_catchpoint (b))
|
||
ui_out_text (uiout, "\tcatchpoint");
|
||
else
|
||
ui_out_text (uiout, "\tbreakpoint");
|
||
ui_out_text (uiout, " already hit ");
|
||
ui_out_field_int (uiout, "times", b->hit_count);
|
||
if (b->hit_count == 1)
|
||
ui_out_text (uiout, " time\n");
|
||
else
|
||
ui_out_text (uiout, " times\n");
|
||
}
|
||
|
||
/* Output the count also if it is zero, but only if this is
|
||
mi. FIXME: Should have a better test for this. */
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
if (!part_of_multiple && show_breakpoint_hit_counts && b->hit_count == 0)
|
||
ui_out_field_int (uiout, "times", b->hit_count);
|
||
|
||
if (!part_of_multiple && b->ignore_count)
|
||
{
|
||
annotate_field (8);
|
||
ui_out_text (uiout, "\tignore next ");
|
||
ui_out_field_int (uiout, "ignore", b->ignore_count);
|
||
ui_out_text (uiout, " hits\n");
|
||
}
|
||
|
||
if (!part_of_multiple && (l = b->commands))
|
||
{
|
||
struct cleanup *script_chain;
|
||
|
||
annotate_field (9);
|
||
script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
|
||
print_command_lines (uiout, l, 4);
|
||
do_cleanups (script_chain);
|
||
}
|
||
|
||
if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
|
||
{
|
||
if (b->addr_string)
|
||
ui_out_field_string (uiout, "original-location", b->addr_string);
|
||
else if (b->exp_string)
|
||
ui_out_field_string (uiout, "original-location", b->exp_string);
|
||
}
|
||
|
||
do_cleanups (bkpt_chain);
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
static void
|
||
print_one_breakpoint (struct breakpoint *b,
|
||
CORE_ADDR *last_addr)
|
||
{
|
||
print_one_breakpoint_location (b, NULL, 0, last_addr);
|
||
|
||
/* If this breakpoint has custom print function,
|
||
it's already printed. Otherwise, print individual
|
||
locations, if any. */
|
||
if (b->ops == NULL || b->ops->print_one == NULL)
|
||
{
|
||
/* If breakpoint has a single location that is
|
||
disabled, we print it as if it had
|
||
several locations, since otherwise it's hard to
|
||
represent "breakpoint enabled, location disabled"
|
||
situation.
|
||
Note that while hardware watchpoints have
|
||
several locations internally, that's no a property
|
||
exposed to user. */
|
||
if (b->loc
|
||
&& !is_hardware_watchpoint (b)
|
||
&& (b->loc->next || !b->loc->enabled)
|
||
&& !ui_out_is_mi_like_p (uiout))
|
||
{
|
||
struct bp_location *loc;
|
||
int n = 1;
|
||
for (loc = b->loc; loc; loc = loc->next, ++n)
|
||
print_one_breakpoint_location (b, loc, n, last_addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
struct captured_breakpoint_query_args
|
||
{
|
||
int bnum;
|
||
};
|
||
|
||
static int
|
||
do_captured_breakpoint_query (struct ui_out *uiout, void *data)
|
||
{
|
||
struct captured_breakpoint_query_args *args = data;
|
||
struct breakpoint *b;
|
||
CORE_ADDR dummy_addr = 0;
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (args->bnum == b->number)
|
||
{
|
||
print_one_breakpoint (b, &dummy_addr);
|
||
return GDB_RC_OK;
|
||
}
|
||
}
|
||
return GDB_RC_NONE;
|
||
}
|
||
|
||
enum gdb_rc
|
||
gdb_breakpoint_query (struct ui_out *uiout, int bnum, char **error_message)
|
||
{
|
||
struct captured_breakpoint_query_args args;
|
||
args.bnum = bnum;
|
||
/* For the moment we don't trust print_one_breakpoint() to not throw
|
||
an error. */
|
||
if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
|
||
error_message, RETURN_MASK_ALL) < 0)
|
||
return GDB_RC_FAIL;
|
||
else
|
||
return GDB_RC_OK;
|
||
}
|
||
|
||
/* Return non-zero if B is user settable (breakpoints, watchpoints,
|
||
catchpoints, et.al.). */
|
||
|
||
static int
|
||
user_settable_breakpoint (const struct breakpoint *b)
|
||
{
|
||
return (b->type == bp_breakpoint
|
||
|| b->type == bp_catch_load
|
||
|| b->type == bp_catch_unload
|
||
|| b->type == bp_catch_fork
|
||
|| b->type == bp_catch_vfork
|
||
|| b->type == bp_catch_exec
|
||
|| b->type == bp_hardware_breakpoint
|
||
|| b->type == bp_watchpoint
|
||
|| b->type == bp_read_watchpoint
|
||
|| b->type == bp_access_watchpoint
|
||
|| b->type == bp_hardware_watchpoint);
|
||
}
|
||
|
||
/* Print information on user settable breakpoint (watchpoint, etc)
|
||
number BNUM. If BNUM is -1 print all user settable breakpoints.
|
||
If ALLFLAG is non-zero, include non- user settable breakpoints. */
|
||
|
||
static void
|
||
breakpoint_1 (int bnum, int allflag)
|
||
{
|
||
struct breakpoint *b;
|
||
CORE_ADDR last_addr = (CORE_ADDR) -1;
|
||
int nr_printable_breakpoints;
|
||
struct cleanup *bkpttbl_chain;
|
||
|
||
/* Compute the number of rows in the table. */
|
||
nr_printable_breakpoints = 0;
|
||
ALL_BREAKPOINTS (b)
|
||
if (bnum == -1
|
||
|| bnum == b->number)
|
||
{
|
||
if (allflag || user_settable_breakpoint (b))
|
||
nr_printable_breakpoints++;
|
||
}
|
||
|
||
if (addressprint)
|
||
bkpttbl_chain
|
||
= make_cleanup_ui_out_table_begin_end (uiout, 6, nr_printable_breakpoints,
|
||
"BreakpointTable");
|
||
else
|
||
bkpttbl_chain
|
||
= make_cleanup_ui_out_table_begin_end (uiout, 5, nr_printable_breakpoints,
|
||
"BreakpointTable");
|
||
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_breakpoints_headers ();
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (0);
|
||
ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (1);
|
||
ui_out_table_header (uiout, 14, ui_left, "type", "Type"); /* 2 */
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (2);
|
||
ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (3);
|
||
ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
|
||
if (addressprint)
|
||
{
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (4);
|
||
if (gdbarch_addr_bit (current_gdbarch) <= 32)
|
||
ui_out_table_header (uiout, 10, ui_left, "addr", "Address");/* 5 */
|
||
else
|
||
ui_out_table_header (uiout, 18, ui_left, "addr", "Address");/* 5 */
|
||
}
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_field (5);
|
||
ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
|
||
ui_out_table_body (uiout);
|
||
if (nr_printable_breakpoints > 0)
|
||
annotate_breakpoints_table ();
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (bnum == -1
|
||
|| bnum == b->number)
|
||
{
|
||
/* We only print out user settable breakpoints unless the
|
||
allflag is set. */
|
||
if (allflag || user_settable_breakpoint (b))
|
||
print_one_breakpoint (b, &last_addr);
|
||
}
|
||
|
||
do_cleanups (bkpttbl_chain);
|
||
|
||
if (nr_printable_breakpoints == 0)
|
||
{
|
||
if (bnum == -1)
|
||
ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
|
||
else
|
||
ui_out_message (uiout, 0, "No breakpoint or watchpoint number %d.\n",
|
||
bnum);
|
||
}
|
||
else
|
||
{
|
||
/* Compare against (CORE_ADDR)-1 in case some compiler decides
|
||
that a comparison of an unsigned with -1 is always false. */
|
||
if (last_addr != (CORE_ADDR) -1 && !server_command)
|
||
set_next_address (last_addr);
|
||
}
|
||
|
||
/* FIXME? Should this be moved up so that it is only called when
|
||
there have been breakpoints? */
|
||
annotate_breakpoints_table_end ();
|
||
}
|
||
|
||
static void
|
||
breakpoints_info (char *bnum_exp, int from_tty)
|
||
{
|
||
int bnum = -1;
|
||
|
||
if (bnum_exp)
|
||
bnum = parse_and_eval_long (bnum_exp);
|
||
|
||
breakpoint_1 (bnum, 0);
|
||
}
|
||
|
||
static void
|
||
maintenance_info_breakpoints (char *bnum_exp, int from_tty)
|
||
{
|
||
int bnum = -1;
|
||
|
||
if (bnum_exp)
|
||
bnum = parse_and_eval_long (bnum_exp);
|
||
|
||
breakpoint_1 (bnum, 1);
|
||
}
|
||
|
||
static int
|
||
breakpoint_has_pc (struct breakpoint *b, CORE_ADDR pc, asection *section)
|
||
{
|
||
struct bp_location *bl = b->loc;
|
||
for (; bl; bl = bl->next)
|
||
{
|
||
if (bl->address == pc
|
||
&& (!overlay_debugging || bl->section == section))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Print a message describing any breakpoints set at PC. */
|
||
|
||
static void
|
||
describe_other_breakpoints (CORE_ADDR pc, asection *section, int thread)
|
||
{
|
||
int others = 0;
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
others += breakpoint_has_pc (b, pc, section);
|
||
if (others > 0)
|
||
{
|
||
if (others == 1)
|
||
printf_filtered (_("Note: breakpoint "));
|
||
else /* if (others == ???) */
|
||
printf_filtered (_("Note: breakpoints "));
|
||
ALL_BREAKPOINTS (b)
|
||
if (breakpoint_has_pc (b, pc, section))
|
||
{
|
||
others--;
|
||
printf_filtered ("%d", b->number);
|
||
if (b->thread == -1 && thread != -1)
|
||
printf_filtered (" (all threads)");
|
||
else if (b->thread != -1)
|
||
printf_filtered (" (thread %d)", b->thread);
|
||
printf_filtered ("%s%s ",
|
||
((b->enable_state == bp_disabled ||
|
||
b->enable_state == bp_call_disabled)
|
||
? " (disabled)"
|
||
: b->enable_state == bp_permanent
|
||
? " (permanent)"
|
||
: ""),
|
||
(others > 1) ? ","
|
||
: ((others == 1) ? " and" : ""));
|
||
}
|
||
printf_filtered (_("also set at pc "));
|
||
fputs_filtered (paddress (pc), gdb_stdout);
|
||
printf_filtered (".\n");
|
||
}
|
||
}
|
||
|
||
/* Set the default place to put a breakpoint
|
||
for the `break' command with no arguments. */
|
||
|
||
void
|
||
set_default_breakpoint (int valid, CORE_ADDR addr, struct symtab *symtab,
|
||
int line)
|
||
{
|
||
default_breakpoint_valid = valid;
|
||
default_breakpoint_address = addr;
|
||
default_breakpoint_symtab = symtab;
|
||
default_breakpoint_line = line;
|
||
}
|
||
|
||
/* Return true iff it is meaningful to use the address member of
|
||
BPT. For some breakpoint types, the address member is irrelevant
|
||
and it makes no sense to attempt to compare it to other addresses
|
||
(or use it for any other purpose either).
|
||
|
||
More specifically, each of the following breakpoint types will always
|
||
have a zero valued address and we don't want check_duplicates() to mark
|
||
breakpoints of any of these types to be a duplicate of an actual
|
||
breakpoint at address zero:
|
||
|
||
bp_watchpoint
|
||
bp_hardware_watchpoint
|
||
bp_read_watchpoint
|
||
bp_access_watchpoint
|
||
bp_catch_exec
|
||
bp_catch_fork
|
||
bp_catch_vork */
|
||
|
||
static int
|
||
breakpoint_address_is_meaningful (struct breakpoint *bpt)
|
||
{
|
||
enum bptype type = bpt->type;
|
||
|
||
return (type != bp_watchpoint
|
||
&& type != bp_hardware_watchpoint
|
||
&& type != bp_read_watchpoint
|
||
&& type != bp_access_watchpoint
|
||
&& type != bp_catch_exec
|
||
&& type != bp_catch_fork
|
||
&& type != bp_catch_vfork);
|
||
}
|
||
|
||
/* Rescan breakpoints at the same address and section as BPT,
|
||
marking the first one as "first" and any others as "duplicates".
|
||
This is so that the bpt instruction is only inserted once.
|
||
If we have a permanent breakpoint at the same place as BPT, make
|
||
that one the official one, and the rest as duplicates. */
|
||
|
||
static void
|
||
check_duplicates_for (CORE_ADDR address, asection *section)
|
||
{
|
||
struct bp_location *b;
|
||
int count = 0;
|
||
struct bp_location *perm_bp = 0;
|
||
|
||
ALL_BP_LOCATIONS (b)
|
||
if (b->owner->enable_state != bp_disabled
|
||
&& b->owner->enable_state != bp_call_disabled
|
||
&& b->enabled
|
||
&& !b->shlib_disabled
|
||
&& b->address == address /* address / overlay match */
|
||
&& (!overlay_debugging || b->section == section)
|
||
&& breakpoint_address_is_meaningful (b->owner))
|
||
{
|
||
/* Have we found a permanent breakpoint? */
|
||
if (b->owner->enable_state == bp_permanent)
|
||
{
|
||
perm_bp = b;
|
||
break;
|
||
}
|
||
|
||
count++;
|
||
b->duplicate = count > 1;
|
||
}
|
||
|
||
/* If we found a permanent breakpoint at this address, go over the
|
||
list again and declare all the other breakpoints there to be the
|
||
duplicates. */
|
||
if (perm_bp)
|
||
{
|
||
perm_bp->duplicate = 0;
|
||
|
||
/* Permanent breakpoint should always be inserted. */
|
||
if (! perm_bp->inserted)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("allegedly permanent breakpoint is not "
|
||
"actually inserted"));
|
||
|
||
ALL_BP_LOCATIONS (b)
|
||
if (b != perm_bp)
|
||
{
|
||
if (b->owner->enable_state != bp_disabled
|
||
&& b->owner->enable_state != bp_call_disabled
|
||
&& b->enabled && !b->shlib_disabled
|
||
&& b->address == address /* address / overlay match */
|
||
&& (!overlay_debugging || b->section == section)
|
||
&& breakpoint_address_is_meaningful (b->owner))
|
||
{
|
||
if (b->inserted)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("another breakpoint was inserted on top of "
|
||
"a permanent breakpoint"));
|
||
|
||
b->duplicate = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
check_duplicates (struct breakpoint *bpt)
|
||
{
|
||
struct bp_location *bl = bpt->loc;
|
||
|
||
if (! breakpoint_address_is_meaningful (bpt))
|
||
return;
|
||
|
||
for (; bl; bl = bl->next)
|
||
check_duplicates_for (bl->address, bl->section);
|
||
}
|
||
|
||
static void
|
||
breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
|
||
int bnum, int have_bnum)
|
||
{
|
||
char astr1[40];
|
||
char astr2[40];
|
||
|
||
strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
|
||
strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
|
||
if (have_bnum)
|
||
warning (_("Breakpoint %d address previously adjusted from %s to %s."),
|
||
bnum, astr1, astr2);
|
||
else
|
||
warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
|
||
}
|
||
|
||
/* Adjust a breakpoint's address to account for architectural constraints
|
||
on breakpoint placement. Return the adjusted address. Note: Very
|
||
few targets require this kind of adjustment. For most targets,
|
||
this function is simply the identity function. */
|
||
|
||
static CORE_ADDR
|
||
adjust_breakpoint_address (CORE_ADDR bpaddr, enum bptype bptype)
|
||
{
|
||
if (!gdbarch_adjust_breakpoint_address_p (current_gdbarch))
|
||
{
|
||
/* Very few targets need any kind of breakpoint adjustment. */
|
||
return bpaddr;
|
||
}
|
||
else if (bptype == bp_watchpoint
|
||
|| bptype == bp_hardware_watchpoint
|
||
|| bptype == bp_read_watchpoint
|
||
|| bptype == bp_access_watchpoint
|
||
|| bptype == bp_catch_fork
|
||
|| bptype == bp_catch_vfork
|
||
|| bptype == bp_catch_exec)
|
||
{
|
||
/* Watchpoints and the various bp_catch_* eventpoints should not
|
||
have their addresses modified. */
|
||
return bpaddr;
|
||
}
|
||
else
|
||
{
|
||
CORE_ADDR adjusted_bpaddr;
|
||
|
||
/* Some targets have architectural constraints on the placement
|
||
of breakpoint instructions. Obtain the adjusted address. */
|
||
adjusted_bpaddr = gdbarch_adjust_breakpoint_address (current_gdbarch,
|
||
bpaddr);
|
||
|
||
/* An adjusted breakpoint address can significantly alter
|
||
a user's expectations. Print a warning if an adjustment
|
||
is required. */
|
||
if (adjusted_bpaddr != bpaddr)
|
||
breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
|
||
|
||
return adjusted_bpaddr;
|
||
}
|
||
}
|
||
|
||
/* Allocate a struct bp_location. */
|
||
|
||
static struct bp_location *
|
||
allocate_bp_location (struct breakpoint *bpt, enum bptype bp_type)
|
||
{
|
||
struct bp_location *loc, *loc_p;
|
||
|
||
loc = xmalloc (sizeof (struct bp_location));
|
||
memset (loc, 0, sizeof (*loc));
|
||
|
||
loc->owner = bpt;
|
||
loc->cond = NULL;
|
||
loc->shlib_disabled = 0;
|
||
loc->enabled = 1;
|
||
|
||
switch (bp_type)
|
||
{
|
||
case bp_breakpoint:
|
||
case bp_until:
|
||
case bp_finish:
|
||
case bp_longjmp:
|
||
case bp_longjmp_resume:
|
||
case bp_step_resume:
|
||
case bp_watchpoint_scope:
|
||
case bp_call_dummy:
|
||
case bp_shlib_event:
|
||
case bp_thread_event:
|
||
case bp_overlay_event:
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
loc->loc_type = bp_loc_software_breakpoint;
|
||
break;
|
||
case bp_hardware_breakpoint:
|
||
loc->loc_type = bp_loc_hardware_breakpoint;
|
||
break;
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
loc->loc_type = bp_loc_hardware_watchpoint;
|
||
break;
|
||
case bp_watchpoint:
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
case bp_catch_exec:
|
||
loc->loc_type = bp_loc_other;
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
|
||
}
|
||
|
||
return loc;
|
||
}
|
||
|
||
static void free_bp_location (struct bp_location *loc)
|
||
{
|
||
if (loc->cond)
|
||
xfree (loc->cond);
|
||
|
||
if (loc->function_name)
|
||
xfree (loc->function_name);
|
||
|
||
xfree (loc);
|
||
}
|
||
|
||
/* Helper to set_raw_breakpoint below. Creates a breakpoint
|
||
that has type BPTYPE and has no locations as yet. */
|
||
|
||
static struct breakpoint *
|
||
set_raw_breakpoint_without_location (enum bptype bptype)
|
||
{
|
||
struct breakpoint *b, *b1;
|
||
|
||
b = (struct breakpoint *) xmalloc (sizeof (struct breakpoint));
|
||
memset (b, 0, sizeof (*b));
|
||
|
||
b->type = bptype;
|
||
b->language = current_language->la_language;
|
||
b->input_radix = input_radix;
|
||
b->thread = -1;
|
||
b->enable_state = bp_enabled;
|
||
b->next = 0;
|
||
b->silent = 0;
|
||
b->ignore_count = 0;
|
||
b->commands = NULL;
|
||
b->frame_id = null_frame_id;
|
||
b->dll_pathname = NULL;
|
||
b->triggered_dll_pathname = NULL;
|
||
b->forked_inferior_pid = null_ptid;
|
||
b->exec_pathname = NULL;
|
||
b->ops = NULL;
|
||
b->condition_not_parsed = 0;
|
||
|
||
/* Add this breakpoint to the end of the chain
|
||
so that a list of breakpoints will come out in order
|
||
of increasing numbers. */
|
||
|
||
b1 = breakpoint_chain;
|
||
if (b1 == 0)
|
||
breakpoint_chain = b;
|
||
else
|
||
{
|
||
while (b1->next)
|
||
b1 = b1->next;
|
||
b1->next = b;
|
||
}
|
||
return b;
|
||
}
|
||
|
||
/* Initialize loc->function_name. */
|
||
static void
|
||
set_breakpoint_location_function (struct bp_location *loc)
|
||
{
|
||
if (loc->owner->type == bp_breakpoint
|
||
|| loc->owner->type == bp_hardware_breakpoint)
|
||
{
|
||
find_pc_partial_function (loc->address, &(loc->function_name),
|
||
NULL, NULL);
|
||
if (loc->function_name)
|
||
loc->function_name = xstrdup (loc->function_name);
|
||
}
|
||
}
|
||
|
||
/* set_raw_breakpoint is a low level routine for allocating and
|
||
partially initializing a breakpoint of type BPTYPE. The newly
|
||
created breakpoint's address, section, source file name, and line
|
||
number are provided by SAL. The newly created and partially
|
||
initialized breakpoint is added to the breakpoint chain and
|
||
is also returned as the value of this function.
|
||
|
||
It is expected that the caller will complete the initialization of
|
||
the newly created breakpoint struct as well as output any status
|
||
information regarding the creation of a new breakpoint. In
|
||
particular, set_raw_breakpoint does NOT set the breakpoint
|
||
number! Care should be taken to not allow an error to occur
|
||
prior to completing the initialization of the breakpoint. If this
|
||
should happen, a bogus breakpoint will be left on the chain. */
|
||
|
||
struct breakpoint *
|
||
set_raw_breakpoint (struct symtab_and_line sal, enum bptype bptype)
|
||
{
|
||
struct breakpoint *b = set_raw_breakpoint_without_location (bptype);
|
||
CORE_ADDR adjusted_address;
|
||
|
||
/* Adjust the breakpoint's address prior to allocating a location.
|
||
Once we call allocate_bp_location(), that mostly uninitialized
|
||
location will be placed on the location chain. Adjustment of the
|
||
breakpoint may cause target_read_memory() to be called and we do
|
||
not want its scan of the location chain to find a breakpoint and
|
||
location that's only been partially initialized. */
|
||
adjusted_address = adjust_breakpoint_address (sal.pc, bptype);
|
||
|
||
b->loc = allocate_bp_location (b, bptype);
|
||
b->loc->requested_address = sal.pc;
|
||
b->loc->address = adjusted_address;
|
||
|
||
if (sal.symtab == NULL)
|
||
b->source_file = NULL;
|
||
else
|
||
b->source_file = savestring (sal.symtab->filename,
|
||
strlen (sal.symtab->filename));
|
||
b->loc->section = sal.section;
|
||
b->line_number = sal.line;
|
||
|
||
set_breakpoint_location_function (b->loc);
|
||
|
||
breakpoints_changed ();
|
||
|
||
return b;
|
||
}
|
||
|
||
|
||
/* Note that the breakpoint object B describes a permanent breakpoint
|
||
instruction, hard-wired into the inferior's code. */
|
||
void
|
||
make_breakpoint_permanent (struct breakpoint *b)
|
||
{
|
||
struct bp_location *bl;
|
||
b->enable_state = bp_permanent;
|
||
|
||
/* By definition, permanent breakpoints are already present in the code.
|
||
Mark all locations as inserted. For now, make_breakpoint_permanent
|
||
is called in just one place, so it's hard to say if it's reasonable
|
||
to have permanent breakpoint with multiple locations or not,
|
||
but it's easy to implmement. */
|
||
for (bl = b->loc; bl; bl = bl->next)
|
||
bl->inserted = 1;
|
||
}
|
||
|
||
static struct breakpoint *
|
||
create_internal_breakpoint (CORE_ADDR address, enum bptype type)
|
||
{
|
||
static int internal_breakpoint_number = -1;
|
||
struct symtab_and_line sal;
|
||
struct breakpoint *b;
|
||
|
||
init_sal (&sal); /* initialize to zeroes */
|
||
|
||
sal.pc = address;
|
||
sal.section = find_pc_overlay (sal.pc);
|
||
|
||
b = set_raw_breakpoint (sal, type);
|
||
b->number = internal_breakpoint_number--;
|
||
b->disposition = disp_donttouch;
|
||
|
||
return b;
|
||
}
|
||
|
||
|
||
static void
|
||
create_longjmp_breakpoint (char *func_name)
|
||
{
|
||
struct breakpoint *b;
|
||
struct minimal_symbol *m;
|
||
|
||
if ((m = lookup_minimal_symbol_text (func_name, NULL)) == NULL)
|
||
return;
|
||
set_momentary_breakpoint_at_pc (SYMBOL_VALUE_ADDRESS (m), bp_longjmp);
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
/* Call this routine when stepping and nexting to enable a breakpoint
|
||
if we do a longjmp(). When we hit that breakpoint, call
|
||
set_longjmp_resume_breakpoint() to figure out where we are going. */
|
||
|
||
void
|
||
set_longjmp_breakpoint (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
if (gdbarch_get_longjmp_target_p (current_gdbarch))
|
||
{
|
||
create_longjmp_breakpoint ("longjmp");
|
||
create_longjmp_breakpoint ("_longjmp");
|
||
create_longjmp_breakpoint ("siglongjmp");
|
||
create_longjmp_breakpoint ("_siglongjmp");
|
||
}
|
||
}
|
||
|
||
/* Delete all longjmp breakpoints from THREAD. */
|
||
void
|
||
delete_longjmp_breakpoint (int thread)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
if (b->type == bp_longjmp)
|
||
{
|
||
if (b->thread == thread)
|
||
delete_breakpoint (b);
|
||
}
|
||
}
|
||
|
||
static void
|
||
create_overlay_event_breakpoint (char *func_name)
|
||
{
|
||
struct breakpoint *b;
|
||
struct minimal_symbol *m;
|
||
|
||
if ((m = lookup_minimal_symbol_text (func_name, NULL)) == NULL)
|
||
return;
|
||
|
||
b = create_internal_breakpoint (SYMBOL_VALUE_ADDRESS (m),
|
||
bp_overlay_event);
|
||
b->addr_string = xstrdup (func_name);
|
||
|
||
if (overlay_debugging == ovly_auto)
|
||
{
|
||
b->enable_state = bp_enabled;
|
||
overlay_events_enabled = 1;
|
||
}
|
||
else
|
||
{
|
||
b->enable_state = bp_disabled;
|
||
overlay_events_enabled = 0;
|
||
}
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
void
|
||
enable_overlay_breakpoints (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->type == bp_overlay_event)
|
||
{
|
||
b->enable_state = bp_enabled;
|
||
update_global_location_list (1);
|
||
overlay_events_enabled = 1;
|
||
}
|
||
}
|
||
|
||
void
|
||
disable_overlay_breakpoints (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->type == bp_overlay_event)
|
||
{
|
||
b->enable_state = bp_disabled;
|
||
update_global_location_list (0);
|
||
overlay_events_enabled = 0;
|
||
}
|
||
}
|
||
|
||
struct breakpoint *
|
||
create_thread_event_breakpoint (CORE_ADDR address)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
b = create_internal_breakpoint (address, bp_thread_event);
|
||
|
||
b->enable_state = bp_enabled;
|
||
/* addr_string has to be used or breakpoint_re_set will delete me. */
|
||
b->addr_string = xstrprintf ("*0x%s", paddr (b->loc->address));
|
||
|
||
update_global_location_list_nothrow (1);
|
||
|
||
return b;
|
||
}
|
||
|
||
void
|
||
remove_thread_event_breakpoints (void)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
if (b->type == bp_thread_event)
|
||
delete_breakpoint (b);
|
||
}
|
||
|
||
struct captured_parse_breakpoint_args
|
||
{
|
||
char **arg_p;
|
||
struct symtabs_and_lines *sals_p;
|
||
char ***addr_string_p;
|
||
int *not_found_ptr;
|
||
};
|
||
|
||
struct lang_and_radix
|
||
{
|
||
enum language lang;
|
||
int radix;
|
||
};
|
||
|
||
|
||
void
|
||
remove_solib_event_breakpoints (void)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
if (b->type == bp_shlib_event)
|
||
delete_breakpoint (b);
|
||
}
|
||
|
||
struct breakpoint *
|
||
create_solib_event_breakpoint (CORE_ADDR address)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
b = create_internal_breakpoint (address, bp_shlib_event);
|
||
update_global_location_list_nothrow (1);
|
||
return b;
|
||
}
|
||
|
||
/* Disable any breakpoints that are on code in shared libraries. Only
|
||
apply to enabled breakpoints, disabled ones can just stay disabled. */
|
||
|
||
void
|
||
disable_breakpoints_in_shlibs (void)
|
||
{
|
||
struct bp_location *loc;
|
||
int disabled_shlib_breaks = 0;
|
||
|
||
ALL_BP_LOCATIONS (loc)
|
||
{
|
||
struct breakpoint *b = loc->owner;
|
||
/* We apply the check to all breakpoints, including disabled
|
||
for those with loc->duplicate set. This is so that when breakpoint
|
||
becomes enabled, or the duplicate is removed, gdb will try to insert
|
||
all breakpoints. If we don't set shlib_disabled here, we'll try
|
||
to insert those breakpoints and fail. */
|
||
if (((b->type == bp_breakpoint) || (b->type == bp_hardware_breakpoint))
|
||
&& !loc->shlib_disabled
|
||
#ifdef PC_SOLIB
|
||
&& PC_SOLIB (loc->address)
|
||
#else
|
||
&& solib_address (loc->address)
|
||
#endif
|
||
)
|
||
{
|
||
loc->shlib_disabled = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Disable any breakpoints that are in in an unloaded shared library. Only
|
||
apply to enabled breakpoints, disabled ones can just stay disabled. */
|
||
|
||
static void
|
||
disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
|
||
{
|
||
struct bp_location *loc;
|
||
int disabled_shlib_breaks = 0;
|
||
|
||
ALL_BP_LOCATIONS (loc)
|
||
{
|
||
struct breakpoint *b = loc->owner;
|
||
if ((loc->loc_type == bp_loc_hardware_breakpoint
|
||
|| loc->loc_type == bp_loc_software_breakpoint)
|
||
&& !loc->shlib_disabled)
|
||
{
|
||
#ifdef PC_SOLIB
|
||
char *so_name = PC_SOLIB (loc->address);
|
||
#else
|
||
char *so_name = solib_address (loc->address);
|
||
#endif
|
||
if (so_name && !strcmp (so_name, solib->so_name))
|
||
{
|
||
loc->shlib_disabled = 1;
|
||
/* At this point, we cannot rely on remove_breakpoint
|
||
succeeding so we must mark the breakpoint as not inserted
|
||
to prevent future errors occurring in remove_breakpoints. */
|
||
loc->inserted = 0;
|
||
if (!disabled_shlib_breaks)
|
||
{
|
||
target_terminal_ours_for_output ();
|
||
warning (_("Temporarily disabling breakpoints for unloaded shared library \"%s\""),
|
||
so_name);
|
||
}
|
||
disabled_shlib_breaks = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
create_fork_vfork_event_catchpoint (int tempflag, char *cond_string,
|
||
enum bptype bp_kind)
|
||
{
|
||
struct symtab_and_line sal;
|
||
struct breakpoint *b;
|
||
int thread = -1; /* All threads. */
|
||
|
||
init_sal (&sal);
|
||
sal.pc = 0;
|
||
sal.symtab = NULL;
|
||
sal.line = 0;
|
||
|
||
b = set_raw_breakpoint (sal, bp_kind);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
b->number = breakpoint_count;
|
||
b->cond_string = (cond_string == NULL) ?
|
||
NULL : savestring (cond_string, strlen (cond_string));
|
||
b->thread = thread;
|
||
b->addr_string = NULL;
|
||
b->enable_state = bp_enabled;
|
||
b->disposition = tempflag ? disp_del : disp_donttouch;
|
||
b->forked_inferior_pid = null_ptid;
|
||
update_global_location_list (1);
|
||
|
||
|
||
mention (b);
|
||
}
|
||
|
||
static void
|
||
create_fork_event_catchpoint (int tempflag, char *cond_string)
|
||
{
|
||
create_fork_vfork_event_catchpoint (tempflag, cond_string, bp_catch_fork);
|
||
}
|
||
|
||
static void
|
||
create_vfork_event_catchpoint (int tempflag, char *cond_string)
|
||
{
|
||
create_fork_vfork_event_catchpoint (tempflag, cond_string, bp_catch_vfork);
|
||
}
|
||
|
||
static void
|
||
create_exec_event_catchpoint (int tempflag, char *cond_string)
|
||
{
|
||
struct symtab_and_line sal;
|
||
struct breakpoint *b;
|
||
int thread = -1; /* All threads. */
|
||
|
||
init_sal (&sal);
|
||
sal.pc = 0;
|
||
sal.symtab = NULL;
|
||
sal.line = 0;
|
||
|
||
b = set_raw_breakpoint (sal, bp_catch_exec);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
b->number = breakpoint_count;
|
||
b->cond_string = (cond_string == NULL) ?
|
||
NULL : savestring (cond_string, strlen (cond_string));
|
||
b->thread = thread;
|
||
b->addr_string = NULL;
|
||
b->enable_state = bp_enabled;
|
||
b->disposition = tempflag ? disp_del : disp_donttouch;
|
||
update_global_location_list (1);
|
||
|
||
mention (b);
|
||
}
|
||
|
||
static int
|
||
hw_breakpoint_used_count (void)
|
||
{
|
||
struct breakpoint *b;
|
||
int i = 0;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (b->type == bp_hardware_breakpoint && b->enable_state == bp_enabled)
|
||
i++;
|
||
}
|
||
|
||
return i;
|
||
}
|
||
|
||
static int
|
||
hw_watchpoint_used_count (enum bptype type, int *other_type_used)
|
||
{
|
||
struct breakpoint *b;
|
||
int i = 0;
|
||
|
||
*other_type_used = 0;
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (breakpoint_enabled (b))
|
||
{
|
||
if (b->type == type)
|
||
i++;
|
||
else if ((b->type == bp_hardware_watchpoint ||
|
||
b->type == bp_read_watchpoint ||
|
||
b->type == bp_access_watchpoint))
|
||
*other_type_used = 1;
|
||
}
|
||
}
|
||
return i;
|
||
}
|
||
|
||
void
|
||
disable_watchpoints_before_interactive_call_start (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (((b->type == bp_watchpoint)
|
||
|| (b->type == bp_hardware_watchpoint)
|
||
|| (b->type == bp_read_watchpoint)
|
||
|| (b->type == bp_access_watchpoint))
|
||
&& breakpoint_enabled (b))
|
||
{
|
||
b->enable_state = bp_call_disabled;
|
||
update_global_location_list (0);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
enable_watchpoints_after_interactive_call_stop (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (((b->type == bp_watchpoint)
|
||
|| (b->type == bp_hardware_watchpoint)
|
||
|| (b->type == bp_read_watchpoint)
|
||
|| (b->type == bp_access_watchpoint))
|
||
&& (b->enable_state == bp_call_disabled))
|
||
{
|
||
b->enable_state = bp_enabled;
|
||
update_global_location_list (1);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Set a breakpoint that will evaporate an end of command
|
||
at address specified by SAL.
|
||
Restrict it to frame FRAME if FRAME is nonzero. */
|
||
|
||
struct breakpoint *
|
||
set_momentary_breakpoint (struct symtab_and_line sal, struct frame_id frame_id,
|
||
enum bptype type)
|
||
{
|
||
struct breakpoint *b;
|
||
b = set_raw_breakpoint (sal, type);
|
||
b->enable_state = bp_enabled;
|
||
b->disposition = disp_donttouch;
|
||
b->frame_id = frame_id;
|
||
|
||
/* If we're debugging a multi-threaded program, then we
|
||
want momentary breakpoints to be active in only a
|
||
single thread of control. */
|
||
if (in_thread_list (inferior_ptid))
|
||
b->thread = pid_to_thread_id (inferior_ptid);
|
||
|
||
update_global_location_list_nothrow (1);
|
||
|
||
return b;
|
||
}
|
||
|
||
struct breakpoint *
|
||
set_momentary_breakpoint_at_pc (CORE_ADDR pc, enum bptype type)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (pc, 0);
|
||
sal.pc = pc;
|
||
sal.section = find_pc_overlay (pc);
|
||
sal.explicit_pc = 1;
|
||
|
||
return set_momentary_breakpoint (sal, null_frame_id, type);
|
||
}
|
||
|
||
|
||
/* Tell the user we have just set a breakpoint B. */
|
||
|
||
static void
|
||
mention (struct breakpoint *b)
|
||
{
|
||
int say_where = 0;
|
||
struct cleanup *old_chain, *ui_out_chain;
|
||
struct ui_stream *stb;
|
||
|
||
stb = ui_out_stream_new (uiout);
|
||
old_chain = make_cleanup_ui_out_stream_delete (stb);
|
||
|
||
/* FIXME: This is misplaced; mention() is called by things (like
|
||
hitting a watchpoint) other than breakpoint creation. It should
|
||
be possible to clean this up and at the same time replace the
|
||
random calls to breakpoint_changed with this hook. */
|
||
observer_notify_breakpoint_created (b->number);
|
||
|
||
if (b->ops != NULL && b->ops->print_mention != NULL)
|
||
b->ops->print_mention (b);
|
||
else
|
||
switch (b->type)
|
||
{
|
||
case bp_none:
|
||
printf_filtered (_("(apparently deleted?) Eventpoint %d: "), b->number);
|
||
break;
|
||
case bp_watchpoint:
|
||
ui_out_text (uiout, "Watchpoint ");
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
|
||
ui_out_field_int (uiout, "number", b->number);
|
||
ui_out_text (uiout, ": ");
|
||
print_expression (b->exp, stb->stream);
|
||
ui_out_field_stream (uiout, "exp", stb);
|
||
do_cleanups (ui_out_chain);
|
||
break;
|
||
case bp_hardware_watchpoint:
|
||
ui_out_text (uiout, "Hardware watchpoint ");
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
|
||
ui_out_field_int (uiout, "number", b->number);
|
||
ui_out_text (uiout, ": ");
|
||
print_expression (b->exp, stb->stream);
|
||
ui_out_field_stream (uiout, "exp", stb);
|
||
do_cleanups (ui_out_chain);
|
||
break;
|
||
case bp_read_watchpoint:
|
||
ui_out_text (uiout, "Hardware read watchpoint ");
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
|
||
ui_out_field_int (uiout, "number", b->number);
|
||
ui_out_text (uiout, ": ");
|
||
print_expression (b->exp, stb->stream);
|
||
ui_out_field_stream (uiout, "exp", stb);
|
||
do_cleanups (ui_out_chain);
|
||
break;
|
||
case bp_access_watchpoint:
|
||
ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
|
||
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
|
||
ui_out_field_int (uiout, "number", b->number);
|
||
ui_out_text (uiout, ": ");
|
||
print_expression (b->exp, stb->stream);
|
||
ui_out_field_stream (uiout, "exp", stb);
|
||
do_cleanups (ui_out_chain);
|
||
break;
|
||
case bp_breakpoint:
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
say_where = 0;
|
||
break;
|
||
}
|
||
if (b->disposition == disp_del)
|
||
printf_filtered (_("Temporary breakpoint"));
|
||
else
|
||
printf_filtered (_("Breakpoint"));
|
||
printf_filtered (_(" %d"), b->number);
|
||
say_where = 1;
|
||
break;
|
||
case bp_hardware_breakpoint:
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
say_where = 0;
|
||
break;
|
||
}
|
||
printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
|
||
say_where = 1;
|
||
break;
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
printf_filtered (_("Catchpoint %d (%s %s)"),
|
||
b->number,
|
||
(b->type == bp_catch_load) ? "load" : "unload",
|
||
(b->dll_pathname != NULL) ?
|
||
b->dll_pathname : "<any library>");
|
||
break;
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
printf_filtered (_("Catchpoint %d (%s)"),
|
||
b->number,
|
||
(b->type == bp_catch_fork) ? "fork" : "vfork");
|
||
break;
|
||
case bp_catch_exec:
|
||
printf_filtered (_("Catchpoint %d (exec)"),
|
||
b->number);
|
||
break;
|
||
|
||
case bp_until:
|
||
case bp_finish:
|
||
case bp_longjmp:
|
||
case bp_longjmp_resume:
|
||
case bp_step_resume:
|
||
case bp_call_dummy:
|
||
case bp_watchpoint_scope:
|
||
case bp_shlib_event:
|
||
case bp_thread_event:
|
||
case bp_overlay_event:
|
||
break;
|
||
}
|
||
|
||
if (say_where)
|
||
{
|
||
/* i18n: cagney/2005-02-11: Below needs to be merged into a
|
||
single string. */
|
||
if (b->loc == NULL)
|
||
{
|
||
printf_filtered (_(" (%s) pending."), b->addr_string);
|
||
}
|
||
else
|
||
{
|
||
if (addressprint || b->source_file == NULL)
|
||
{
|
||
printf_filtered (" at ");
|
||
fputs_filtered (paddress (b->loc->address), gdb_stdout);
|
||
}
|
||
if (b->source_file)
|
||
printf_filtered (": file %s, line %d.",
|
||
b->source_file, b->line_number);
|
||
|
||
if (b->loc->next)
|
||
{
|
||
struct bp_location *loc = b->loc;
|
||
int n = 0;
|
||
for (; loc; loc = loc->next)
|
||
++n;
|
||
printf_filtered (" (%d locations)", n);
|
||
}
|
||
|
||
}
|
||
}
|
||
do_cleanups (old_chain);
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
return;
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
|
||
static struct bp_location *
|
||
add_location_to_breakpoint (struct breakpoint *b, enum bptype bptype,
|
||
const struct symtab_and_line *sal)
|
||
{
|
||
struct bp_location *loc, **tmp;
|
||
|
||
loc = allocate_bp_location (b, bptype);
|
||
for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
|
||
;
|
||
*tmp = loc;
|
||
loc->requested_address = sal->pc;
|
||
loc->address = adjust_breakpoint_address (loc->requested_address,
|
||
bptype);
|
||
loc->section = sal->section;
|
||
|
||
set_breakpoint_location_function (loc);
|
||
return loc;
|
||
}
|
||
|
||
/* Create a breakpoint with SAL as location. Use ADDR_STRING
|
||
as textual description of the location, and COND_STRING
|
||
as condition expression. */
|
||
|
||
static void
|
||
create_breakpoint (struct symtabs_and_lines sals, char *addr_string,
|
||
char *cond_string,
|
||
enum bptype type, enum bpdisp disposition,
|
||
int thread, int ignore_count,
|
||
struct breakpoint_ops *ops, int from_tty)
|
||
{
|
||
struct breakpoint *b = NULL;
|
||
int i;
|
||
|
||
if (type == bp_hardware_breakpoint)
|
||
{
|
||
int i = hw_breakpoint_used_count ();
|
||
int target_resources_ok =
|
||
TARGET_CAN_USE_HARDWARE_WATCHPOINT (bp_hardware_breakpoint,
|
||
i + 1, 0);
|
||
if (target_resources_ok == 0)
|
||
error (_("No hardware breakpoint support in the target."));
|
||
else if (target_resources_ok < 0)
|
||
error (_("Hardware breakpoints used exceeds limit."));
|
||
}
|
||
|
||
for (i = 0; i < sals.nelts; ++i)
|
||
{
|
||
struct symtab_and_line sal = sals.sals[i];
|
||
struct bp_location *loc;
|
||
|
||
if (from_tty)
|
||
describe_other_breakpoints (sal.pc, sal.section, thread);
|
||
|
||
if (i == 0)
|
||
{
|
||
b = set_raw_breakpoint (sal, type);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
b->number = breakpoint_count;
|
||
b->thread = thread;
|
||
|
||
b->cond_string = cond_string;
|
||
b->ignore_count = ignore_count;
|
||
b->enable_state = bp_enabled;
|
||
b->disposition = disposition;
|
||
|
||
loc = b->loc;
|
||
}
|
||
else
|
||
{
|
||
loc = add_location_to_breakpoint (b, type, &sal);
|
||
}
|
||
|
||
if (b->cond_string)
|
||
{
|
||
char *arg = b->cond_string;
|
||
loc->cond = parse_exp_1 (&arg, block_for_pc (loc->address), 0);
|
||
if (*arg)
|
||
error (_("Garbage %s follows condition"), arg);
|
||
}
|
||
}
|
||
|
||
if (addr_string)
|
||
b->addr_string = addr_string;
|
||
else
|
||
/* addr_string has to be used or breakpoint_re_set will delete
|
||
me. */
|
||
b->addr_string = xstrprintf ("*0x%s", paddr (b->loc->address));
|
||
|
||
b->ops = ops;
|
||
mention (b);
|
||
}
|
||
|
||
/* Remove element at INDEX_TO_REMOVE from SAL, shifting other
|
||
elements to fill the void space. */
|
||
static void remove_sal (struct symtabs_and_lines *sal, int index_to_remove)
|
||
{
|
||
int i = index_to_remove+1;
|
||
int last_index = sal->nelts-1;
|
||
|
||
for (;i <= last_index; ++i)
|
||
sal->sals[i-1] = sal->sals[i];
|
||
|
||
--(sal->nelts);
|
||
}
|
||
|
||
/* If appropriate, obtains all sals that correspond
|
||
to the same file and line as SAL. This is done
|
||
only if SAL does not have explicit PC and has
|
||
line and file information. If we got just a single
|
||
expanded sal, return the original.
|
||
|
||
Otherwise, if SAL.explicit_line is not set, filter out
|
||
all sals for which the name of enclosing function
|
||
is different from SAL. This makes sure that if we have
|
||
breakpoint originally set in template instantiation, say
|
||
foo<int>(), we won't expand SAL to locations at the same
|
||
line in all existing instantiations of 'foo'.
|
||
|
||
*/
|
||
struct symtabs_and_lines
|
||
expand_line_sal_maybe (struct symtab_and_line sal)
|
||
{
|
||
struct symtabs_and_lines expanded;
|
||
CORE_ADDR original_pc = sal.pc;
|
||
char *original_function = NULL;
|
||
int found;
|
||
int i;
|
||
|
||
/* If we have explicit pc, don't expand.
|
||
If we have no line number, we can't expand. */
|
||
if (sal.explicit_pc || sal.line == 0 || sal.symtab == NULL)
|
||
{
|
||
expanded.nelts = 1;
|
||
expanded.sals = xmalloc (sizeof (struct symtab_and_line));
|
||
expanded.sals[0] = sal;
|
||
return expanded;
|
||
}
|
||
|
||
sal.pc = 0;
|
||
find_pc_partial_function (original_pc, &original_function, NULL, NULL);
|
||
|
||
expanded = expand_line_sal (sal);
|
||
if (expanded.nelts == 1)
|
||
{
|
||
/* We had one sal, we got one sal. Without futher
|
||
processing, just return the original sal. */
|
||
xfree (expanded.sals);
|
||
expanded.nelts = 1;
|
||
expanded.sals = xmalloc (sizeof (struct symtab_and_line));
|
||
sal.pc = original_pc;
|
||
expanded.sals[0] = sal;
|
||
return expanded;
|
||
}
|
||
|
||
if (!sal.explicit_line)
|
||
{
|
||
CORE_ADDR func_addr, func_end;
|
||
for (i = 0; i < expanded.nelts; ++i)
|
||
{
|
||
CORE_ADDR pc = expanded.sals[i].pc;
|
||
char *this_function;
|
||
if (find_pc_partial_function (pc, &this_function,
|
||
&func_addr, &func_end))
|
||
{
|
||
if (this_function &&
|
||
strcmp (this_function, original_function) != 0)
|
||
{
|
||
remove_sal (&expanded, i);
|
||
--i;
|
||
}
|
||
else if (func_addr == pc)
|
||
{
|
||
/* We're at beginning of a function, and should
|
||
skip prologue. */
|
||
struct symbol *sym = find_pc_function (pc);
|
||
if (sym)
|
||
expanded.sals[i] = find_function_start_sal (sym, 1);
|
||
else
|
||
expanded.sals[i].pc
|
||
= gdbarch_skip_prologue (current_gdbarch, pc);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
if (expanded.nelts <= 1)
|
||
{
|
||
/* This is un ugly workaround. If we get zero
|
||
expanded sals then something is really wrong.
|
||
Fix that by returnign the original sal. */
|
||
xfree (expanded.sals);
|
||
expanded.nelts = 1;
|
||
expanded.sals = xmalloc (sizeof (struct symtab_and_line));
|
||
sal.pc = original_pc;
|
||
expanded.sals[0] = sal;
|
||
return expanded;
|
||
}
|
||
|
||
if (original_pc)
|
||
{
|
||
found = 0;
|
||
for (i = 0; i < expanded.nelts; ++i)
|
||
if (expanded.sals[i].pc == original_pc)
|
||
{
|
||
found = 1;
|
||
break;
|
||
}
|
||
gdb_assert (found);
|
||
}
|
||
|
||
return expanded;
|
||
}
|
||
|
||
/* Add SALS.nelts breakpoints to the breakpoint table. For each
|
||
SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
|
||
value. COND_STRING, if not NULL, specified the condition to be
|
||
used for all breakpoints. Essentially the only case where
|
||
SALS.nelts is not 1 is when we set a breakpoint on an overloaded
|
||
function. In that case, it's still not possible to specify
|
||
separate conditions for different overloaded functions, so
|
||
we take just a single condition string.
|
||
|
||
NOTE: If the function succeeds, the caller is expected to cleanup
|
||
the arrays ADDR_STRING, COND_STRING, and SALS (but not the
|
||
array contents). If the function fails (error() is called), the
|
||
caller is expected to cleanups both the ADDR_STRING, COND_STRING,
|
||
COND and SALS arrays and each of those arrays contents. */
|
||
|
||
static void
|
||
create_breakpoints (struct symtabs_and_lines sals, char **addr_string,
|
||
char *cond_string,
|
||
enum bptype type, enum bpdisp disposition,
|
||
int thread, int ignore_count,
|
||
struct breakpoint_ops *ops, int from_tty)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sals.nelts; ++i)
|
||
{
|
||
struct symtabs_and_lines expanded =
|
||
expand_line_sal_maybe (sals.sals[i]);
|
||
|
||
create_breakpoint (expanded, addr_string[i],
|
||
cond_string, type, disposition,
|
||
thread, ignore_count, ops, from_tty);
|
||
}
|
||
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
/* Parse ARG which is assumed to be a SAL specification possibly
|
||
followed by conditionals. On return, SALS contains an array of SAL
|
||
addresses found. ADDR_STRING contains a vector of (canonical)
|
||
address strings. ARG points to the end of the SAL. */
|
||
|
||
static void
|
||
parse_breakpoint_sals (char **address,
|
||
struct symtabs_and_lines *sals,
|
||
char ***addr_string,
|
||
int *not_found_ptr)
|
||
{
|
||
char *addr_start = *address;
|
||
*addr_string = NULL;
|
||
/* If no arg given, or if first arg is 'if ', use the default
|
||
breakpoint. */
|
||
if ((*address) == NULL
|
||
|| (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
|
||
{
|
||
if (default_breakpoint_valid)
|
||
{
|
||
struct symtab_and_line sal;
|
||
init_sal (&sal); /* initialize to zeroes */
|
||
sals->sals = (struct symtab_and_line *)
|
||
xmalloc (sizeof (struct symtab_and_line));
|
||
sal.pc = default_breakpoint_address;
|
||
sal.line = default_breakpoint_line;
|
||
sal.symtab = default_breakpoint_symtab;
|
||
sal.section = find_pc_overlay (sal.pc);
|
||
sals->sals[0] = sal;
|
||
sals->nelts = 1;
|
||
}
|
||
else
|
||
error (_("No default breakpoint address now."));
|
||
}
|
||
else
|
||
{
|
||
/* Force almost all breakpoints to be in terms of the
|
||
current_source_symtab (which is decode_line_1's default). This
|
||
should produce the results we want almost all of the time while
|
||
leaving default_breakpoint_* alone.
|
||
ObjC: However, don't match an Objective-C method name which
|
||
may have a '+' or '-' succeeded by a '[' */
|
||
|
||
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
|
||
|
||
if (default_breakpoint_valid
|
||
&& (!cursal.symtab
|
||
|| ((strchr ("+-", (*address)[0]) != NULL)
|
||
&& ((*address)[1] != '['))))
|
||
*sals = decode_line_1 (address, 1, default_breakpoint_symtab,
|
||
default_breakpoint_line, addr_string,
|
||
not_found_ptr);
|
||
else
|
||
*sals = decode_line_1 (address, 1, (struct symtab *) NULL, 0,
|
||
addr_string, not_found_ptr);
|
||
}
|
||
/* For any SAL that didn't have a canonical string, fill one in. */
|
||
if (sals->nelts > 0 && *addr_string == NULL)
|
||
*addr_string = xcalloc (sals->nelts, sizeof (char **));
|
||
if (addr_start != (*address))
|
||
{
|
||
int i;
|
||
for (i = 0; i < sals->nelts; i++)
|
||
{
|
||
/* Add the string if not present. */
|
||
if ((*addr_string)[i] == NULL)
|
||
(*addr_string)[i] = savestring (addr_start, (*address) - addr_start);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert each SAL into a real PC. Verify that the PC can be
|
||
inserted as a breakpoint. If it can't throw an error. */
|
||
|
||
static void
|
||
breakpoint_sals_to_pc (struct symtabs_and_lines *sals,
|
||
char *address)
|
||
{
|
||
int i;
|
||
for (i = 0; i < sals->nelts; i++)
|
||
resolve_sal_pc (&sals->sals[i]);
|
||
}
|
||
|
||
static void
|
||
do_captured_parse_breakpoint (struct ui_out *ui, void *data)
|
||
{
|
||
struct captured_parse_breakpoint_args *args = data;
|
||
|
||
parse_breakpoint_sals (args->arg_p, args->sals_p, args->addr_string_p,
|
||
args->not_found_ptr);
|
||
}
|
||
|
||
/* Given TOK, a string specification of condition and thread, as
|
||
accepted by the 'break' command, extract the condition
|
||
string and thread number and set *COND_STRING and *THREAD.
|
||
PC identifies the context at which the condition should be parsed.
|
||
If no condition is found, *COND_STRING is set to NULL.
|
||
If no thread is found, *THREAD is set to -1. */
|
||
static void
|
||
find_condition_and_thread (char *tok, CORE_ADDR pc,
|
||
char **cond_string, int *thread)
|
||
{
|
||
*cond_string = NULL;
|
||
*thread = -1;
|
||
while (tok && *tok)
|
||
{
|
||
char *end_tok;
|
||
int toklen;
|
||
char *cond_start = NULL;
|
||
char *cond_end = NULL;
|
||
while (*tok == ' ' || *tok == '\t')
|
||
tok++;
|
||
|
||
end_tok = tok;
|
||
|
||
while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
|
||
end_tok++;
|
||
|
||
toklen = end_tok - tok;
|
||
|
||
if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
|
||
{
|
||
tok = cond_start = end_tok + 1;
|
||
parse_exp_1 (&tok, block_for_pc (pc), 0);
|
||
cond_end = tok;
|
||
*cond_string = savestring (cond_start,
|
||
cond_end - cond_start);
|
||
}
|
||
else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
|
||
{
|
||
char *tmptok;
|
||
|
||
tok = end_tok + 1;
|
||
tmptok = tok;
|
||
*thread = strtol (tok, &tok, 0);
|
||
if (tok == tmptok)
|
||
error (_("Junk after thread keyword."));
|
||
if (!valid_thread_id (*thread))
|
||
error (_("Unknown thread %d."), *thread);
|
||
}
|
||
else
|
||
error (_("Junk at end of arguments."));
|
||
}
|
||
}
|
||
|
||
/* Set a breakpoint. This function is shared between
|
||
CLI and MI functions for setting a breakpoint.
|
||
This function has two major modes of operations,
|
||
selected by the PARSE_CONDITION_AND_THREAD parameter.
|
||
If non-zero, the function will parse arg, extracting
|
||
breakpoint location, address and thread. Otherwise,
|
||
ARG is just the location of breakpoint, with condition
|
||
and thread specified by the COND_STRING and THREAD
|
||
parameters. */
|
||
|
||
static void
|
||
break_command_really (char *arg, char *cond_string, int thread,
|
||
int parse_condition_and_thread,
|
||
int tempflag, int hardwareflag,
|
||
int ignore_count,
|
||
enum auto_boolean pending_break_support,
|
||
struct breakpoint_ops *ops,
|
||
int from_tty)
|
||
{
|
||
struct gdb_exception e;
|
||
struct symtabs_and_lines sals;
|
||
struct symtab_and_line pending_sal;
|
||
char *copy_arg;
|
||
char *err_msg;
|
||
char *addr_start = arg;
|
||
char **addr_string;
|
||
struct cleanup *old_chain;
|
||
struct cleanup *breakpoint_chain = NULL;
|
||
struct captured_parse_breakpoint_args parse_args;
|
||
int i;
|
||
int pending = 0;
|
||
int not_found = 0;
|
||
|
||
sals.sals = NULL;
|
||
sals.nelts = 0;
|
||
addr_string = NULL;
|
||
|
||
parse_args.arg_p = &arg;
|
||
parse_args.sals_p = &sals;
|
||
parse_args.addr_string_p = &addr_string;
|
||
parse_args.not_found_ptr = ¬_found;
|
||
|
||
e = catch_exception (uiout, do_captured_parse_breakpoint,
|
||
&parse_args, RETURN_MASK_ALL);
|
||
|
||
/* If caller is interested in rc value from parse, set value. */
|
||
switch (e.reason)
|
||
{
|
||
case RETURN_QUIT:
|
||
throw_exception (e);
|
||
case RETURN_ERROR:
|
||
switch (e.error)
|
||
{
|
||
case NOT_FOUND_ERROR:
|
||
|
||
/* If pending breakpoint support is turned off, throw
|
||
error. */
|
||
|
||
if (pending_break_support == AUTO_BOOLEAN_FALSE)
|
||
throw_exception (e);
|
||
|
||
exception_print (gdb_stderr, e);
|
||
|
||
/* If pending breakpoint support is auto query and the user
|
||
selects no, then simply return the error code. */
|
||
if (pending_break_support == AUTO_BOOLEAN_AUTO &&
|
||
!nquery ("Make breakpoint pending on future shared library load? "))
|
||
return;
|
||
|
||
/* At this point, either the user was queried about setting
|
||
a pending breakpoint and selected yes, or pending
|
||
breakpoint behavior is on and thus a pending breakpoint
|
||
is defaulted on behalf of the user. */
|
||
copy_arg = xstrdup (addr_start);
|
||
addr_string = ©_arg;
|
||
sals.nelts = 1;
|
||
sals.sals = &pending_sal;
|
||
pending_sal.pc = 0;
|
||
pending = 1;
|
||
break;
|
||
default:
|
||
throw_exception (e);
|
||
}
|
||
default:
|
||
if (!sals.nelts)
|
||
return;
|
||
}
|
||
|
||
/* Create a chain of things that always need to be cleaned up. */
|
||
old_chain = make_cleanup (null_cleanup, 0);
|
||
|
||
if (!pending)
|
||
{
|
||
/* Make sure that all storage allocated to SALS gets freed. */
|
||
make_cleanup (xfree, sals.sals);
|
||
|
||
/* Cleanup the addr_string array but not its contents. */
|
||
make_cleanup (xfree, addr_string);
|
||
}
|
||
|
||
/* ----------------------------- SNIP -----------------------------
|
||
Anything added to the cleanup chain beyond this point is assumed
|
||
to be part of a breakpoint. If the breakpoint create succeeds
|
||
then the memory is not reclaimed. */
|
||
breakpoint_chain = make_cleanup (null_cleanup, 0);
|
||
|
||
/* Mark the contents of the addr_string for cleanup. These go on
|
||
the breakpoint_chain and only occure if the breakpoint create
|
||
fails. */
|
||
for (i = 0; i < sals.nelts; i++)
|
||
{
|
||
if (addr_string[i] != NULL)
|
||
make_cleanup (xfree, addr_string[i]);
|
||
}
|
||
|
||
/* Resolve all line numbers to PC's and verify that the addresses
|
||
are ok for the target. */
|
||
if (!pending)
|
||
breakpoint_sals_to_pc (&sals, addr_start);
|
||
|
||
/* Verify that condition can be parsed, before setting any
|
||
breakpoints. Allocate a separate condition expression for each
|
||
breakpoint. */
|
||
if (!pending)
|
||
{
|
||
if (parse_condition_and_thread)
|
||
{
|
||
/* Here we only parse 'arg' to separate condition
|
||
from thread number, so parsing in context of first
|
||
sal is OK. When setting the breakpoint we'll
|
||
re-parse it in context of each sal. */
|
||
cond_string = NULL;
|
||
thread = -1;
|
||
find_condition_and_thread (arg, sals.sals[0].pc, &cond_string, &thread);
|
||
if (cond_string)
|
||
make_cleanup (xfree, cond_string);
|
||
}
|
||
else
|
||
{
|
||
/* Create a private copy of condition string. */
|
||
if (cond_string)
|
||
{
|
||
cond_string = xstrdup (cond_string);
|
||
make_cleanup (xfree, cond_string);
|
||
}
|
||
}
|
||
create_breakpoints (sals, addr_string, cond_string,
|
||
hardwareflag ? bp_hardware_breakpoint
|
||
: bp_breakpoint,
|
||
tempflag ? disp_del : disp_donttouch,
|
||
thread, ignore_count, ops, from_tty);
|
||
}
|
||
else
|
||
{
|
||
struct symtab_and_line sal = {0};
|
||
struct breakpoint *b;
|
||
|
||
make_cleanup (xfree, copy_arg);
|
||
|
||
b = set_raw_breakpoint_without_location (hardwareflag
|
||
? bp_hardware_breakpoint
|
||
: bp_breakpoint);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
b->number = breakpoint_count;
|
||
b->thread = -1;
|
||
b->addr_string = addr_string[0];
|
||
b->cond_string = NULL;
|
||
b->ignore_count = ignore_count;
|
||
b->disposition = tempflag ? disp_del : disp_donttouch;
|
||
b->condition_not_parsed = 1;
|
||
b->ops = ops;
|
||
|
||
update_global_location_list (1);
|
||
mention (b);
|
||
}
|
||
|
||
if (sals.nelts > 1)
|
||
warning (_("Multiple breakpoints were set.\n"
|
||
"Use the \"delete\" command to delete unwanted breakpoints."));
|
||
/* That's it. Discard the cleanups for data inserted into the
|
||
breakpoint. */
|
||
discard_cleanups (breakpoint_chain);
|
||
/* But cleanup everything else. */
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Set a breakpoint.
|
||
ARG is a string describing breakpoint address,
|
||
condition, and thread.
|
||
FLAG specifies if a breakpoint is hardware on,
|
||
and if breakpoint is temporary, using BP_HARDWARE_FLAG
|
||
and BP_TEMPFLAG. */
|
||
|
||
static void
|
||
break_command_1 (char *arg, int flag, int from_tty)
|
||
{
|
||
int hardwareflag = flag & BP_HARDWAREFLAG;
|
||
int tempflag = flag & BP_TEMPFLAG;
|
||
|
||
break_command_really (arg,
|
||
NULL, 0, 1 /* parse arg */,
|
||
tempflag, hardwareflag,
|
||
0 /* Ignore count */,
|
||
pending_break_support,
|
||
NULL /* breakpoint_ops */,
|
||
from_tty);
|
||
}
|
||
|
||
|
||
void
|
||
set_breakpoint (char *address, char *condition,
|
||
int hardwareflag, int tempflag,
|
||
int thread, int ignore_count,
|
||
int pending)
|
||
{
|
||
break_command_really (address, condition, thread,
|
||
0 /* condition and thread are valid. */,
|
||
tempflag, hardwareflag,
|
||
ignore_count,
|
||
pending
|
||
? AUTO_BOOLEAN_TRUE : AUTO_BOOLEAN_FALSE,
|
||
NULL, 0);
|
||
}
|
||
|
||
/* Adjust SAL to the first instruction past the function prologue.
|
||
The end of the prologue is determined using the line table from
|
||
the debugging information.
|
||
|
||
If SAL is already past the prologue, then do nothing. */
|
||
|
||
static void
|
||
skip_prologue_sal (struct symtab_and_line *sal)
|
||
{
|
||
struct symbol *sym = find_pc_function (sal->pc);
|
||
struct symtab_and_line start_sal;
|
||
|
||
if (sym == NULL)
|
||
return;
|
||
|
||
start_sal = find_function_start_sal (sym, 1);
|
||
if (sal->pc < start_sal.pc)
|
||
*sal = start_sal;
|
||
}
|
||
|
||
/* Helper function for break_command_1 and disassemble_command. */
|
||
|
||
void
|
||
resolve_sal_pc (struct symtab_and_line *sal)
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
if (sal->pc == 0 && sal->symtab != NULL)
|
||
{
|
||
if (!find_line_pc (sal->symtab, sal->line, &pc))
|
||
error (_("No line %d in file \"%s\"."),
|
||
sal->line, sal->symtab->filename);
|
||
sal->pc = pc;
|
||
|
||
/* If this SAL corresponds to a breakpoint inserted using
|
||
a line number, then skip the function prologue if necessary. */
|
||
if (sal->explicit_line)
|
||
skip_prologue_sal (sal);
|
||
}
|
||
|
||
if (sal->section == 0 && sal->symtab != NULL)
|
||
{
|
||
struct blockvector *bv;
|
||
struct block *b;
|
||
struct symbol *sym;
|
||
|
||
bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
|
||
if (bv != NULL)
|
||
{
|
||
sym = block_linkage_function (b);
|
||
if (sym != NULL)
|
||
{
|
||
fixup_symbol_section (sym, sal->symtab->objfile);
|
||
sal->section = SYMBOL_BFD_SECTION (sym);
|
||
}
|
||
else
|
||
{
|
||
/* It really is worthwhile to have the section, so we'll just
|
||
have to look harder. This case can be executed if we have
|
||
line numbers but no functions (as can happen in assembly
|
||
source). */
|
||
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol_by_pc (sal->pc);
|
||
if (msym)
|
||
sal->section = SYMBOL_BFD_SECTION (msym);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
break_command (char *arg, int from_tty)
|
||
{
|
||
break_command_1 (arg, 0, from_tty);
|
||
}
|
||
|
||
void
|
||
tbreak_command (char *arg, int from_tty)
|
||
{
|
||
break_command_1 (arg, BP_TEMPFLAG, from_tty);
|
||
}
|
||
|
||
static void
|
||
hbreak_command (char *arg, int from_tty)
|
||
{
|
||
break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
|
||
}
|
||
|
||
static void
|
||
thbreak_command (char *arg, int from_tty)
|
||
{
|
||
break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
|
||
}
|
||
|
||
static void
|
||
stop_command (char *arg, int from_tty)
|
||
{
|
||
printf_filtered (_("Specify the type of breakpoint to set.\n\
|
||
Usage: stop in <function | address>\n\
|
||
stop at <line>\n"));
|
||
}
|
||
|
||
static void
|
||
stopin_command (char *arg, int from_tty)
|
||
{
|
||
int badInput = 0;
|
||
|
||
if (arg == (char *) NULL)
|
||
badInput = 1;
|
||
else if (*arg != '*')
|
||
{
|
||
char *argptr = arg;
|
||
int hasColon = 0;
|
||
|
||
/* look for a ':'. If this is a line number specification, then
|
||
say it is bad, otherwise, it should be an address or
|
||
function/method name */
|
||
while (*argptr && !hasColon)
|
||
{
|
||
hasColon = (*argptr == ':');
|
||
argptr++;
|
||
}
|
||
|
||
if (hasColon)
|
||
badInput = (*argptr != ':'); /* Not a class::method */
|
||
else
|
||
badInput = isdigit (*arg); /* a simple line number */
|
||
}
|
||
|
||
if (badInput)
|
||
printf_filtered (_("Usage: stop in <function | address>\n"));
|
||
else
|
||
break_command_1 (arg, 0, from_tty);
|
||
}
|
||
|
||
static void
|
||
stopat_command (char *arg, int from_tty)
|
||
{
|
||
int badInput = 0;
|
||
|
||
if (arg == (char *) NULL || *arg == '*') /* no line number */
|
||
badInput = 1;
|
||
else
|
||
{
|
||
char *argptr = arg;
|
||
int hasColon = 0;
|
||
|
||
/* look for a ':'. If there is a '::' then get out, otherwise
|
||
it is probably a line number. */
|
||
while (*argptr && !hasColon)
|
||
{
|
||
hasColon = (*argptr == ':');
|
||
argptr++;
|
||
}
|
||
|
||
if (hasColon)
|
||
badInput = (*argptr == ':'); /* we have class::method */
|
||
else
|
||
badInput = !isdigit (*arg); /* not a line number */
|
||
}
|
||
|
||
if (badInput)
|
||
printf_filtered (_("Usage: stop at <line>\n"));
|
||
else
|
||
break_command_1 (arg, 0, from_tty);
|
||
}
|
||
|
||
/* accessflag: hw_write: watch write,
|
||
hw_read: watch read,
|
||
hw_access: watch access (read or write) */
|
||
static void
|
||
watch_command_1 (char *arg, int accessflag, int from_tty)
|
||
{
|
||
struct breakpoint *b, *scope_breakpoint = NULL;
|
||
struct symtab_and_line sal;
|
||
struct expression *exp;
|
||
struct block *exp_valid_block;
|
||
struct value *val, *mark;
|
||
struct frame_info *frame;
|
||
struct frame_info *prev_frame = NULL;
|
||
char *exp_start = NULL;
|
||
char *exp_end = NULL;
|
||
char *tok, *id_tok_start, *end_tok;
|
||
int toklen;
|
||
char *cond_start = NULL;
|
||
char *cond_end = NULL;
|
||
struct expression *cond = NULL;
|
||
int i, other_type_used, target_resources_ok = 0;
|
||
enum bptype bp_type;
|
||
int mem_cnt = 0;
|
||
int thread = -1;
|
||
|
||
init_sal (&sal); /* initialize to zeroes */
|
||
|
||
/* Make sure that we actually have parameters to parse. */
|
||
if (arg != NULL && arg[0] != '\0')
|
||
{
|
||
toklen = strlen (arg); /* Size of argument list. */
|
||
|
||
/* Points tok to the end of the argument list. */
|
||
tok = arg + toklen - 1;
|
||
|
||
/* Go backwards in the parameters list. Skip the last parameter.
|
||
If we're expecting a 'thread <thread_num>' parameter, this should
|
||
be the thread identifier. */
|
||
while (tok > arg && (*tok == ' ' || *tok == '\t'))
|
||
tok--;
|
||
while (tok > arg && (*tok != ' ' && *tok != '\t'))
|
||
tok--;
|
||
|
||
/* Points end_tok to the beginning of the last token. */
|
||
id_tok_start = tok + 1;
|
||
|
||
/* Go backwards in the parameters list. Skip one more parameter.
|
||
If we're expecting a 'thread <thread_num>' parameter, we should
|
||
reach a "thread" token. */
|
||
while (tok > arg && (*tok == ' ' || *tok == '\t'))
|
||
tok--;
|
||
|
||
end_tok = tok;
|
||
|
||
while (tok > arg && (*tok != ' ' && *tok != '\t'))
|
||
tok--;
|
||
|
||
/* Move the pointer forward to skip the whitespace and
|
||
calculate the length of the token. */
|
||
tok++;
|
||
toklen = end_tok - tok;
|
||
|
||
if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
|
||
{
|
||
/* At this point we've found a "thread" token, which means
|
||
the user is trying to set a watchpoint that triggers
|
||
only in a specific thread. */
|
||
char *endp;
|
||
|
||
/* Extract the thread ID from the next token. */
|
||
thread = strtol (id_tok_start, &endp, 0);
|
||
|
||
/* Check if the user provided a valid numeric value for the
|
||
thread ID. */
|
||
if (*endp != ' ' && *endp != '\t' && *endp != '\0')
|
||
error (_("Invalid thread ID specification %s."), id_tok_start);
|
||
|
||
/* Check if the thread actually exists. */
|
||
if (!valid_thread_id (thread))
|
||
error (_("Unknown thread %d."), thread);
|
||
|
||
/* Truncate the string and get rid of the thread <thread_num>
|
||
parameter before the parameter list is parsed by the
|
||
evaluate_expression() function. */
|
||
*tok = '\0';
|
||
}
|
||
}
|
||
|
||
/* Parse the rest of the arguments. */
|
||
innermost_block = NULL;
|
||
exp_start = arg;
|
||
exp = parse_exp_1 (&arg, 0, 0);
|
||
exp_end = arg;
|
||
exp_valid_block = innermost_block;
|
||
mark = value_mark ();
|
||
fetch_watchpoint_value (exp, &val, NULL, NULL);
|
||
if (val != NULL)
|
||
release_value (val);
|
||
|
||
tok = arg;
|
||
while (*tok == ' ' || *tok == '\t')
|
||
tok++;
|
||
end_tok = tok;
|
||
|
||
while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
|
||
end_tok++;
|
||
|
||
toklen = end_tok - tok;
|
||
if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
|
||
{
|
||
tok = cond_start = end_tok + 1;
|
||
cond = parse_exp_1 (&tok, 0, 0);
|
||
cond_end = tok;
|
||
}
|
||
if (*tok)
|
||
error (_("Junk at end of command."));
|
||
|
||
if (accessflag == hw_read)
|
||
bp_type = bp_read_watchpoint;
|
||
else if (accessflag == hw_access)
|
||
bp_type = bp_access_watchpoint;
|
||
else
|
||
bp_type = bp_hardware_watchpoint;
|
||
|
||
mem_cnt = can_use_hardware_watchpoint (val);
|
||
if (mem_cnt == 0 && bp_type != bp_hardware_watchpoint)
|
||
error (_("Expression cannot be implemented with read/access watchpoint."));
|
||
if (mem_cnt != 0)
|
||
{
|
||
i = hw_watchpoint_used_count (bp_type, &other_type_used);
|
||
target_resources_ok =
|
||
TARGET_CAN_USE_HARDWARE_WATCHPOINT (bp_type, i + mem_cnt,
|
||
other_type_used);
|
||
if (target_resources_ok == 0 && bp_type != bp_hardware_watchpoint)
|
||
error (_("Target does not support this type of hardware watchpoint."));
|
||
|
||
if (target_resources_ok < 0 && bp_type != bp_hardware_watchpoint)
|
||
error (_("Target can only support one kind of HW watchpoint at a time."));
|
||
}
|
||
|
||
/* Change the type of breakpoint to an ordinary watchpoint if a hardware
|
||
watchpoint could not be set. */
|
||
if (!mem_cnt || target_resources_ok <= 0)
|
||
bp_type = bp_watchpoint;
|
||
|
||
frame = block_innermost_frame (exp_valid_block);
|
||
if (frame)
|
||
prev_frame = get_prev_frame (frame);
|
||
else
|
||
prev_frame = NULL;
|
||
|
||
/* If the expression is "local", then set up a "watchpoint scope"
|
||
breakpoint at the point where we've left the scope of the watchpoint
|
||
expression. Create the scope breakpoint before the watchpoint, so
|
||
that we will encounter it first in bpstat_stop_status. */
|
||
if (innermost_block && prev_frame)
|
||
{
|
||
scope_breakpoint = create_internal_breakpoint (get_frame_pc (prev_frame),
|
||
bp_watchpoint_scope);
|
||
|
||
scope_breakpoint->enable_state = bp_enabled;
|
||
|
||
/* Automatically delete the breakpoint when it hits. */
|
||
scope_breakpoint->disposition = disp_del;
|
||
|
||
/* Only break in the proper frame (help with recursion). */
|
||
scope_breakpoint->frame_id = get_frame_id (prev_frame);
|
||
|
||
/* Set the address at which we will stop. */
|
||
scope_breakpoint->loc->requested_address
|
||
= get_frame_pc (prev_frame);
|
||
scope_breakpoint->loc->address
|
||
= adjust_breakpoint_address (scope_breakpoint->loc->requested_address,
|
||
scope_breakpoint->type);
|
||
}
|
||
|
||
/* Now set up the breakpoint. */
|
||
b = set_raw_breakpoint (sal, bp_type);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
b->number = breakpoint_count;
|
||
b->thread = thread;
|
||
b->disposition = disp_donttouch;
|
||
b->exp = exp;
|
||
b->exp_valid_block = exp_valid_block;
|
||
b->exp_string = savestring (exp_start, exp_end - exp_start);
|
||
b->val = val;
|
||
b->val_valid = 1;
|
||
b->loc->cond = cond;
|
||
if (cond_start)
|
||
b->cond_string = savestring (cond_start, cond_end - cond_start);
|
||
else
|
||
b->cond_string = 0;
|
||
|
||
if (frame)
|
||
b->watchpoint_frame = get_frame_id (frame);
|
||
else
|
||
b->watchpoint_frame = null_frame_id;
|
||
|
||
if (scope_breakpoint != NULL)
|
||
{
|
||
/* The scope breakpoint is related to the watchpoint. We will
|
||
need to act on them together. */
|
||
b->related_breakpoint = scope_breakpoint;
|
||
scope_breakpoint->related_breakpoint = b;
|
||
}
|
||
|
||
value_free_to_mark (mark);
|
||
mention (b);
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
/* Return count of locations need to be watched and can be handled
|
||
in hardware. If the watchpoint can not be handled
|
||
in hardware return zero. */
|
||
|
||
static int
|
||
can_use_hardware_watchpoint (struct value *v)
|
||
{
|
||
int found_memory_cnt = 0;
|
||
struct value *head = v;
|
||
|
||
/* Did the user specifically forbid us to use hardware watchpoints? */
|
||
if (!can_use_hw_watchpoints)
|
||
return 0;
|
||
|
||
/* Make sure that the value of the expression depends only upon
|
||
memory contents, and values computed from them within GDB. If we
|
||
find any register references or function calls, we can't use a
|
||
hardware watchpoint.
|
||
|
||
The idea here is that evaluating an expression generates a series
|
||
of values, one holding the value of every subexpression. (The
|
||
expression a*b+c has five subexpressions: a, b, a*b, c, and
|
||
a*b+c.) GDB's values hold almost enough information to establish
|
||
the criteria given above --- they identify memory lvalues,
|
||
register lvalues, computed values, etcetera. So we can evaluate
|
||
the expression, and then scan the chain of values that leaves
|
||
behind to decide whether we can detect any possible change to the
|
||
expression's final value using only hardware watchpoints.
|
||
|
||
However, I don't think that the values returned by inferior
|
||
function calls are special in any way. So this function may not
|
||
notice that an expression involving an inferior function call
|
||
can't be watched with hardware watchpoints. FIXME. */
|
||
for (; v; v = value_next (v))
|
||
{
|
||
if (VALUE_LVAL (v) == lval_memory)
|
||
{
|
||
if (value_lazy (v))
|
||
/* A lazy memory lvalue is one that GDB never needed to fetch;
|
||
we either just used its address (e.g., `a' in `a.b') or
|
||
we never needed it at all (e.g., `a' in `a,b'). */
|
||
;
|
||
else
|
||
{
|
||
/* Ahh, memory we actually used! Check if we can cover
|
||
it with hardware watchpoints. */
|
||
struct type *vtype = check_typedef (value_type (v));
|
||
|
||
/* We only watch structs and arrays if user asked for it
|
||
explicitly, never if they just happen to appear in a
|
||
middle of some value chain. */
|
||
if (v == head
|
||
|| (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
|
||
{
|
||
CORE_ADDR vaddr = VALUE_ADDRESS (v) + value_offset (v);
|
||
int len = TYPE_LENGTH (value_type (v));
|
||
|
||
if (!TARGET_REGION_OK_FOR_HW_WATCHPOINT (vaddr, len))
|
||
return 0;
|
||
else
|
||
found_memory_cnt++;
|
||
}
|
||
}
|
||
}
|
||
else if (VALUE_LVAL (v) != not_lval
|
||
&& deprecated_value_modifiable (v) == 0)
|
||
return 0; /* ??? What does this represent? */
|
||
else if (VALUE_LVAL (v) == lval_register)
|
||
return 0; /* cannot watch a register with a HW watchpoint */
|
||
}
|
||
|
||
/* The expression itself looks suitable for using a hardware
|
||
watchpoint, but give the target machine a chance to reject it. */
|
||
return found_memory_cnt;
|
||
}
|
||
|
||
void
|
||
watch_command_wrapper (char *arg, int from_tty)
|
||
{
|
||
watch_command (arg, from_tty);
|
||
}
|
||
|
||
static void
|
||
watch_command (char *arg, int from_tty)
|
||
{
|
||
watch_command_1 (arg, hw_write, from_tty);
|
||
}
|
||
|
||
void
|
||
rwatch_command_wrapper (char *arg, int from_tty)
|
||
{
|
||
rwatch_command (arg, from_tty);
|
||
}
|
||
|
||
static void
|
||
rwatch_command (char *arg, int from_tty)
|
||
{
|
||
watch_command_1 (arg, hw_read, from_tty);
|
||
}
|
||
|
||
void
|
||
awatch_command_wrapper (char *arg, int from_tty)
|
||
{
|
||
awatch_command (arg, from_tty);
|
||
}
|
||
|
||
static void
|
||
awatch_command (char *arg, int from_tty)
|
||
{
|
||
watch_command_1 (arg, hw_access, from_tty);
|
||
}
|
||
|
||
|
||
/* Helper routines for the until_command routine in infcmd.c. Here
|
||
because it uses the mechanisms of breakpoints. */
|
||
|
||
struct until_break_command_continuation_args
|
||
{
|
||
struct breakpoint *breakpoint;
|
||
struct breakpoint *breakpoint2;
|
||
};
|
||
|
||
/* This function is called by fetch_inferior_event via the
|
||
cmd_continuation pointer, to complete the until command. It takes
|
||
care of cleaning up the temporary breakpoints set up by the until
|
||
command. */
|
||
static void
|
||
until_break_command_continuation (void *arg)
|
||
{
|
||
struct until_break_command_continuation_args *a = arg;
|
||
|
||
delete_breakpoint (a->breakpoint);
|
||
if (a->breakpoint2)
|
||
delete_breakpoint (a->breakpoint2);
|
||
}
|
||
|
||
void
|
||
until_break_command (char *arg, int from_tty, int anywhere)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
struct symtab_and_line sal;
|
||
struct frame_info *frame = get_selected_frame (NULL);
|
||
struct frame_info *prev_frame = get_prev_frame (frame);
|
||
struct breakpoint *breakpoint;
|
||
struct breakpoint *breakpoint2 = NULL;
|
||
struct cleanup *old_chain;
|
||
|
||
clear_proceed_status ();
|
||
|
||
/* Set a breakpoint where the user wants it and at return from
|
||
this function */
|
||
|
||
if (default_breakpoint_valid)
|
||
sals = decode_line_1 (&arg, 1, default_breakpoint_symtab,
|
||
default_breakpoint_line, (char ***) NULL, NULL);
|
||
else
|
||
sals = decode_line_1 (&arg, 1, (struct symtab *) NULL,
|
||
0, (char ***) NULL, NULL);
|
||
|
||
if (sals.nelts != 1)
|
||
error (_("Couldn't get information on specified line."));
|
||
|
||
sal = sals.sals[0];
|
||
xfree (sals.sals); /* malloc'd, so freed */
|
||
|
||
if (*arg)
|
||
error (_("Junk at end of arguments."));
|
||
|
||
resolve_sal_pc (&sal);
|
||
|
||
if (anywhere)
|
||
/* If the user told us to continue until a specified location,
|
||
we don't specify a frame at which we need to stop. */
|
||
breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_until);
|
||
else
|
||
/* Otherwise, specify the current frame, because we want to stop only
|
||
at the very same frame. */
|
||
breakpoint = set_momentary_breakpoint (sal, get_frame_id (frame),
|
||
bp_until);
|
||
|
||
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
||
|
||
/* Keep within the current frame, or in frames called by the current
|
||
one. */
|
||
if (prev_frame)
|
||
{
|
||
sal = find_pc_line (get_frame_pc (prev_frame), 0);
|
||
sal.pc = get_frame_pc (prev_frame);
|
||
breakpoint2 = set_momentary_breakpoint (sal, get_frame_id (prev_frame),
|
||
bp_until);
|
||
make_cleanup_delete_breakpoint (breakpoint2);
|
||
}
|
||
|
||
proceed (-1, TARGET_SIGNAL_DEFAULT, 0);
|
||
|
||
/* If we are running asynchronously, and proceed call above has actually
|
||
managed to start the target, arrange for breakpoints to be
|
||
deleted when the target stops. Otherwise, we're already stopped and
|
||
delete breakpoints via cleanup chain. */
|
||
|
||
if (target_can_async_p () && is_running (inferior_ptid))
|
||
{
|
||
struct until_break_command_continuation_args *args;
|
||
args = xmalloc (sizeof (*args));
|
||
|
||
args->breakpoint = breakpoint;
|
||
args->breakpoint2 = breakpoint2;
|
||
|
||
discard_cleanups (old_chain);
|
||
add_continuation (until_break_command_continuation, args,
|
||
xfree);
|
||
}
|
||
else
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
static void
|
||
ep_skip_leading_whitespace (char **s)
|
||
{
|
||
if ((s == NULL) || (*s == NULL))
|
||
return;
|
||
while (isspace (**s))
|
||
*s += 1;
|
||
}
|
||
|
||
/* This function examines a string, and attempts to find a token
|
||
that might be an event name in the leading characters. If a
|
||
possible match is found, a pointer to the last character of
|
||
the token is returned. Else, NULL is returned. */
|
||
|
||
static char *
|
||
ep_find_event_name_end (char *arg)
|
||
{
|
||
char *s = arg;
|
||
char *event_name_end = NULL;
|
||
|
||
/* If we could depend upon the presense of strrpbrk, we'd use that... */
|
||
if (arg == NULL)
|
||
return NULL;
|
||
|
||
/* We break out of the loop when we find a token delimiter.
|
||
Basically, we're looking for alphanumerics and underscores;
|
||
anything else delimites the token. */
|
||
while (*s != '\0')
|
||
{
|
||
if (!isalnum (*s) && (*s != '_'))
|
||
break;
|
||
event_name_end = s;
|
||
s++;
|
||
}
|
||
|
||
return event_name_end;
|
||
}
|
||
|
||
|
||
/* This function attempts to parse an optional "if <cond>" clause
|
||
from the arg string. If one is not found, it returns NULL.
|
||
|
||
Else, it returns a pointer to the condition string. (It does not
|
||
attempt to evaluate the string against a particular block.) And,
|
||
it updates arg to point to the first character following the parsed
|
||
if clause in the arg string. */
|
||
|
||
static char *
|
||
ep_parse_optional_if_clause (char **arg)
|
||
{
|
||
char *cond_string;
|
||
|
||
if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
|
||
return NULL;
|
||
|
||
/* Skip the "if" keyword. */
|
||
(*arg) += 2;
|
||
|
||
/* Skip any extra leading whitespace, and record the start of the
|
||
condition string. */
|
||
ep_skip_leading_whitespace (arg);
|
||
cond_string = *arg;
|
||
|
||
/* Assume that the condition occupies the remainder of the arg string. */
|
||
(*arg) += strlen (cond_string);
|
||
|
||
return cond_string;
|
||
}
|
||
|
||
/* This function attempts to parse an optional filename from the arg
|
||
string. If one is not found, it returns NULL.
|
||
|
||
Else, it returns a pointer to the parsed filename. (This function
|
||
makes no attempt to verify that a file of that name exists, or is
|
||
accessible.) And, it updates arg to point to the first character
|
||
following the parsed filename in the arg string.
|
||
|
||
Note that clients needing to preserve the returned filename for
|
||
future access should copy it to their own buffers. */
|
||
static char *
|
||
ep_parse_optional_filename (char **arg)
|
||
{
|
||
static char filename[1024];
|
||
char *arg_p = *arg;
|
||
int i;
|
||
char c;
|
||
|
||
if ((*arg_p == '\0') || isspace (*arg_p))
|
||
return NULL;
|
||
|
||
for (i = 0;; i++)
|
||
{
|
||
c = *arg_p;
|
||
if (isspace (c))
|
||
c = '\0';
|
||
filename[i] = c;
|
||
if (c == '\0')
|
||
break;
|
||
arg_p++;
|
||
}
|
||
*arg = arg_p;
|
||
|
||
return filename;
|
||
}
|
||
|
||
/* Commands to deal with catching events, such as signals, exceptions,
|
||
process start/exit, etc. */
|
||
|
||
typedef enum
|
||
{
|
||
catch_fork, catch_vfork
|
||
}
|
||
catch_fork_kind;
|
||
|
||
static void
|
||
catch_fork_command_1 (catch_fork_kind fork_kind, char *arg, int tempflag,
|
||
int from_tty)
|
||
{
|
||
char *cond_string = NULL;
|
||
|
||
ep_skip_leading_whitespace (&arg);
|
||
|
||
/* The allowed syntax is:
|
||
catch [v]fork
|
||
catch [v]fork if <cond>
|
||
|
||
First, check if there's an if clause. */
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
|
||
if ((*arg != '\0') && !isspace (*arg))
|
||
error (_("Junk at end of arguments."));
|
||
|
||
/* If this target supports it, create a fork or vfork catchpoint
|
||
and enable reporting of such events. */
|
||
switch (fork_kind)
|
||
{
|
||
case catch_fork:
|
||
create_fork_event_catchpoint (tempflag, cond_string);
|
||
break;
|
||
case catch_vfork:
|
||
create_vfork_event_catchpoint (tempflag, cond_string);
|
||
break;
|
||
default:
|
||
error (_("unsupported or unknown fork kind; cannot catch it"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
catch_exec_command_1 (char *arg, int tempflag, int from_tty)
|
||
{
|
||
char *cond_string = NULL;
|
||
|
||
ep_skip_leading_whitespace (&arg);
|
||
|
||
/* The allowed syntax is:
|
||
catch exec
|
||
catch exec if <cond>
|
||
|
||
First, check if there's an if clause. */
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
|
||
if ((*arg != '\0') && !isspace (*arg))
|
||
error (_("Junk at end of arguments."));
|
||
|
||
/* If this target supports it, create an exec catchpoint
|
||
and enable reporting of such events. */
|
||
create_exec_event_catchpoint (tempflag, cond_string);
|
||
}
|
||
|
||
static void
|
||
catch_load_command_1 (char *arg, int tempflag, int from_tty)
|
||
{
|
||
char *dll_pathname = NULL;
|
||
char *cond_string = NULL;
|
||
|
||
ep_skip_leading_whitespace (&arg);
|
||
|
||
/* The allowed syntax is:
|
||
catch load
|
||
catch load if <cond>
|
||
catch load <filename>
|
||
catch load <filename> if <cond>
|
||
|
||
The user is not allowed to specify the <filename> after an
|
||
if clause.
|
||
|
||
We'll ignore the pathological case of a file named "if".
|
||
|
||
First, check if there's an if clause. If so, then there
|
||
cannot be a filename. */
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
|
||
/* If there was an if clause, then there cannot be a filename.
|
||
Else, there might be a filename and an if clause. */
|
||
if (cond_string == NULL)
|
||
{
|
||
dll_pathname = ep_parse_optional_filename (&arg);
|
||
ep_skip_leading_whitespace (&arg);
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
}
|
||
|
||
if ((*arg != '\0') && !isspace (*arg))
|
||
error (_("Junk at end of arguments."));
|
||
|
||
/* Create a load breakpoint that only triggers when a load of
|
||
the specified dll (or any dll, if no pathname was specified)
|
||
occurs. */
|
||
SOLIB_CREATE_CATCH_LOAD_HOOK (PIDGET (inferior_ptid), tempflag,
|
||
dll_pathname, cond_string);
|
||
}
|
||
|
||
static void
|
||
catch_unload_command_1 (char *arg, int tempflag, int from_tty)
|
||
{
|
||
char *dll_pathname = NULL;
|
||
char *cond_string = NULL;
|
||
|
||
ep_skip_leading_whitespace (&arg);
|
||
|
||
/* The allowed syntax is:
|
||
catch unload
|
||
catch unload if <cond>
|
||
catch unload <filename>
|
||
catch unload <filename> if <cond>
|
||
|
||
The user is not allowed to specify the <filename> after an
|
||
if clause.
|
||
|
||
We'll ignore the pathological case of a file named "if".
|
||
|
||
First, check if there's an if clause. If so, then there
|
||
cannot be a filename. */
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
|
||
/* If there was an if clause, then there cannot be a filename.
|
||
Else, there might be a filename and an if clause. */
|
||
if (cond_string == NULL)
|
||
{
|
||
dll_pathname = ep_parse_optional_filename (&arg);
|
||
ep_skip_leading_whitespace (&arg);
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
}
|
||
|
||
if ((*arg != '\0') && !isspace (*arg))
|
||
error (_("Junk at end of arguments."));
|
||
|
||
/* Create an unload breakpoint that only triggers when an unload of
|
||
the specified dll (or any dll, if no pathname was specified)
|
||
occurs. */
|
||
SOLIB_CREATE_CATCH_UNLOAD_HOOK (PIDGET (inferior_ptid), tempflag,
|
||
dll_pathname, cond_string);
|
||
}
|
||
|
||
static enum print_stop_action
|
||
print_exception_catchpoint (struct breakpoint *b)
|
||
{
|
||
int bp_temp, bp_throw;
|
||
|
||
annotate_catchpoint (b->number);
|
||
|
||
bp_throw = strstr (b->addr_string, "throw") != NULL;
|
||
if (b->loc->address != b->loc->requested_address)
|
||
breakpoint_adjustment_warning (b->loc->requested_address,
|
||
b->loc->address,
|
||
b->number, 1);
|
||
bp_temp = b->loc->owner->disposition == disp_del;
|
||
ui_out_text (uiout,
|
||
bp_temp ? "Temporary catchpoint "
|
||
: "Catchpoint ");
|
||
if (!ui_out_is_mi_like_p (uiout))
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
ui_out_text (uiout,
|
||
bp_throw ? " (exception thrown), "
|
||
: " (exception caught), ");
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
ui_out_field_string (uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
|
||
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
}
|
||
return PRINT_SRC_AND_LOC;
|
||
}
|
||
|
||
static void
|
||
print_one_exception_catchpoint (struct breakpoint *b, CORE_ADDR *last_addr)
|
||
{
|
||
if (addressprint)
|
||
{
|
||
annotate_field (4);
|
||
if (b->loc == NULL || b->loc->shlib_disabled)
|
||
ui_out_field_string (uiout, "addr", "<PENDING>");
|
||
else
|
||
ui_out_field_core_addr (uiout, "addr", b->loc->address);
|
||
}
|
||
annotate_field (5);
|
||
if (b->loc)
|
||
*last_addr = b->loc->address;
|
||
if (strstr (b->addr_string, "throw") != NULL)
|
||
ui_out_field_string (uiout, "what", "exception throw");
|
||
else
|
||
ui_out_field_string (uiout, "what", "exception catch");
|
||
}
|
||
|
||
static void
|
||
print_mention_exception_catchpoint (struct breakpoint *b)
|
||
{
|
||
int bp_temp;
|
||
int bp_throw;
|
||
|
||
bp_temp = b->loc->owner->disposition == disp_del;
|
||
bp_throw = strstr (b->addr_string, "throw") != NULL;
|
||
ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
|
||
: _("Catchpoint "));
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
ui_out_text (uiout, bp_throw ? _(" (throw)")
|
||
: _(" (catch)"));
|
||
}
|
||
|
||
static struct breakpoint_ops gnu_v3_exception_catchpoint_ops = {
|
||
print_exception_catchpoint,
|
||
print_one_exception_catchpoint,
|
||
print_mention_exception_catchpoint
|
||
};
|
||
|
||
static int
|
||
handle_gnu_v3_exceptions (int tempflag, char *cond_string,
|
||
enum exception_event_kind ex_event, int from_tty)
|
||
{
|
||
char *trigger_func_name;
|
||
|
||
if (ex_event == EX_EVENT_CATCH)
|
||
trigger_func_name = "__cxa_begin_catch";
|
||
else
|
||
trigger_func_name = "__cxa_throw";
|
||
|
||
break_command_really (trigger_func_name, cond_string, -1,
|
||
0 /* condition and thread are valid. */,
|
||
tempflag, 0,
|
||
0,
|
||
AUTO_BOOLEAN_TRUE /* pending */,
|
||
&gnu_v3_exception_catchpoint_ops, from_tty);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Deal with "catch catch" and "catch throw" commands */
|
||
|
||
static void
|
||
catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
|
||
int tempflag, int from_tty)
|
||
{
|
||
char *cond_string = NULL;
|
||
struct symtab_and_line *sal = NULL;
|
||
|
||
ep_skip_leading_whitespace (&arg);
|
||
|
||
cond_string = ep_parse_optional_if_clause (&arg);
|
||
|
||
if ((*arg != '\0') && !isspace (*arg))
|
||
error (_("Junk at end of arguments."));
|
||
|
||
if ((ex_event != EX_EVENT_THROW) &&
|
||
(ex_event != EX_EVENT_CATCH))
|
||
error (_("Unsupported or unknown exception event; cannot catch it"));
|
||
|
||
if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
|
||
return;
|
||
|
||
warning (_("Unsupported with this platform/compiler combination."));
|
||
}
|
||
|
||
/* Create a breakpoint struct for Ada exception catchpoints. */
|
||
|
||
static void
|
||
create_ada_exception_breakpoint (struct symtab_and_line sal,
|
||
char *addr_string,
|
||
char *exp_string,
|
||
char *cond_string,
|
||
struct expression *cond,
|
||
struct breakpoint_ops *ops,
|
||
int tempflag,
|
||
int from_tty)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
if (from_tty)
|
||
{
|
||
describe_other_breakpoints (sal.pc, sal.section, -1);
|
||
/* FIXME: brobecker/2006-12-28: Actually, re-implement a special
|
||
version for exception catchpoints, because two catchpoints
|
||
used for different exception names will use the same address.
|
||
In this case, a "breakpoint ... also set at..." warning is
|
||
unproductive. Besides. the warning phrasing is also a bit
|
||
inapropriate, we should use the word catchpoint, and tell
|
||
the user what type of catchpoint it is. The above is good
|
||
enough for now, though. */
|
||
}
|
||
|
||
b = set_raw_breakpoint (sal, bp_breakpoint);
|
||
set_breakpoint_count (breakpoint_count + 1);
|
||
|
||
b->enable_state = bp_enabled;
|
||
b->disposition = tempflag ? disp_del : disp_donttouch;
|
||
b->number = breakpoint_count;
|
||
b->ignore_count = 0;
|
||
b->loc->cond = cond;
|
||
b->addr_string = addr_string;
|
||
b->language = language_ada;
|
||
b->cond_string = cond_string;
|
||
b->exp_string = exp_string;
|
||
b->thread = -1;
|
||
b->ops = ops;
|
||
|
||
mention (b);
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
/* Implement the "catch exception" command. */
|
||
|
||
static void
|
||
catch_ada_exception_command (char *arg, int tempflag, int from_tty)
|
||
{
|
||
struct symtab_and_line sal;
|
||
enum bptype type;
|
||
char *addr_string = NULL;
|
||
char *exp_string = NULL;
|
||
char *cond_string = NULL;
|
||
struct expression *cond = NULL;
|
||
struct breakpoint_ops *ops = NULL;
|
||
|
||
sal = ada_decode_exception_location (arg, &addr_string, &exp_string,
|
||
&cond_string, &cond, &ops);
|
||
create_ada_exception_breakpoint (sal, addr_string, exp_string,
|
||
cond_string, cond, ops, tempflag,
|
||
from_tty);
|
||
}
|
||
|
||
/* Implement the "catch assert" command. */
|
||
|
||
static void
|
||
catch_assert_command (char *arg, int tempflag, int from_tty)
|
||
{
|
||
struct symtab_and_line sal;
|
||
char *addr_string = NULL;
|
||
struct breakpoint_ops *ops = NULL;
|
||
|
||
sal = ada_decode_assert_location (arg, &addr_string, &ops);
|
||
create_ada_exception_breakpoint (sal, addr_string, NULL, NULL, NULL, ops,
|
||
tempflag, from_tty);
|
||
}
|
||
|
||
static void
|
||
catch_command_1 (char *arg, int tempflag, int from_tty)
|
||
{
|
||
|
||
/* The first argument may be an event name, such as "start" or "load".
|
||
If so, then handle it as such. If it doesn't match an event name,
|
||
then attempt to interpret it as an exception name. (This latter is
|
||
the v4.16-and-earlier GDB meaning of the "catch" command.)
|
||
|
||
First, try to find the bounds of what might be an event name. */
|
||
char *arg1_start = arg;
|
||
char *arg1_end;
|
||
int arg1_length;
|
||
|
||
if (arg1_start == NULL)
|
||
{
|
||
/* Old behaviour was to use pre-v-4.16 syntax */
|
||
/* catch_throw_command_1 (arg1_start, tempflag, from_tty); */
|
||
/* return; */
|
||
/* Now, this is not allowed */
|
||
error (_("Catch requires an event name."));
|
||
|
||
}
|
||
arg1_end = ep_find_event_name_end (arg1_start);
|
||
if (arg1_end == NULL)
|
||
error (_("catch requires an event"));
|
||
arg1_length = arg1_end + 1 - arg1_start;
|
||
|
||
/* Try to match what we found against known event names. */
|
||
if (strncmp (arg1_start, "signal", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of signal not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "catch", arg1_length) == 0)
|
||
{
|
||
catch_exception_command_1 (EX_EVENT_CATCH, arg1_end + 1,
|
||
tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "throw", arg1_length) == 0)
|
||
{
|
||
catch_exception_command_1 (EX_EVENT_THROW, arg1_end + 1,
|
||
tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "thread_start", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of thread_start not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "thread_exit", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of thread_exit not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "thread_join", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of thread_join not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "start", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of start not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "exit", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of exit not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "fork", arg1_length) == 0)
|
||
{
|
||
catch_fork_command_1 (catch_fork, arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "vfork", arg1_length) == 0)
|
||
{
|
||
catch_fork_command_1 (catch_vfork, arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "exec", arg1_length) == 0)
|
||
{
|
||
catch_exec_command_1 (arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "load", arg1_length) == 0)
|
||
{
|
||
catch_load_command_1 (arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "unload", arg1_length) == 0)
|
||
{
|
||
catch_unload_command_1 (arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
else if (strncmp (arg1_start, "stop", arg1_length) == 0)
|
||
{
|
||
error (_("Catch of stop not yet implemented"));
|
||
}
|
||
else if (strncmp (arg1_start, "exception", arg1_length) == 0)
|
||
{
|
||
catch_ada_exception_command (arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
|
||
else if (strncmp (arg1_start, "assert", arg1_length) == 0)
|
||
{
|
||
catch_assert_command (arg1_end + 1, tempflag, from_tty);
|
||
}
|
||
|
||
/* This doesn't appear to be an event name */
|
||
|
||
else
|
||
{
|
||
/* Pre-v.4.16 behaviour was to treat the argument
|
||
as the name of an exception */
|
||
/* catch_throw_command_1 (arg1_start, tempflag, from_tty); */
|
||
/* Now this is not allowed */
|
||
error (_("Unknown event kind specified for catch"));
|
||
|
||
}
|
||
}
|
||
|
||
static void
|
||
catch_command (char *arg, int from_tty)
|
||
{
|
||
catch_command_1 (arg, 0, from_tty);
|
||
}
|
||
|
||
|
||
static void
|
||
tcatch_command (char *arg, int from_tty)
|
||
{
|
||
catch_command_1 (arg, 1, from_tty);
|
||
}
|
||
|
||
/* Delete breakpoints by address or line. */
|
||
|
||
static void
|
||
clear_command (char *arg, int from_tty)
|
||
{
|
||
struct breakpoint *b;
|
||
VEC(breakpoint_p) *found = 0;
|
||
int ix;
|
||
int default_match;
|
||
struct symtabs_and_lines sals;
|
||
struct symtab_and_line sal;
|
||
int i;
|
||
|
||
if (arg)
|
||
{
|
||
sals = decode_line_spec (arg, 1);
|
||
default_match = 0;
|
||
}
|
||
else
|
||
{
|
||
sals.sals = (struct symtab_and_line *)
|
||
xmalloc (sizeof (struct symtab_and_line));
|
||
make_cleanup (xfree, sals.sals);
|
||
init_sal (&sal); /* initialize to zeroes */
|
||
sal.line = default_breakpoint_line;
|
||
sal.symtab = default_breakpoint_symtab;
|
||
sal.pc = default_breakpoint_address;
|
||
if (sal.symtab == 0)
|
||
error (_("No source file specified."));
|
||
|
||
sals.sals[0] = sal;
|
||
sals.nelts = 1;
|
||
|
||
default_match = 1;
|
||
}
|
||
|
||
/* We don't call resolve_sal_pc here. That's not
|
||
as bad as it seems, because all existing breakpoints
|
||
typically have both file/line and pc set. So, if
|
||
clear is given file/line, we can match this to existing
|
||
breakpoint without obtaining pc at all.
|
||
|
||
We only support clearing given the address explicitly
|
||
present in breakpoint table. Say, we've set breakpoint
|
||
at file:line. There were several PC values for that file:line,
|
||
due to optimization, all in one block.
|
||
We've picked one PC value. If "clear" is issued with another
|
||
PC corresponding to the same file:line, the breakpoint won't
|
||
be cleared. We probably can still clear the breakpoint, but
|
||
since the other PC value is never presented to user, user
|
||
can only find it by guessing, and it does not seem important
|
||
to support that. */
|
||
|
||
/* For each line spec given, delete bps which correspond
|
||
to it. Do it in two passes, solely to preserve the current
|
||
behavior that from_tty is forced true if we delete more than
|
||
one breakpoint. */
|
||
|
||
found = NULL;
|
||
for (i = 0; i < sals.nelts; i++)
|
||
{
|
||
/* If exact pc given, clear bpts at that pc.
|
||
If line given (pc == 0), clear all bpts on specified line.
|
||
If defaulting, clear all bpts on default line
|
||
or at default pc.
|
||
|
||
defaulting sal.pc != 0 tests to do
|
||
|
||
0 1 pc
|
||
1 1 pc _and_ line
|
||
0 0 line
|
||
1 0 <can't happen> */
|
||
|
||
sal = sals.sals[i];
|
||
|
||
/* Find all matching breakpoints and add them to
|
||
'found'. */
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
int match = 0;
|
||
/* Are we going to delete b? */
|
||
if (b->type != bp_none
|
||
&& b->type != bp_watchpoint
|
||
&& b->type != bp_hardware_watchpoint
|
||
&& b->type != bp_read_watchpoint
|
||
&& b->type != bp_access_watchpoint)
|
||
{
|
||
struct bp_location *loc = b->loc;
|
||
for (; loc; loc = loc->next)
|
||
{
|
||
int pc_match = sal.pc
|
||
&& (loc->address == sal.pc)
|
||
&& (!section_is_overlay (loc->section)
|
||
|| loc->section == sal.section);
|
||
int line_match = ((default_match || (0 == sal.pc))
|
||
&& b->source_file != NULL
|
||
&& sal.symtab != NULL
|
||
&& strcmp (b->source_file, sal.symtab->filename) == 0
|
||
&& b->line_number == sal.line);
|
||
if (pc_match || line_match)
|
||
{
|
||
match = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (match)
|
||
VEC_safe_push(breakpoint_p, found, b);
|
||
}
|
||
}
|
||
/* Now go thru the 'found' chain and delete them. */
|
||
if (VEC_empty(breakpoint_p, found))
|
||
{
|
||
if (arg)
|
||
error (_("No breakpoint at %s."), arg);
|
||
else
|
||
error (_("No breakpoint at this line."));
|
||
}
|
||
|
||
if (VEC_length(breakpoint_p, found) > 1)
|
||
from_tty = 1; /* Always report if deleted more than one */
|
||
if (from_tty)
|
||
{
|
||
if (VEC_length(breakpoint_p, found) == 1)
|
||
printf_unfiltered (_("Deleted breakpoint "));
|
||
else
|
||
printf_unfiltered (_("Deleted breakpoints "));
|
||
}
|
||
breakpoints_changed ();
|
||
|
||
for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
|
||
{
|
||
if (from_tty)
|
||
printf_unfiltered ("%d ", b->number);
|
||
delete_breakpoint (b);
|
||
}
|
||
if (from_tty)
|
||
putchar_unfiltered ('\n');
|
||
}
|
||
|
||
/* Delete breakpoint in BS if they are `delete' breakpoints and
|
||
all breakpoints that are marked for deletion, whether hit or not.
|
||
This is called after any breakpoint is hit, or after errors. */
|
||
|
||
void
|
||
breakpoint_auto_delete (bpstat bs)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
|
||
for (; bs; bs = bs->next)
|
||
if (bs->breakpoint_at
|
||
&& bs->breakpoint_at->owner
|
||
&& bs->breakpoint_at->owner->disposition == disp_del
|
||
&& bs->stop)
|
||
delete_breakpoint (bs->breakpoint_at->owner);
|
||
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
{
|
||
if (b->disposition == disp_del_at_next_stop)
|
||
delete_breakpoint (b);
|
||
}
|
||
}
|
||
|
||
/* If SHOULD_INSERT is true, do not insert any breakpoint locations
|
||
into the inferior, only remove already-inserted locations that no
|
||
longer should be inserted. Functions that delete a breakpoint or
|
||
breakpoints should pass false, so that deleting a breakpoint
|
||
doesn't have the side effect of inserting the locations of other
|
||
breakpoints that are marked not-inserted, but should_be_inserted
|
||
returns true on them.
|
||
|
||
This behaviour is useful is situations close to tear-down -- e.g.,
|
||
after an exec, while the target still has execution, but breakpoint
|
||
shadows of the previous executable image should *NOT* be restored
|
||
to the new image; or before detaching, where the target still has
|
||
execution and wants to delete breakpoints from GDB's lists, and all
|
||
breakpoints had already been removed from the inferior. */
|
||
|
||
static void
|
||
update_global_location_list (int should_insert)
|
||
{
|
||
struct breakpoint *b;
|
||
struct bp_location **next = &bp_location_chain;
|
||
struct bp_location *loc;
|
||
struct bp_location *loc2;
|
||
struct gdb_exception e;
|
||
VEC(bp_location_p) *old_locations = NULL;
|
||
int ret;
|
||
int ix;
|
||
|
||
/* Store old locations for future reference. */
|
||
for (loc = bp_location_chain; loc; loc = loc->global_next)
|
||
VEC_safe_push (bp_location_p, old_locations, loc);
|
||
|
||
bp_location_chain = NULL;
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
for (loc = b->loc; loc; loc = loc->next)
|
||
{
|
||
*next = loc;
|
||
next = &(loc->global_next);
|
||
*next = NULL;
|
||
}
|
||
}
|
||
|
||
/* Identify bp_location instances that are no longer present in the new
|
||
list, and therefore should be freed. Note that it's not necessary that
|
||
those locations should be removed from inferior -- if there's another
|
||
location at the same address (previously marked as duplicate),
|
||
we don't need to remove/insert the location. */
|
||
for (ix = 0; VEC_iterate(bp_location_p, old_locations, ix, loc); ++ix)
|
||
{
|
||
/* Tells if 'loc' is found amoung the new locations. If not, we
|
||
have to free it. */
|
||
int found_object = 0;
|
||
/* Tells if the location should remain inserted in the target. */
|
||
int keep_in_target = 0;
|
||
int removed = 0;
|
||
for (loc2 = bp_location_chain; loc2; loc2 = loc2->global_next)
|
||
if (loc2 == loc)
|
||
{
|
||
found_object = 1;
|
||
break;
|
||
}
|
||
|
||
/* If this location is no longer present, and inserted, look if there's
|
||
maybe a new location at the same address. If so, mark that one
|
||
inserted, and don't remove this one. This is needed so that we
|
||
don't have a time window where a breakpoint at certain location is not
|
||
inserted. */
|
||
|
||
if (loc->inserted)
|
||
{
|
||
/* If the location is inserted now, we might have to remove it. */
|
||
|
||
if (found_object && should_be_inserted (loc))
|
||
{
|
||
/* The location is still present in the location list, and still
|
||
should be inserted. Don't do anything. */
|
||
keep_in_target = 1;
|
||
}
|
||
else
|
||
{
|
||
/* The location is either no longer present, or got disabled.
|
||
See if there's another location at the same address, in which
|
||
case we don't need to remove this one from the target. */
|
||
if (breakpoint_address_is_meaningful (loc->owner))
|
||
for (loc2 = bp_location_chain; loc2; loc2 = loc2->global_next)
|
||
{
|
||
/* For the sake of should_insert_location. The
|
||
call to check_duplicates will fix up this later. */
|
||
loc2->duplicate = 0;
|
||
if (should_be_inserted (loc2)
|
||
&& loc2 != loc && loc2->address == loc->address)
|
||
{
|
||
loc2->inserted = 1;
|
||
loc2->target_info = loc->target_info;
|
||
keep_in_target = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!keep_in_target)
|
||
{
|
||
if (remove_breakpoint (loc, mark_uninserted))
|
||
{
|
||
/* This is just about all we can do. We could keep this
|
||
location on the global list, and try to remove it next
|
||
time, but there's no particular reason why we will
|
||
succeed next time.
|
||
|
||
Note that at this point, loc->owner is still valid,
|
||
as delete_breakpoint frees the breakpoint only
|
||
after calling us. */
|
||
printf_filtered (_("warning: Error removing breakpoint %d\n"),
|
||
loc->owner->number);
|
||
}
|
||
removed = 1;
|
||
}
|
||
}
|
||
|
||
if (!found_object)
|
||
{
|
||
if (removed)
|
||
{
|
||
/* This location was removed from the targets. In non-stop mode,
|
||
a race condition is possible where we've removed a breakpoint,
|
||
but stop events for that breakpoint are already queued and will
|
||
arrive later. To suppress spurious SIGTRAPs reported to user,
|
||
we keep this breakpoint location for a bit, and will retire it
|
||
after we see 3 * thread_count events.
|
||
The theory here is that reporting of events should,
|
||
"on the average", be fair, so after that many event we'll see
|
||
events from all threads that have anything of interest, and no
|
||
longer need to keep this breakpoint. This is just a
|
||
heuristic, but if it's wrong, we'll report unexpected SIGTRAP,
|
||
which is usability issue, but not a correctness problem. */
|
||
loc->events_till_retirement = 3 * (thread_count () + 1);
|
||
loc->owner = NULL;
|
||
}
|
||
|
||
free_bp_location (loc);
|
||
}
|
||
}
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
check_duplicates (b);
|
||
}
|
||
|
||
if (always_inserted_mode && should_insert && target_has_execution)
|
||
insert_breakpoint_locations ();
|
||
}
|
||
|
||
void
|
||
breakpoint_retire_moribund (void)
|
||
{
|
||
struct bp_location *loc;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
|
||
if (--(loc->events_till_retirement) == 0)
|
||
{
|
||
free_bp_location (loc);
|
||
VEC_unordered_remove (bp_location_p, moribund_locations, ix);
|
||
--ix;
|
||
}
|
||
}
|
||
|
||
static void
|
||
update_global_location_list_nothrow (int inserting)
|
||
{
|
||
struct gdb_exception e;
|
||
TRY_CATCH (e, RETURN_MASK_ERROR)
|
||
update_global_location_list (inserting);
|
||
}
|
||
|
||
/* Clear BPT from a BPS. */
|
||
static void
|
||
bpstat_remove_breakpoint (bpstat bps, struct breakpoint *bpt)
|
||
{
|
||
bpstat bs;
|
||
for (bs = bps; bs; bs = bs->next)
|
||
if (bs->breakpoint_at && bs->breakpoint_at->owner == bpt)
|
||
{
|
||
bs->breakpoint_at = NULL;
|
||
bs->old_val = NULL;
|
||
/* bs->commands will be freed later. */
|
||
}
|
||
}
|
||
|
||
/* Callback for iterate_over_threads. */
|
||
static int
|
||
bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
|
||
{
|
||
struct breakpoint *bpt = data;
|
||
bpstat_remove_breakpoint (th->stop_bpstat, bpt);
|
||
return 0;
|
||
}
|
||
|
||
/* Delete a breakpoint and clean up all traces of it in the data
|
||
structures. */
|
||
|
||
void
|
||
delete_breakpoint (struct breakpoint *bpt)
|
||
{
|
||
struct breakpoint *b;
|
||
struct bp_location *loc, *next;
|
||
|
||
gdb_assert (bpt != NULL);
|
||
|
||
/* Has this bp already been deleted? This can happen because multiple
|
||
lists can hold pointers to bp's. bpstat lists are especial culprits.
|
||
|
||
One example of this happening is a watchpoint's scope bp. When the
|
||
scope bp triggers, we notice that the watchpoint is out of scope, and
|
||
delete it. We also delete its scope bp. But the scope bp is marked
|
||
"auto-deleting", and is already on a bpstat. That bpstat is then
|
||
checked for auto-deleting bp's, which are deleted.
|
||
|
||
A real solution to this problem might involve reference counts in bp's,
|
||
and/or giving them pointers back to their referencing bpstat's, and
|
||
teaching delete_breakpoint to only free a bp's storage when no more
|
||
references were extent. A cheaper bandaid was chosen. */
|
||
if (bpt->type == bp_none)
|
||
return;
|
||
|
||
observer_notify_breakpoint_deleted (bpt->number);
|
||
|
||
if (breakpoint_chain == bpt)
|
||
breakpoint_chain = bpt->next;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->next == bpt)
|
||
{
|
||
b->next = bpt->next;
|
||
break;
|
||
}
|
||
|
||
free_command_lines (&bpt->commands);
|
||
if (bpt->cond_string != NULL)
|
||
xfree (bpt->cond_string);
|
||
if (bpt->addr_string != NULL)
|
||
xfree (bpt->addr_string);
|
||
if (bpt->exp != NULL)
|
||
xfree (bpt->exp);
|
||
if (bpt->exp_string != NULL)
|
||
xfree (bpt->exp_string);
|
||
if (bpt->val != NULL)
|
||
value_free (bpt->val);
|
||
if (bpt->source_file != NULL)
|
||
xfree (bpt->source_file);
|
||
if (bpt->dll_pathname != NULL)
|
||
xfree (bpt->dll_pathname);
|
||
if (bpt->triggered_dll_pathname != NULL)
|
||
xfree (bpt->triggered_dll_pathname);
|
||
if (bpt->exec_pathname != NULL)
|
||
xfree (bpt->exec_pathname);
|
||
|
||
/* Be sure no bpstat's are pointing at it after it's been freed. */
|
||
/* FIXME, how can we find all bpstat's?
|
||
We just check stop_bpstat for now. Note that we cannot just
|
||
remove bpstats pointing at bpt from the stop_bpstat list
|
||
entirely, as breakpoint commands are associated with the bpstat;
|
||
if we remove it here, then the later call to
|
||
bpstat_do_actions (&stop_bpstat);
|
||
in event-top.c won't do anything, and temporary breakpoints
|
||
with commands won't work. */
|
||
|
||
/* Clear the current context. */
|
||
bpstat_remove_breakpoint (stop_bpstat, bpt);
|
||
/* And from all threads. */
|
||
iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
|
||
|
||
/* Now that breakpoint is removed from breakpoint
|
||
list, update the global location list. This
|
||
will remove locations that used to belong to
|
||
this breakpoint. Do this before freeing
|
||
the breakpoint itself, since remove_breakpoint
|
||
looks at location's owner. It might be better
|
||
design to have location completely self-contained,
|
||
but it's not the case now. */
|
||
update_global_location_list (0);
|
||
|
||
|
||
/* On the chance that someone will soon try again to delete this same
|
||
bp, we mark it as deleted before freeing its storage. */
|
||
bpt->type = bp_none;
|
||
|
||
xfree (bpt);
|
||
}
|
||
|
||
static void
|
||
do_delete_breakpoint_cleanup (void *b)
|
||
{
|
||
delete_breakpoint (b);
|
||
}
|
||
|
||
struct cleanup *
|
||
make_cleanup_delete_breakpoint (struct breakpoint *b)
|
||
{
|
||
return make_cleanup (do_delete_breakpoint_cleanup, b);
|
||
}
|
||
|
||
void
|
||
delete_command (char *arg, int from_tty)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
|
||
dont_repeat ();
|
||
|
||
if (arg == 0)
|
||
{
|
||
int breaks_to_delete = 0;
|
||
|
||
/* Delete all breakpoints if no argument.
|
||
Do not delete internal or call-dummy breakpoints, these
|
||
have to be deleted with an explicit breakpoint number argument. */
|
||
ALL_BREAKPOINTS (b)
|
||
{
|
||
if (b->type != bp_call_dummy &&
|
||
b->type != bp_shlib_event &&
|
||
b->type != bp_thread_event &&
|
||
b->type != bp_overlay_event &&
|
||
b->number >= 0)
|
||
{
|
||
breaks_to_delete = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Ask user only if there are some breakpoints to delete. */
|
||
if (!from_tty
|
||
|| (breaks_to_delete && query (_("Delete all breakpoints? "))))
|
||
{
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
{
|
||
if (b->type != bp_call_dummy &&
|
||
b->type != bp_shlib_event &&
|
||
b->type != bp_thread_event &&
|
||
b->type != bp_overlay_event &&
|
||
b->number >= 0)
|
||
delete_breakpoint (b);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
map_breakpoint_numbers (arg, delete_breakpoint);
|
||
}
|
||
|
||
static int
|
||
all_locations_are_pending (struct bp_location *loc)
|
||
{
|
||
for (; loc; loc = loc->next)
|
||
if (!loc->shlib_disabled)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of update_breakpoint_locations to simplify it.
|
||
Return non-zero if multiple fns in list LOC have the same name.
|
||
Null names are ignored. */
|
||
|
||
static int
|
||
ambiguous_names_p (struct bp_location *loc)
|
||
{
|
||
struct bp_location *l;
|
||
htab_t htab = htab_create_alloc (13, htab_hash_string,
|
||
(int (*) (const void *, const void *)) streq,
|
||
NULL, xcalloc, xfree);
|
||
|
||
for (l = loc; l != NULL; l = l->next)
|
||
{
|
||
const char **slot;
|
||
const char *name = l->function_name;
|
||
|
||
/* Allow for some names to be NULL, ignore them. */
|
||
if (name == NULL)
|
||
continue;
|
||
|
||
slot = (const char **) htab_find_slot (htab, (const void *) name,
|
||
INSERT);
|
||
/* NOTE: We can assume slot != NULL here because xcalloc never returns
|
||
NULL. */
|
||
if (*slot != NULL)
|
||
{
|
||
htab_delete (htab);
|
||
return 1;
|
||
}
|
||
*slot = name;
|
||
}
|
||
|
||
htab_delete (htab);
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
update_breakpoint_locations (struct breakpoint *b,
|
||
struct symtabs_and_lines sals)
|
||
{
|
||
int i;
|
||
char *s;
|
||
struct bp_location *existing_locations = b->loc;
|
||
|
||
/* If there's no new locations, and all existing locations
|
||
are pending, don't do anything. This optimizes
|
||
the common case where all locations are in the same
|
||
shared library, that was unloaded. We'd like to
|
||
retain the location, so that when the library
|
||
is loaded again, we don't loose the enabled/disabled
|
||
status of the individual locations. */
|
||
if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
|
||
return;
|
||
|
||
b->loc = NULL;
|
||
|
||
for (i = 0; i < sals.nelts; ++i)
|
||
{
|
||
struct bp_location *new_loc =
|
||
add_location_to_breakpoint (b, b->type, &(sals.sals[i]));
|
||
|
||
/* Reparse conditions, they might contain references to the
|
||
old symtab. */
|
||
if (b->cond_string != NULL)
|
||
{
|
||
struct gdb_exception e;
|
||
|
||
s = b->cond_string;
|
||
TRY_CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
new_loc->cond = parse_exp_1 (&s, block_for_pc (sals.sals[i].pc),
|
||
0);
|
||
}
|
||
if (e.reason < 0)
|
||
{
|
||
warning (_("failed to reevaluate condition for breakpoint %d: %s"),
|
||
b->number, e.message);
|
||
new_loc->enabled = 0;
|
||
}
|
||
}
|
||
|
||
if (b->source_file != NULL)
|
||
xfree (b->source_file);
|
||
if (sals.sals[i].symtab == NULL)
|
||
b->source_file = NULL;
|
||
else
|
||
b->source_file =
|
||
savestring (sals.sals[i].symtab->filename,
|
||
strlen (sals.sals[i].symtab->filename));
|
||
|
||
if (b->line_number == 0)
|
||
b->line_number = sals.sals[i].line;
|
||
}
|
||
|
||
/* If possible, carry over 'disable' status from existing breakpoints. */
|
||
{
|
||
struct bp_location *e = existing_locations;
|
||
/* If there are multiple breakpoints with the same function name,
|
||
e.g. for inline functions, comparing function names won't work.
|
||
Instead compare pc addresses; this is just a heuristic as things
|
||
may have moved, but in practice it gives the correct answer
|
||
often enough until a better solution is found. */
|
||
int have_ambiguous_names = ambiguous_names_p (b->loc);
|
||
|
||
for (; e; e = e->next)
|
||
{
|
||
if (!e->enabled && e->function_name)
|
||
{
|
||
struct bp_location *l = b->loc;
|
||
if (have_ambiguous_names)
|
||
{
|
||
for (; l; l = l->next)
|
||
if (e->address == l->address)
|
||
{
|
||
l->enabled = 0;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (; l; l = l->next)
|
||
if (l->function_name
|
||
&& strcmp (e->function_name, l->function_name) == 0)
|
||
{
|
||
l->enabled = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
update_global_location_list (1);
|
||
}
|
||
|
||
|
||
/* Reset a breakpoint given it's struct breakpoint * BINT.
|
||
The value we return ends up being the return value from catch_errors.
|
||
Unused in this case. */
|
||
|
||
static int
|
||
breakpoint_re_set_one (void *bint)
|
||
{
|
||
/* get past catch_errs */
|
||
struct breakpoint *b = (struct breakpoint *) bint;
|
||
struct value *mark;
|
||
int i;
|
||
int not_found = 0;
|
||
int *not_found_ptr = ¬_found;
|
||
struct symtabs_and_lines sals = {};
|
||
struct symtabs_and_lines expanded;
|
||
char *s;
|
||
enum enable_state save_enable;
|
||
struct gdb_exception e;
|
||
|
||
|
||
switch (b->type)
|
||
{
|
||
case bp_none:
|
||
warning (_("attempted to reset apparently deleted breakpoint #%d?"),
|
||
b->number);
|
||
return 0;
|
||
case bp_breakpoint:
|
||
case bp_hardware_breakpoint:
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
if (b->addr_string == NULL)
|
||
{
|
||
/* Anything without a string can't be re-set. */
|
||
delete_breakpoint (b);
|
||
return 0;
|
||
}
|
||
|
||
set_language (b->language);
|
||
input_radix = b->input_radix;
|
||
s = b->addr_string;
|
||
TRY_CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
sals = decode_line_1 (&s, 1, (struct symtab *) NULL, 0, (char ***) NULL,
|
||
not_found_ptr);
|
||
}
|
||
if (e.reason < 0)
|
||
{
|
||
int not_found_and_ok = 0;
|
||
/* For pending breakpoints, it's expected that parsing
|
||
will fail until the right shared library is loaded.
|
||
User has already told to create pending breakpoints and
|
||
don't need extra messages. If breakpoint is in bp_shlib_disabled
|
||
state, then user already saw the message about that breakpoint
|
||
being disabled, and don't want to see more errors. */
|
||
if (not_found
|
||
&& (b->condition_not_parsed
|
||
|| (b->loc && b->loc->shlib_disabled)
|
||
|| b->enable_state == bp_disabled))
|
||
not_found_and_ok = 1;
|
||
|
||
if (!not_found_and_ok)
|
||
{
|
||
/* We surely don't want to warn about the same breakpoint
|
||
10 times. One solution, implemented here, is disable
|
||
the breakpoint on error. Another solution would be to
|
||
have separate 'warning emitted' flag. Since this
|
||
happens only when a binary has changed, I don't know
|
||
which approach is better. */
|
||
b->enable_state = bp_disabled;
|
||
throw_exception (e);
|
||
}
|
||
}
|
||
|
||
if (not_found)
|
||
break;
|
||
|
||
gdb_assert (sals.nelts == 1);
|
||
resolve_sal_pc (&sals.sals[0]);
|
||
if (b->condition_not_parsed && s && s[0])
|
||
{
|
||
char *cond_string = 0;
|
||
int thread = -1;
|
||
find_condition_and_thread (s, sals.sals[0].pc,
|
||
&cond_string, &thread);
|
||
if (cond_string)
|
||
b->cond_string = cond_string;
|
||
b->thread = thread;
|
||
b->condition_not_parsed = 0;
|
||
}
|
||
expanded = expand_line_sal_maybe (sals.sals[0]);
|
||
update_breakpoint_locations (b, expanded);
|
||
|
||
xfree (sals.sals);
|
||
break;
|
||
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
/* Watchpoint can be either on expression using entirely global variables,
|
||
or it can be on local variables.
|
||
|
||
Watchpoints of the first kind are never auto-deleted, and even persist
|
||
across program restarts. Since they can use variables from shared
|
||
libraries, we need to reparse expression as libraries are loaded
|
||
and unloaded.
|
||
|
||
Watchpoints on local variables can also change meaning as result
|
||
of solib event. For example, if a watchpoint uses both a local and
|
||
a global variables in expression, it's a local watchpoint, but
|
||
unloading of a shared library will make the expression invalid.
|
||
This is not a very common use case, but we still re-evaluate
|
||
expression, to avoid surprises to the user.
|
||
|
||
Note that for local watchpoints, we re-evaluate it only if
|
||
watchpoints frame id is still valid. If it's not, it means
|
||
the watchpoint is out of scope and will be deleted soon. In fact,
|
||
I'm not sure we'll ever be called in this case.
|
||
|
||
If a local watchpoint's frame id is still valid, then
|
||
b->exp_valid_block is likewise valid, and we can safely use it.
|
||
|
||
Don't do anything about disabled watchpoints, since they will
|
||
be reevaluated again when enabled. */
|
||
update_watchpoint (b, 1 /* reparse */);
|
||
break;
|
||
/* We needn't really do anything to reset these, since the mask
|
||
that requests them is unaffected by e.g., new libraries being
|
||
loaded. */
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
case bp_catch_exec:
|
||
break;
|
||
|
||
default:
|
||
printf_filtered (_("Deleting unknown breakpoint type %d\n"), b->type);
|
||
/* fall through */
|
||
/* Delete overlay event breakpoints; they will be reset later by
|
||
breakpoint_re_set. */
|
||
case bp_overlay_event:
|
||
delete_breakpoint (b);
|
||
break;
|
||
|
||
/* This breakpoint is special, it's set up when the inferior
|
||
starts and we really don't want to touch it. */
|
||
case bp_shlib_event:
|
||
|
||
/* Like bp_shlib_event, this breakpoint type is special.
|
||
Once it is set up, we do not want to touch it. */
|
||
case bp_thread_event:
|
||
|
||
/* Keep temporary breakpoints, which can be encountered when we step
|
||
over a dlopen call and SOLIB_ADD is resetting the breakpoints.
|
||
Otherwise these should have been blown away via the cleanup chain
|
||
or by breakpoint_init_inferior when we rerun the executable. */
|
||
case bp_until:
|
||
case bp_finish:
|
||
case bp_watchpoint_scope:
|
||
case bp_call_dummy:
|
||
case bp_step_resume:
|
||
case bp_longjmp:
|
||
case bp_longjmp_resume:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Re-set all breakpoints after symbols have been re-loaded. */
|
||
void
|
||
breakpoint_re_set (void)
|
||
{
|
||
struct breakpoint *b, *temp;
|
||
enum language save_language;
|
||
int save_input_radix;
|
||
|
||
save_language = current_language->la_language;
|
||
save_input_radix = input_radix;
|
||
ALL_BREAKPOINTS_SAFE (b, temp)
|
||
{
|
||
/* Format possible error msg */
|
||
char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
|
||
b->number);
|
||
struct cleanup *cleanups = make_cleanup (xfree, message);
|
||
catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
|
||
do_cleanups (cleanups);
|
||
}
|
||
set_language (save_language);
|
||
input_radix = save_input_radix;
|
||
|
||
create_overlay_event_breakpoint ("_ovly_debug_event");
|
||
}
|
||
|
||
/* Reset the thread number of this breakpoint:
|
||
|
||
- If the breakpoint is for all threads, leave it as-is.
|
||
- Else, reset it to the current thread for inferior_ptid. */
|
||
void
|
||
breakpoint_re_set_thread (struct breakpoint *b)
|
||
{
|
||
if (b->thread != -1)
|
||
{
|
||
if (in_thread_list (inferior_ptid))
|
||
b->thread = pid_to_thread_id (inferior_ptid);
|
||
}
|
||
}
|
||
|
||
/* Set ignore-count of breakpoint number BPTNUM to COUNT.
|
||
If from_tty is nonzero, it prints a message to that effect,
|
||
which ends with a period (no newline). */
|
||
|
||
void
|
||
set_ignore_count (int bptnum, int count, int from_tty)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
if (count < 0)
|
||
count = 0;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->number == bptnum)
|
||
{
|
||
b->ignore_count = count;
|
||
if (from_tty)
|
||
{
|
||
if (count == 0)
|
||
printf_filtered (_("Will stop next time breakpoint %d is reached."),
|
||
bptnum);
|
||
else if (count == 1)
|
||
printf_filtered (_("Will ignore next crossing of breakpoint %d."),
|
||
bptnum);
|
||
else
|
||
printf_filtered (_("Will ignore next %d crossings of breakpoint %d."),
|
||
count, bptnum);
|
||
}
|
||
breakpoints_changed ();
|
||
observer_notify_breakpoint_modified (b->number);
|
||
return;
|
||
}
|
||
|
||
error (_("No breakpoint number %d."), bptnum);
|
||
}
|
||
|
||
/* Clear the ignore counts of all breakpoints. */
|
||
void
|
||
breakpoint_clear_ignore_counts (void)
|
||
{
|
||
struct breakpoint *b;
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
b->ignore_count = 0;
|
||
}
|
||
|
||
/* Command to set ignore-count of breakpoint N to COUNT. */
|
||
|
||
static void
|
||
ignore_command (char *args, int from_tty)
|
||
{
|
||
char *p = args;
|
||
int num;
|
||
|
||
if (p == 0)
|
||
error_no_arg (_("a breakpoint number"));
|
||
|
||
num = get_number (&p);
|
||
if (num == 0)
|
||
error (_("bad breakpoint number: '%s'"), args);
|
||
if (*p == 0)
|
||
error (_("Second argument (specified ignore-count) is missing."));
|
||
|
||
set_ignore_count (num,
|
||
longest_to_int (value_as_long (parse_and_eval (p))),
|
||
from_tty);
|
||
if (from_tty)
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
/* Call FUNCTION on each of the breakpoints
|
||
whose numbers are given in ARGS. */
|
||
|
||
static void
|
||
map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *))
|
||
{
|
||
char *p = args;
|
||
char *p1;
|
||
int num;
|
||
struct breakpoint *b, *tmp;
|
||
int match;
|
||
|
||
if (p == 0)
|
||
error_no_arg (_("one or more breakpoint numbers"));
|
||
|
||
while (*p)
|
||
{
|
||
match = 0;
|
||
p1 = p;
|
||
|
||
num = get_number_or_range (&p1);
|
||
if (num == 0)
|
||
{
|
||
warning (_("bad breakpoint number at or near '%s'"), p);
|
||
}
|
||
else
|
||
{
|
||
ALL_BREAKPOINTS_SAFE (b, tmp)
|
||
if (b->number == num)
|
||
{
|
||
struct breakpoint *related_breakpoint = b->related_breakpoint;
|
||
match = 1;
|
||
function (b);
|
||
if (related_breakpoint)
|
||
function (related_breakpoint);
|
||
break;
|
||
}
|
||
if (match == 0)
|
||
printf_unfiltered (_("No breakpoint number %d.\n"), num);
|
||
}
|
||
p = p1;
|
||
}
|
||
}
|
||
|
||
static struct bp_location *
|
||
find_location_by_number (char *number)
|
||
{
|
||
char *dot = strchr (number, '.');
|
||
char *p1;
|
||
int bp_num;
|
||
int loc_num;
|
||
struct breakpoint *b;
|
||
struct bp_location *loc;
|
||
|
||
*dot = '\0';
|
||
|
||
p1 = number;
|
||
bp_num = get_number_or_range (&p1);
|
||
if (bp_num == 0)
|
||
error (_("Bad breakpoint number '%s'"), number);
|
||
|
||
ALL_BREAKPOINTS (b)
|
||
if (b->number == bp_num)
|
||
{
|
||
break;
|
||
}
|
||
|
||
if (!b || b->number != bp_num)
|
||
error (_("Bad breakpoint number '%s'"), number);
|
||
|
||
p1 = dot+1;
|
||
loc_num = get_number_or_range (&p1);
|
||
if (loc_num == 0)
|
||
error (_("Bad breakpoint location number '%s'"), number);
|
||
|
||
--loc_num;
|
||
loc = b->loc;
|
||
for (;loc_num && loc; --loc_num, loc = loc->next)
|
||
;
|
||
if (!loc)
|
||
error (_("Bad breakpoint location number '%s'"), dot+1);
|
||
|
||
return loc;
|
||
}
|
||
|
||
|
||
/* Set ignore-count of breakpoint number BPTNUM to COUNT.
|
||
If from_tty is nonzero, it prints a message to that effect,
|
||
which ends with a period (no newline). */
|
||
|
||
void
|
||
disable_breakpoint (struct breakpoint *bpt)
|
||
{
|
||
/* Never disable a watchpoint scope breakpoint; we want to
|
||
hit them when we leave scope so we can delete both the
|
||
watchpoint and its scope breakpoint at that time. */
|
||
if (bpt->type == bp_watchpoint_scope)
|
||
return;
|
||
|
||
/* You can't disable permanent breakpoints. */
|
||
if (bpt->enable_state == bp_permanent)
|
||
return;
|
||
|
||
bpt->enable_state = bp_disabled;
|
||
|
||
update_global_location_list (0);
|
||
|
||
observer_notify_breakpoint_modified (bpt->number);
|
||
}
|
||
|
||
static void
|
||
disable_command (char *args, int from_tty)
|
||
{
|
||
struct breakpoint *bpt;
|
||
if (args == 0)
|
||
ALL_BREAKPOINTS (bpt)
|
||
switch (bpt->type)
|
||
{
|
||
case bp_none:
|
||
warning (_("attempted to disable apparently deleted breakpoint #%d?"),
|
||
bpt->number);
|
||
continue;
|
||
case bp_breakpoint:
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
case bp_catch_exec:
|
||
case bp_hardware_breakpoint:
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
disable_breakpoint (bpt);
|
||
default:
|
||
continue;
|
||
}
|
||
else if (strchr (args, '.'))
|
||
{
|
||
struct bp_location *loc = find_location_by_number (args);
|
||
if (loc)
|
||
loc->enabled = 0;
|
||
update_global_location_list (0);
|
||
}
|
||
else
|
||
map_breakpoint_numbers (args, disable_breakpoint);
|
||
}
|
||
|
||
static void
|
||
do_enable_breakpoint (struct breakpoint *bpt, enum bpdisp disposition)
|
||
{
|
||
int target_resources_ok, other_type_used;
|
||
struct value *mark;
|
||
|
||
if (bpt->type == bp_hardware_breakpoint)
|
||
{
|
||
int i;
|
||
i = hw_breakpoint_used_count ();
|
||
target_resources_ok =
|
||
TARGET_CAN_USE_HARDWARE_WATCHPOINT (bp_hardware_breakpoint,
|
||
i + 1, 0);
|
||
if (target_resources_ok == 0)
|
||
error (_("No hardware breakpoint support in the target."));
|
||
else if (target_resources_ok < 0)
|
||
error (_("Hardware breakpoints used exceeds limit."));
|
||
}
|
||
|
||
if (bpt->type == bp_watchpoint ||
|
||
bpt->type == bp_hardware_watchpoint ||
|
||
bpt->type == bp_read_watchpoint ||
|
||
bpt->type == bp_access_watchpoint)
|
||
{
|
||
struct frame_id saved_frame_id;
|
||
|
||
saved_frame_id = get_frame_id (get_selected_frame (NULL));
|
||
if (bpt->exp_valid_block != NULL)
|
||
{
|
||
struct frame_info *fr =
|
||
fr = frame_find_by_id (bpt->watchpoint_frame);
|
||
if (fr == NULL)
|
||
{
|
||
printf_filtered (_("\
|
||
Cannot enable watchpoint %d because the block in which its expression\n\
|
||
is valid is not currently in scope.\n"), bpt->number);
|
||
return;
|
||
}
|
||
select_frame (fr);
|
||
}
|
||
|
||
if (bpt->val)
|
||
value_free (bpt->val);
|
||
mark = value_mark ();
|
||
fetch_watchpoint_value (bpt->exp, &bpt->val, NULL, NULL);
|
||
if (bpt->val)
|
||
release_value (bpt->val);
|
||
bpt->val_valid = 1;
|
||
|
||
if (bpt->type == bp_hardware_watchpoint ||
|
||
bpt->type == bp_read_watchpoint ||
|
||
bpt->type == bp_access_watchpoint)
|
||
{
|
||
int i = hw_watchpoint_used_count (bpt->type, &other_type_used);
|
||
int mem_cnt = can_use_hardware_watchpoint (bpt->val);
|
||
|
||
/* Hack around 'unused var' error for some targets here */
|
||
(void) mem_cnt, (void) i;
|
||
target_resources_ok = TARGET_CAN_USE_HARDWARE_WATCHPOINT (
|
||
bpt->type, i + mem_cnt, other_type_used);
|
||
/* we can consider of type is bp_hardware_watchpoint, convert to
|
||
bp_watchpoint in the following condition */
|
||
if (target_resources_ok < 0)
|
||
{
|
||
printf_filtered (_("\
|
||
Cannot enable watchpoint %d because target watch resources\n\
|
||
have been allocated for other watchpoints.\n"), bpt->number);
|
||
value_free_to_mark (mark);
|
||
return;
|
||
}
|
||
}
|
||
|
||
select_frame (frame_find_by_id (saved_frame_id));
|
||
value_free_to_mark (mark);
|
||
}
|
||
|
||
if (bpt->enable_state != bp_permanent)
|
||
bpt->enable_state = bp_enabled;
|
||
bpt->disposition = disposition;
|
||
update_global_location_list (1);
|
||
breakpoints_changed ();
|
||
|
||
observer_notify_breakpoint_modified (bpt->number);
|
||
}
|
||
|
||
|
||
void
|
||
enable_breakpoint (struct breakpoint *bpt)
|
||
{
|
||
do_enable_breakpoint (bpt, bpt->disposition);
|
||
}
|
||
|
||
/* The enable command enables the specified breakpoints (or all defined
|
||
breakpoints) so they once again become (or continue to be) effective
|
||
in stopping the inferior. */
|
||
|
||
static void
|
||
enable_command (char *args, int from_tty)
|
||
{
|
||
struct breakpoint *bpt;
|
||
if (args == 0)
|
||
ALL_BREAKPOINTS (bpt)
|
||
switch (bpt->type)
|
||
{
|
||
case bp_none:
|
||
warning (_("attempted to enable apparently deleted breakpoint #%d?"),
|
||
bpt->number);
|
||
continue;
|
||
case bp_breakpoint:
|
||
case bp_catch_load:
|
||
case bp_catch_unload:
|
||
case bp_catch_fork:
|
||
case bp_catch_vfork:
|
||
case bp_catch_exec:
|
||
case bp_hardware_breakpoint:
|
||
case bp_watchpoint:
|
||
case bp_hardware_watchpoint:
|
||
case bp_read_watchpoint:
|
||
case bp_access_watchpoint:
|
||
enable_breakpoint (bpt);
|
||
default:
|
||
continue;
|
||
}
|
||
else if (strchr (args, '.'))
|
||
{
|
||
struct bp_location *loc = find_location_by_number (args);
|
||
if (loc)
|
||
loc->enabled = 1;
|
||
update_global_location_list (1);
|
||
}
|
||
else
|
||
map_breakpoint_numbers (args, enable_breakpoint);
|
||
}
|
||
|
||
static void
|
||
enable_once_breakpoint (struct breakpoint *bpt)
|
||
{
|
||
do_enable_breakpoint (bpt, disp_disable);
|
||
}
|
||
|
||
static void
|
||
enable_once_command (char *args, int from_tty)
|
||
{
|
||
map_breakpoint_numbers (args, enable_once_breakpoint);
|
||
}
|
||
|
||
static void
|
||
enable_delete_breakpoint (struct breakpoint *bpt)
|
||
{
|
||
do_enable_breakpoint (bpt, disp_del);
|
||
}
|
||
|
||
static void
|
||
enable_delete_command (char *args, int from_tty)
|
||
{
|
||
map_breakpoint_numbers (args, enable_delete_breakpoint);
|
||
}
|
||
|
||
static void
|
||
set_breakpoint_cmd (char *args, int from_tty)
|
||
{
|
||
}
|
||
|
||
static void
|
||
show_breakpoint_cmd (char *args, int from_tty)
|
||
{
|
||
}
|
||
|
||
/* Use default_breakpoint_'s, or nothing if they aren't valid. */
|
||
|
||
struct symtabs_and_lines
|
||
decode_line_spec_1 (char *string, int funfirstline)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
if (string == 0)
|
||
error (_("Empty line specification."));
|
||
if (default_breakpoint_valid)
|
||
sals = decode_line_1 (&string, funfirstline,
|
||
default_breakpoint_symtab,
|
||
default_breakpoint_line,
|
||
(char ***) NULL, NULL);
|
||
else
|
||
sals = decode_line_1 (&string, funfirstline,
|
||
(struct symtab *) NULL, 0, (char ***) NULL, NULL);
|
||
if (*string)
|
||
error (_("Junk at end of line specification: %s"), string);
|
||
return sals;
|
||
}
|
||
|
||
/* Create and insert a raw software breakpoint at PC. Return an
|
||
identifier, which should be used to remove the breakpoint later.
|
||
In general, places which call this should be using something on the
|
||
breakpoint chain instead; this function should be eliminated
|
||
someday. */
|
||
|
||
void *
|
||
deprecated_insert_raw_breakpoint (CORE_ADDR pc)
|
||
{
|
||
struct bp_target_info *bp_tgt;
|
||
|
||
bp_tgt = xmalloc (sizeof (struct bp_target_info));
|
||
memset (bp_tgt, 0, sizeof (struct bp_target_info));
|
||
|
||
bp_tgt->placed_address = pc;
|
||
if (target_insert_breakpoint (bp_tgt) != 0)
|
||
{
|
||
/* Could not insert the breakpoint. */
|
||
xfree (bp_tgt);
|
||
return NULL;
|
||
}
|
||
|
||
return bp_tgt;
|
||
}
|
||
|
||
/* Remove a breakpoint BP inserted by deprecated_insert_raw_breakpoint. */
|
||
|
||
int
|
||
deprecated_remove_raw_breakpoint (void *bp)
|
||
{
|
||
struct bp_target_info *bp_tgt = bp;
|
||
int ret;
|
||
|
||
ret = target_remove_breakpoint (bp_tgt);
|
||
xfree (bp_tgt);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* One (or perhaps two) breakpoints used for software single stepping. */
|
||
|
||
static void *single_step_breakpoints[2];
|
||
|
||
/* Create and insert a breakpoint for software single step. */
|
||
|
||
void
|
||
insert_single_step_breakpoint (CORE_ADDR next_pc)
|
||
{
|
||
void **bpt_p;
|
||
|
||
if (single_step_breakpoints[0] == NULL)
|
||
bpt_p = &single_step_breakpoints[0];
|
||
else
|
||
{
|
||
gdb_assert (single_step_breakpoints[1] == NULL);
|
||
bpt_p = &single_step_breakpoints[1];
|
||
}
|
||
|
||
/* NOTE drow/2006-04-11: A future improvement to this function would be
|
||
to only create the breakpoints once, and actually put them on the
|
||
breakpoint chain. That would let us use set_raw_breakpoint. We could
|
||
adjust the addresses each time they were needed. Doing this requires
|
||
corresponding changes elsewhere where single step breakpoints are
|
||
handled, however. So, for now, we use this. */
|
||
|
||
*bpt_p = deprecated_insert_raw_breakpoint (next_pc);
|
||
if (*bpt_p == NULL)
|
||
error (_("Could not insert single-step breakpoint at 0x%s"),
|
||
paddr_nz (next_pc));
|
||
}
|
||
|
||
/* Remove and delete any breakpoints used for software single step. */
|
||
|
||
void
|
||
remove_single_step_breakpoints (void)
|
||
{
|
||
gdb_assert (single_step_breakpoints[0] != NULL);
|
||
|
||
/* See insert_single_step_breakpoint for more about this deprecated
|
||
call. */
|
||
deprecated_remove_raw_breakpoint (single_step_breakpoints[0]);
|
||
single_step_breakpoints[0] = NULL;
|
||
|
||
if (single_step_breakpoints[1] != NULL)
|
||
{
|
||
deprecated_remove_raw_breakpoint (single_step_breakpoints[1]);
|
||
single_step_breakpoints[1] = NULL;
|
||
}
|
||
}
|
||
|
||
/* Check whether a software single-step breakpoint is inserted at PC. */
|
||
|
||
static int
|
||
single_step_breakpoint_inserted_here_p (CORE_ADDR pc)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 2; i++)
|
||
{
|
||
struct bp_target_info *bp_tgt = single_step_breakpoints[i];
|
||
if (bp_tgt && bp_tgt->placed_address == pc)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
int breakpoints_always_inserted_mode (void)
|
||
{
|
||
return always_inserted_mode;
|
||
}
|
||
|
||
|
||
/* This help string is used for the break, hbreak, tbreak and thbreak commands.
|
||
It is defined as a macro to prevent duplication.
|
||
COMMAND should be a string constant containing the name of the command. */
|
||
#define BREAK_ARGS_HELP(command) \
|
||
command" [LOCATION] [thread THREADNUM] [if CONDITION]\n\
|
||
LOCATION may be a line number, function name, or \"*\" and an address.\n\
|
||
If a line number is specified, break at start of code for that line.\n\
|
||
If a function is specified, break at start of code for that function.\n\
|
||
If an address is specified, break at that exact address.\n\
|
||
With no LOCATION, uses current execution address of selected stack frame.\n\
|
||
This is useful for breaking on return to a stack frame.\n\
|
||
\n\
|
||
THREADNUM is the number from \"info threads\".\n\
|
||
CONDITION is a boolean expression.\n\
|
||
\n\
|
||
Multiple breakpoints at one place are permitted, and useful if conditional.\n\
|
||
\n\
|
||
Do \"help breakpoints\" for info on other commands dealing with breakpoints."
|
||
|
||
void
|
||
_initialize_breakpoint (void)
|
||
{
|
||
static struct cmd_list_element *breakpoint_set_cmdlist;
|
||
static struct cmd_list_element *breakpoint_show_cmdlist;
|
||
struct cmd_list_element *c;
|
||
|
||
observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
|
||
|
||
breakpoint_chain = 0;
|
||
/* Don't bother to call set_breakpoint_count. $bpnum isn't useful
|
||
before a breakpoint is set. */
|
||
breakpoint_count = 0;
|
||
|
||
add_com ("ignore", class_breakpoint, ignore_command, _("\
|
||
Set ignore-count of breakpoint number N to COUNT.\n\
|
||
Usage is `ignore N COUNT'."));
|
||
if (xdb_commands)
|
||
add_com_alias ("bc", "ignore", class_breakpoint, 1);
|
||
|
||
add_com ("commands", class_breakpoint, commands_command, _("\
|
||
Set commands to be executed when a breakpoint is hit.\n\
|
||
Give breakpoint number as argument after \"commands\".\n\
|
||
With no argument, the targeted breakpoint is the last one set.\n\
|
||
The commands themselves follow starting on the next line.\n\
|
||
Type a line containing \"end\" to indicate the end of them.\n\
|
||
Give \"silent\" as the first line to make the breakpoint silent;\n\
|
||
then no output is printed when it is hit, except what the commands print."));
|
||
|
||
add_com ("condition", class_breakpoint, condition_command, _("\
|
||
Specify breakpoint number N to break only if COND is true.\n\
|
||
Usage is `condition N COND', where N is an integer and COND is an\n\
|
||
expression to be evaluated whenever breakpoint N is reached."));
|
||
|
||
c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
|
||
Set a temporary breakpoint.\n\
|
||
Like \"break\" except the breakpoint is only temporary,\n\
|
||
so it will be deleted when hit. Equivalent to \"break\" followed\n\
|
||
by using \"enable delete\" on the breakpoint number.\n\
|
||
\n"
|
||
BREAK_ARGS_HELP ("tbreak")));
|
||
set_cmd_completer (c, location_completer);
|
||
|
||
c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
|
||
Set a hardware assisted breakpoint.\n\
|
||
Like \"break\" except the breakpoint requires hardware support,\n\
|
||
some target hardware may not have this support.\n\
|
||
\n"
|
||
BREAK_ARGS_HELP ("hbreak")));
|
||
set_cmd_completer (c, location_completer);
|
||
|
||
c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
|
||
Set a temporary hardware assisted breakpoint.\n\
|
||
Like \"hbreak\" except the breakpoint is only temporary,\n\
|
||
so it will be deleted when hit.\n\
|
||
\n"
|
||
BREAK_ARGS_HELP ("thbreak")));
|
||
set_cmd_completer (c, location_completer);
|
||
|
||
add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
|
||
Enable some breakpoints.\n\
|
||
Give breakpoint numbers (separated by spaces) as arguments.\n\
|
||
With no subcommand, breakpoints are enabled until you command otherwise.\n\
|
||
This is used to cancel the effect of the \"disable\" command.\n\
|
||
With a subcommand you can enable temporarily."),
|
||
&enablelist, "enable ", 1, &cmdlist);
|
||
if (xdb_commands)
|
||
add_com ("ab", class_breakpoint, enable_command, _("\
|
||
Enable some breakpoints.\n\
|
||
Give breakpoint numbers (separated by spaces) as arguments.\n\
|
||
With no subcommand, breakpoints are enabled until you command otherwise.\n\
|
||
This is used to cancel the effect of the \"disable\" command.\n\
|
||
With a subcommand you can enable temporarily."));
|
||
|
||
add_com_alias ("en", "enable", class_breakpoint, 1);
|
||
|
||
add_abbrev_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
|
||
Enable some breakpoints.\n\
|
||
Give breakpoint numbers (separated by spaces) as arguments.\n\
|
||
This is used to cancel the effect of the \"disable\" command.\n\
|
||
May be abbreviated to simply \"enable\".\n"),
|
||
&enablebreaklist, "enable breakpoints ", 1, &enablelist);
|
||
|
||
add_cmd ("once", no_class, enable_once_command, _("\
|
||
Enable breakpoints for one hit. Give breakpoint numbers.\n\
|
||
If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
|
||
&enablebreaklist);
|
||
|
||
add_cmd ("delete", no_class, enable_delete_command, _("\
|
||
Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
|
||
If a breakpoint is hit while enabled in this fashion, it is deleted."),
|
||
&enablebreaklist);
|
||
|
||
add_cmd ("delete", no_class, enable_delete_command, _("\
|
||
Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
|
||
If a breakpoint is hit while enabled in this fashion, it is deleted."),
|
||
&enablelist);
|
||
|
||
add_cmd ("once", no_class, enable_once_command, _("\
|
||
Enable breakpoints for one hit. Give breakpoint numbers.\n\
|
||
If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
|
||
&enablelist);
|
||
|
||
add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
|
||
Disable some breakpoints.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To disable all breakpoints, give no argument.\n\
|
||
A disabled breakpoint is not forgotten, but has no effect until reenabled."),
|
||
&disablelist, "disable ", 1, &cmdlist);
|
||
add_com_alias ("dis", "disable", class_breakpoint, 1);
|
||
add_com_alias ("disa", "disable", class_breakpoint, 1);
|
||
if (xdb_commands)
|
||
add_com ("sb", class_breakpoint, disable_command, _("\
|
||
Disable some breakpoints.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To disable all breakpoints, give no argument.\n\
|
||
A disabled breakpoint is not forgotten, but has no effect until reenabled."));
|
||
|
||
add_cmd ("breakpoints", class_alias, disable_command, _("\
|
||
Disable some breakpoints.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To disable all breakpoints, give no argument.\n\
|
||
A disabled breakpoint is not forgotten, but has no effect until reenabled.\n\
|
||
This command may be abbreviated \"disable\"."),
|
||
&disablelist);
|
||
|
||
add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
|
||
Delete some breakpoints or auto-display expressions.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To delete all breakpoints, give no argument.\n\
|
||
\n\
|
||
Also a prefix command for deletion of other GDB objects.\n\
|
||
The \"unset\" command is also an alias for \"delete\"."),
|
||
&deletelist, "delete ", 1, &cmdlist);
|
||
add_com_alias ("d", "delete", class_breakpoint, 1);
|
||
add_com_alias ("del", "delete", class_breakpoint, 1);
|
||
if (xdb_commands)
|
||
add_com ("db", class_breakpoint, delete_command, _("\
|
||
Delete some breakpoints.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To delete all breakpoints, give no argument.\n"));
|
||
|
||
add_cmd ("breakpoints", class_alias, delete_command, _("\
|
||
Delete some breakpoints or auto-display expressions.\n\
|
||
Arguments are breakpoint numbers with spaces in between.\n\
|
||
To delete all breakpoints, give no argument.\n\
|
||
This command may be abbreviated \"delete\"."),
|
||
&deletelist);
|
||
|
||
add_com ("clear", class_breakpoint, clear_command, _("\
|
||
Clear breakpoint at specified line or function.\n\
|
||
Argument may be line number, function name, or \"*\" and an address.\n\
|
||
If line number is specified, all breakpoints in that line are cleared.\n\
|
||
If function is specified, breakpoints at beginning of function are cleared.\n\
|
||
If an address is specified, breakpoints at that address are cleared.\n\
|
||
\n\
|
||
With no argument, clears all breakpoints in the line that the selected frame\n\
|
||
is executing in.\n\
|
||
\n\
|
||
See also the \"delete\" command which clears breakpoints by number."));
|
||
|
||
c = add_com ("break", class_breakpoint, break_command, _("\
|
||
Set breakpoint at specified line or function.\n"
|
||
BREAK_ARGS_HELP ("break")));
|
||
set_cmd_completer (c, location_completer);
|
||
|
||
add_com_alias ("b", "break", class_run, 1);
|
||
add_com_alias ("br", "break", class_run, 1);
|
||
add_com_alias ("bre", "break", class_run, 1);
|
||
add_com_alias ("brea", "break", class_run, 1);
|
||
|
||
if (xdb_commands)
|
||
{
|
||
add_com_alias ("ba", "break", class_breakpoint, 1);
|
||
add_com_alias ("bu", "ubreak", class_breakpoint, 1);
|
||
}
|
||
|
||
if (dbx_commands)
|
||
{
|
||
add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
|
||
Break in function/address or break at a line in the current file."),
|
||
&stoplist, "stop ", 1, &cmdlist);
|
||
add_cmd ("in", class_breakpoint, stopin_command,
|
||
_("Break in function or address."), &stoplist);
|
||
add_cmd ("at", class_breakpoint, stopat_command,
|
||
_("Break at a line in the current file."), &stoplist);
|
||
add_com ("status", class_info, breakpoints_info, _("\
|
||
Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
|
||
The \"Type\" column indicates one of:\n\
|
||
\tbreakpoint - normal breakpoint\n\
|
||
\twatchpoint - watchpoint\n\
|
||
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
|
||
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
|
||
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
|
||
address and file/line number respectively.\n\
|
||
\n\
|
||
Convenience variable \"$_\" and default examine address for \"x\"\n\
|
||
are set to the address of the last breakpoint listed unless the command\n\
|
||
is prefixed with \"server \".\n\n\
|
||
Convenience variable \"$bpnum\" contains the number of the last\n\
|
||
breakpoint set."));
|
||
}
|
||
|
||
add_info ("breakpoints", breakpoints_info, _("\
|
||
Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
|
||
The \"Type\" column indicates one of:\n\
|
||
\tbreakpoint - normal breakpoint\n\
|
||
\twatchpoint - watchpoint\n\
|
||
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
|
||
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
|
||
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
|
||
address and file/line number respectively.\n\
|
||
\n\
|
||
Convenience variable \"$_\" and default examine address for \"x\"\n\
|
||
are set to the address of the last breakpoint listed unless the command\n\
|
||
is prefixed with \"server \".\n\n\
|
||
Convenience variable \"$bpnum\" contains the number of the last\n\
|
||
breakpoint set."));
|
||
|
||
if (xdb_commands)
|
||
add_com ("lb", class_breakpoint, breakpoints_info, _("\
|
||
Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
|
||
The \"Type\" column indicates one of:\n\
|
||
\tbreakpoint - normal breakpoint\n\
|
||
\twatchpoint - watchpoint\n\
|
||
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
|
||
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
|
||
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
|
||
address and file/line number respectively.\n\
|
||
\n\
|
||
Convenience variable \"$_\" and default examine address for \"x\"\n\
|
||
are set to the address of the last breakpoint listed unless the command\n\
|
||
is prefixed with \"server \".\n\n\
|
||
Convenience variable \"$bpnum\" contains the number of the last\n\
|
||
breakpoint set."));
|
||
|
||
add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
|
||
Status of all breakpoints, or breakpoint number NUMBER.\n\
|
||
The \"Type\" column indicates one of:\n\
|
||
\tbreakpoint - normal breakpoint\n\
|
||
\twatchpoint - watchpoint\n\
|
||
\tlongjmp - internal breakpoint used to step through longjmp()\n\
|
||
\tlongjmp resume - internal breakpoint at the target of longjmp()\n\
|
||
\tuntil - internal breakpoint used by the \"until\" command\n\
|
||
\tfinish - internal breakpoint used by the \"finish\" command\n\
|
||
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
|
||
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
|
||
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
|
||
address and file/line number respectively.\n\
|
||
\n\
|
||
Convenience variable \"$_\" and default examine address for \"x\"\n\
|
||
are set to the address of the last breakpoint listed unless the command\n\
|
||
is prefixed with \"server \".\n\n\
|
||
Convenience variable \"$bpnum\" contains the number of the last\n\
|
||
breakpoint set."),
|
||
&maintenanceinfolist);
|
||
|
||
add_com ("catch", class_breakpoint, catch_command, _("\
|
||
Set catchpoints to catch events.\n\
|
||
Raised signals may be caught:\n\
|
||
\tcatch signal - all signals\n\
|
||
\tcatch signal <signame> - a particular signal\n\
|
||
Raised exceptions may be caught:\n\
|
||
\tcatch throw - all exceptions, when thrown\n\
|
||
\tcatch throw <exceptname> - a particular exception, when thrown\n\
|
||
\tcatch catch - all exceptions, when caught\n\
|
||
\tcatch catch <exceptname> - a particular exception, when caught\n\
|
||
Thread or process events may be caught:\n\
|
||
\tcatch thread_start - any threads, just after creation\n\
|
||
\tcatch thread_exit - any threads, just before expiration\n\
|
||
\tcatch thread_join - any threads, just after joins\n\
|
||
Process events may be caught:\n\
|
||
\tcatch start - any processes, just after creation\n\
|
||
\tcatch exit - any processes, just before expiration\n\
|
||
\tcatch fork - calls to fork()\n\
|
||
\tcatch vfork - calls to vfork()\n\
|
||
\tcatch exec - calls to exec()\n\
|
||
Dynamically-linked library events may be caught:\n\
|
||
\tcatch load - loads of any library\n\
|
||
\tcatch load <libname> - loads of a particular library\n\
|
||
\tcatch unload - unloads of any library\n\
|
||
\tcatch unload <libname> - unloads of a particular library\n\
|
||
The act of your program's execution stopping may also be caught:\n\
|
||
\tcatch stop\n\n\
|
||
C++ exceptions may be caught:\n\
|
||
\tcatch throw - all exceptions, when thrown\n\
|
||
\tcatch catch - all exceptions, when caught\n\
|
||
Ada exceptions may be caught:\n\
|
||
\tcatch exception - all exceptions, when raised\n\
|
||
\tcatch exception <name> - a particular exception, when raised\n\
|
||
\tcatch exception unhandled - all unhandled exceptions, when raised\n\
|
||
\tcatch assert - all failed assertions, when raised\n\
|
||
\n\
|
||
Do \"help set follow-fork-mode\" for info on debugging your program\n\
|
||
after a fork or vfork is caught.\n\n\
|
||
Do \"help breakpoints\" for info on other commands dealing with breakpoints."));
|
||
|
||
add_com ("tcatch", class_breakpoint, tcatch_command, _("\
|
||
Set temporary catchpoints to catch events.\n\
|
||
Args like \"catch\" command.\n\
|
||
Like \"catch\" except the catchpoint is only temporary,\n\
|
||
so it will be deleted when hit. Equivalent to \"catch\" followed\n\
|
||
by using \"enable delete\" on the catchpoint number."));
|
||
|
||
c = add_com ("watch", class_breakpoint, watch_command, _("\
|
||
Set a watchpoint for an expression.\n\
|
||
A watchpoint stops execution of your program whenever the value of\n\
|
||
an expression changes."));
|
||
set_cmd_completer (c, expression_completer);
|
||
|
||
c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
|
||
Set a read watchpoint for an expression.\n\
|
||
A watchpoint stops execution of your program whenever the value of\n\
|
||
an expression is read."));
|
||
set_cmd_completer (c, expression_completer);
|
||
|
||
c = add_com ("awatch", class_breakpoint, awatch_command, _("\
|
||
Set a watchpoint for an expression.\n\
|
||
A watchpoint stops execution of your program whenever the value of\n\
|
||
an expression is either read or written."));
|
||
set_cmd_completer (c, expression_completer);
|
||
|
||
add_info ("watchpoints", breakpoints_info,
|
||
_("Synonym for ``info breakpoints''."));
|
||
|
||
|
||
/* XXX: cagney/2005-02-23: This should be a boolean, and should
|
||
respond to changes - contrary to the description. */
|
||
add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
|
||
&can_use_hw_watchpoints, _("\
|
||
Set debugger's willingness to use watchpoint hardware."), _("\
|
||
Show debugger's willingness to use watchpoint hardware."), _("\
|
||
If zero, gdb will not use hardware for new watchpoints, even if\n\
|
||
such is available. (However, any hardware watchpoints that were\n\
|
||
created before setting this to nonzero, will continue to use watchpoint\n\
|
||
hardware.)"),
|
||
NULL,
|
||
show_can_use_hw_watchpoints,
|
||
&setlist, &showlist);
|
||
|
||
can_use_hw_watchpoints = 1;
|
||
|
||
add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
|
||
Breakpoint specific settings\n\
|
||
Configure various breakpoint-specific variables such as\n\
|
||
pending breakpoint behavior"),
|
||
&breakpoint_set_cmdlist, "set breakpoint ",
|
||
0/*allow-unknown*/, &setlist);
|
||
add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
|
||
Breakpoint specific settings\n\
|
||
Configure various breakpoint-specific variables such as\n\
|
||
pending breakpoint behavior"),
|
||
&breakpoint_show_cmdlist, "show breakpoint ",
|
||
0/*allow-unknown*/, &showlist);
|
||
|
||
add_setshow_auto_boolean_cmd ("pending", no_class,
|
||
&pending_break_support, _("\
|
||
Set debugger's behavior regarding pending breakpoints."), _("\
|
||
Show debugger's behavior regarding pending breakpoints."), _("\
|
||
If on, an unrecognized breakpoint location will cause gdb to create a\n\
|
||
pending breakpoint. If off, an unrecognized breakpoint location results in\n\
|
||
an error. If auto, an unrecognized breakpoint location results in a\n\
|
||
user-query to see if a pending breakpoint should be created."),
|
||
NULL,
|
||
show_pending_break_support,
|
||
&breakpoint_set_cmdlist,
|
||
&breakpoint_show_cmdlist);
|
||
|
||
pending_break_support = AUTO_BOOLEAN_AUTO;
|
||
|
||
add_setshow_boolean_cmd ("auto-hw", no_class,
|
||
&automatic_hardware_breakpoints, _("\
|
||
Set automatic usage of hardware breakpoints."), _("\
|
||
Show automatic usage of hardware breakpoints."), _("\
|
||
If set, the debugger will automatically use hardware breakpoints for\n\
|
||
breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
|
||
a warning will be emitted for such breakpoints."),
|
||
NULL,
|
||
show_automatic_hardware_breakpoints,
|
||
&breakpoint_set_cmdlist,
|
||
&breakpoint_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("always-inserted", class_support,
|
||
&always_inserted_mode, _("\
|
||
Set mode for inserting breakpoints."), _("\
|
||
Show mode for inserting breakpoints."), _("\
|
||
When this mode is off (which is the default), breakpoints are inserted in\n\
|
||
inferior when it is resumed, and removed when execution stops. When this\n\
|
||
mode is on, breakpoints are inserted immediately and removed only when\n\
|
||
the user deletes the breakpoint."),
|
||
NULL,
|
||
&show_always_inserted_mode,
|
||
&breakpoint_set_cmdlist,
|
||
&breakpoint_show_cmdlist);
|
||
|
||
automatic_hardware_breakpoints = 1;
|
||
}
|