mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-05 10:57:57 +00:00
782 lines
19 KiB
C
782 lines
19 KiB
C
/* Memory attributes support, for GDB.
|
||
|
||
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "command.h"
|
||
#include "gdbcmd.h"
|
||
#include "memattr.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "language.h"
|
||
#include "vec.h"
|
||
#include "gdb_string.h"
|
||
|
||
const struct mem_attrib default_mem_attrib =
|
||
{
|
||
MEM_RW, /* mode */
|
||
MEM_WIDTH_UNSPECIFIED,
|
||
0, /* hwbreak */
|
||
0, /* cache */
|
||
0, /* verify */
|
||
-1 /* Flash blocksize not specified. */
|
||
};
|
||
|
||
const struct mem_attrib unknown_mem_attrib =
|
||
{
|
||
MEM_NONE, /* mode */
|
||
MEM_WIDTH_UNSPECIFIED,
|
||
0, /* hwbreak */
|
||
0, /* cache */
|
||
0, /* verify */
|
||
-1 /* Flash blocksize not specified. */
|
||
};
|
||
|
||
|
||
VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
|
||
static int mem_number = 0;
|
||
|
||
/* If this flag is set, the memory region list should be automatically
|
||
updated from the target. If it is clear, the list is user-controlled
|
||
and should be left alone. */
|
||
static int mem_use_target = 1;
|
||
|
||
/* If this flag is set, we have tried to fetch the target memory regions
|
||
since the last time it was invalidated. If that list is still
|
||
empty, then the target can't supply memory regions. */
|
||
static int target_mem_regions_valid;
|
||
|
||
/* If this flag is set, gdb will assume that memory ranges not
|
||
specified by the memory map have type MEM_NONE, and will
|
||
emit errors on all accesses to that memory. */
|
||
static int inaccessible_by_default = 1;
|
||
|
||
static void
|
||
show_inaccessible_by_default (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (inaccessible_by_default)
|
||
fprintf_filtered (file, _("\
|
||
Unknown memory addresses will be treated as inaccessible.\n"));
|
||
else
|
||
fprintf_filtered (file, _("\
|
||
Unknown memory addresses will be treated as RAM.\n"));
|
||
}
|
||
|
||
|
||
/* Predicate function which returns true if LHS should sort before RHS
|
||
in a list of memory regions, useful for VEC_lower_bound. */
|
||
|
||
static int
|
||
mem_region_lessthan (const struct mem_region *lhs,
|
||
const struct mem_region *rhs)
|
||
{
|
||
return lhs->lo < rhs->lo;
|
||
}
|
||
|
||
/* A helper function suitable for qsort, used to sort a
|
||
VEC(mem_region_s) by starting address. */
|
||
|
||
int
|
||
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
|
||
{
|
||
const struct mem_region *lhs = untyped_lhs;
|
||
const struct mem_region *rhs = untyped_rhs;
|
||
|
||
if (lhs->lo < rhs->lo)
|
||
return -1;
|
||
else if (lhs->lo == rhs->lo)
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Allocate a new memory region, with default settings. */
|
||
|
||
void
|
||
mem_region_init (struct mem_region *new)
|
||
{
|
||
memset (new, 0, sizeof (struct mem_region));
|
||
new->enabled_p = 1;
|
||
new->attrib = default_mem_attrib;
|
||
}
|
||
|
||
/* This function should be called before any command which would
|
||
modify the memory region list. It will handle switching from
|
||
a target-provided list to a local list, if necessary. */
|
||
|
||
static void
|
||
require_user_regions (int from_tty)
|
||
{
|
||
struct mem_region *m;
|
||
int ix, length;
|
||
|
||
/* If we're already using a user-provided list, nothing to do. */
|
||
if (!mem_use_target)
|
||
return;
|
||
|
||
/* Switch to a user-provided list (possibly a copy of the current
|
||
one). */
|
||
mem_use_target = 0;
|
||
|
||
/* If we don't have a target-provided region list yet, then
|
||
no need to warn. */
|
||
if (mem_region_list == NULL)
|
||
return;
|
||
|
||
/* Otherwise, let the user know how to get back. */
|
||
if (from_tty)
|
||
warning (_("Switching to manual control of memory regions; use "
|
||
"\"mem auto\" to fetch regions from the target again."));
|
||
|
||
/* And create a new list for the user to modify. */
|
||
length = VEC_length (mem_region_s, target_mem_region_list);
|
||
mem_region_list = VEC_alloc (mem_region_s, length);
|
||
for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
|
||
VEC_quick_push (mem_region_s, mem_region_list, m);
|
||
}
|
||
|
||
/* This function should be called before any command which would
|
||
read the memory region list, other than those which call
|
||
require_user_regions. It will handle fetching the
|
||
target-provided list, if necessary. */
|
||
|
||
static void
|
||
require_target_regions (void)
|
||
{
|
||
if (mem_use_target && !target_mem_regions_valid)
|
||
{
|
||
target_mem_regions_valid = 1;
|
||
target_mem_region_list = target_memory_map ();
|
||
mem_region_list = target_mem_region_list;
|
||
}
|
||
}
|
||
|
||
static void
|
||
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
|
||
const struct mem_attrib *attrib)
|
||
{
|
||
struct mem_region new;
|
||
int i, ix;
|
||
|
||
/* lo == hi is a useless empty region */
|
||
if (lo >= hi && hi != 0)
|
||
{
|
||
printf_unfiltered (_("invalid memory region: low >= high\n"));
|
||
return;
|
||
}
|
||
|
||
mem_region_init (&new);
|
||
new.lo = lo;
|
||
new.hi = hi;
|
||
|
||
ix = VEC_lower_bound (mem_region_s, mem_region_list, &new,
|
||
mem_region_lessthan);
|
||
|
||
/* Check for an overlapping memory region. We only need to check
|
||
in the vicinity - at most one before and one after the
|
||
insertion point. */
|
||
for (i = ix - 1; i < ix + 1; i++)
|
||
{
|
||
struct mem_region *n;
|
||
|
||
if (i < 0)
|
||
continue;
|
||
if (i >= VEC_length (mem_region_s, mem_region_list))
|
||
continue;
|
||
|
||
n = VEC_index (mem_region_s, mem_region_list, i);
|
||
|
||
if ((lo >= n->lo && (lo < n->hi || n->hi == 0))
|
||
|| (hi > n->lo && (hi <= n->hi || n->hi == 0))
|
||
|| (lo <= n->lo && (hi >= n->hi || hi == 0)))
|
||
{
|
||
printf_unfiltered (_("overlapping memory region\n"));
|
||
return;
|
||
}
|
||
}
|
||
|
||
new.number = ++mem_number;
|
||
new.attrib = *attrib;
|
||
VEC_safe_insert (mem_region_s, mem_region_list, ix, &new);
|
||
}
|
||
|
||
/*
|
||
* Look up the memory region cooresponding to ADDR.
|
||
*/
|
||
struct mem_region *
|
||
lookup_mem_region (CORE_ADDR addr)
|
||
{
|
||
static struct mem_region region;
|
||
struct mem_region *m;
|
||
CORE_ADDR lo;
|
||
CORE_ADDR hi;
|
||
int ix;
|
||
|
||
require_target_regions ();
|
||
|
||
/* First we initialize LO and HI so that they describe the entire
|
||
memory space. As we process the memory region chain, they are
|
||
redefined to describe the minimal region containing ADDR. LO
|
||
and HI are used in the case where no memory region is defined
|
||
that contains ADDR. If a memory region is disabled, it is
|
||
treated as if it does not exist. The initial values for LO
|
||
and HI represent the bottom and top of memory. */
|
||
|
||
lo = 0;
|
||
hi = 0;
|
||
|
||
/* Either find memory range containing ADDRESS, or set LO and HI
|
||
to the nearest boundaries of an existing memory range.
|
||
|
||
If we ever want to support a huge list of memory regions, this
|
||
check should be replaced with a binary search (probably using
|
||
VEC_lower_bound). */
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
{
|
||
if (m->enabled_p == 1)
|
||
{
|
||
/* If the address is in the memory region, return that memory range. */
|
||
if (addr >= m->lo && (addr < m->hi || m->hi == 0))
|
||
return m;
|
||
|
||
/* This (correctly) won't match if m->hi == 0, representing
|
||
the top of the address space, because CORE_ADDR is unsigned;
|
||
no value of LO is less than zero. */
|
||
if (addr >= m->hi && lo < m->hi)
|
||
lo = m->hi;
|
||
|
||
/* This will never set HI to zero; if we're here and ADDR
|
||
is at or below M, and the region starts at zero, then ADDR
|
||
would have been in the region. */
|
||
if (addr <= m->lo && (hi == 0 || hi > m->lo))
|
||
hi = m->lo;
|
||
}
|
||
}
|
||
|
||
/* Because no region was found, we must cons up one based on what
|
||
was learned above. */
|
||
region.lo = lo;
|
||
region.hi = hi;
|
||
|
||
/* When no memory map is defined at all, we always return
|
||
'default_mem_attrib', so that we do not make all memory
|
||
inaccessible for targets that don't provide a memory map. */
|
||
if (inaccessible_by_default && !VEC_empty (mem_region_s, mem_region_list))
|
||
region.attrib = unknown_mem_attrib;
|
||
else
|
||
region.attrib = default_mem_attrib;
|
||
|
||
return ®ion;
|
||
}
|
||
|
||
/* Invalidate any memory regions fetched from the target. */
|
||
|
||
void
|
||
invalidate_target_mem_regions (void)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
if (!target_mem_regions_valid)
|
||
return;
|
||
|
||
target_mem_regions_valid = 0;
|
||
VEC_free (mem_region_s, target_mem_region_list);
|
||
if (mem_use_target)
|
||
mem_region_list = NULL;
|
||
}
|
||
|
||
/* Clear memory region list */
|
||
|
||
static void
|
||
mem_clear (void)
|
||
{
|
||
VEC_free (mem_region_s, mem_region_list);
|
||
}
|
||
|
||
|
||
static void
|
||
mem_command (char *args, int from_tty)
|
||
{
|
||
CORE_ADDR lo, hi;
|
||
char *tok;
|
||
struct mem_attrib attrib;
|
||
|
||
if (!args)
|
||
error_no_arg (_("No mem"));
|
||
|
||
/* For "mem auto", switch back to using a target provided list. */
|
||
if (strcmp (args, "auto") == 0)
|
||
{
|
||
if (mem_use_target)
|
||
return;
|
||
|
||
if (mem_region_list != target_mem_region_list)
|
||
{
|
||
mem_clear ();
|
||
mem_region_list = target_mem_region_list;
|
||
}
|
||
|
||
mem_use_target = 1;
|
||
return;
|
||
}
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
tok = strtok (args, " \t");
|
||
if (!tok)
|
||
error (_("no lo address"));
|
||
lo = parse_and_eval_address (tok);
|
||
|
||
tok = strtok (NULL, " \t");
|
||
if (!tok)
|
||
error (_("no hi address"));
|
||
hi = parse_and_eval_address (tok);
|
||
|
||
attrib = default_mem_attrib;
|
||
while ((tok = strtok (NULL, " \t")) != NULL)
|
||
{
|
||
if (strcmp (tok, "rw") == 0)
|
||
attrib.mode = MEM_RW;
|
||
else if (strcmp (tok, "ro") == 0)
|
||
attrib.mode = MEM_RO;
|
||
else if (strcmp (tok, "wo") == 0)
|
||
attrib.mode = MEM_WO;
|
||
|
||
else if (strcmp (tok, "8") == 0)
|
||
attrib.width = MEM_WIDTH_8;
|
||
else if (strcmp (tok, "16") == 0)
|
||
{
|
||
if ((lo % 2 != 0) || (hi % 2 != 0))
|
||
error (_("region bounds not 16 bit aligned"));
|
||
attrib.width = MEM_WIDTH_16;
|
||
}
|
||
else if (strcmp (tok, "32") == 0)
|
||
{
|
||
if ((lo % 4 != 0) || (hi % 4 != 0))
|
||
error (_("region bounds not 32 bit aligned"));
|
||
attrib.width = MEM_WIDTH_32;
|
||
}
|
||
else if (strcmp (tok, "64") == 0)
|
||
{
|
||
if ((lo % 8 != 0) || (hi % 8 != 0))
|
||
error (_("region bounds not 64 bit aligned"));
|
||
attrib.width = MEM_WIDTH_64;
|
||
}
|
||
|
||
#if 0
|
||
else if (strcmp (tok, "hwbreak") == 0)
|
||
attrib.hwbreak = 1;
|
||
else if (strcmp (tok, "swbreak") == 0)
|
||
attrib.hwbreak = 0;
|
||
#endif
|
||
|
||
else if (strcmp (tok, "cache") == 0)
|
||
attrib.cache = 1;
|
||
else if (strcmp (tok, "nocache") == 0)
|
||
attrib.cache = 0;
|
||
|
||
#if 0
|
||
else if (strcmp (tok, "verify") == 0)
|
||
attrib.verify = 1;
|
||
else if (strcmp (tok, "noverify") == 0)
|
||
attrib.verify = 0;
|
||
#endif
|
||
|
||
else
|
||
error (_("unknown attribute: %s"), tok);
|
||
}
|
||
|
||
create_mem_region (lo, hi, &attrib);
|
||
}
|
||
|
||
|
||
static void
|
||
mem_info_command (char *args, int from_tty)
|
||
{
|
||
struct mem_region *m;
|
||
struct mem_attrib *attrib;
|
||
int ix;
|
||
|
||
if (mem_use_target)
|
||
printf_filtered (_("Using memory regions provided by the target.\n"));
|
||
else
|
||
printf_filtered (_("Using user-defined memory regions.\n"));
|
||
|
||
require_target_regions ();
|
||
|
||
if (!mem_region_list)
|
||
{
|
||
printf_unfiltered (_("There are no memory regions defined.\n"));
|
||
return;
|
||
}
|
||
|
||
printf_filtered ("Num ");
|
||
printf_filtered ("Enb ");
|
||
printf_filtered ("Low Addr ");
|
||
if (gdbarch_addr_bit (current_gdbarch) > 32)
|
||
printf_filtered (" ");
|
||
printf_filtered ("High Addr ");
|
||
if (gdbarch_addr_bit (current_gdbarch) > 32)
|
||
printf_filtered (" ");
|
||
printf_filtered ("Attrs ");
|
||
printf_filtered ("\n");
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
{
|
||
char *tmp;
|
||
printf_filtered ("%-3d %-3c\t",
|
||
m->number,
|
||
m->enabled_p ? 'y' : 'n');
|
||
if (gdbarch_addr_bit (current_gdbarch) <= 32)
|
||
tmp = hex_string_custom ((unsigned long) m->lo, 8);
|
||
else
|
||
tmp = hex_string_custom ((unsigned long) m->lo, 16);
|
||
|
||
printf_filtered ("%s ", tmp);
|
||
|
||
if (gdbarch_addr_bit (current_gdbarch) <= 32)
|
||
{
|
||
if (m->hi == 0)
|
||
tmp = "0x100000000";
|
||
else
|
||
tmp = hex_string_custom ((unsigned long) m->hi, 8);
|
||
}
|
||
else
|
||
{
|
||
if (m->hi == 0)
|
||
tmp = "0x10000000000000000";
|
||
else
|
||
tmp = hex_string_custom ((unsigned long) m->hi, 16);
|
||
}
|
||
|
||
printf_filtered ("%s ", tmp);
|
||
|
||
/* Print a token for each attribute.
|
||
|
||
* FIXME: Should we output a comma after each token? It may
|
||
* make it easier for users to read, but we'd lose the ability
|
||
* to cut-and-paste the list of attributes when defining a new
|
||
* region. Perhaps that is not important.
|
||
*
|
||
* FIXME: If more attributes are added to GDB, the output may
|
||
* become cluttered and difficult for users to read. At that
|
||
* time, we may want to consider printing tokens only if they
|
||
* are different from the default attribute. */
|
||
|
||
attrib = &m->attrib;
|
||
switch (attrib->mode)
|
||
{
|
||
case MEM_RW:
|
||
printf_filtered ("rw ");
|
||
break;
|
||
case MEM_RO:
|
||
printf_filtered ("ro ");
|
||
break;
|
||
case MEM_WO:
|
||
printf_filtered ("wo ");
|
||
break;
|
||
case MEM_FLASH:
|
||
printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
|
||
break;
|
||
}
|
||
|
||
switch (attrib->width)
|
||
{
|
||
case MEM_WIDTH_8:
|
||
printf_filtered ("8 ");
|
||
break;
|
||
case MEM_WIDTH_16:
|
||
printf_filtered ("16 ");
|
||
break;
|
||
case MEM_WIDTH_32:
|
||
printf_filtered ("32 ");
|
||
break;
|
||
case MEM_WIDTH_64:
|
||
printf_filtered ("64 ");
|
||
break;
|
||
case MEM_WIDTH_UNSPECIFIED:
|
||
break;
|
||
}
|
||
|
||
#if 0
|
||
if (attrib->hwbreak)
|
||
printf_filtered ("hwbreak");
|
||
else
|
||
printf_filtered ("swbreak");
|
||
#endif
|
||
|
||
if (attrib->cache)
|
||
printf_filtered ("cache ");
|
||
else
|
||
printf_filtered ("nocache ");
|
||
|
||
#if 0
|
||
if (attrib->verify)
|
||
printf_filtered ("verify ");
|
||
else
|
||
printf_filtered ("noverify ");
|
||
#endif
|
||
|
||
printf_filtered ("\n");
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
|
||
|
||
/* Enable the memory region number NUM. */
|
||
|
||
static void
|
||
mem_enable (int num)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
{
|
||
m->enabled_p = 1;
|
||
return;
|
||
}
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
}
|
||
|
||
static void
|
||
mem_enable_command (char *args, int from_tty)
|
||
{
|
||
char *p = args;
|
||
char *p1;
|
||
int num;
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
dcache_invalidate (target_dcache);
|
||
|
||
if (p == 0)
|
||
{
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
m->enabled_p = 1;
|
||
}
|
||
else
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error (_("Arguments must be memory region numbers."));
|
||
|
||
num = atoi (p);
|
||
mem_enable (num);
|
||
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Disable the memory region number NUM. */
|
||
|
||
static void
|
||
mem_disable (int num)
|
||
{
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
{
|
||
m->enabled_p = 0;
|
||
return;
|
||
}
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
}
|
||
|
||
static void
|
||
mem_disable_command (char *args, int from_tty)
|
||
{
|
||
char *p = args;
|
||
char *p1;
|
||
int num;
|
||
struct mem_region *m;
|
||
int ix;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
dcache_invalidate (target_dcache);
|
||
|
||
if (p == 0)
|
||
{
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
m->enabled_p = 0;
|
||
}
|
||
else
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error (_("Arguments must be memory region numbers."));
|
||
|
||
num = atoi (p);
|
||
mem_disable (num);
|
||
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
}
|
||
|
||
/* Delete the memory region number NUM. */
|
||
|
||
static void
|
||
mem_delete (int num)
|
||
{
|
||
struct mem_region *m1, *m;
|
||
int ix;
|
||
|
||
if (!mem_region_list)
|
||
{
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
return;
|
||
}
|
||
|
||
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
|
||
if (m->number == num)
|
||
break;
|
||
|
||
if (m == NULL)
|
||
{
|
||
printf_unfiltered (_("No memory region number %d.\n"), num);
|
||
return;
|
||
}
|
||
|
||
VEC_ordered_remove (mem_region_s, mem_region_list, ix);
|
||
}
|
||
|
||
static void
|
||
mem_delete_command (char *args, int from_tty)
|
||
{
|
||
char *p = args;
|
||
char *p1;
|
||
int num;
|
||
|
||
require_user_regions (from_tty);
|
||
|
||
dcache_invalidate (target_dcache);
|
||
|
||
if (p == 0)
|
||
{
|
||
if (query ("Delete all memory regions? "))
|
||
mem_clear ();
|
||
dont_repeat ();
|
||
return;
|
||
}
|
||
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error (_("Arguments must be memory region numbers."));
|
||
|
||
num = atoi (p);
|
||
mem_delete (num);
|
||
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
|
||
dont_repeat ();
|
||
}
|
||
|
||
static void
|
||
dummy_cmd (char *args, int from_tty)
|
||
{
|
||
}
|
||
|
||
extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */
|
||
|
||
static struct cmd_list_element *mem_set_cmdlist;
|
||
static struct cmd_list_element *mem_show_cmdlist;
|
||
|
||
void
|
||
_initialize_mem (void)
|
||
{
|
||
add_com ("mem", class_vars, mem_command, _("\
|
||
Define attributes for memory region or reset memory region handling to\n\
|
||
target-based.\n\
|
||
Usage: mem auto\n\
|
||
mem <lo addr> <hi addr> [<mode> <width> <cache>], \n\
|
||
where <mode> may be rw (read/write), ro (read-only) or wo (write-only), \n\
|
||
<width> may be 8, 16, 32, or 64, and \n\
|
||
<cache> may be cache or nocache"));
|
||
|
||
add_cmd ("mem", class_vars, mem_enable_command, _("\
|
||
Enable memory region.\n\
|
||
Arguments are the code numbers of the memory regions to enable.\n\
|
||
Usage: enable mem <code number>\n\
|
||
Do \"info mem\" to see current list of code numbers."), &enablelist);
|
||
|
||
add_cmd ("mem", class_vars, mem_disable_command, _("\
|
||
Disable memory region.\n\
|
||
Arguments are the code numbers of the memory regions to disable.\n\
|
||
Usage: disable mem <code number>\n\
|
||
Do \"info mem\" to see current list of code numbers."), &disablelist);
|
||
|
||
add_cmd ("mem", class_vars, mem_delete_command, _("\
|
||
Delete memory region.\n\
|
||
Arguments are the code numbers of the memory regions to delete.\n\
|
||
Usage: delete mem <code number>\n\
|
||
Do \"info mem\" to see current list of code numbers."), &deletelist);
|
||
|
||
add_info ("mem", mem_info_command,
|
||
_("Memory region attributes"));
|
||
|
||
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
|
||
Memory regions settings"),
|
||
&mem_set_cmdlist, "set mem ",
|
||
0/* allow-unknown */, &setlist);
|
||
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
|
||
Memory regions settings"),
|
||
&mem_show_cmdlist, "show mem ",
|
||
0/* allow-unknown */, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
|
||
&inaccessible_by_default, _("\
|
||
Set handling of unknown memory regions."), _("\
|
||
Show handling of unknown memory regions."), _("\
|
||
If on, and some memory map is defined, debugger will emit errors on\n\
|
||
accesses to memory not defined in the memory map. If off, accesses to all\n\
|
||
memory addresses will be allowed."),
|
||
NULL,
|
||
show_inaccessible_by_default,
|
||
&mem_set_cmdlist,
|
||
&mem_show_cmdlist);
|
||
}
|