mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-05 19:07:07 +00:00
e38d4e1aae
(mips_linux_init_abi): Set tdep->syscall_next_pc. * mips-tdep.c (enum mips_fpu_type, struct gdbarch_tdep): Move to mips-tdep.h. (mips32_next_pc): Handle the syscall instruction. * mips-tdep.h (enum mips_fpu_type, struct gdbarch_tdep): New, from mips-tdep.c. Add syscall_next_pc to gdbarch_tdep.
6185 lines
198 KiB
C
6185 lines
198 KiB
C
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
|
|
|
|
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
|
Free Software Foundation, Inc.
|
|
|
|
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
|
|
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "value.h"
|
|
#include "gdbcmd.h"
|
|
#include "language.h"
|
|
#include "gdbcore.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "target.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "osabi.h"
|
|
#include "mips-tdep.h"
|
|
#include "block.h"
|
|
#include "reggroups.h"
|
|
#include "opcode/mips.h"
|
|
#include "elf/mips.h"
|
|
#include "elf-bfd.h"
|
|
#include "symcat.h"
|
|
#include "sim-regno.h"
|
|
#include "dis-asm.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "infcall.h"
|
|
#include "floatformat.h"
|
|
#include "remote.h"
|
|
#include "target-descriptions.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "user-regs.h"
|
|
|
|
static const struct objfile_data *mips_pdr_data;
|
|
|
|
static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
|
|
|
|
/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
|
|
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
|
|
#define ST0_FR (1 << 26)
|
|
|
|
/* The sizes of floating point registers. */
|
|
|
|
enum
|
|
{
|
|
MIPS_FPU_SINGLE_REGSIZE = 4,
|
|
MIPS_FPU_DOUBLE_REGSIZE = 8
|
|
};
|
|
|
|
enum
|
|
{
|
|
MIPS32_REGSIZE = 4,
|
|
MIPS64_REGSIZE = 8
|
|
};
|
|
|
|
static const char *mips_abi_string;
|
|
|
|
static const char *mips_abi_strings[] = {
|
|
"auto",
|
|
"n32",
|
|
"o32",
|
|
"n64",
|
|
"o64",
|
|
"eabi32",
|
|
"eabi64",
|
|
NULL
|
|
};
|
|
|
|
/* The standard register names, and all the valid aliases for them. */
|
|
struct register_alias
|
|
{
|
|
const char *name;
|
|
int regnum;
|
|
};
|
|
|
|
/* Aliases for o32 and most other ABIs. */
|
|
const struct register_alias mips_o32_aliases[] = {
|
|
{ "ta0", 12 },
|
|
{ "ta1", 13 },
|
|
{ "ta2", 14 },
|
|
{ "ta3", 15 }
|
|
};
|
|
|
|
/* Aliases for n32 and n64. */
|
|
const struct register_alias mips_n32_n64_aliases[] = {
|
|
{ "ta0", 8 },
|
|
{ "ta1", 9 },
|
|
{ "ta2", 10 },
|
|
{ "ta3", 11 }
|
|
};
|
|
|
|
/* Aliases for ABI-independent registers. */
|
|
const struct register_alias mips_register_aliases[] = {
|
|
/* The architecture manuals specify these ABI-independent names for
|
|
the GPRs. */
|
|
#define R(n) { "r" #n, n }
|
|
R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
|
|
R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
|
|
R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
|
|
R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
|
|
#undef R
|
|
|
|
/* k0 and k1 are sometimes called these instead (for "kernel
|
|
temp"). */
|
|
{ "kt0", 26 },
|
|
{ "kt1", 27 },
|
|
|
|
/* This is the traditional GDB name for the CP0 status register. */
|
|
{ "sr", MIPS_PS_REGNUM },
|
|
|
|
/* This is the traditional GDB name for the CP0 BadVAddr register. */
|
|
{ "bad", MIPS_EMBED_BADVADDR_REGNUM },
|
|
|
|
/* This is the traditional GDB name for the FCSR. */
|
|
{ "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
|
|
};
|
|
|
|
#ifndef MIPS_DEFAULT_FPU_TYPE
|
|
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
|
|
#endif
|
|
static int mips_fpu_type_auto = 1;
|
|
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
|
|
|
|
static int mips_debug = 0;
|
|
|
|
/* Properties (for struct target_desc) describing the g/G packet
|
|
layout. */
|
|
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
|
|
#define PROPERTY_GP64 "internal: transfers-64bit-registers"
|
|
|
|
struct target_desc *mips_tdesc_gp32;
|
|
struct target_desc *mips_tdesc_gp64;
|
|
|
|
const struct mips_regnum *
|
|
mips_regnum (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_tdep (gdbarch)->regnum;
|
|
}
|
|
|
|
static int
|
|
mips_fpa0_regnum (struct gdbarch *gdbarch)
|
|
{
|
|
return mips_regnum (gdbarch)->fp0 + 12;
|
|
}
|
|
|
|
#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
|
|
== MIPS_ABI_EABI32 \
|
|
|| gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
|
|
|
|
#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
|
|
|
|
#define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
|
|
|
|
#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
|
|
|
|
/* MIPS16 function addresses are odd (bit 0 is set). Here are some
|
|
functions to test, set, or clear bit 0 of addresses. */
|
|
|
|
static CORE_ADDR
|
|
is_mips16_addr (CORE_ADDR addr)
|
|
{
|
|
return ((addr) & 1);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
unmake_mips16_addr (CORE_ADDR addr)
|
|
{
|
|
return ((addr) & ~(CORE_ADDR) 1);
|
|
}
|
|
|
|
/* Return the MIPS ABI associated with GDBARCH. */
|
|
enum mips_abi
|
|
mips_abi (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_tdep (gdbarch)->mips_abi;
|
|
}
|
|
|
|
int
|
|
mips_isa_regsize (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* If we know how big the registers are, use that size. */
|
|
if (tdep->register_size_valid_p)
|
|
return tdep->register_size;
|
|
|
|
/* Fall back to the previous behavior. */
|
|
return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
|
|
/ gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
|
|
}
|
|
|
|
/* Return the currently configured (or set) saved register size. */
|
|
|
|
unsigned int
|
|
mips_abi_regsize (struct gdbarch *gdbarch)
|
|
{
|
|
switch (mips_abi (gdbarch))
|
|
{
|
|
case MIPS_ABI_EABI32:
|
|
case MIPS_ABI_O32:
|
|
return 4;
|
|
case MIPS_ABI_N32:
|
|
case MIPS_ABI_N64:
|
|
case MIPS_ABI_O64:
|
|
case MIPS_ABI_EABI64:
|
|
return 8;
|
|
case MIPS_ABI_UNKNOWN:
|
|
case MIPS_ABI_LAST:
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
}
|
|
|
|
/* Functions for setting and testing a bit in a minimal symbol that
|
|
marks it as 16-bit function. The MSB of the minimal symbol's
|
|
"info" field is used for this purpose.
|
|
|
|
gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
|
|
i.e. refers to a 16-bit function, and sets a "special" bit in a
|
|
minimal symbol to mark it as a 16-bit function
|
|
|
|
MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
|
|
|
|
static void
|
|
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
|
|
{
|
|
if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
|
|
{
|
|
MSYMBOL_INFO (msym) = (char *)
|
|
(((long) MSYMBOL_INFO (msym)) | 0x80000000);
|
|
SYMBOL_VALUE_ADDRESS (msym) |= 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
msymbol_is_special (struct minimal_symbol *msym)
|
|
{
|
|
return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
|
|
}
|
|
|
|
/* XFER a value from the big/little/left end of the register.
|
|
Depending on the size of the value it might occupy the entire
|
|
register or just part of it. Make an allowance for this, aligning
|
|
things accordingly. */
|
|
|
|
static void
|
|
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg_num, int length,
|
|
enum bfd_endian endian, gdb_byte *in,
|
|
const gdb_byte *out, int buf_offset)
|
|
{
|
|
int reg_offset = 0;
|
|
|
|
gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
|
|
/* Need to transfer the left or right part of the register, based on
|
|
the targets byte order. */
|
|
switch (endian)
|
|
{
|
|
case BFD_ENDIAN_BIG:
|
|
reg_offset = register_size (gdbarch, reg_num) - length;
|
|
break;
|
|
case BFD_ENDIAN_LITTLE:
|
|
reg_offset = 0;
|
|
break;
|
|
case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
|
|
reg_offset = 0;
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"xfer $%d, reg offset %d, buf offset %d, length %d, ",
|
|
reg_num, reg_offset, buf_offset, length);
|
|
if (mips_debug && out != NULL)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, "out ");
|
|
for (i = 0; i < length; i++)
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
|
|
}
|
|
if (in != NULL)
|
|
regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
|
|
in + buf_offset);
|
|
if (out != NULL)
|
|
regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
|
|
out + buf_offset);
|
|
if (mips_debug && in != NULL)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, "in ");
|
|
for (i = 0; i < length; i++)
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
|
|
compatiblity mode. A return value of 1 means that we have
|
|
physical 64-bit registers, but should treat them as 32-bit registers. */
|
|
|
|
static int
|
|
mips2_fp_compat (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
/* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
|
|
meaningful. */
|
|
if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
|
|
return 0;
|
|
|
|
#if 0
|
|
/* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
|
|
in all the places we deal with FP registers. PR gdb/413. */
|
|
/* Otherwise check the FR bit in the status register - it controls
|
|
the FP compatiblity mode. If it is clear we are in compatibility
|
|
mode. */
|
|
if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
|
|
return 1;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
|
|
|
|
static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
|
|
|
|
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
|
|
|
|
static struct type *mips_float_register_type (void);
|
|
static struct type *mips_double_register_type (void);
|
|
|
|
/* The list of available "set mips " and "show mips " commands */
|
|
|
|
static struct cmd_list_element *setmipscmdlist = NULL;
|
|
static struct cmd_list_element *showmipscmdlist = NULL;
|
|
|
|
/* Integer registers 0 thru 31 are handled explicitly by
|
|
mips_register_name(). Processor specific registers 32 and above
|
|
are listed in the following tables. */
|
|
|
|
enum
|
|
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
|
|
|
|
/* Generic MIPS. */
|
|
|
|
static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "" /*"fp" */ , "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
|
|
/* Names of IDT R3041 registers. */
|
|
|
|
static const char *mips_r3041_reg_names[] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "", /*"fp" */ "",
|
|
"", "", "bus", "ccfg", "", "", "", "",
|
|
"", "", "port", "cmp", "", "", "epc", "prid",
|
|
};
|
|
|
|
/* Names of tx39 registers. */
|
|
|
|
static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"sr", "lo", "hi", "bad", "cause", "pc",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "config", "cache", "debug", "depc", "epc", ""
|
|
};
|
|
|
|
/* Names of IRIX registers. */
|
|
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"pc", "cause", "bad", "hi", "lo", "fsr", "fir"
|
|
};
|
|
|
|
|
|
/* Return the name of the register corresponding to REGNO. */
|
|
static const char *
|
|
mips_register_name (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
/* GPR names for all ABIs other than n32/n64. */
|
|
static char *mips_gpr_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
};
|
|
|
|
/* GPR names for n32 and n64 ABIs. */
|
|
static char *mips_n32_n64_gpr_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
|
|
};
|
|
|
|
enum mips_abi abi = mips_abi (gdbarch);
|
|
|
|
/* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
|
|
but then don't make the raw register names visible. */
|
|
int rawnum = regno % gdbarch_num_regs (gdbarch);
|
|
if (regno < gdbarch_num_regs (gdbarch))
|
|
return "";
|
|
|
|
/* The MIPS integer registers are always mapped from 0 to 31. The
|
|
names of the registers (which reflects the conventions regarding
|
|
register use) vary depending on the ABI. */
|
|
if (0 <= rawnum && rawnum < 32)
|
|
{
|
|
if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
|
|
return mips_n32_n64_gpr_names[rawnum];
|
|
else
|
|
return mips_gpr_names[rawnum];
|
|
}
|
|
else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
|
return tdesc_register_name (gdbarch, rawnum);
|
|
else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
|
|
{
|
|
gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
|
|
return tdep->mips_processor_reg_names[rawnum - 32];
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("mips_register_name: bad register number %d"), rawnum);
|
|
}
|
|
|
|
/* Return the groups that a MIPS register can be categorised into. */
|
|
|
|
static int
|
|
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *reggroup)
|
|
{
|
|
int vector_p;
|
|
int float_p;
|
|
int raw_p;
|
|
int rawnum = regnum % gdbarch_num_regs (gdbarch);
|
|
int pseudo = regnum / gdbarch_num_regs (gdbarch);
|
|
if (reggroup == all_reggroup)
|
|
return pseudo;
|
|
vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
|
|
float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
|
|
/* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
|
|
(gdbarch), as not all architectures are multi-arch. */
|
|
raw_p = rawnum < gdbarch_num_regs (gdbarch);
|
|
if (gdbarch_register_name (gdbarch, regnum) == NULL
|
|
|| gdbarch_register_name (gdbarch, regnum)[0] == '\0')
|
|
return 0;
|
|
if (reggroup == float_reggroup)
|
|
return float_p && pseudo;
|
|
if (reggroup == vector_reggroup)
|
|
return vector_p && pseudo;
|
|
if (reggroup == general_reggroup)
|
|
return (!vector_p && !float_p) && pseudo;
|
|
/* Save the pseudo registers. Need to make certain that any code
|
|
extracting register values from a saved register cache also uses
|
|
pseudo registers. */
|
|
if (reggroup == save_reggroup)
|
|
return raw_p && pseudo;
|
|
/* Restore the same pseudo register. */
|
|
if (reggroup == restore_reggroup)
|
|
return raw_p && pseudo;
|
|
return 0;
|
|
}
|
|
|
|
/* Return the groups that a MIPS register can be categorised into.
|
|
This version is only used if we have a target description which
|
|
describes real registers (and their groups). */
|
|
|
|
static int
|
|
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *reggroup)
|
|
{
|
|
int rawnum = regnum % gdbarch_num_regs (gdbarch);
|
|
int pseudo = regnum / gdbarch_num_regs (gdbarch);
|
|
int ret;
|
|
|
|
/* Only save, restore, and display the pseudo registers. Need to
|
|
make certain that any code extracting register values from a
|
|
saved register cache also uses pseudo registers.
|
|
|
|
Note: saving and restoring the pseudo registers is slightly
|
|
strange; if we have 64 bits, we should save and restore all
|
|
64 bits. But this is hard and has little benefit. */
|
|
if (!pseudo)
|
|
return 0;
|
|
|
|
ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
|
|
if (ret != -1)
|
|
return ret;
|
|
|
|
return mips_register_reggroup_p (gdbarch, regnum, reggroup);
|
|
}
|
|
|
|
/* Map the symbol table registers which live in the range [1 *
|
|
gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
|
|
registers. Take care of alignment and size problems. */
|
|
|
|
static void
|
|
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int cookednum, gdb_byte *buf)
|
|
{
|
|
int rawnum = cookednum % gdbarch_num_regs (gdbarch);
|
|
gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
|
|
&& cookednum < 2 * gdbarch_num_regs (gdbarch));
|
|
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
|
|
regcache_raw_read (regcache, rawnum, buf);
|
|
else if (register_size (gdbarch, rawnum) >
|
|
register_size (gdbarch, cookednum))
|
|
{
|
|
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|
|
|| gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
|
|
else
|
|
regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("bad register size"));
|
|
}
|
|
|
|
static void
|
|
mips_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int cookednum,
|
|
const gdb_byte *buf)
|
|
{
|
|
int rawnum = cookednum % gdbarch_num_regs (gdbarch);
|
|
gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
|
|
&& cookednum < 2 * gdbarch_num_regs (gdbarch));
|
|
if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
|
|
regcache_raw_write (regcache, rawnum, buf);
|
|
else if (register_size (gdbarch, rawnum) >
|
|
register_size (gdbarch, cookednum))
|
|
{
|
|
if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
|
|
|| gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
|
|
else
|
|
regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("bad register size"));
|
|
}
|
|
|
|
/* Table to translate MIPS16 register field to actual register number. */
|
|
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
|
|
|
|
/* Heuristic_proc_start may hunt through the text section for a long
|
|
time across a 2400 baud serial line. Allows the user to limit this
|
|
search. */
|
|
|
|
static unsigned int heuristic_fence_post = 0;
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register N. NOTE: This defines the pseudo register type so need to
|
|
rebuild the architecture vector. */
|
|
|
|
static int mips64_transfers_32bit_regs_p = 0;
|
|
|
|
static void
|
|
set_mips64_transfers_32bit_regs (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
{
|
|
mips64_transfers_32bit_regs_p = 0;
|
|
error (_("32-bit compatibility mode not supported"));
|
|
}
|
|
}
|
|
|
|
/* Convert to/from a register and the corresponding memory value. */
|
|
|
|
static int
|
|
mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
|
|
{
|
|
return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& register_size (gdbarch, regnum) == 4
|
|
&& (regnum % gdbarch_num_regs (gdbarch))
|
|
>= mips_regnum (gdbarch)->fp0
|
|
&& (regnum % gdbarch_num_regs (gdbarch))
|
|
< mips_regnum (gdbarch)->fp0 + 32
|
|
&& TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
|
|
}
|
|
|
|
static void
|
|
mips_register_to_value (struct frame_info *frame, int regnum,
|
|
struct type *type, gdb_byte *to)
|
|
{
|
|
get_frame_register (frame, regnum + 0, to + 4);
|
|
get_frame_register (frame, regnum + 1, to + 0);
|
|
}
|
|
|
|
static void
|
|
mips_value_to_register (struct frame_info *frame, int regnum,
|
|
struct type *type, const gdb_byte *from)
|
|
{
|
|
put_frame_register (frame, regnum + 0, from + 4);
|
|
put_frame_register (frame, regnum + 1, from + 0);
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type of data in
|
|
register REG. */
|
|
|
|
static struct type *
|
|
mips_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
|
|
if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
|
|
&& (regnum % gdbarch_num_regs (gdbarch))
|
|
< mips_regnum (gdbarch)->fp0 + 32)
|
|
{
|
|
/* The floating-point registers raw, or cooked, always match
|
|
mips_isa_regsize(), and also map 1:1, byte for byte. */
|
|
if (mips_isa_regsize (gdbarch) == 4)
|
|
return builtin_type_ieee_single;
|
|
else
|
|
return builtin_type_ieee_double;
|
|
}
|
|
else if (regnum < gdbarch_num_regs (gdbarch))
|
|
{
|
|
/* The raw or ISA registers. These are all sized according to
|
|
the ISA regsize. */
|
|
if (mips_isa_regsize (gdbarch) == 4)
|
|
return builtin_type_int32;
|
|
else
|
|
return builtin_type_int64;
|
|
}
|
|
else
|
|
{
|
|
/* The cooked or ABI registers. These are sized according to
|
|
the ABI (with a few complications). */
|
|
if (regnum >= (gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp_control_status)
|
|
&& regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
|
|
/* The pseudo/cooked view of the embedded registers is always
|
|
32-bit. The raw view is handled below. */
|
|
return builtin_type_int32;
|
|
else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
|
|
/* The target, while possibly using a 64-bit register buffer,
|
|
is only transfering 32-bits of each integer register.
|
|
Reflect this in the cooked/pseudo (ABI) register value. */
|
|
return builtin_type_int32;
|
|
else if (mips_abi_regsize (gdbarch) == 4)
|
|
/* The ABI is restricted to 32-bit registers (the ISA could be
|
|
32- or 64-bit). */
|
|
return builtin_type_int32;
|
|
else
|
|
/* 64-bit ABI. */
|
|
return builtin_type_int64;
|
|
}
|
|
}
|
|
|
|
/* Return the GDB type for the pseudo register REGNUM, which is the
|
|
ABI-level view. This function is only called if there is a target
|
|
description which includes registers, so we know precisely the
|
|
types of hardware registers. */
|
|
|
|
static struct type *
|
|
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
const int num_regs = gdbarch_num_regs (gdbarch);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int rawnum = regnum % num_regs;
|
|
struct type *rawtype;
|
|
|
|
gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
|
|
|
|
/* Absent registers are still absent. */
|
|
rawtype = gdbarch_register_type (gdbarch, rawnum);
|
|
if (TYPE_LENGTH (rawtype) == 0)
|
|
return rawtype;
|
|
|
|
if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
|
|
/* Present the floating point registers however the hardware did;
|
|
do not try to convert between FPU layouts. */
|
|
return rawtype;
|
|
|
|
if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
|
|
{
|
|
/* The pseudo/cooked view of embedded registers is always
|
|
32-bit, even if the target transfers 64-bit values for them.
|
|
New targets relying on XML descriptions should only transfer
|
|
the necessary 32 bits, but older versions of GDB expected 64,
|
|
so allow the target to provide 64 bits without interfering
|
|
with the displayed type. */
|
|
return builtin_type_int32;
|
|
}
|
|
|
|
/* Use pointer types for registers if we can. For n32 we can not,
|
|
since we do not have a 64-bit pointer type. */
|
|
if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
|
|
{
|
|
if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
|
|
return builtin_type_void_data_ptr;
|
|
else if (rawnum == MIPS_EMBED_PC_REGNUM)
|
|
return builtin_type_void_func_ptr;
|
|
}
|
|
|
|
if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
|
|
&& rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
|
|
return builtin_type_int32;
|
|
|
|
/* For all other registers, pass through the hardware type. */
|
|
return rawtype;
|
|
}
|
|
|
|
/* Should the upper word of 64-bit addresses be zeroed? */
|
|
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
|
|
|
|
static int
|
|
mips_mask_address_p (struct gdbarch_tdep *tdep)
|
|
{
|
|
switch (mask_address_var)
|
|
{
|
|
case AUTO_BOOLEAN_TRUE:
|
|
return 1;
|
|
case AUTO_BOOLEAN_FALSE:
|
|
return 0;
|
|
break;
|
|
case AUTO_BOOLEAN_AUTO:
|
|
return tdep->default_mask_address_p;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
show_mask_address (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
deprecated_show_value_hack (file, from_tty, c, value);
|
|
switch (mask_address_var)
|
|
{
|
|
case AUTO_BOOLEAN_TRUE:
|
|
printf_filtered ("The 32 bit mips address mask is enabled\n");
|
|
break;
|
|
case AUTO_BOOLEAN_FALSE:
|
|
printf_filtered ("The 32 bit mips address mask is disabled\n");
|
|
break;
|
|
case AUTO_BOOLEAN_AUTO:
|
|
printf_filtered
|
|
("The 32 bit address mask is set automatically. Currently %s\n",
|
|
mips_mask_address_p (tdep) ? "enabled" : "disabled");
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
|
|
|
|
int
|
|
mips_pc_is_mips16 (CORE_ADDR memaddr)
|
|
{
|
|
struct minimal_symbol *sym;
|
|
|
|
/* If bit 0 of the address is set, assume this is a MIPS16 address. */
|
|
if (is_mips16_addr (memaddr))
|
|
return 1;
|
|
|
|
/* A flag indicating that this is a MIPS16 function is stored by elfread.c in
|
|
the high bit of the info field. Use this to decide if the function is
|
|
MIPS16 or normal MIPS. */
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
|
if (sym)
|
|
return msymbol_is_special (sym);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* MIPS believes that the PC has a sign extended value. Perhaps the
|
|
all registers should be sign extended for simplicity? */
|
|
|
|
static CORE_ADDR
|
|
mips_read_pc (struct regcache *regcache)
|
|
{
|
|
ULONGEST pc;
|
|
int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
|
|
regcache_cooked_read_signed (regcache, regnum, &pc);
|
|
return pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_signed
|
|
(next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_signed
|
|
(next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
|
|
}
|
|
|
|
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
return frame_id_build
|
|
(get_frame_register_signed (this_frame,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ MIPS_SP_REGNUM),
|
|
get_frame_pc (this_frame));
|
|
}
|
|
|
|
static void
|
|
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
|
|
regcache_cooked_write_unsigned (regcache, regnum, pc);
|
|
}
|
|
|
|
/* Fetch and return instruction from the specified location. If the PC
|
|
is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
|
|
|
|
static ULONGEST
|
|
mips_fetch_instruction (CORE_ADDR addr)
|
|
{
|
|
gdb_byte buf[MIPS_INSN32_SIZE];
|
|
int instlen;
|
|
int status;
|
|
|
|
if (mips_pc_is_mips16 (addr))
|
|
{
|
|
instlen = MIPS_INSN16_SIZE;
|
|
addr = unmake_mips16_addr (addr);
|
|
}
|
|
else
|
|
instlen = MIPS_INSN32_SIZE;
|
|
status = target_read_memory (addr, buf, instlen);
|
|
if (status)
|
|
memory_error (status, addr);
|
|
return extract_unsigned_integer (buf, instlen);
|
|
}
|
|
|
|
/* These the fields of 32 bit mips instructions */
|
|
#define mips32_op(x) (x >> 26)
|
|
#define itype_op(x) (x >> 26)
|
|
#define itype_rs(x) ((x >> 21) & 0x1f)
|
|
#define itype_rt(x) ((x >> 16) & 0x1f)
|
|
#define itype_immediate(x) (x & 0xffff)
|
|
|
|
#define jtype_op(x) (x >> 26)
|
|
#define jtype_target(x) (x & 0x03ffffff)
|
|
|
|
#define rtype_op(x) (x >> 26)
|
|
#define rtype_rs(x) ((x >> 21) & 0x1f)
|
|
#define rtype_rt(x) ((x >> 16) & 0x1f)
|
|
#define rtype_rd(x) ((x >> 11) & 0x1f)
|
|
#define rtype_shamt(x) ((x >> 6) & 0x1f)
|
|
#define rtype_funct(x) (x & 0x3f)
|
|
|
|
static LONGEST
|
|
mips32_relative_offset (ULONGEST inst)
|
|
{
|
|
return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
|
|
}
|
|
|
|
/* Determine where to set a single step breakpoint while considering
|
|
branch prediction. */
|
|
static CORE_ADDR
|
|
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
unsigned long inst;
|
|
int op;
|
|
inst = mips_fetch_instruction (pc);
|
|
if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
|
|
{
|
|
if (itype_op (inst) >> 2 == 5)
|
|
/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
|
|
{
|
|
op = (itype_op (inst) & 0x03);
|
|
switch (op)
|
|
{
|
|
case 0: /* BEQL */
|
|
goto equal_branch;
|
|
case 1: /* BNEL */
|
|
goto neq_branch;
|
|
case 2: /* BLEZL */
|
|
goto less_branch;
|
|
case 3: /* BGTZL */
|
|
goto greater_branch;
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
|
|
/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
|
|
{
|
|
int tf = itype_rt (inst) & 0x01;
|
|
int cnum = itype_rt (inst) >> 2;
|
|
int fcrcs =
|
|
get_frame_register_signed (frame,
|
|
mips_regnum (get_frame_arch (frame))->
|
|
fp_control_status);
|
|
int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
|
|
|
|
if (((cond >> cnum) & 0x01) == tf)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
}
|
|
else
|
|
pc += 4; /* Not a branch, next instruction is easy */
|
|
}
|
|
else
|
|
{ /* This gets way messy */
|
|
|
|
/* Further subdivide into SPECIAL, REGIMM and other */
|
|
switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
|
|
{
|
|
case 0: /* SPECIAL */
|
|
op = rtype_funct (inst);
|
|
switch (op)
|
|
{
|
|
case 8: /* JR */
|
|
case 9: /* JALR */
|
|
/* Set PC to that address */
|
|
pc = get_frame_register_signed (frame, rtype_rs (inst));
|
|
break;
|
|
case 12: /* SYSCALL */
|
|
{
|
|
struct gdbarch_tdep *tdep;
|
|
|
|
tdep = gdbarch_tdep (get_frame_arch (frame));
|
|
if (tdep->syscall_next_pc != NULL)
|
|
pc = tdep->syscall_next_pc (frame);
|
|
else
|
|
pc += 4;
|
|
}
|
|
break;
|
|
default:
|
|
pc += 4;
|
|
}
|
|
|
|
break; /* end SPECIAL */
|
|
case 1: /* REGIMM */
|
|
{
|
|
op = itype_rt (inst); /* branch condition */
|
|
switch (op)
|
|
{
|
|
case 0: /* BLTZ */
|
|
case 2: /* BLTZL */
|
|
case 16: /* BLTZAL */
|
|
case 18: /* BLTZALL */
|
|
less_branch:
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
case 1: /* BGEZ */
|
|
case 3: /* BGEZL */
|
|
case 17: /* BGEZAL */
|
|
case 19: /* BGEZALL */
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
/* All of the other instructions in the REGIMM category */
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
break; /* end REGIMM */
|
|
case 2: /* J */
|
|
case 3: /* JAL */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
/* Upper four bits get never changed... */
|
|
pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
|
|
}
|
|
break;
|
|
/* FIXME case JALX : */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
|
|
/* Add 1 to indicate 16 bit mode - Invert ISA mode */
|
|
}
|
|
break; /* The new PC will be alternate mode */
|
|
case 4: /* BEQ, BEQL */
|
|
equal_branch:
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) ==
|
|
get_frame_register_signed (frame, itype_rt (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 5: /* BNE, BNEL */
|
|
neq_branch:
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) !=
|
|
get_frame_register_signed (frame, itype_rt (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 6: /* BLEZ, BLEZL */
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 7:
|
|
default:
|
|
greater_branch: /* BGTZ, BGTZL */
|
|
if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
} /* switch */
|
|
} /* else */
|
|
return pc;
|
|
} /* mips32_next_pc */
|
|
|
|
/* Decoding the next place to set a breakpoint is irregular for the
|
|
mips 16 variant, but fortunately, there fewer instructions. We have to cope
|
|
ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
|
|
We dont want to set a single step instruction on the extend instruction
|
|
either.
|
|
*/
|
|
|
|
/* Lots of mips16 instruction formats */
|
|
/* Predicting jumps requires itype,ritype,i8type
|
|
and their extensions extItype,extritype,extI8type
|
|
*/
|
|
enum mips16_inst_fmts
|
|
{
|
|
itype, /* 0 immediate 5,10 */
|
|
ritype, /* 1 5,3,8 */
|
|
rrtype, /* 2 5,3,3,5 */
|
|
rritype, /* 3 5,3,3,5 */
|
|
rrrtype, /* 4 5,3,3,3,2 */
|
|
rriatype, /* 5 5,3,3,1,4 */
|
|
shifttype, /* 6 5,3,3,3,2 */
|
|
i8type, /* 7 5,3,8 */
|
|
i8movtype, /* 8 5,3,3,5 */
|
|
i8mov32rtype, /* 9 5,3,5,3 */
|
|
i64type, /* 10 5,3,8 */
|
|
ri64type, /* 11 5,3,3,5 */
|
|
jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
|
|
exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
|
|
extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
|
|
extRRItype, /* 15 5,5,5,5,3,3,5 */
|
|
extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
|
|
EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
|
|
extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
|
|
extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
|
|
extRi64type, /* 20 5,6,5,5,3,3,5 */
|
|
extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
|
|
};
|
|
/* I am heaping all the fields of the formats into one structure and
|
|
then, only the fields which are involved in instruction extension */
|
|
struct upk_mips16
|
|
{
|
|
CORE_ADDR offset;
|
|
unsigned int regx; /* Function in i8 type */
|
|
unsigned int regy;
|
|
};
|
|
|
|
|
|
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
|
|
for the bits which make up the immediate extension. */
|
|
|
|
static CORE_ADDR
|
|
extended_offset (unsigned int extension)
|
|
{
|
|
CORE_ADDR value;
|
|
value = (extension >> 21) & 0x3f; /* * extract 15:11 */
|
|
value = value << 6;
|
|
value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
|
|
value = value << 5;
|
|
value |= extension & 0x01f; /* extract 4:0 */
|
|
return value;
|
|
}
|
|
|
|
/* Only call this function if you know that this is an extendable
|
|
instruction. It won't malfunction, but why make excess remote memory
|
|
references? If the immediate operands get sign extended or something,
|
|
do it after the extension is performed. */
|
|
/* FIXME: Every one of these cases needs to worry about sign extension
|
|
when the offset is to be used in relative addressing. */
|
|
|
|
static unsigned int
|
|
fetch_mips_16 (CORE_ADDR pc)
|
|
{
|
|
gdb_byte buf[8];
|
|
pc &= 0xfffffffe; /* clear the low order bit */
|
|
target_read_memory (pc, buf, 2);
|
|
return extract_unsigned_integer (buf, 2);
|
|
}
|
|
|
|
static void
|
|
unpack_mips16 (CORE_ADDR pc,
|
|
unsigned int extension,
|
|
unsigned int inst,
|
|
enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
|
|
{
|
|
CORE_ADDR offset;
|
|
int regx;
|
|
int regy;
|
|
switch (insn_format)
|
|
{
|
|
case itype:
|
|
{
|
|
CORE_ADDR value;
|
|
if (extension)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 11; /* rom for the original value */
|
|
value |= inst & 0x7ff; /* eleven bits from instruction */
|
|
}
|
|
else
|
|
{
|
|
value = inst & 0x7ff;
|
|
/* FIXME : Consider sign extension */
|
|
}
|
|
offset = value;
|
|
regx = -1;
|
|
regy = -1;
|
|
}
|
|
break;
|
|
case ritype:
|
|
case i8type:
|
|
{ /* A register identifier and an offset */
|
|
/* Most of the fields are the same as I type but the
|
|
immediate value is of a different length */
|
|
CORE_ADDR value;
|
|
if (extension)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 8; /* from the original instruction */
|
|
value |= inst & 0xff; /* eleven bits from instruction */
|
|
regx = (extension >> 8) & 0x07; /* or i8 funct */
|
|
if (value & 0x4000) /* test the sign bit , bit 26 */
|
|
{
|
|
value &= ~0x3fff; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
value = inst & 0xff; /* 8 bits */
|
|
regx = (inst >> 8) & 0x07; /* or i8 funct */
|
|
/* FIXME: Do sign extension , this format needs it */
|
|
if (value & 0x80) /* THIS CONFUSES ME */
|
|
{
|
|
value &= 0xef; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
}
|
|
offset = value;
|
|
regy = -1;
|
|
break;
|
|
}
|
|
case jalxtype:
|
|
{
|
|
unsigned long value;
|
|
unsigned int nexthalf;
|
|
value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
|
|
value = value << 16;
|
|
nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
|
|
value |= nexthalf;
|
|
offset = value;
|
|
regx = -1;
|
|
regy = -1;
|
|
break;
|
|
}
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
upk->offset = offset;
|
|
upk->regx = regx;
|
|
upk->regy = regy;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
add_offset_16 (CORE_ADDR pc, int offset)
|
|
{
|
|
return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
|
|
unsigned int extension, unsigned int insn)
|
|
{
|
|
int op = (insn >> 11);
|
|
switch (op)
|
|
{
|
|
case 2: /* Branch */
|
|
{
|
|
CORE_ADDR offset;
|
|
struct upk_mips16 upk;
|
|
unpack_mips16 (pc, extension, insn, itype, &upk);
|
|
offset = upk.offset;
|
|
if (offset & 0x800)
|
|
{
|
|
offset &= 0xeff;
|
|
offset = -offset;
|
|
}
|
|
pc += (offset << 1) + 2;
|
|
break;
|
|
}
|
|
case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
|
|
{
|
|
struct upk_mips16 upk;
|
|
unpack_mips16 (pc, extension, insn, jalxtype, &upk);
|
|
pc = add_offset_16 (pc, upk.offset);
|
|
if ((insn >> 10) & 0x01) /* Exchange mode */
|
|
pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
|
|
else
|
|
pc |= 0x01;
|
|
break;
|
|
}
|
|
case 4: /* beqz */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, ritype, &upk);
|
|
reg = get_frame_register_signed (frame, upk.regx);
|
|
if (reg == 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 5: /* bnez */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, ritype, &upk);
|
|
reg = get_frame_register_signed (frame, upk.regx);
|
|
if (reg != 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 12: /* I8 Formats btez btnez */
|
|
{
|
|
struct upk_mips16 upk;
|
|
int reg;
|
|
unpack_mips16 (pc, extension, insn, i8type, &upk);
|
|
/* upk.regx contains the opcode */
|
|
reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
|
|
if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
|
|
|| ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
|
|
/* pc = add_offset_16(pc,upk.offset) ; */
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 29: /* RR Formats JR, JALR, JALR-RA */
|
|
{
|
|
struct upk_mips16 upk;
|
|
/* upk.fmt = rrtype; */
|
|
op = insn & 0x1f;
|
|
if (op == 0)
|
|
{
|
|
int reg;
|
|
upk.regx = (insn >> 8) & 0x07;
|
|
upk.regy = (insn >> 5) & 0x07;
|
|
switch (upk.regy)
|
|
{
|
|
case 0:
|
|
reg = upk.regx;
|
|
break;
|
|
case 1:
|
|
reg = 31;
|
|
break; /* Function return instruction */
|
|
case 2:
|
|
reg = upk.regx;
|
|
break;
|
|
default:
|
|
reg = 31;
|
|
break; /* BOGUS Guess */
|
|
}
|
|
pc = get_frame_register_signed (frame, reg);
|
|
}
|
|
else
|
|
pc += 2;
|
|
break;
|
|
}
|
|
case 30:
|
|
/* This is an instruction extension. Fetch the real instruction
|
|
(which follows the extension) and decode things based on
|
|
that. */
|
|
{
|
|
pc += 2;
|
|
pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
pc += 2;
|
|
break;
|
|
}
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
unsigned int insn = fetch_mips_16 (pc);
|
|
return extended_mips16_next_pc (frame, pc, 0, insn);
|
|
}
|
|
|
|
/* The mips_next_pc function supports single_step when the remote
|
|
target monitor or stub is not developed enough to do a single_step.
|
|
It works by decoding the current instruction and predicting where a
|
|
branch will go. This isnt hard because all the data is available.
|
|
The MIPS32 and MIPS16 variants are quite different. */
|
|
static CORE_ADDR
|
|
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
if (is_mips16_addr (pc))
|
|
return mips16_next_pc (frame, pc);
|
|
else
|
|
return mips32_next_pc (frame, pc);
|
|
}
|
|
|
|
struct mips_frame_cache
|
|
{
|
|
CORE_ADDR base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
/* Set a register's saved stack address in temp_saved_regs. If an
|
|
address has already been set for this register, do nothing; this
|
|
way we will only recognize the first save of a given register in a
|
|
function prologue.
|
|
|
|
For simplicity, save the address in both [0 .. gdbarch_num_regs) and
|
|
[gdbarch_num_regs .. 2*gdbarch_num_regs).
|
|
Strictly speaking, only the second range is used as it is only second
|
|
range (the ABI instead of ISA registers) that comes into play when finding
|
|
saved registers in a frame. */
|
|
|
|
static void
|
|
set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
|
|
int regnum, CORE_ADDR offset)
|
|
{
|
|
if (this_cache != NULL
|
|
&& this_cache->saved_regs[regnum].addr == -1)
|
|
{
|
|
this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
|
|
= offset;
|
|
this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
|
|
= offset;
|
|
}
|
|
}
|
|
|
|
|
|
/* Fetch the immediate value from a MIPS16 instruction.
|
|
If the previous instruction was an EXTEND, use it to extend
|
|
the upper bits of the immediate value. This is a helper function
|
|
for mips16_scan_prologue. */
|
|
|
|
static int
|
|
mips16_get_imm (unsigned short prev_inst, /* previous instruction */
|
|
unsigned short inst, /* current instruction */
|
|
int nbits, /* number of bits in imm field */
|
|
int scale, /* scale factor to be applied to imm */
|
|
int is_signed) /* is the imm field signed? */
|
|
{
|
|
int offset;
|
|
|
|
if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
|
|
{
|
|
offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
|
|
if (offset & 0x8000) /* check for negative extend */
|
|
offset = 0 - (0x10000 - (offset & 0xffff));
|
|
return offset | (inst & 0x1f);
|
|
}
|
|
else
|
|
{
|
|
int max_imm = 1 << nbits;
|
|
int mask = max_imm - 1;
|
|
int sign_bit = max_imm >> 1;
|
|
|
|
offset = inst & mask;
|
|
if (is_signed && (offset & sign_bit))
|
|
offset = 0 - (max_imm - offset);
|
|
return offset * scale;
|
|
}
|
|
}
|
|
|
|
|
|
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
|
|
the associated FRAME_CACHE if not null.
|
|
Return the address of the first instruction past the prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct frame_info *this_frame,
|
|
struct mips_frame_cache *this_cache)
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
|
|
CORE_ADDR sp;
|
|
long frame_offset = 0; /* Size of stack frame. */
|
|
long frame_adjust = 0; /* Offset of FP from SP. */
|
|
int frame_reg = MIPS_SP_REGNUM;
|
|
unsigned short prev_inst = 0; /* saved copy of previous instruction */
|
|
unsigned inst = 0; /* current instruction */
|
|
unsigned entry_inst = 0; /* the entry instruction */
|
|
unsigned save_inst = 0; /* the save instruction */
|
|
int reg, offset;
|
|
|
|
int extend_bytes = 0;
|
|
int prev_extend_bytes;
|
|
CORE_ADDR end_prologue_addr = 0;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
|
|
/* Can be called when there's no process, and hence when there's no
|
|
THIS_FRAME. */
|
|
if (this_frame != NULL)
|
|
sp = get_frame_register_signed (this_frame,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ MIPS_SP_REGNUM);
|
|
else
|
|
sp = 0;
|
|
|
|
if (limit_pc > start_pc + 200)
|
|
limit_pc = start_pc + 200;
|
|
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
|
|
{
|
|
/* Save the previous instruction. If it's an EXTEND, we'll extract
|
|
the immediate offset extension from it in mips16_get_imm. */
|
|
prev_inst = inst;
|
|
|
|
/* Fetch and decode the instruction. */
|
|
inst = (unsigned short) mips_fetch_instruction (cur_pc);
|
|
|
|
/* Normally we ignore extend instructions. However, if it is
|
|
not followed by a valid prologue instruction, then this
|
|
instruction is not part of the prologue either. We must
|
|
remember in this case to adjust the end_prologue_addr back
|
|
over the extend. */
|
|
if ((inst & 0xf800) == 0xf000) /* extend */
|
|
{
|
|
extend_bytes = MIPS_INSN16_SIZE;
|
|
continue;
|
|
}
|
|
|
|
prev_extend_bytes = extend_bytes;
|
|
extend_bytes = 0;
|
|
|
|
if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
|
|
if (offset < 0) /* negative stack adjustment? */
|
|
frame_offset -= offset;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
}
|
|
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0x700) >> 8];
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
|
|
set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
|
|
}
|
|
else if (inst == 0x673d) /* move $s1, $sp */
|
|
{
|
|
frame_addr = sp;
|
|
frame_reg = 17;
|
|
}
|
|
else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
frame_addr = sp + offset;
|
|
frame_reg = 17;
|
|
frame_adjust = offset;
|
|
}
|
|
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xf81f) == 0xe809
|
|
&& (inst & 0x700) != 0x700) /* entry */
|
|
entry_inst = inst; /* save for later processing */
|
|
else if ((inst & 0xff80) == 0x6480) /* save */
|
|
{
|
|
save_inst = inst; /* save for later processing */
|
|
if (prev_extend_bytes) /* extend */
|
|
save_inst |= prev_inst << 16;
|
|
}
|
|
else if ((inst & 0xf800) == 0x1800) /* jal(x) */
|
|
cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
|
|
else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
|
|
{
|
|
/* This instruction is part of the prologue, but we don't
|
|
need to do anything special to handle it. */
|
|
}
|
|
else
|
|
{
|
|
/* This instruction is not an instruction typically found
|
|
in a prologue, so we must have reached the end of the
|
|
prologue. */
|
|
if (end_prologue_addr == 0)
|
|
end_prologue_addr = cur_pc - prev_extend_bytes;
|
|
}
|
|
}
|
|
|
|
/* The entry instruction is typically the first instruction in a function,
|
|
and it stores registers at offsets relative to the value of the old SP
|
|
(before the prologue). But the value of the sp parameter to this
|
|
function is the new SP (after the prologue has been executed). So we
|
|
can't calculate those offsets until we've seen the entire prologue,
|
|
and can calculate what the old SP must have been. */
|
|
if (entry_inst != 0)
|
|
{
|
|
int areg_count = (entry_inst >> 8) & 7;
|
|
int sreg_count = (entry_inst >> 6) & 3;
|
|
|
|
/* The entry instruction always subtracts 32 from the SP. */
|
|
frame_offset += 32;
|
|
|
|
/* Now we can calculate what the SP must have been at the
|
|
start of the function prologue. */
|
|
sp += frame_offset;
|
|
|
|
/* Check if a0-a3 were saved in the caller's argument save area. */
|
|
for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
offset += mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
/* Check if the ra register was pushed on the stack. */
|
|
offset = -4;
|
|
if (entry_inst & 0x20)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
/* Check if the s0 and s1 registers were pushed on the stack. */
|
|
for (reg = 16; reg < sreg_count + 16; reg++)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
}
|
|
|
|
/* The SAVE instruction is similar to ENTRY, except that defined by the
|
|
MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
|
|
size of the frame is specified as an immediate field of instruction
|
|
and an extended variation exists which lets additional registers and
|
|
frame space to be specified. The instruction always treats registers
|
|
as 32-bit so its usefulness for 64-bit ABIs is questionable. */
|
|
if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
|
|
{
|
|
static int args_table[16] = {
|
|
0, 0, 0, 0, 1, 1, 1, 1,
|
|
2, 2, 2, 0, 3, 3, 4, -1,
|
|
};
|
|
static int astatic_table[16] = {
|
|
0, 1, 2, 3, 0, 1, 2, 3,
|
|
0, 1, 2, 4, 0, 1, 0, -1,
|
|
};
|
|
int aregs = (save_inst >> 16) & 0xf;
|
|
int xsregs = (save_inst >> 24) & 0x7;
|
|
int args = args_table[aregs];
|
|
int astatic = astatic_table[aregs];
|
|
long frame_size;
|
|
|
|
if (args < 0)
|
|
{
|
|
warning (_("Invalid number of argument registers encoded in SAVE."));
|
|
args = 0;
|
|
}
|
|
if (astatic < 0)
|
|
{
|
|
warning (_("Invalid number of static registers encoded in SAVE."));
|
|
astatic = 0;
|
|
}
|
|
|
|
/* For standard SAVE the frame size of 0 means 128. */
|
|
frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
|
|
if (frame_size == 0 && (save_inst >> 16) == 0)
|
|
frame_size = 16;
|
|
frame_size *= 8;
|
|
frame_offset += frame_size;
|
|
|
|
/* Now we can calculate what the SP must have been at the
|
|
start of the function prologue. */
|
|
sp += frame_offset;
|
|
|
|
/* Check if A0-A3 were saved in the caller's argument save area. */
|
|
for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
offset += mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
offset = -4;
|
|
|
|
/* Check if the RA register was pushed on the stack. */
|
|
if (save_inst & 0x40)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
/* Check if the S8 register was pushed on the stack. */
|
|
if (xsregs > 6)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, 30, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
xsregs--;
|
|
}
|
|
/* Check if S2-S7 were pushed on the stack. */
|
|
for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
/* Check if the S1 register was pushed on the stack. */
|
|
if (save_inst & 0x10)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, 17, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
/* Check if the S0 register was pushed on the stack. */
|
|
if (save_inst & 0x20)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, 16, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
|
|
/* Check if A0-A3 were pushed on the stack. */
|
|
for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + offset);
|
|
offset -= mips_abi_regsize (gdbarch);
|
|
}
|
|
}
|
|
|
|
if (this_cache != NULL)
|
|
{
|
|
this_cache->base =
|
|
(get_frame_register_signed (this_frame,
|
|
gdbarch_num_regs (gdbarch) + frame_reg)
|
|
+ frame_offset - frame_adjust);
|
|
/* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
|
|
be able to get rid of the assignment below, evetually. But it's
|
|
still needed for now. */
|
|
this_cache->saved_regs[gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->pc]
|
|
= this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
|
|
}
|
|
|
|
/* If we didn't reach the end of the prologue when scanning the function
|
|
instructions, then set end_prologue_addr to the address of the
|
|
instruction immediately after the last one we scanned. */
|
|
if (end_prologue_addr == 0)
|
|
end_prologue_addr = cur_pc;
|
|
|
|
return end_prologue_addr;
|
|
}
|
|
|
|
/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
|
|
Procedures that use the 32-bit instruction set are handled by the
|
|
mips_insn32 unwinder. */
|
|
|
|
static struct mips_frame_cache *
|
|
mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct mips_frame_cache *cache;
|
|
|
|
if ((*this_cache) != NULL)
|
|
return (*this_cache);
|
|
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
|
|
(*this_cache) = cache;
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
/* Analyze the function prologue. */
|
|
{
|
|
const CORE_ADDR pc = get_frame_address_in_block (this_frame);
|
|
CORE_ADDR start_addr;
|
|
|
|
find_pc_partial_function (pc, NULL, &start_addr, NULL);
|
|
if (start_addr == 0)
|
|
start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
|
|
/* We can't analyze the prologue if we couldn't find the begining
|
|
of the function. */
|
|
if (start_addr == 0)
|
|
return cache;
|
|
|
|
mips16_scan_prologue (start_addr, pc, this_frame, *this_cache);
|
|
}
|
|
|
|
/* gdbarch_sp_regnum contains the value and not the address. */
|
|
trad_frame_set_value (cache->saved_regs,
|
|
gdbarch_num_regs (get_frame_arch (this_frame))
|
|
+ MIPS_SP_REGNUM,
|
|
cache->base);
|
|
|
|
return (*this_cache);
|
|
}
|
|
|
|
static void
|
|
mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
|
|
this_cache);
|
|
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
|
|
}
|
|
|
|
static struct value *
|
|
mips_insn16_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
|
|
this_cache);
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static int
|
|
mips_insn16_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
if (mips_pc_is_mips16 (pc))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct frame_unwind mips_insn16_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
mips_insn16_frame_this_id,
|
|
mips_insn16_frame_prev_register,
|
|
NULL,
|
|
mips_insn16_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
mips_insn16_frame_base_address (struct frame_info *this_frame,
|
|
void **this_cache)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
|
|
this_cache);
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base mips_insn16_frame_base =
|
|
{
|
|
&mips_insn16_frame_unwind,
|
|
mips_insn16_frame_base_address,
|
|
mips_insn16_frame_base_address,
|
|
mips_insn16_frame_base_address
|
|
};
|
|
|
|
static const struct frame_base *
|
|
mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
if (mips_pc_is_mips16 (pc))
|
|
return &mips_insn16_frame_base;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Mark all the registers as unset in the saved_regs array
|
|
of THIS_CACHE. Do nothing if THIS_CACHE is null. */
|
|
|
|
static void
|
|
reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
|
|
{
|
|
if (this_cache == NULL || this_cache->saved_regs == NULL)
|
|
return;
|
|
|
|
{
|
|
const int num_regs = gdbarch_num_regs (gdbarch);
|
|
int i;
|
|
|
|
for (i = 0; i < num_regs; i++)
|
|
{
|
|
this_cache->saved_regs[i].addr = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
|
|
the associated FRAME_CACHE if not null.
|
|
Return the address of the first instruction past the prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct frame_info *this_frame,
|
|
struct mips_frame_cache *this_cache)
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
|
|
CORE_ADDR sp;
|
|
long frame_offset;
|
|
int frame_reg = MIPS_SP_REGNUM;
|
|
|
|
CORE_ADDR end_prologue_addr = 0;
|
|
int seen_sp_adjust = 0;
|
|
int load_immediate_bytes = 0;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
|
|
|
|
/* Can be called when there's no process, and hence when there's no
|
|
THIS_FRAME. */
|
|
if (this_frame != NULL)
|
|
sp = get_frame_register_signed (this_frame,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ MIPS_SP_REGNUM);
|
|
else
|
|
sp = 0;
|
|
|
|
if (limit_pc > start_pc + 200)
|
|
limit_pc = start_pc + 200;
|
|
|
|
restart:
|
|
|
|
frame_offset = 0;
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
|
|
{
|
|
unsigned long inst, high_word, low_word;
|
|
int reg;
|
|
|
|
/* Fetch the instruction. */
|
|
inst = (unsigned long) mips_fetch_instruction (cur_pc);
|
|
|
|
/* Save some code by pre-extracting some useful fields. */
|
|
high_word = (inst >> 16) & 0xffff;
|
|
low_word = inst & 0xffff;
|
|
reg = high_word & 0x1f;
|
|
|
|
if (high_word == 0x27bd /* addiu $sp,$sp,-i */
|
|
|| high_word == 0x23bd /* addi $sp,$sp,-i */
|
|
|| high_word == 0x67bd) /* daddiu $sp,$sp,-i */
|
|
{
|
|
if (low_word & 0x8000) /* negative stack adjustment? */
|
|
frame_offset += 0x10000 - low_word;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
seen_sp_adjust = 1;
|
|
}
|
|
else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
|
|
&& !regsize_is_64_bits)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
|
|
}
|
|
else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
|
|
&& regsize_is_64_bits)
|
|
{
|
|
/* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
|
|
set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
|
|
}
|
|
else if (high_word == 0x27be) /* addiu $30,$sp,size */
|
|
{
|
|
/* Old gcc frame, r30 is virtual frame pointer. */
|
|
if ((long) low_word != frame_offset)
|
|
frame_addr = sp + low_word;
|
|
else if (this_frame && frame_reg == MIPS_SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
|
|
frame_reg = 30;
|
|
frame_addr = get_frame_register_signed
|
|
(this_frame, gdbarch_num_regs (gdbarch) + 30);
|
|
|
|
alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because of
|
|
an alloca or somethings similar. Fix sp to
|
|
"pre-alloca" value, and try again. */
|
|
sp += alloca_adjust;
|
|
/* Need to reset the status of all registers. Otherwise,
|
|
we will hit a guard that prevents the new address
|
|
for each register to be recomputed during the second
|
|
pass. */
|
|
reset_saved_regs (gdbarch, this_cache);
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
/* move $30,$sp. With different versions of gas this will be either
|
|
`addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
|
|
Accept any one of these. */
|
|
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
|
|
{
|
|
/* New gcc frame, virtual frame pointer is at r30 + frame_size. */
|
|
if (this_frame && frame_reg == MIPS_SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
|
|
frame_reg = 30;
|
|
frame_addr = get_frame_register_signed
|
|
(this_frame, gdbarch_num_regs (gdbarch) + 30);
|
|
|
|
alloca_adjust = (unsigned) (frame_addr - sp);
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because of
|
|
an alloca or somethings similar. Fix sp to
|
|
"pre-alloca" value, and try again. */
|
|
sp = frame_addr;
|
|
/* Need to reset the status of all registers. Otherwise,
|
|
we will hit a guard that prevents the new address
|
|
for each register to be recomputed during the second
|
|
pass. */
|
|
reset_saved_regs (gdbarch, this_cache);
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
|
|
&& !regsize_is_64_bits)
|
|
{
|
|
set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
|
|
|| (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
|
|
|| (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
|
|
|| high_word == 0x3c1c /* lui $gp,n */
|
|
|| high_word == 0x279c /* addiu $gp,$gp,n */
|
|
|| inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|
|
|| inst == 0x033ce021 /* addu $gp,$t9,$gp */
|
|
)
|
|
{
|
|
/* These instructions are part of the prologue, but we don't
|
|
need to do anything special to handle them. */
|
|
}
|
|
/* The instructions below load $at or $t0 with an immediate
|
|
value in preparation for a stack adjustment via
|
|
subu $sp,$sp,[$at,$t0]. These instructions could also
|
|
initialize a local variable, so we accept them only before
|
|
a stack adjustment instruction was seen. */
|
|
else if (!seen_sp_adjust
|
|
&& (high_word == 0x3c01 /* lui $at,n */
|
|
|| high_word == 0x3c08 /* lui $t0,n */
|
|
|| high_word == 0x3421 /* ori $at,$at,n */
|
|
|| high_word == 0x3508 /* ori $t0,$t0,n */
|
|
|| high_word == 0x3401 /* ori $at,$zero,n */
|
|
|| high_word == 0x3408 /* ori $t0,$zero,n */
|
|
))
|
|
{
|
|
load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
|
|
}
|
|
else
|
|
{
|
|
/* This instruction is not an instruction typically found
|
|
in a prologue, so we must have reached the end of the
|
|
prologue. */
|
|
/* FIXME: brobecker/2004-10-10: Can't we just break out of this
|
|
loop now? Why would we need to continue scanning the function
|
|
instructions? */
|
|
if (end_prologue_addr == 0)
|
|
end_prologue_addr = cur_pc;
|
|
}
|
|
}
|
|
|
|
if (this_cache != NULL)
|
|
{
|
|
this_cache->base =
|
|
(get_frame_register_signed (this_frame,
|
|
gdbarch_num_regs (gdbarch) + frame_reg)
|
|
+ frame_offset);
|
|
/* FIXME: brobecker/2004-09-15: We should be able to get rid of
|
|
this assignment below, eventually. But it's still needed
|
|
for now. */
|
|
this_cache->saved_regs[gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->pc]
|
|
= this_cache->saved_regs[gdbarch_num_regs (gdbarch)
|
|
+ MIPS_RA_REGNUM];
|
|
}
|
|
|
|
/* If we didn't reach the end of the prologue when scanning the function
|
|
instructions, then set end_prologue_addr to the address of the
|
|
instruction immediately after the last one we scanned. */
|
|
/* brobecker/2004-10-10: I don't think this would ever happen, but
|
|
we may as well be careful and do our best if we have a null
|
|
end_prologue_addr. */
|
|
if (end_prologue_addr == 0)
|
|
end_prologue_addr = cur_pc;
|
|
|
|
/* In a frameless function, we might have incorrectly
|
|
skipped some load immediate instructions. Undo the skipping
|
|
if the load immediate was not followed by a stack adjustment. */
|
|
if (load_immediate_bytes && !seen_sp_adjust)
|
|
end_prologue_addr -= load_immediate_bytes;
|
|
|
|
return end_prologue_addr;
|
|
}
|
|
|
|
/* Heuristic unwinder for procedures using 32-bit instructions (covers
|
|
both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
|
|
instructions (a.k.a. MIPS16) are handled by the mips_insn16
|
|
unwinder. */
|
|
|
|
static struct mips_frame_cache *
|
|
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct mips_frame_cache *cache;
|
|
|
|
if ((*this_cache) != NULL)
|
|
return (*this_cache);
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
|
|
(*this_cache) = cache;
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
/* Analyze the function prologue. */
|
|
{
|
|
const CORE_ADDR pc = get_frame_address_in_block (this_frame);
|
|
CORE_ADDR start_addr;
|
|
|
|
find_pc_partial_function (pc, NULL, &start_addr, NULL);
|
|
if (start_addr == 0)
|
|
start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
|
|
/* We can't analyze the prologue if we couldn't find the begining
|
|
of the function. */
|
|
if (start_addr == 0)
|
|
return cache;
|
|
|
|
mips32_scan_prologue (start_addr, pc, this_frame, *this_cache);
|
|
}
|
|
|
|
/* gdbarch_sp_regnum contains the value and not the address. */
|
|
trad_frame_set_value (cache->saved_regs,
|
|
gdbarch_num_regs (get_frame_arch (this_frame))
|
|
+ MIPS_SP_REGNUM,
|
|
cache->base);
|
|
|
|
return (*this_cache);
|
|
}
|
|
|
|
static void
|
|
mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
|
|
this_cache);
|
|
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
|
|
}
|
|
|
|
static struct value *
|
|
mips_insn32_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
|
|
this_cache);
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static int
|
|
mips_insn32_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
if (! mips_pc_is_mips16 (pc))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct frame_unwind mips_insn32_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
mips_insn32_frame_this_id,
|
|
mips_insn32_frame_prev_register,
|
|
NULL,
|
|
mips_insn32_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
mips_insn32_frame_base_address (struct frame_info *this_frame,
|
|
void **this_cache)
|
|
{
|
|
struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
|
|
this_cache);
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base mips_insn32_frame_base =
|
|
{
|
|
&mips_insn32_frame_unwind,
|
|
mips_insn32_frame_base_address,
|
|
mips_insn32_frame_base_address,
|
|
mips_insn32_frame_base_address
|
|
};
|
|
|
|
static const struct frame_base *
|
|
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
if (! mips_pc_is_mips16 (pc))
|
|
return &mips_insn32_frame_base;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static struct trad_frame_cache *
|
|
mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
CORE_ADDR pc;
|
|
CORE_ADDR start_addr;
|
|
CORE_ADDR stack_addr;
|
|
struct trad_frame_cache *this_trad_cache;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int num_regs = gdbarch_num_regs (gdbarch);
|
|
|
|
if ((*this_cache) != NULL)
|
|
return (*this_cache);
|
|
this_trad_cache = trad_frame_cache_zalloc (this_frame);
|
|
(*this_cache) = this_trad_cache;
|
|
|
|
/* The return address is in the link register. */
|
|
trad_frame_set_reg_realreg (this_trad_cache,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
num_regs + MIPS_RA_REGNUM);
|
|
|
|
/* Frame ID, since it's a frameless / stackless function, no stack
|
|
space is allocated and SP on entry is the current SP. */
|
|
pc = get_frame_pc (this_frame);
|
|
find_pc_partial_function (pc, NULL, &start_addr, NULL);
|
|
stack_addr = get_frame_register_signed (this_frame,
|
|
num_regs + MIPS_SP_REGNUM);
|
|
trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
|
|
|
|
/* Assume that the frame's base is the same as the
|
|
stack-pointer. */
|
|
trad_frame_set_this_base (this_trad_cache, stack_addr);
|
|
|
|
return this_trad_cache;
|
|
}
|
|
|
|
static void
|
|
mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct trad_frame_cache *this_trad_cache
|
|
= mips_stub_frame_cache (this_frame, this_cache);
|
|
trad_frame_get_id (this_trad_cache, this_id);
|
|
}
|
|
|
|
static struct value *
|
|
mips_stub_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct trad_frame_cache *this_trad_cache
|
|
= mips_stub_frame_cache (this_frame, this_cache);
|
|
return trad_frame_get_register (this_trad_cache, this_frame, regnum);
|
|
}
|
|
|
|
static int
|
|
mips_stub_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
gdb_byte dummy[4];
|
|
struct obj_section *s;
|
|
CORE_ADDR pc = get_frame_address_in_block (this_frame);
|
|
|
|
/* Use the stub unwinder for unreadable code. */
|
|
if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
|
|
return 1;
|
|
|
|
if (in_plt_section (pc, NULL))
|
|
return 1;
|
|
|
|
/* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
|
|
s = find_pc_section (pc);
|
|
|
|
if (s != NULL
|
|
&& strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
|
|
".MIPS.stubs") == 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct frame_unwind mips_stub_frame_unwind =
|
|
{
|
|
NORMAL_FRAME,
|
|
mips_stub_frame_this_id,
|
|
mips_stub_frame_prev_register,
|
|
NULL,
|
|
mips_stub_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
mips_stub_frame_base_address (struct frame_info *this_frame,
|
|
void **this_cache)
|
|
{
|
|
struct trad_frame_cache *this_trad_cache
|
|
= mips_stub_frame_cache (this_frame, this_cache);
|
|
return trad_frame_get_this_base (this_trad_cache);
|
|
}
|
|
|
|
static const struct frame_base mips_stub_frame_base =
|
|
{
|
|
&mips_stub_frame_unwind,
|
|
mips_stub_frame_base_address,
|
|
mips_stub_frame_base_address,
|
|
mips_stub_frame_base_address
|
|
};
|
|
|
|
static const struct frame_base *
|
|
mips_stub_frame_base_sniffer (struct frame_info *this_frame)
|
|
{
|
|
if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
|
|
return &mips_stub_frame_base;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* mips_addr_bits_remove - remove useless address bits */
|
|
|
|
static CORE_ADDR
|
|
mips_addr_bits_remove (CORE_ADDR addr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
|
|
/* This hack is a work-around for existing boards using PMON, the
|
|
simulator, and any other 64-bit targets that doesn't have true
|
|
64-bit addressing. On these targets, the upper 32 bits of
|
|
addresses are ignored by the hardware. Thus, the PC or SP are
|
|
likely to have been sign extended to all 1s by instruction
|
|
sequences that load 32-bit addresses. For example, a typical
|
|
piece of code that loads an address is this:
|
|
|
|
lui $r2, <upper 16 bits>
|
|
ori $r2, <lower 16 bits>
|
|
|
|
But the lui sign-extends the value such that the upper 32 bits
|
|
may be all 1s. The workaround is simply to mask off these
|
|
bits. In the future, gcc may be changed to support true 64-bit
|
|
addressing, and this masking will have to be disabled. */
|
|
return addr &= 0xffffffffUL;
|
|
else
|
|
return addr;
|
|
}
|
|
|
|
/* Instructions used during single-stepping of atomic sequences. */
|
|
#define LL_OPCODE 0x30
|
|
#define LLD_OPCODE 0x34
|
|
#define SC_OPCODE 0x38
|
|
#define SCD_OPCODE 0x3c
|
|
|
|
/* Checks for an atomic sequence of instructions beginning with a LL/LLD
|
|
instruction and ending with a SC/SCD instruction. If such a sequence
|
|
is found, attempt to step through it. A breakpoint is placed at the end of
|
|
the sequence. */
|
|
|
|
static int
|
|
deal_with_atomic_sequence (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR breaks[2] = {-1, -1};
|
|
CORE_ADDR loc = pc;
|
|
CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
|
|
unsigned long insn;
|
|
int insn_count;
|
|
int index;
|
|
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
|
|
const int atomic_sequence_length = 16; /* Instruction sequence length. */
|
|
|
|
if (pc & 0x01)
|
|
return 0;
|
|
|
|
insn = mips_fetch_instruction (loc);
|
|
/* Assume all atomic sequences start with a ll/lld instruction. */
|
|
if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
|
|
return 0;
|
|
|
|
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
|
|
instructions. */
|
|
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
|
|
{
|
|
int is_branch = 0;
|
|
loc += MIPS_INSN32_SIZE;
|
|
insn = mips_fetch_instruction (loc);
|
|
|
|
/* Assume that there is at most one branch in the atomic
|
|
sequence. If a branch is found, put a breakpoint in its
|
|
destination address. */
|
|
switch (itype_op (insn))
|
|
{
|
|
case 0: /* SPECIAL */
|
|
if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
|
|
return 0; /* fallback to the standard single-step code. */
|
|
break;
|
|
case 1: /* REGIMM */
|
|
is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
|
|
break;
|
|
case 2: /* J */
|
|
case 3: /* JAL */
|
|
return 0; /* fallback to the standard single-step code. */
|
|
case 4: /* BEQ */
|
|
case 5: /* BNE */
|
|
case 6: /* BLEZ */
|
|
case 7: /* BGTZ */
|
|
case 20: /* BEQL */
|
|
case 21: /* BNEL */
|
|
case 22: /* BLEZL */
|
|
case 23: /* BGTTL */
|
|
is_branch = 1;
|
|
break;
|
|
case 17: /* COP1 */
|
|
case 18: /* COP2 */
|
|
case 19: /* COP3 */
|
|
is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
|
|
break;
|
|
}
|
|
if (is_branch)
|
|
{
|
|
branch_bp = loc + mips32_relative_offset (insn) + 4;
|
|
if (last_breakpoint >= 1)
|
|
return 0; /* More than one branch found, fallback to the
|
|
standard single-step code. */
|
|
breaks[1] = branch_bp;
|
|
last_breakpoint++;
|
|
}
|
|
|
|
if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
|
|
break;
|
|
}
|
|
|
|
/* Assume that the atomic sequence ends with a sc/scd instruction. */
|
|
if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
|
|
return 0;
|
|
|
|
loc += MIPS_INSN32_SIZE;
|
|
|
|
/* Insert a breakpoint right after the end of the atomic sequence. */
|
|
breaks[0] = loc;
|
|
|
|
/* Check for duplicated breakpoints. Check also for a breakpoint
|
|
placed (branch instruction's destination) in the atomic sequence */
|
|
if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
|
|
last_breakpoint = 0;
|
|
|
|
/* Effectively inserts the breakpoints. */
|
|
for (index = 0; index <= last_breakpoint; index++)
|
|
insert_single_step_breakpoint (breaks[index]);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* mips_software_single_step() is called just before we want to resume
|
|
the inferior, if we want to single-step it but there is no hardware
|
|
or kernel single-step support (MIPS on GNU/Linux for example). We find
|
|
the target of the coming instruction and breakpoint it. */
|
|
|
|
int
|
|
mips_software_single_step (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR pc, next_pc;
|
|
|
|
pc = get_frame_pc (frame);
|
|
if (deal_with_atomic_sequence (pc))
|
|
return 1;
|
|
|
|
next_pc = mips_next_pc (frame, pc);
|
|
|
|
insert_single_step_breakpoint (next_pc);
|
|
return 1;
|
|
}
|
|
|
|
/* Test whether the PC points to the return instruction at the
|
|
end of a function. */
|
|
|
|
static int
|
|
mips_about_to_return (CORE_ADDR pc)
|
|
{
|
|
if (mips_pc_is_mips16 (pc))
|
|
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
|
|
generates a "jr $ra"; other times it generates code to load
|
|
the return address from the stack to an accessible register (such
|
|
as $a3), then a "jr" using that register. This second case
|
|
is almost impossible to distinguish from an indirect jump
|
|
used for switch statements, so we don't even try. */
|
|
return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
|
|
else
|
|
return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
|
|
}
|
|
|
|
|
|
/* This fencepost looks highly suspicious to me. Removing it also
|
|
seems suspicious as it could affect remote debugging across serial
|
|
lines. */
|
|
|
|
static CORE_ADDR
|
|
heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR start_pc;
|
|
CORE_ADDR fence;
|
|
int instlen;
|
|
int seen_adjsp = 0;
|
|
|
|
pc = gdbarch_addr_bits_remove (gdbarch, pc);
|
|
start_pc = pc;
|
|
fence = start_pc - heuristic_fence_post;
|
|
if (start_pc == 0)
|
|
return 0;
|
|
|
|
if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
|
|
fence = VM_MIN_ADDRESS;
|
|
|
|
instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
|
|
|
|
/* search back for previous return */
|
|
for (start_pc -= instlen;; start_pc -= instlen)
|
|
if (start_pc < fence)
|
|
{
|
|
/* It's not clear to me why we reach this point when
|
|
stop_soon, but with this test, at least we
|
|
don't print out warnings for every child forked (eg, on
|
|
decstation). 22apr93 rich@cygnus.com. */
|
|
if (stop_soon == NO_STOP_QUIETLY)
|
|
{
|
|
static int blurb_printed = 0;
|
|
|
|
warning (_("GDB can't find the start of the function at 0x%s."),
|
|
paddr_nz (pc));
|
|
|
|
if (!blurb_printed)
|
|
{
|
|
/* This actually happens frequently in embedded
|
|
development, when you first connect to a board
|
|
and your stack pointer and pc are nowhere in
|
|
particular. This message needs to give people
|
|
in that situation enough information to
|
|
determine that it's no big deal. */
|
|
printf_filtered ("\n\
|
|
GDB is unable to find the start of the function at 0x%s\n\
|
|
and thus can't determine the size of that function's stack frame.\n\
|
|
This means that GDB may be unable to access that stack frame, or\n\
|
|
the frames below it.\n\
|
|
This problem is most likely caused by an invalid program counter or\n\
|
|
stack pointer.\n\
|
|
However, if you think GDB should simply search farther back\n\
|
|
from 0x%s for code which looks like the beginning of a\n\
|
|
function, you can increase the range of the search using the `set\n\
|
|
heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
|
|
blurb_printed = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
else if (mips_pc_is_mips16 (start_pc))
|
|
{
|
|
unsigned short inst;
|
|
|
|
/* On MIPS16, any one of the following is likely to be the
|
|
start of a function:
|
|
extend save
|
|
save
|
|
entry
|
|
addiu sp,-n
|
|
daddiu sp,-n
|
|
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
|
|
inst = mips_fetch_instruction (start_pc);
|
|
if ((inst & 0xff80) == 0x6480) /* save */
|
|
{
|
|
if (start_pc - instlen >= fence)
|
|
{
|
|
inst = mips_fetch_instruction (start_pc - instlen);
|
|
if ((inst & 0xf800) == 0xf000) /* extend */
|
|
start_pc -= instlen;
|
|
}
|
|
break;
|
|
}
|
|
else if (((inst & 0xf81f) == 0xe809
|
|
&& (inst & 0x700) != 0x700) /* entry */
|
|
|| (inst & 0xff80) == 0x6380 /* addiu sp,-n */
|
|
|| (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
|
|
|| ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
|
|
break;
|
|
else if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
seen_adjsp = 1;
|
|
else
|
|
seen_adjsp = 0;
|
|
}
|
|
else if (mips_about_to_return (start_pc))
|
|
{
|
|
/* Skip return and its delay slot. */
|
|
start_pc += 2 * MIPS_INSN32_SIZE;
|
|
break;
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
struct mips_objfile_private
|
|
{
|
|
bfd_size_type size;
|
|
char *contents;
|
|
};
|
|
|
|
/* According to the current ABI, should the type be passed in a
|
|
floating-point register (assuming that there is space)? When there
|
|
is no FPU, FP are not even considered as possible candidates for
|
|
FP registers and, consequently this returns false - forces FP
|
|
arguments into integer registers. */
|
|
|
|
static int
|
|
fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
|
|
struct type *arg_type)
|
|
{
|
|
return ((typecode == TYPE_CODE_FLT
|
|
|| (MIPS_EABI (gdbarch)
|
|
&& (typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION)
|
|
&& TYPE_NFIELDS (arg_type) == 1
|
|
&& TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
|
|
== TYPE_CODE_FLT))
|
|
&& MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
|
|
}
|
|
|
|
/* On o32, argument passing in GPRs depends on the alignment of the type being
|
|
passed. Return 1 if this type must be aligned to a doubleword boundary. */
|
|
|
|
static int
|
|
mips_type_needs_double_align (struct type *type)
|
|
{
|
|
enum type_code typecode = TYPE_CODE (type);
|
|
|
|
if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
|
|
return 1;
|
|
else if (typecode == TYPE_CODE_STRUCT)
|
|
{
|
|
if (TYPE_NFIELDS (type) < 1)
|
|
return 0;
|
|
return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
|
|
}
|
|
else if (typecode == TYPE_CODE_UNION)
|
|
{
|
|
int i, n;
|
|
|
|
n = TYPE_NFIELDS (type);
|
|
for (i = 0; i < n; i++)
|
|
if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Adjust the address downward (direction of stack growth) so that it
|
|
is correctly aligned for a new stack frame. */
|
|
static CORE_ADDR
|
|
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
return align_down (addr, 16);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
int regsize = mips_abi_regsize (gdbarch);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. We allocate more
|
|
than necessary for EABI, because the first few arguments are
|
|
passed in registers, but that's OK. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = MIPS_A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
const gdb_byte *val;
|
|
gdb_byte valbuf[MAX_REGISTER_SIZE];
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_eabi_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
/* The EABI passes structures that do not fit in a register by
|
|
reference. */
|
|
if (len > regsize
|
|
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
|
{
|
|
store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
|
|
typecode = TYPE_CODE_PTR;
|
|
len = regsize;
|
|
val = valbuf;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " push");
|
|
}
|
|
else
|
|
val = value_contents (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. Round the FP register
|
|
up before the check to see if there are any FP registers
|
|
left. Non MIPS_EABI targets also pass the FP in the integer
|
|
registers so also round up normal registers. */
|
|
if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
|
|
{
|
|
if ((float_argreg & 1))
|
|
float_argreg++;
|
|
}
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On non-EABI processors, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
/* MIPS_EABI squeezes a struct that contains a single floating
|
|
point value into an FP register instead of pushing it onto the
|
|
stack. */
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
|
|
{
|
|
/* EABI32 will pass doubles in consecutive registers, even on
|
|
64-bit cores. At one time, we used to check the size of
|
|
`float_argreg' to determine whether or not to pass doubles
|
|
in consecutive registers, but this is not sufficient for
|
|
making the ABI determination. */
|
|
if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
|
|
{
|
|
int low_offset = gdbarch_byte_order (gdbarch)
|
|
== BFD_ENDIAN_BIG ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of regsize
|
|
are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = (len > regsize && len % regsize != 0);
|
|
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < regsize ? len : regsize);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
|
|
|| odd_sized_struct
|
|
|| fp_register_arg_p (gdbarch, typecode, arg_type))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if (regsize == 8
|
|
&& (typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = regsize - len;
|
|
else if ((typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION)
|
|
&& TYPE_LENGTH (arg_type) < regsize)
|
|
longword_offset = regsize - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. Floating point
|
|
arguments will not. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
|
|
&& !fp_register_arg_p (gdbarch, typecode, arg_type))
|
|
{
|
|
LONGEST regval =
|
|
extract_unsigned_integer (val, partial_len);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval, regsize));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
argreg++;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In the new EABI (and the NABI32), the stack_offset
|
|
only needs to be adjusted when it has been used. */
|
|
|
|
if (stack_used_p)
|
|
stack_offset += align_up (partial_len, regsize);
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
/* Determine the return value convention being used. */
|
|
|
|
static enum return_value_convention
|
|
mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int fp_return_type = 0;
|
|
int offset, regnum, xfer;
|
|
|
|
if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
/* Floating point type? */
|
|
if (tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
fp_return_type = 1;
|
|
/* Structs with a single field of float type
|
|
are returned in a floating point register. */
|
|
if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
&& TYPE_NFIELDS (type) == 1)
|
|
{
|
|
struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
|
|
|
|
if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
|
|
fp_return_type = 1;
|
|
}
|
|
}
|
|
|
|
if (fp_return_type)
|
|
{
|
|
/* A floating-point value belongs in the least significant part
|
|
of FP0/FP1. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
regnum = mips_regnum (gdbarch)->fp0;
|
|
}
|
|
else
|
|
{
|
|
/* An integer value goes in V0/V1. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
|
|
regnum = MIPS_V0_REGNUM;
|
|
}
|
|
for (offset = 0;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += mips_abi_regsize (gdbarch), regnum++)
|
|
{
|
|
xfer = mips_abi_regsize (gdbarch);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum, xfer,
|
|
gdbarch_byte_order (gdbarch), readbuf, writebuf,
|
|
offset);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
|
|
/* N32/N64 ABI stuff. */
|
|
|
|
/* Search for a naturally aligned double at OFFSET inside a struct
|
|
ARG_TYPE. The N32 / N64 ABIs pass these in floating point
|
|
registers. */
|
|
|
|
static int
|
|
mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
|
|
int offset)
|
|
{
|
|
int i;
|
|
|
|
if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
|
|
return 0;
|
|
|
|
if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
|
|
return 0;
|
|
|
|
if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
|
|
return 0;
|
|
|
|
for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
|
|
{
|
|
int pos;
|
|
struct type *field_type;
|
|
|
|
/* We're only looking at normal fields. */
|
|
if (TYPE_FIELD_STATIC (arg_type, i)
|
|
|| (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
|
|
continue;
|
|
|
|
/* If we have gone past the offset, there is no double to pass. */
|
|
pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
|
|
if (pos > offset)
|
|
return 0;
|
|
|
|
field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
|
|
|
|
/* If this field is entirely before the requested offset, go
|
|
on to the next one. */
|
|
if (pos + TYPE_LENGTH (field_type) <= offset)
|
|
continue;
|
|
|
|
/* If this is our special aligned double, we can stop. */
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
|
|
return 1;
|
|
|
|
/* This field starts at or before the requested offset, and
|
|
overlaps it. If it is a structure, recurse inwards. */
|
|
return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = MIPS_A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
const gdb_byte *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_n32n64_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = value_contents (arg);
|
|
|
|
/* A 128-bit long double value requires an even-odd pair of
|
|
floating-point registers. */
|
|
if (len == 16
|
|
&& fp_register_arg_p (gdbarch, typecode, arg_type)
|
|
&& (float_argreg & 1))
|
|
{
|
|
float_argreg++;
|
|
argreg++;
|
|
}
|
|
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type)
|
|
&& argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register or a pair of registers. */
|
|
int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
|
|
LONGEST regval = extract_unsigned_integer (val, reglen);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, reglen));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, reglen));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
float_argreg++;
|
|
argreg++;
|
|
if (len == 16)
|
|
{
|
|
regval = extract_unsigned_integer (val + reglen, reglen);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, reglen));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, reglen));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
float_argreg++;
|
|
argreg++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* For N32/N64, structs, unions, or other composite types are
|
|
treated as a sequence of doublewords, and are passed in integer
|
|
or floating point registers as though they were simple scalar
|
|
parameters to the extent that they fit, with any excess on the
|
|
stack packed according to the normal memory layout of the
|
|
object.
|
|
The caller does not reserve space for the register arguments;
|
|
the callee is responsible for reserving it if required. */
|
|
/* Note: Floating-point values that didn't fit into an FP
|
|
register are only written to memory. */
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type))
|
|
gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if ((typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR)
|
|
&& len <= 4)
|
|
longword_offset = MIPS64_REGSIZE - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
|
|
{
|
|
LONGEST regval;
|
|
|
|
/* Sign extend pointers, 32-bit integers and signed
|
|
16-bit and 8-bit integers; everything else is taken
|
|
as is. */
|
|
|
|
if ((partial_len == 4
|
|
&& (typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_INT))
|
|
|| (partial_len < 4
|
|
&& typecode == TYPE_CODE_INT
|
|
&& !TYPE_UNSIGNED (arg_type)))
|
|
regval = extract_signed_integer (val, partial_len);
|
|
else
|
|
regval = extract_unsigned_integer (val, partial_len);
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types. */
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& partial_len < MIPS64_REGSIZE
|
|
&& (typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION))
|
|
regval <<= ((MIPS64_REGSIZE - partial_len)
|
|
* TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval, MIPS64_REGSIZE));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
|
|
if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
|
|
TYPE_LENGTH (arg_type) - len))
|
|
{
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg,
|
|
phex (regval, MIPS64_REGSIZE));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg,
|
|
regval);
|
|
}
|
|
|
|
float_argreg++;
|
|
argreg++;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In N32 (N64?), the stack_offset only needs to be
|
|
adjusted when it has been used. */
|
|
|
|
if (stack_used_p)
|
|
stack_offset += align_up (partial_len, MIPS64_REGSIZE);
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
|
|
|
|
Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
|
|
if needed), as appropriate for the type. Composite results (struct,
|
|
union, or array) are returned in $2/$f0 and $3/$f2 according to the
|
|
following rules:
|
|
|
|
* A struct with only one or two floating point fields is returned in $f0
|
|
(and $f2 if necessary). This is a generalization of the Fortran COMPLEX
|
|
case.
|
|
|
|
* Any other struct or union results of at most 128 bits are returned in
|
|
$2 (first 64 bits) and $3 (remainder, if necessary).
|
|
|
|
* Larger composite results are handled by converting the function to a
|
|
procedure with an implicit first parameter, which is a pointer to an area
|
|
reserved by the caller to receive the result. [The o32-bit ABI requires
|
|
that all composite results be handled by conversion to implicit first
|
|
parameters. The MIPS/SGI Fortran implementation has always made a
|
|
specific exception to return COMPLEX results in the floating point
|
|
registers.] */
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
|| TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 16
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A 128-bit floating-point value fills both $f0 and $f2. The
|
|
two registers are used in the same as memory order, so the
|
|
eight bytes with the lower memory address are in $f0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0,
|
|
8, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0 + 2,
|
|
8, gdbarch_byte_order (gdbarch),
|
|
readbuf ? readbuf + 8 : readbuf,
|
|
writebuf ? writebuf + 8 : writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A single or double floating-point value that fits in FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0,
|
|
TYPE_LENGTH (type),
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) <= 2
|
|
&& TYPE_NFIELDS (type) >= 1
|
|
&& ((TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
|
|
== TYPE_CODE_FLT))
|
|
|| (TYPE_NFIELDS (type) == 2
|
|
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
|
|
== TYPE_CODE_FLT)
|
|
&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
|
|
== TYPE_CODE_FLT))))
|
|
{
|
|
/* A struct that contains one or two floats. Each value is part
|
|
in the least significant part of their floating point
|
|
register (or GPR, for soft float). */
|
|
int regnum;
|
|
int field;
|
|
for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
|
|
? mips_regnum (gdbarch)->fp0
|
|
: MIPS_V0_REGNUM);
|
|
field < TYPE_NFIELDS (type); field++, regnum += 2)
|
|
{
|
|
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
|
|
/ TARGET_CHAR_BIT);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
|
|
offset);
|
|
if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
|
|
{
|
|
/* A 16-byte long double field goes in two consecutive
|
|
registers. */
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
8,
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum + 1,
|
|
8,
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset + 8);
|
|
}
|
|
else
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
/* A structure or union. Extract the left justified value,
|
|
regardless of the byte order. I.e. DO NOT USE
|
|
mips_xfer_lower. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = MIPS_V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
|
|
offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else
|
|
{
|
|
/* A scalar extract each part but least-significant-byte
|
|
justified. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = MIPS_V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
xfer, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* O32 ABI stuff. */
|
|
|
|
static CORE_ADDR
|
|
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
struct type *arg_type = check_typedef (value_type (args[argnum]));
|
|
int arglen = TYPE_LENGTH (arg_type);
|
|
|
|
/* Align to double-word if necessary. */
|
|
if (mips_type_needs_double_align (arg_type))
|
|
len = align_up (len, MIPS32_REGSIZE * 2);
|
|
/* Allocate space on the stack. */
|
|
len += align_up (arglen, MIPS32_REGSIZE);
|
|
}
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = MIPS_A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
|
|
stack_offset += MIPS32_REGSIZE;
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
const gdb_byte *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o32_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = value_contents (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. Round the FP register
|
|
up before the check to see if there are any FP registers
|
|
left. O32/O64 targets also pass the FP in the integer
|
|
registers so also round up normal registers. */
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type))
|
|
{
|
|
if ((float_argreg & 1))
|
|
float_argreg++;
|
|
}
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On O32/O64, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
|
|
{
|
|
if (register_size (gdbarch, float_argreg) < 8 && len == 8)
|
|
{
|
|
int low_offset = gdbarch_byte_order (gdbarch)
|
|
== BFD_ENDIAN_BIG ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, 4));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
/* Although two FP registers are reserved for each
|
|
argument, only one corresponding integer register is
|
|
reserved. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, len));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
}
|
|
/* Reserve space for the FP register. */
|
|
stack_offset += align_up (len, MIPS32_REGSIZE);
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of MIPS32_REGSIZE
|
|
are treated specially: Irix cc passes
|
|
them in registers where gcc sometimes puts them on the
|
|
stack. For maximum compatibility, we will put them in
|
|
both places. */
|
|
int odd_sized_struct = (len > MIPS32_REGSIZE
|
|
&& len % MIPS32_REGSIZE != 0);
|
|
/* Structures should be aligned to eight bytes (even arg registers)
|
|
on MIPS_ABI_O32, if their first member has double precision. */
|
|
if (mips_type_needs_double_align (arg_type))
|
|
{
|
|
if ((argreg & 1))
|
|
{
|
|
argreg++;
|
|
stack_offset += MIPS32_REGSIZE;
|
|
}
|
|
}
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
|
|
|| odd_sized_struct)
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
|
|
{
|
|
LONGEST regval = extract_signed_integer (val, partial_len);
|
|
/* Value may need to be sign extended, because
|
|
mips_isa_regsize() != mips_abi_regsize(). */
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types.
|
|
|
|
Also don't do this adjustment on O64 binaries.
|
|
|
|
cagney/2001-07-23: gdb/179: Also, GCC, when
|
|
outputting LE O32 with sizeof (struct) <
|
|
mips_abi_regsize(), generates a left shift
|
|
as part of storing the argument in a register
|
|
(the left shift isn't generated when
|
|
sizeof (struct) >= mips_abi_regsize()). Since
|
|
it is quite possible that this is GCC
|
|
contradicting the LE/O32 ABI, GDB has not been
|
|
adjusted to accommodate this. Either someone
|
|
needs to demonstrate that the LE/O32 ABI
|
|
specifies such a left shift OR this new ABI gets
|
|
identified as such and GDB gets tweaked
|
|
accordingly. */
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& partial_len < MIPS32_REGSIZE
|
|
&& (typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION))
|
|
regval <<= ((MIPS32_REGSIZE - partial_len)
|
|
* TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval, MIPS32_REGSIZE));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
argreg++;
|
|
|
|
/* Prevent subsequent floating point arguments from
|
|
being passed in floating point registers. */
|
|
float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In older ABIs, the caller reserved space for
|
|
registers that contained arguments. This was loosely
|
|
refered to as their "home". Consequently, space is
|
|
always allocated. */
|
|
|
|
stack_offset += align_up (partial_len, MIPS32_REGSIZE);
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A single-precision floating-point value. It fits in the
|
|
least significant part of FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0,
|
|
TYPE_LENGTH (type),
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A double-precision floating-point value. The most
|
|
significant part goes in FP1, and the least significant in
|
|
FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
|
|
switch (gdbarch_byte_order (gdbarch))
|
|
{
|
|
case BFD_ENDIAN_LITTLE:
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0 +
|
|
0, 4, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0 + 1,
|
|
4, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 4);
|
|
break;
|
|
case BFD_ENDIAN_BIG:
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0 + 1,
|
|
4, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0 + 0,
|
|
4, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 4);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#if 0
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) <= 2
|
|
&& TYPE_NFIELDS (type) >= 1
|
|
&& ((TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT))
|
|
|| (TYPE_NFIELDS (type) == 2
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_FLT)
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
|
|
== TYPE_CODE_FLT)))
|
|
&& tdep->mips_fpu_type != MIPS_FPU_NONE)
|
|
{
|
|
/* A struct that contains one or two floats. Each value is part
|
|
in the least significant part of their floating point
|
|
register.. */
|
|
gdb_byte reg[MAX_REGISTER_SIZE];
|
|
int regnum;
|
|
int field;
|
|
for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
|
|
field < TYPE_NFIELDS (type); field++, regnum += 2)
|
|
{
|
|
int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
|
|
/ TARGET_CHAR_BIT);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
|
|
offset);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#endif
|
|
#if 0
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
/* A structure or union. Extract the left justified value,
|
|
regardless of the byte order. I.e. DO NOT USE
|
|
mips_xfer_lower. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = MIPS_V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += register_size (gdbarch, regnum), regnum++)
|
|
{
|
|
int xfer = register_size (gdbarch, regnum);
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum, xfer,
|
|
BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
/* A scalar extract each part but least-significant-byte
|
|
justified. o32 thinks registers are 4 byte, regardless of
|
|
the ISA. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = MIPS_V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += MIPS32_REGSIZE, regnum++)
|
|
{
|
|
int xfer = MIPS32_REGSIZE;
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum, xfer,
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
|
|
ABI. */
|
|
|
|
static CORE_ADDR
|
|
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs,
|
|
struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
|
|
/* For shared libraries, "t9" needs to point at the function
|
|
address. */
|
|
regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
|
|
|
|
/* Set the return address register to point to the entry point of
|
|
the program, where a breakpoint lies in wait. */
|
|
regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit
|
|
aligned even on 32-bit machines, because doubles must be 64-bit
|
|
aligned. For n32 and n64, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
|
|
sp = align_down (sp, 16);
|
|
struct_addr = align_down (struct_addr, 16);
|
|
|
|
/* Now make space on the stack for the args. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
struct type *arg_type = check_typedef (value_type (args[argnum]));
|
|
int arglen = TYPE_LENGTH (arg_type);
|
|
|
|
/* Allocate space on the stack. */
|
|
len += align_up (arglen, MIPS64_REGSIZE);
|
|
}
|
|
sp -= align_up (len, 16);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
|
|
paddr_nz (sp), (long) align_up (len, 16));
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = MIPS_A0_REGNUM;
|
|
float_argreg = mips_fpa0_regnum (gdbarch);
|
|
|
|
/* The struct_return pointer occupies the first parameter-passing reg. */
|
|
if (struct_return)
|
|
{
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
|
|
argreg, paddr_nz (struct_addr));
|
|
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
|
|
stack_offset += MIPS64_REGSIZE;
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
const gdb_byte *val;
|
|
struct value *arg = args[argnum];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_o64_push_dummy_call: %d len=%d type=%d",
|
|
argnum + 1, len, (int) typecode);
|
|
|
|
val = value_contents (arg);
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On O32/O64, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
|
|
if (fp_register_arg_p (gdbarch, typecode, arg_type)
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
|
|
{
|
|
LONGEST regval = extract_unsigned_integer (val, len);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
|
|
float_argreg, phex (regval, len));
|
|
regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg, phex (regval, len));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
argreg++;
|
|
/* Reserve space for the FP register. */
|
|
stack_offset += align_up (len, MIPS64_REGSIZE);
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of MIPS64_REGSIZE
|
|
are treated specially: Irix cc passes them in registers
|
|
where gcc sometimes puts them on the stack. For maximum
|
|
compatibility, we will put them in both places. */
|
|
int odd_sized_struct = (len > MIPS64_REGSIZE
|
|
&& len % MIPS64_REGSIZE != 0);
|
|
while (len > 0)
|
|
{
|
|
/* Remember if the argument was written to the stack. */
|
|
int stack_used_p = 0;
|
|
int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
|
|
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
|
|
partial_len);
|
|
|
|
/* Write this portion of the argument to the stack. */
|
|
if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
|
|
|| odd_sized_struct)
|
|
{
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
int longword_offset = 0;
|
|
CORE_ADDR addr;
|
|
stack_used_p = 1;
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if ((typecode == TYPE_CODE_INT
|
|
|| typecode == TYPE_CODE_PTR
|
|
|| typecode == TYPE_CODE_FLT)
|
|
&& len <= 4)
|
|
longword_offset = MIPS64_REGSIZE - len;
|
|
}
|
|
|
|
if (mips_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
|
|
paddr_nz (stack_offset));
|
|
fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
|
|
paddr_nz (longword_offset));
|
|
}
|
|
|
|
addr = sp + stack_offset + longword_offset;
|
|
|
|
if (mips_debug)
|
|
{
|
|
int i;
|
|
fprintf_unfiltered (gdb_stdlog, " @0x%s ",
|
|
paddr_nz (addr));
|
|
for (i = 0; i < partial_len; i++)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "%02x",
|
|
val[i] & 0xff);
|
|
}
|
|
}
|
|
write_memory (addr, val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause. Odd sized
|
|
structs may go thru BOTH paths. */
|
|
/* Write this portion of the argument to a general
|
|
purpose register. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
|
|
{
|
|
LONGEST regval = extract_signed_integer (val, partial_len);
|
|
/* Value may need to be sign extended, because
|
|
mips_isa_regsize() != mips_abi_regsize(). */
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types. */
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& partial_len < MIPS64_REGSIZE
|
|
&& (typecode == TYPE_CODE_STRUCT
|
|
|| typecode == TYPE_CODE_UNION))
|
|
regval <<= ((MIPS64_REGSIZE - partial_len)
|
|
* TARGET_CHAR_BIT);
|
|
|
|
if (mips_debug)
|
|
fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
|
|
argreg,
|
|
phex (regval, MIPS64_REGSIZE));
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
argreg++;
|
|
|
|
/* Prevent subsequent floating point arguments from
|
|
being passed in floating point registers. */
|
|
float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* Compute the the offset into the stack at which we
|
|
will copy the next parameter.
|
|
|
|
In older ABIs, the caller reserved space for
|
|
registers that contained arguments. This was loosely
|
|
refered to as their "home". Consequently, space is
|
|
always allocated. */
|
|
|
|
stack_offset += align_up (partial_len, MIPS64_REGSIZE);
|
|
}
|
|
}
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "\n");
|
|
}
|
|
|
|
regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
|
|
{
|
|
/* A floating-point value. It fits in the least significant
|
|
part of FP0. */
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch)
|
|
+ mips_regnum (gdbarch)->fp0,
|
|
TYPE_LENGTH (type),
|
|
gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, 0);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
else
|
|
{
|
|
/* A scalar extract each part but least-significant-byte
|
|
justified. */
|
|
int offset;
|
|
int regnum;
|
|
for (offset = 0, regnum = MIPS_V0_REGNUM;
|
|
offset < TYPE_LENGTH (type);
|
|
offset += MIPS64_REGSIZE, regnum++)
|
|
{
|
|
int xfer = MIPS64_REGSIZE;
|
|
if (offset + xfer > TYPE_LENGTH (type))
|
|
xfer = TYPE_LENGTH (type) - offset;
|
|
if (mips_debug)
|
|
fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
|
|
offset, xfer, regnum);
|
|
mips_xfer_register (gdbarch, regcache,
|
|
gdbarch_num_regs (gdbarch) + regnum,
|
|
xfer, gdbarch_byte_order (gdbarch),
|
|
readbuf, writebuf, offset);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* Floating point register management.
|
|
|
|
Background: MIPS1 & 2 fp registers are 32 bits wide. To support
|
|
64bit operations, these early MIPS cpus treat fp register pairs
|
|
(f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
|
|
registers and offer a compatibility mode that emulates the MIPS2 fp
|
|
model. When operating in MIPS2 fp compat mode, later cpu's split
|
|
double precision floats into two 32-bit chunks and store them in
|
|
consecutive fp regs. To display 64-bit floats stored in this
|
|
fashion, we have to combine 32 bits from f0 and 32 bits from f1.
|
|
Throw in user-configurable endianness and you have a real mess.
|
|
|
|
The way this works is:
|
|
- If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
|
|
double-precision value will be split across two logical registers.
|
|
The lower-numbered logical register will hold the low-order bits,
|
|
regardless of the processor's endianness.
|
|
- If we are on a 64-bit processor, and we are looking for a
|
|
single-precision value, it will be in the low ordered bits
|
|
of a 64-bit GPR (after mfc1, for example) or a 64-bit register
|
|
save slot in memory.
|
|
- If we are in 64-bit mode, everything is straightforward.
|
|
|
|
Note that this code only deals with "live" registers at the top of the
|
|
stack. We will attempt to deal with saved registers later, when
|
|
the raw/cooked register interface is in place. (We need a general
|
|
interface that can deal with dynamic saved register sizes -- fp
|
|
regs could be 32 bits wide in one frame and 64 on the frame above
|
|
and below). */
|
|
|
|
static struct type *
|
|
mips_float_register_type (void)
|
|
{
|
|
return builtin_type_ieee_single;
|
|
}
|
|
|
|
static struct type *
|
|
mips_double_register_type (void)
|
|
{
|
|
return builtin_type_ieee_double;
|
|
}
|
|
|
|
/* Copy a 32-bit single-precision value from the current frame
|
|
into rare_buffer. */
|
|
|
|
static void
|
|
mips_read_fp_register_single (struct frame_info *frame, int regno,
|
|
gdb_byte *rare_buffer)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
int raw_size = register_size (gdbarch, regno);
|
|
gdb_byte *raw_buffer = alloca (raw_size);
|
|
|
|
if (!frame_register_read (frame, regno, raw_buffer))
|
|
error (_("can't read register %d (%s)"),
|
|
regno, gdbarch_register_name (gdbarch, regno));
|
|
if (raw_size == 8)
|
|
{
|
|
/* We have a 64-bit value for this register. Find the low-order
|
|
32 bits. */
|
|
int offset;
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 4;
|
|
else
|
|
offset = 0;
|
|
|
|
memcpy (rare_buffer, raw_buffer + offset, 4);
|
|
}
|
|
else
|
|
{
|
|
memcpy (rare_buffer, raw_buffer, 4);
|
|
}
|
|
}
|
|
|
|
/* Copy a 64-bit double-precision value from the current frame into
|
|
rare_buffer. This may include getting half of it from the next
|
|
register. */
|
|
|
|
static void
|
|
mips_read_fp_register_double (struct frame_info *frame, int regno,
|
|
gdb_byte *rare_buffer)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
int raw_size = register_size (gdbarch, regno);
|
|
|
|
if (raw_size == 8 && !mips2_fp_compat (frame))
|
|
{
|
|
/* We have a 64-bit value for this register, and we should use
|
|
all 64 bits. */
|
|
if (!frame_register_read (frame, regno, rare_buffer))
|
|
error (_("can't read register %d (%s)"),
|
|
regno, gdbarch_register_name (gdbarch, regno));
|
|
}
|
|
else
|
|
{
|
|
int rawnum = regno % gdbarch_num_regs (gdbarch);
|
|
|
|
if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("mips_read_fp_register_double: bad access to "
|
|
"odd-numbered FP register"));
|
|
|
|
/* mips_read_fp_register_single will find the correct 32 bits from
|
|
each register. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
mips_read_fp_register_single (frame, regno, rare_buffer + 4);
|
|
mips_read_fp_register_single (frame, regno + 1, rare_buffer);
|
|
}
|
|
else
|
|
{
|
|
mips_read_fp_register_single (frame, regno, rare_buffer);
|
|
mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
|
|
int regnum)
|
|
{ /* do values for FP (float) regs */
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
gdb_byte *raw_buffer;
|
|
double doub, flt1; /* doubles extracted from raw hex data */
|
|
int inv1, inv2;
|
|
|
|
raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
|
|
|
|
fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
|
|
fprintf_filtered (file, "%*s",
|
|
4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
|
|
"");
|
|
|
|
if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
|
|
{
|
|
/* 4-byte registers: Print hex and floating. Also print even
|
|
numbered registers as doubles. */
|
|
mips_read_fp_register_single (frame, regnum, raw_buffer);
|
|
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
|
|
|
|
print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
|
|
file);
|
|
|
|
fprintf_filtered (file, " flt: ");
|
|
if (inv1)
|
|
fprintf_filtered (file, " <invalid float> ");
|
|
else
|
|
fprintf_filtered (file, "%-17.9g", flt1);
|
|
|
|
if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
|
|
{
|
|
mips_read_fp_register_double (frame, regnum, raw_buffer);
|
|
doub = unpack_double (mips_double_register_type (), raw_buffer,
|
|
&inv2);
|
|
|
|
fprintf_filtered (file, " dbl: ");
|
|
if (inv2)
|
|
fprintf_filtered (file, "<invalid double>");
|
|
else
|
|
fprintf_filtered (file, "%-24.17g", doub);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Eight byte registers: print each one as hex, float and double. */
|
|
mips_read_fp_register_single (frame, regnum, raw_buffer);
|
|
flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
|
|
|
|
mips_read_fp_register_double (frame, regnum, raw_buffer);
|
|
doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
|
|
|
|
|
|
print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
|
|
file);
|
|
|
|
fprintf_filtered (file, " flt: ");
|
|
if (inv1)
|
|
fprintf_filtered (file, "<invalid float>");
|
|
else
|
|
fprintf_filtered (file, "%-17.9g", flt1);
|
|
|
|
fprintf_filtered (file, " dbl: ");
|
|
if (inv2)
|
|
fprintf_filtered (file, "<invalid double>");
|
|
else
|
|
fprintf_filtered (file, "%-24.17g", doub);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_print_register (struct ui_file *file, struct frame_info *frame,
|
|
int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
gdb_byte raw_buffer[MAX_REGISTER_SIZE];
|
|
int offset;
|
|
|
|
if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
|
|
{
|
|
mips_print_fp_register (file, frame, regnum);
|
|
return;
|
|
}
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
{
|
|
fprintf_filtered (file, "%s: [Invalid]",
|
|
gdbarch_register_name (gdbarch, regnum));
|
|
return;
|
|
}
|
|
|
|
fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
|
|
|
|
/* The problem with printing numeric register names (r26, etc.) is that
|
|
the user can't use them on input. Probably the best solution is to
|
|
fix it so that either the numeric or the funky (a2, etc.) names
|
|
are accepted on input. */
|
|
if (regnum < MIPS_NUMREGS)
|
|
fprintf_filtered (file, "(r%d): ", regnum);
|
|
else
|
|
fprintf_filtered (file, ": ");
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset =
|
|
register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
|
|
else
|
|
offset = 0;
|
|
|
|
print_scalar_formatted (raw_buffer + offset,
|
|
register_type (gdbarch, regnum), 'x', 0,
|
|
file);
|
|
}
|
|
|
|
/* Replacement for generic do_registers_info.
|
|
Print regs in pretty columns. */
|
|
|
|
static int
|
|
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
|
|
int regnum)
|
|
{
|
|
fprintf_filtered (file, " ");
|
|
mips_print_fp_register (file, frame, regnum);
|
|
fprintf_filtered (file, "\n");
|
|
return regnum + 1;
|
|
}
|
|
|
|
|
|
/* Print a row's worth of GP (int) registers, with name labels above */
|
|
|
|
static int
|
|
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
|
|
int start_regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
/* do values for GP (int) regs */
|
|
gdb_byte raw_buffer[MAX_REGISTER_SIZE];
|
|
int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
|
|
int col, byte;
|
|
int regnum;
|
|
|
|
/* For GP registers, we print a separate row of names above the vals */
|
|
for (col = 0, regnum = start_regnum;
|
|
col < ncols && regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
|
regnum++)
|
|
{
|
|
if (*gdbarch_register_name (gdbarch, regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
break; /* end the row: reached FP register */
|
|
/* Large registers are handled separately. */
|
|
if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
|
|
{
|
|
if (col > 0)
|
|
break; /* End the row before this register. */
|
|
|
|
/* Print this register on a row by itself. */
|
|
mips_print_register (file, frame, regnum);
|
|
fprintf_filtered (file, "\n");
|
|
return regnum + 1;
|
|
}
|
|
if (col == 0)
|
|
fprintf_filtered (file, " ");
|
|
fprintf_filtered (file,
|
|
mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
|
|
gdbarch_register_name (gdbarch, regnum));
|
|
col++;
|
|
}
|
|
|
|
if (col == 0)
|
|
return regnum;
|
|
|
|
/* print the R0 to R31 names */
|
|
if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
|
|
fprintf_filtered (file, "\n R%-4d",
|
|
start_regnum % gdbarch_num_regs (gdbarch));
|
|
else
|
|
fprintf_filtered (file, "\n ");
|
|
|
|
/* now print the values in hex, 4 or 8 to the row */
|
|
for (col = 0, regnum = start_regnum;
|
|
col < ncols && regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
|
regnum++)
|
|
{
|
|
if (*gdbarch_register_name (gdbarch, regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
break; /* end row: reached FP register */
|
|
if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
|
|
break; /* End row: large register. */
|
|
|
|
/* OK: get the data in raw format. */
|
|
if (!frame_register_read (frame, regnum, raw_buffer))
|
|
error (_("can't read register %d (%s)"),
|
|
regnum, gdbarch_register_name (gdbarch, regnum));
|
|
/* pad small registers */
|
|
for (byte = 0;
|
|
byte < (mips_abi_regsize (gdbarch)
|
|
- register_size (gdbarch, regnum)); byte++)
|
|
printf_filtered (" ");
|
|
/* Now print the register value in hex, endian order. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
for (byte =
|
|
register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
|
|
byte < register_size (gdbarch, regnum); byte++)
|
|
fprintf_filtered (file, "%02x", raw_buffer[byte]);
|
|
else
|
|
for (byte = register_size (gdbarch, regnum) - 1;
|
|
byte >= 0; byte--)
|
|
fprintf_filtered (file, "%02x", raw_buffer[byte]);
|
|
fprintf_filtered (file, " ");
|
|
col++;
|
|
}
|
|
if (col > 0) /* ie. if we actually printed anything... */
|
|
fprintf_filtered (file, "\n");
|
|
|
|
return regnum;
|
|
}
|
|
|
|
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
|
|
|
|
static void
|
|
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int all)
|
|
{
|
|
if (regnum != -1) /* do one specified register */
|
|
{
|
|
gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
|
|
if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
|
|
error (_("Not a valid register for the current processor type"));
|
|
|
|
mips_print_register (file, frame, regnum);
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
else
|
|
/* do all (or most) registers */
|
|
{
|
|
regnum = gdbarch_num_regs (gdbarch);
|
|
while (regnum < gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
{
|
|
if (TYPE_CODE (register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
{
|
|
if (all) /* true for "INFO ALL-REGISTERS" command */
|
|
regnum = print_fp_register_row (file, frame, regnum);
|
|
else
|
|
regnum += MIPS_NUMREGS; /* skip floating point regs */
|
|
}
|
|
else
|
|
regnum = print_gp_register_row (file, frame, regnum);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Is this a branch with a delay slot? */
|
|
|
|
static int
|
|
is_delayed (unsigned long insn)
|
|
{
|
|
int i;
|
|
for (i = 0; i < NUMOPCODES; ++i)
|
|
if (mips_opcodes[i].pinfo != INSN_MACRO
|
|
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
|
|
break;
|
|
return (i < NUMOPCODES
|
|
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_LIKELY)));
|
|
}
|
|
|
|
int
|
|
mips_single_step_through_delay (struct gdbarch *gdbarch,
|
|
struct frame_info *frame)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (frame);
|
|
gdb_byte buf[MIPS_INSN32_SIZE];
|
|
|
|
/* There is no branch delay slot on MIPS16. */
|
|
if (mips_pc_is_mips16 (pc))
|
|
return 0;
|
|
|
|
if (!breakpoint_here_p (pc + 4))
|
|
return 0;
|
|
|
|
if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
|
|
/* If error reading memory, guess that it is not a delayed
|
|
branch. */
|
|
return 0;
|
|
return is_delayed (extract_unsigned_integer (buf, sizeof buf));
|
|
}
|
|
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
|
if the code at PC does not look like a function prologue; otherwise
|
|
returns an address that (if we're lucky) follows the prologue. If
|
|
LENIENT, then we must skip everything which is involved in setting
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
|
anything which might clobber the registers which are being saved.
|
|
We must skip more in the case where part of the prologue is in the
|
|
delay slot of a non-prologue instruction). */
|
|
|
|
static CORE_ADDR
|
|
mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR limit_pc;
|
|
CORE_ADDR func_addr;
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
|
{
|
|
CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
}
|
|
|
|
/* Can't determine prologue from the symbol table, need to examine
|
|
instructions. */
|
|
|
|
/* Find an upper limit on the function prologue using the debug
|
|
information. If the debug information could not be used to provide
|
|
that bound, then use an arbitrary large number as the upper bound. */
|
|
limit_pc = skip_prologue_using_sal (pc);
|
|
if (limit_pc == 0)
|
|
limit_pc = pc + 100; /* Magic. */
|
|
|
|
if (mips_pc_is_mips16 (pc))
|
|
return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
|
|
else
|
|
return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
|
|
}
|
|
|
|
/* Check whether the PC is in a function epilogue (32-bit version).
|
|
This is a helper function for mips_in_function_epilogue_p. */
|
|
static int
|
|
mips32_in_function_epilogue_p (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
/* The MIPS epilogue is max. 12 bytes long. */
|
|
CORE_ADDR addr = func_end - 12;
|
|
|
|
if (addr < func_addr + 4)
|
|
addr = func_addr + 4;
|
|
if (pc < addr)
|
|
return 0;
|
|
|
|
for (; pc < func_end; pc += MIPS_INSN32_SIZE)
|
|
{
|
|
unsigned long high_word;
|
|
unsigned long inst;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
high_word = (inst >> 16) & 0xffff;
|
|
|
|
if (high_word != 0x27bd /* addiu $sp,$sp,offset */
|
|
&& high_word != 0x67bd /* daddiu $sp,$sp,offset */
|
|
&& inst != 0x03e00008 /* jr $ra */
|
|
&& inst != 0x00000000) /* nop */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether the PC is in a function epilogue (16-bit version).
|
|
This is a helper function for mips_in_function_epilogue_p. */
|
|
static int
|
|
mips16_in_function_epilogue_p (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
/* The MIPS epilogue is max. 12 bytes long. */
|
|
CORE_ADDR addr = func_end - 12;
|
|
|
|
if (addr < func_addr + 4)
|
|
addr = func_addr + 4;
|
|
if (pc < addr)
|
|
return 0;
|
|
|
|
for (; pc < func_end; pc += MIPS_INSN16_SIZE)
|
|
{
|
|
unsigned short inst;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
|
|
if ((inst & 0xf800) == 0xf000) /* extend */
|
|
continue;
|
|
|
|
if (inst != 0x6300 /* addiu $sp,offset */
|
|
&& inst != 0xfb00 /* daddiu $sp,$sp,offset */
|
|
&& inst != 0xe820 /* jr $ra */
|
|
&& inst != 0xe8a0 /* jrc $ra */
|
|
&& inst != 0x6500) /* nop */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The epilogue is defined here as the area at the end of a function,
|
|
after an instruction which destroys the function's stack frame. */
|
|
static int
|
|
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
if (mips_pc_is_mips16 (pc))
|
|
return mips16_in_function_epilogue_p (pc);
|
|
else
|
|
return mips32_in_function_epilogue_p (pc);
|
|
}
|
|
|
|
/* Root of all "set mips "/"show mips " commands. This will eventually be
|
|
used for all MIPS-specific commands. */
|
|
|
|
static void
|
|
show_mips_command (char *args, int from_tty)
|
|
{
|
|
help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
set_mips_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered
|
|
("\"set mips\" must be followed by an appropriate subcommand.\n");
|
|
help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
/* Commands to show/set the MIPS FPU type. */
|
|
|
|
static void
|
|
show_mipsfpu_command (char *args, int from_tty)
|
|
{
|
|
char *fpu;
|
|
|
|
if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
|
|
{
|
|
printf_unfiltered
|
|
("The MIPS floating-point coprocessor is unknown "
|
|
"because the current architecture is not MIPS.\n");
|
|
return;
|
|
}
|
|
|
|
switch (MIPS_FPU_TYPE (current_gdbarch))
|
|
{
|
|
case MIPS_FPU_SINGLE:
|
|
fpu = "single-precision";
|
|
break;
|
|
case MIPS_FPU_DOUBLE:
|
|
fpu = "double-precision";
|
|
break;
|
|
case MIPS_FPU_NONE:
|
|
fpu = "absent (none)";
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
if (mips_fpu_type_auto)
|
|
printf_unfiltered
|
|
("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
|
|
fpu);
|
|
else
|
|
printf_unfiltered
|
|
("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
|
|
}
|
|
|
|
|
|
static void
|
|
set_mipsfpu_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered
|
|
("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
|
|
show_mipsfpu_command (args, from_tty);
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_single_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_SINGLE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_double_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_none_command (char *args, int from_tty)
|
|
{
|
|
struct gdbarch_info info;
|
|
gdbarch_info_init (&info);
|
|
mips_fpu_type = MIPS_FPU_NONE;
|
|
mips_fpu_type_auto = 0;
|
|
/* FIXME: cagney/2003-11-15: Should be setting a field in "info"
|
|
instead of relying on globals. Doing that would let generic code
|
|
handle the search for this specific architecture. */
|
|
if (!gdbarch_update_p (info))
|
|
internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
|
|
}
|
|
|
|
static void
|
|
set_mipsfpu_auto_command (char *args, int from_tty)
|
|
{
|
|
mips_fpu_type_auto = 1;
|
|
}
|
|
|
|
/* Attempt to identify the particular processor model by reading the
|
|
processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
|
|
the relevant processor still exists (it dates back to '94) and
|
|
secondly this is not the way to do this. The processor type should
|
|
be set by forcing an architecture change. */
|
|
|
|
void
|
|
deprecated_mips_set_processor_regs_hack (void)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
ULONGEST prid;
|
|
|
|
regcache_cooked_read_unsigned (get_current_regcache (),
|
|
MIPS_PRID_REGNUM, &prid);
|
|
if ((prid & ~0xf) == 0x700)
|
|
tdep->mips_processor_reg_names = mips_r3041_reg_names;
|
|
}
|
|
|
|
/* Just like reinit_frame_cache, but with the right arguments to be
|
|
callable as an sfunc. */
|
|
|
|
static void
|
|
reinit_frame_cache_sfunc (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
static int
|
|
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
/* FIXME: cagney/2003-06-26: Is this even necessary? The
|
|
disassembler needs to be able to locally determine the ISA, and
|
|
not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
|
|
work. */
|
|
if (mips_pc_is_mips16 (memaddr))
|
|
info->mach = bfd_mach_mips16;
|
|
|
|
/* Round down the instruction address to the appropriate boundary. */
|
|
memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
|
|
|
|
/* Set the disassembler options. */
|
|
if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
|
|
{
|
|
/* Set up the disassembler info, so that we get the right
|
|
register names from libopcodes. */
|
|
if (tdep->mips_abi == MIPS_ABI_N32)
|
|
info->disassembler_options = "gpr-names=n32";
|
|
else
|
|
info->disassembler_options = "gpr-names=64";
|
|
info->flavour = bfd_target_elf_flavour;
|
|
}
|
|
else
|
|
/* This string is not recognized explicitly by the disassembler,
|
|
but it tells the disassembler to not try to guess the ABI from
|
|
the bfd elf headers, such that, if the user overrides the ABI
|
|
of a program linked as NewABI, the disassembly will follow the
|
|
register naming conventions specified by the user. */
|
|
info->disassembler_options = "gpr-names=32";
|
|
|
|
/* Call the appropriate disassembler based on the target endian-ness. */
|
|
if (info->endian == BFD_ENDIAN_BIG)
|
|
return print_insn_big_mips (memaddr, info);
|
|
else
|
|
return print_insn_little_mips (memaddr, info);
|
|
}
|
|
|
|
/* This function implements gdbarch_breakpoint_from_pc. It uses the program
|
|
counter value to determine whether a 16- or 32-bit breakpoint should be used.
|
|
It returns a pointer to a string of bytes that encode a breakpoint
|
|
instruction, stores the length of the string to *lenptr, and adjusts pc (if
|
|
necessary) to point to the actual memory location where the breakpoint
|
|
should be inserted. */
|
|
|
|
static const gdb_byte *
|
|
mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
if (mips_pc_is_mips16 (*pcptr))
|
|
{
|
|
static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
|
|
*pcptr = unmake_mips16_addr (*pcptr);
|
|
*lenptr = sizeof (mips16_big_breakpoint);
|
|
return mips16_big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
/* The IDT board uses an unusual breakpoint value, and
|
|
sometimes gets confused when it sees the usual MIPS
|
|
breakpoint instruction. */
|
|
static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
|
|
static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
|
|
static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
|
|
|
|
*lenptr = sizeof (big_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_big_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_big_breakpoint;
|
|
else
|
|
return big_breakpoint;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (mips_pc_is_mips16 (*pcptr))
|
|
{
|
|
static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
|
|
*pcptr = unmake_mips16_addr (*pcptr);
|
|
*lenptr = sizeof (mips16_little_breakpoint);
|
|
return mips16_little_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
|
|
static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
|
|
static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
|
|
|
|
*lenptr = sizeof (little_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_little_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_little_breakpoint;
|
|
else
|
|
return little_breakpoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If PC is in a mips16 call or return stub, return the address of the target
|
|
PC, which is either the callee or the caller. There are several
|
|
cases which must be handled:
|
|
|
|
* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra).
|
|
* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2.
|
|
* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18.
|
|
|
|
See the source code for the stubs in gcc/config/mips/mips16.S for
|
|
gory details. */
|
|
|
|
static CORE_ADDR
|
|
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
char *name;
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address and name of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra). */
|
|
if (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0)
|
|
return get_frame_register_signed (frame, MIPS_RA_REGNUM);
|
|
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
|
|
{
|
|
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2. */
|
|
if (name[19] >= '0' && name[19] <= '9')
|
|
return get_frame_register_signed (frame, 2);
|
|
|
|
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18. */
|
|
else if (name[19] == 's' || name[19] == 'd')
|
|
{
|
|
if (pc == start_addr)
|
|
{
|
|
/* Check if the target of the stub is a compiler-generated
|
|
stub. Such a stub for a function bar might have a name
|
|
like __fn_stub_bar, and might look like this:
|
|
mfc1 $4,$f13
|
|
mfc1 $5,$f12
|
|
mfc1 $6,$f15
|
|
mfc1 $7,$f14
|
|
la $1,bar (becomes a lui/addiu pair)
|
|
jr $1
|
|
So scan down to the lui/addi and extract the target
|
|
address from those two instructions. */
|
|
|
|
CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
|
|
ULONGEST inst;
|
|
int i;
|
|
|
|
/* See if the name of the target function is __fn_stub_*. */
|
|
if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
|
|
0)
|
|
return target_pc;
|
|
if (strncmp (name, "__fn_stub_", 10) != 0
|
|
&& strcmp (name, "etext") != 0
|
|
&& strcmp (name, "_etext") != 0)
|
|
return target_pc;
|
|
|
|
/* Scan through this _fn_stub_ code for the lui/addiu pair.
|
|
The limit on the search is arbitrarily set to 20
|
|
instructions. FIXME. */
|
|
for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
|
|
{
|
|
inst = mips_fetch_instruction (target_pc);
|
|
if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
|
|
pc = (inst << 16) & 0xffff0000; /* high word */
|
|
else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
|
|
return pc | (inst & 0xffff); /* low word */
|
|
}
|
|
|
|
/* Couldn't find the lui/addui pair, so return stub address. */
|
|
return target_pc;
|
|
}
|
|
else
|
|
/* This is the 'return' part of a call stub. The return
|
|
address is in $r18. */
|
|
return get_frame_register_signed (frame, 18);
|
|
}
|
|
}
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
/* Convert a dbx stab register number (from `r' declaration) to a GDB
|
|
[1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
|
|
|
|
static int
|
|
mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
|
{
|
|
int regnum;
|
|
if (num >= 0 && num < 32)
|
|
regnum = num;
|
|
else if (num >= 38 && num < 70)
|
|
regnum = num + mips_regnum (gdbarch)->fp0 - 38;
|
|
else if (num == 70)
|
|
regnum = mips_regnum (gdbarch)->hi;
|
|
else if (num == 71)
|
|
regnum = mips_regnum (gdbarch)->lo;
|
|
else
|
|
/* This will hopefully (eventually) provoke a warning. Should
|
|
we be calling complaint() here? */
|
|
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
|
return gdbarch_num_regs (gdbarch) + regnum;
|
|
}
|
|
|
|
|
|
/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
|
|
gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
|
|
|
|
static int
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
|
{
|
|
int regnum;
|
|
if (num >= 0 && num < 32)
|
|
regnum = num;
|
|
else if (num >= 32 && num < 64)
|
|
regnum = num + mips_regnum (gdbarch)->fp0 - 32;
|
|
else if (num == 64)
|
|
regnum = mips_regnum (gdbarch)->hi;
|
|
else if (num == 65)
|
|
regnum = mips_regnum (gdbarch)->lo;
|
|
else
|
|
/* This will hopefully (eventually) provoke a warning. Should we
|
|
be calling complaint() here? */
|
|
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
|
return gdbarch_num_regs (gdbarch) + regnum;
|
|
}
|
|
|
|
static int
|
|
mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
/* Only makes sense to supply raw registers. */
|
|
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
|
|
/* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
|
|
decide if it is valid. Should instead define a standard sim/gdb
|
|
register numbering scheme. */
|
|
if (gdbarch_register_name (gdbarch,
|
|
gdbarch_num_regs (gdbarch) + regnum) != NULL
|
|
&& gdbarch_register_name (gdbarch,
|
|
gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
|
|
return regnum;
|
|
else
|
|
return LEGACY_SIM_REGNO_IGNORE;
|
|
}
|
|
|
|
|
|
/* Convert an integer into an address. Extracting the value signed
|
|
guarantees a correctly sign extended address. */
|
|
|
|
static CORE_ADDR
|
|
mips_integer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
/* Dummy virtual frame pointer method. This is no more or less accurate
|
|
than most other architectures; we just need to be explicit about it,
|
|
because the pseudo-register gdbarch_sp_regnum will otherwise lead to
|
|
an assertion failure. */
|
|
|
|
static void
|
|
mips_virtual_frame_pointer (struct gdbarch *gdbarch,
|
|
CORE_ADDR pc, int *reg, LONGEST *offset)
|
|
{
|
|
*reg = MIPS_SP_REGNUM;
|
|
*offset = 0;
|
|
}
|
|
|
|
static void
|
|
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
|
|
{
|
|
enum mips_abi *abip = (enum mips_abi *) obj;
|
|
const char *name = bfd_get_section_name (abfd, sect);
|
|
|
|
if (*abip != MIPS_ABI_UNKNOWN)
|
|
return;
|
|
|
|
if (strncmp (name, ".mdebug.", 8) != 0)
|
|
return;
|
|
|
|
if (strcmp (name, ".mdebug.abi32") == 0)
|
|
*abip = MIPS_ABI_O32;
|
|
else if (strcmp (name, ".mdebug.abiN32") == 0)
|
|
*abip = MIPS_ABI_N32;
|
|
else if (strcmp (name, ".mdebug.abi64") == 0)
|
|
*abip = MIPS_ABI_N64;
|
|
else if (strcmp (name, ".mdebug.abiO64") == 0)
|
|
*abip = MIPS_ABI_O64;
|
|
else if (strcmp (name, ".mdebug.eabi32") == 0)
|
|
*abip = MIPS_ABI_EABI32;
|
|
else if (strcmp (name, ".mdebug.eabi64") == 0)
|
|
*abip = MIPS_ABI_EABI64;
|
|
else
|
|
warning (_("unsupported ABI %s."), name + 8);
|
|
}
|
|
|
|
static void
|
|
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
|
|
{
|
|
int *lbp = (int *) obj;
|
|
const char *name = bfd_get_section_name (abfd, sect);
|
|
|
|
if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
|
|
*lbp = 32;
|
|
else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
|
|
*lbp = 64;
|
|
else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
|
|
warning (_("unrecognized .gcc_compiled_longXX"));
|
|
}
|
|
|
|
static enum mips_abi
|
|
global_mips_abi (void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; mips_abi_strings[i] != NULL; i++)
|
|
if (mips_abi_strings[i] == mips_abi_string)
|
|
return (enum mips_abi) i;
|
|
|
|
internal_error (__FILE__, __LINE__, _("unknown ABI string"));
|
|
}
|
|
|
|
static void
|
|
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
|
|
{
|
|
/* If the size matches the set of 32-bit or 64-bit integer registers,
|
|
assume that's what we've got. */
|
|
register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
|
|
register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
|
|
|
|
/* If the size matches the full set of registers GDB traditionally
|
|
knows about, including floating point, for either 32-bit or
|
|
64-bit, assume that's what we've got. */
|
|
register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
|
|
register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
|
|
|
|
/* Otherwise we don't have a useful guess. */
|
|
}
|
|
|
|
static struct value *
|
|
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
|
|
{
|
|
const int *reg_p = baton;
|
|
return value_of_register (*reg_p, frame);
|
|
}
|
|
|
|
static struct gdbarch *
|
|
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
enum mips_abi mips_abi, found_abi, wanted_abi;
|
|
int i, num_regs;
|
|
enum mips_fpu_type fpu_type;
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
|
int elf_fpu_type = 0;
|
|
|
|
/* Check any target description for validity. */
|
|
if (tdesc_has_registers (info.target_desc))
|
|
{
|
|
static const char *const mips_gprs[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
|
|
};
|
|
static const char *const mips_fprs[] = {
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
};
|
|
|
|
const struct tdesc_feature *feature;
|
|
int valid_p;
|
|
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.mips.cpu");
|
|
if (feature == NULL)
|
|
return NULL;
|
|
|
|
tdesc_data = tdesc_data_alloc ();
|
|
|
|
valid_p = 1;
|
|
for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
|
mips_gprs[i]);
|
|
|
|
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_LO_REGNUM, "lo");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_HI_REGNUM, "hi");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_PC_REGNUM, "pc");
|
|
|
|
if (!valid_p)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.mips.cp0");
|
|
if (feature == NULL)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
valid_p = 1;
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_BADVADDR_REGNUM,
|
|
"badvaddr");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_PS_REGNUM, "status");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_CAUSE_REGNUM, "cause");
|
|
|
|
if (!valid_p)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
/* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
|
|
backend is not prepared for that, though. */
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.mips.fpu");
|
|
if (feature == NULL)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
valid_p = 1;
|
|
for (i = 0; i < 32; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
i + MIPS_EMBED_FP0_REGNUM,
|
|
mips_fprs[i]);
|
|
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
MIPS_EMBED_FP0_REGNUM + 33, "fir");
|
|
|
|
if (!valid_p)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
/* It would be nice to detect an attempt to use a 64-bit ABI
|
|
when only 32-bit registers are provided. */
|
|
}
|
|
|
|
/* First of all, extract the elf_flags, if available. */
|
|
if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
|
else if (arches != NULL)
|
|
elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
|
|
else
|
|
elf_flags = 0;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
|
|
|
|
/* Check ELF_FLAGS to see if it specifies the ABI being used. */
|
|
switch ((elf_flags & EF_MIPS_ABI))
|
|
{
|
|
case E_MIPS_ABI_O32:
|
|
found_abi = MIPS_ABI_O32;
|
|
break;
|
|
case E_MIPS_ABI_O64:
|
|
found_abi = MIPS_ABI_O64;
|
|
break;
|
|
case E_MIPS_ABI_EABI32:
|
|
found_abi = MIPS_ABI_EABI32;
|
|
break;
|
|
case E_MIPS_ABI_EABI64:
|
|
found_abi = MIPS_ABI_EABI64;
|
|
break;
|
|
default:
|
|
if ((elf_flags & EF_MIPS_ABI2))
|
|
found_abi = MIPS_ABI_N32;
|
|
else
|
|
found_abi = MIPS_ABI_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
/* GCC creates a pseudo-section whose name describes the ABI. */
|
|
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
|
|
bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
|
|
|
|
/* If we have no useful BFD information, use the ABI from the last
|
|
MIPS architecture (if there is one). */
|
|
if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
|
|
found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
|
|
|
|
/* Try the architecture for any hint of the correct ABI. */
|
|
if (found_abi == MIPS_ABI_UNKNOWN
|
|
&& info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mips)
|
|
{
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_mips3900:
|
|
found_abi = MIPS_ABI_EABI32;
|
|
break;
|
|
case bfd_mach_mips4100:
|
|
case bfd_mach_mips5000:
|
|
found_abi = MIPS_ABI_EABI64;
|
|
break;
|
|
case bfd_mach_mips8000:
|
|
case bfd_mach_mips10000:
|
|
/* On Irix, ELF64 executables use the N64 ABI. The
|
|
pseudo-sections which describe the ABI aren't present
|
|
on IRIX. (Even for executables created by gcc.) */
|
|
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
|
|
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
|
found_abi = MIPS_ABI_N64;
|
|
else
|
|
found_abi = MIPS_ABI_N32;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Default 64-bit objects to N64 instead of O32. */
|
|
if (found_abi == MIPS_ABI_UNKNOWN
|
|
&& info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
|
|
&& elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
|
found_abi = MIPS_ABI_N64;
|
|
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
|
|
found_abi);
|
|
|
|
/* What has the user specified from the command line? */
|
|
wanted_abi = global_mips_abi ();
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
|
|
wanted_abi);
|
|
|
|
/* Now that we have found what the ABI for this binary would be,
|
|
check whether the user is overriding it. */
|
|
if (wanted_abi != MIPS_ABI_UNKNOWN)
|
|
mips_abi = wanted_abi;
|
|
else if (found_abi != MIPS_ABI_UNKNOWN)
|
|
mips_abi = found_abi;
|
|
else
|
|
mips_abi = MIPS_ABI_O32;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
|
|
mips_abi);
|
|
|
|
/* Also used when doing an architecture lookup. */
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
|
|
mips64_transfers_32bit_regs_p);
|
|
|
|
/* Determine the MIPS FPU type. */
|
|
#ifdef HAVE_ELF
|
|
if (info.abfd
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
|
Tag_GNU_MIPS_ABI_FP);
|
|
#endif /* HAVE_ELF */
|
|
|
|
if (!mips_fpu_type_auto)
|
|
fpu_type = mips_fpu_type;
|
|
else if (elf_fpu_type != 0)
|
|
{
|
|
switch (elf_fpu_type)
|
|
{
|
|
case 1:
|
|
fpu_type = MIPS_FPU_DOUBLE;
|
|
break;
|
|
case 2:
|
|
fpu_type = MIPS_FPU_SINGLE;
|
|
break;
|
|
case 3:
|
|
default:
|
|
/* Soft float or unknown. */
|
|
fpu_type = MIPS_FPU_NONE;
|
|
break;
|
|
}
|
|
}
|
|
else if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mips)
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_mips3900:
|
|
case bfd_mach_mips4100:
|
|
case bfd_mach_mips4111:
|
|
case bfd_mach_mips4120:
|
|
fpu_type = MIPS_FPU_NONE;
|
|
break;
|
|
case bfd_mach_mips4650:
|
|
fpu_type = MIPS_FPU_SINGLE;
|
|
break;
|
|
default:
|
|
fpu_type = MIPS_FPU_DOUBLE;
|
|
break;
|
|
}
|
|
else if (arches != NULL)
|
|
fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
|
|
else
|
|
fpu_type = MIPS_FPU_DOUBLE;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"mips_gdbarch_init: fpu_type = %d\n", fpu_type);
|
|
|
|
/* Check for blatant incompatibilities. */
|
|
|
|
/* If we have only 32-bit registers, then we can't debug a 64-bit
|
|
ABI. */
|
|
if (info.target_desc
|
|
&& tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
|
|
&& mips_abi != MIPS_ABI_EABI32
|
|
&& mips_abi != MIPS_ABI_O32)
|
|
{
|
|
if (tdesc_data != NULL)
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
/* try to find a pre-existing architecture */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
/* MIPS needs to be pedantic about which ABI the object is
|
|
using. */
|
|
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
|
|
continue;
|
|
if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
|
|
continue;
|
|
/* Need to be pedantic about which register virtual size is
|
|
used. */
|
|
if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
|
|
!= mips64_transfers_32bit_regs_p)
|
|
continue;
|
|
/* Be pedantic about which FPU is selected. */
|
|
if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
|
|
continue;
|
|
|
|
if (tdesc_data != NULL)
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* Need a new architecture. Fill in a target specific vector. */
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->elf_flags = elf_flags;
|
|
tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
|
|
tdep->found_abi = found_abi;
|
|
tdep->mips_abi = mips_abi;
|
|
tdep->mips_fpu_type = fpu_type;
|
|
tdep->register_size_valid_p = 0;
|
|
tdep->register_size = 0;
|
|
|
|
if (info.target_desc)
|
|
{
|
|
/* Some useful properties can be inferred from the target. */
|
|
if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
|
|
{
|
|
tdep->register_size_valid_p = 1;
|
|
tdep->register_size = 4;
|
|
}
|
|
else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
|
|
{
|
|
tdep->register_size_valid_p = 1;
|
|
tdep->register_size = 8;
|
|
}
|
|
}
|
|
|
|
/* Initially set everything according to the default ABI/ISA. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
|
|
set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
|
|
|
|
set_gdbarch_elf_make_msymbol_special (gdbarch,
|
|
mips_elf_make_msymbol_special);
|
|
|
|
/* Fill in the OS dependant register numbers and names. */
|
|
{
|
|
const char **reg_names;
|
|
struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
|
|
struct mips_regnum);
|
|
if (tdesc_has_registers (info.target_desc))
|
|
{
|
|
regnum->lo = MIPS_EMBED_LO_REGNUM;
|
|
regnum->hi = MIPS_EMBED_HI_REGNUM;
|
|
regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
|
|
regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
|
|
regnum->pc = MIPS_EMBED_PC_REGNUM;
|
|
regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
|
|
regnum->fp_control_status = 70;
|
|
regnum->fp_implementation_revision = 71;
|
|
num_regs = MIPS_LAST_EMBED_REGNUM + 1;
|
|
reg_names = NULL;
|
|
}
|
|
else if (info.osabi == GDB_OSABI_IRIX)
|
|
{
|
|
regnum->fp0 = 32;
|
|
regnum->pc = 64;
|
|
regnum->cause = 65;
|
|
regnum->badvaddr = 66;
|
|
regnum->hi = 67;
|
|
regnum->lo = 68;
|
|
regnum->fp_control_status = 69;
|
|
regnum->fp_implementation_revision = 70;
|
|
num_regs = 71;
|
|
reg_names = mips_irix_reg_names;
|
|
}
|
|
else
|
|
{
|
|
regnum->lo = MIPS_EMBED_LO_REGNUM;
|
|
regnum->hi = MIPS_EMBED_HI_REGNUM;
|
|
regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
|
|
regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
|
|
regnum->pc = MIPS_EMBED_PC_REGNUM;
|
|
regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
|
|
regnum->fp_control_status = 70;
|
|
regnum->fp_implementation_revision = 71;
|
|
num_regs = 90;
|
|
if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->mach == bfd_mach_mips3900)
|
|
reg_names = mips_tx39_reg_names;
|
|
else
|
|
reg_names = mips_generic_reg_names;
|
|
}
|
|
/* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
|
|
replaced by read_pc? */
|
|
set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
|
|
set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
|
|
set_gdbarch_register_name (gdbarch, mips_register_name);
|
|
set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
|
|
tdep->mips_processor_reg_names = reg_names;
|
|
tdep->regnum = regnum;
|
|
}
|
|
|
|
switch (mips_abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_o32_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_O64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_o64_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_EABI32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_EABI64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
|
break;
|
|
case MIPS_ABI_N64:
|
|
set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
|
|
tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
|
|
tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
|
|
tdep->default_mask_address_p = 0;
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
|
|
}
|
|
|
|
/* GCC creates a pseudo-section whose name specifies the size of
|
|
longs, since -mlong32 or -mlong64 may be used independent of
|
|
other options. How those options affect pointer sizes is ABI and
|
|
architecture dependent, so use them to override the default sizes
|
|
set by the ABI. This table shows the relationship between ABI,
|
|
-mlongXX, and size of pointers:
|
|
|
|
ABI -mlongXX ptr bits
|
|
--- -------- --------
|
|
o32 32 32
|
|
o32 64 32
|
|
n32 32 32
|
|
n32 64 64
|
|
o64 32 32
|
|
o64 64 64
|
|
n64 32 32
|
|
n64 64 64
|
|
eabi32 32 32
|
|
eabi32 64 32
|
|
eabi64 32 32
|
|
eabi64 64 64
|
|
|
|
Note that for o32 and eabi32, pointers are always 32 bits
|
|
regardless of any -mlongXX option. For all others, pointers and
|
|
longs are the same, as set by -mlongXX or set by defaults.
|
|
*/
|
|
|
|
if (info.abfd != NULL)
|
|
{
|
|
int long_bit = 0;
|
|
|
|
bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
|
|
if (long_bit)
|
|
{
|
|
set_gdbarch_long_bit (gdbarch, long_bit);
|
|
switch (mips_abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
case MIPS_ABI_EABI32:
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
case MIPS_ABI_O64:
|
|
case MIPS_ABI_N64:
|
|
case MIPS_ABI_EABI64:
|
|
set_gdbarch_ptr_bit (gdbarch, long_bit);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
|
|
that could indicate -gp32 BUT gas/config/tc-mips.c contains the
|
|
comment:
|
|
|
|
``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
|
|
flag in object files because to do so would make it impossible to
|
|
link with libraries compiled without "-gp32". This is
|
|
unnecessarily restrictive.
|
|
|
|
We could solve this problem by adding "-gp32" multilibs to gcc,
|
|
but to set this flag before gcc is built with such multilibs will
|
|
break too many systems.''
|
|
|
|
But even more unhelpfully, the default linker output target for
|
|
mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
|
|
for 64-bit programs - you need to change the ABI to change this,
|
|
and not all gcc targets support that currently. Therefore using
|
|
this flag to detect 32-bit mode would do the wrong thing given
|
|
the current gcc - it would make GDB treat these 64-bit programs
|
|
as 32-bit programs by default. */
|
|
|
|
set_gdbarch_read_pc (gdbarch, mips_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, mips_write_pc);
|
|
|
|
/* Add/remove bits from an address. The MIPS needs be careful to
|
|
ensure that all 32 bit addresses are sign extended to 64 bits. */
|
|
set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
|
|
|
|
/* Unwind the frame. */
|
|
set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
|
|
set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
|
|
|
|
/* Map debug register numbers onto internal register numbers. */
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch,
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
|
|
mips_dwarf_dwarf2_ecoff_reg_to_regnum);
|
|
set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
|
|
|
|
/* MIPS version of CALL_DUMMY */
|
|
|
|
/* NOTE: cagney/2003-08-05: Eventually call dummy location will be
|
|
replaced by a command, and all targets will default to on stack
|
|
(regardless of the stack's execute status). */
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
|
|
set_gdbarch_frame_align (gdbarch, mips_frame_align);
|
|
|
|
set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
|
|
set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
|
|
set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
|
|
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
|
|
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
|
|
|
|
set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
|
|
set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
|
|
set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
|
|
|
|
set_gdbarch_register_type (gdbarch, mips_register_type);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
|
|
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
|
|
|
|
/* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
|
|
HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
|
|
need to all be folded into the target vector. Since they are
|
|
being used as guards for STOPPED_BY_WATCHPOINT, why not have
|
|
STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
|
|
is sitting on? */
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
|
|
|
set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
|
|
|
|
set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
|
|
|
|
/* Virtual tables. */
|
|
set_gdbarch_vbit_in_delta (gdbarch, 1);
|
|
|
|
mips_register_g_packet_guesses (gdbarch);
|
|
|
|
/* Hook in OS ABI-specific overrides, if they have been registered. */
|
|
info.tdep_info = (void *) tdesc_data;
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
/* Unwind the frame. */
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
|
|
frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
|
|
frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
|
frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
|
|
frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
|
|
frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
|
|
|
|
if (tdesc_data)
|
|
{
|
|
set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
|
|
tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
|
|
|
|
/* Override the normal target description methods to handle our
|
|
dual real and pseudo registers. */
|
|
set_gdbarch_register_name (gdbarch, mips_register_name);
|
|
set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
|
|
|
|
num_regs = gdbarch_num_regs (gdbarch);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
|
|
set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
|
|
}
|
|
|
|
/* Add ABI-specific aliases for the registers. */
|
|
if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
|
|
for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
|
|
user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
|
|
value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
|
|
else
|
|
for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
|
|
user_reg_add (gdbarch, mips_o32_aliases[i].name,
|
|
value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
|
|
|
|
/* Add some other standard aliases. */
|
|
for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
|
|
user_reg_add (gdbarch, mips_register_aliases[i].name,
|
|
value_of_mips_user_reg, &mips_register_aliases[i].regnum);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
static void
|
|
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
|
|
{
|
|
struct gdbarch_info info;
|
|
|
|
/* Force the architecture to update, and (if it's a MIPS architecture)
|
|
mips_gdbarch_init will take care of the rest. */
|
|
gdbarch_info_init (&info);
|
|
gdbarch_update_p (info);
|
|
}
|
|
|
|
/* Print out which MIPS ABI is in use. */
|
|
|
|
static void
|
|
show_mips_abi (struct ui_file *file,
|
|
int from_tty,
|
|
struct cmd_list_element *ignored_cmd,
|
|
const char *ignored_value)
|
|
{
|
|
if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
|
|
fprintf_filtered
|
|
(file,
|
|
"The MIPS ABI is unknown because the current architecture "
|
|
"is not MIPS.\n");
|
|
else
|
|
{
|
|
enum mips_abi global_abi = global_mips_abi ();
|
|
enum mips_abi actual_abi = mips_abi (current_gdbarch);
|
|
const char *actual_abi_str = mips_abi_strings[actual_abi];
|
|
|
|
if (global_abi == MIPS_ABI_UNKNOWN)
|
|
fprintf_filtered
|
|
(file,
|
|
"The MIPS ABI is set automatically (currently \"%s\").\n",
|
|
actual_abi_str);
|
|
else if (global_abi == actual_abi)
|
|
fprintf_filtered
|
|
(file,
|
|
"The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
|
|
actual_abi_str);
|
|
else
|
|
{
|
|
/* Probably shouldn't happen... */
|
|
fprintf_filtered
|
|
(file,
|
|
"The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
|
|
actual_abi_str, mips_abi_strings[global_abi]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
if (tdep != NULL)
|
|
{
|
|
int ef_mips_arch;
|
|
int ef_mips_32bitmode;
|
|
/* Determine the ISA. */
|
|
switch (tdep->elf_flags & EF_MIPS_ARCH)
|
|
{
|
|
case E_MIPS_ARCH_1:
|
|
ef_mips_arch = 1;
|
|
break;
|
|
case E_MIPS_ARCH_2:
|
|
ef_mips_arch = 2;
|
|
break;
|
|
case E_MIPS_ARCH_3:
|
|
ef_mips_arch = 3;
|
|
break;
|
|
case E_MIPS_ARCH_4:
|
|
ef_mips_arch = 4;
|
|
break;
|
|
default:
|
|
ef_mips_arch = 0;
|
|
break;
|
|
}
|
|
/* Determine the size of a pointer. */
|
|
ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: tdep->elf_flags = 0x%x\n",
|
|
tdep->elf_flags);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ef_mips_32bitmode = %d\n",
|
|
ef_mips_32bitmode);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: ef_mips_arch = %d\n",
|
|
ef_mips_arch);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
|
|
tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
|
|
mips_mask_address_p (tdep),
|
|
tdep->default_mask_address_p);
|
|
}
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
|
|
MIPS_DEFAULT_FPU_TYPE,
|
|
(MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
|
|
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
|
|
: MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
|
|
: "???"));
|
|
fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
|
|
MIPS_EABI (gdbarch));
|
|
fprintf_unfiltered (file,
|
|
"mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
|
|
MIPS_FPU_TYPE (gdbarch),
|
|
(MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
|
|
: MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
|
|
: MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
|
|
: "???"));
|
|
}
|
|
|
|
extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_mips_tdep (void)
|
|
{
|
|
static struct cmd_list_element *mipsfpulist = NULL;
|
|
struct cmd_list_element *c;
|
|
|
|
mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
|
|
if (MIPS_ABI_LAST + 1
|
|
!= sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
|
|
internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
|
|
|
|
gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
|
|
|
|
mips_pdr_data = register_objfile_data ();
|
|
|
|
/* Create feature sets with the appropriate properties. The values
|
|
are not important. */
|
|
mips_tdesc_gp32 = allocate_target_description ();
|
|
set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
|
|
|
|
mips_tdesc_gp64 = allocate_target_description ();
|
|
set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
|
|
|
|
/* Add root prefix command for all "set mips"/"show mips" commands */
|
|
add_prefix_cmd ("mips", no_class, set_mips_command,
|
|
_("Various MIPS specific commands."),
|
|
&setmipscmdlist, "set mips ", 0, &setlist);
|
|
|
|
add_prefix_cmd ("mips", no_class, show_mips_command,
|
|
_("Various MIPS specific commands."),
|
|
&showmipscmdlist, "show mips ", 0, &showlist);
|
|
|
|
/* Allow the user to override the ABI. */
|
|
add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
|
|
&mips_abi_string, _("\
|
|
Set the MIPS ABI used by this program."), _("\
|
|
Show the MIPS ABI used by this program."), _("\
|
|
This option can be set to one of:\n\
|
|
auto - the default ABI associated with the current binary\n\
|
|
o32\n\
|
|
o64\n\
|
|
n32\n\
|
|
n64\n\
|
|
eabi32\n\
|
|
eabi64"),
|
|
mips_abi_update,
|
|
show_mips_abi,
|
|
&setmipscmdlist, &showmipscmdlist);
|
|
|
|
/* Let the user turn off floating point and set the fence post for
|
|
heuristic_proc_start. */
|
|
|
|
add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
|
|
_("Set use of MIPS floating-point coprocessor."),
|
|
&mipsfpulist, "set mipsfpu ", 0, &setlist);
|
|
add_cmd ("single", class_support, set_mipsfpu_single_command,
|
|
_("Select single-precision MIPS floating-point coprocessor."),
|
|
&mipsfpulist);
|
|
add_cmd ("double", class_support, set_mipsfpu_double_command,
|
|
_("Select double-precision MIPS floating-point coprocessor."),
|
|
&mipsfpulist);
|
|
add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
|
|
add_cmd ("none", class_support, set_mipsfpu_none_command,
|
|
_("Select no MIPS floating-point coprocessor."), &mipsfpulist);
|
|
add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
|
|
add_cmd ("auto", class_support, set_mipsfpu_auto_command,
|
|
_("Select MIPS floating-point coprocessor automatically."),
|
|
&mipsfpulist);
|
|
add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
|
|
_("Show current use of MIPS floating-point coprocessor target."),
|
|
&showlist);
|
|
|
|
/* We really would like to have both "0" and "unlimited" work, but
|
|
command.c doesn't deal with that. So make it a var_zinteger
|
|
because the user can always use "999999" or some such for unlimited. */
|
|
add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
|
|
&heuristic_fence_post, _("\
|
|
Set the distance searched for the start of a function."), _("\
|
|
Show the distance searched for the start of a function."), _("\
|
|
If you are debugging a stripped executable, GDB needs to search through the\n\
|
|
program for the start of a function. This command sets the distance of the\n\
|
|
search. The only need to set it is when debugging a stripped executable."),
|
|
reinit_frame_cache_sfunc,
|
|
NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
|
|
&setlist, &showlist);
|
|
|
|
/* Allow the user to control whether the upper bits of 64-bit
|
|
addresses should be zeroed. */
|
|
add_setshow_auto_boolean_cmd ("mask-address", no_class,
|
|
&mask_address_var, _("\
|
|
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
|
|
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
|
|
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
|
|
allow GDB to determine the correct value."),
|
|
NULL, show_mask_address,
|
|
&setmipscmdlist, &showmipscmdlist);
|
|
|
|
/* Allow the user to control the size of 32 bit registers within the
|
|
raw remote packet. */
|
|
add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
|
|
&mips64_transfers_32bit_regs_p, _("\
|
|
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
|
|
_("\
|
|
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
|
|
_("\
|
|
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
|
|
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
|
|
64 bits for others. Use \"off\" to disable compatibility mode"),
|
|
set_mips64_transfers_32bit_regs,
|
|
NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
|
|
&setlist, &showlist);
|
|
|
|
/* Debug this files internals. */
|
|
add_setshow_zinteger_cmd ("mips", class_maintenance,
|
|
&mips_debug, _("\
|
|
Set mips debugging."), _("\
|
|
Show mips debugging."), _("\
|
|
When non-zero, mips specific debugging is enabled."),
|
|
NULL,
|
|
NULL, /* FIXME: i18n: Mips debugging is currently %s. */
|
|
&setdebuglist, &showdebuglist);
|
|
}
|