mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 21:19:54 +00:00
143 lines
5.1 KiB
C
143 lines
5.1 KiB
C
/* Parameters for execution on a Hewlett-Packard 9000/300, running bsd.
|
||
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
GDB is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GDB is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GDB; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*
|
||
* Configuration file for HP9000/300 series machine running
|
||
* University of Utah's 4.3bsd port. This is NOT for HP-UX.
|
||
* Problems to hpbsd-bugs@cs.utah.edu
|
||
*/
|
||
|
||
/* Define this if the C compiler puts an underscore at the front
|
||
of external names before giving them to the linker. */
|
||
|
||
#define NAMES_HAVE_UNDERSCORE
|
||
|
||
/* Debugger information will be in DBX format. */
|
||
|
||
#define READ_DBX_FORMAT
|
||
|
||
#define TARGET_NBPG 4096
|
||
#define TARGET_UPAGES 3
|
||
|
||
/* On the HP300, sigtramp is in the u area. Gak! User struct is not
|
||
mapped to the same virtual address in user/kernel address space
|
||
(hence STACK_END_ADDR as opposed to KERNEL_U_ADDR). This tests
|
||
for the whole u area, since we don't necessarily have hp300bsd
|
||
include files around. */
|
||
#define IN_SIGTRAMP(pc, name) \
|
||
((pc) >= STACK_END_ADDR \
|
||
&& (pc) < STACK_END_ADDR + TARGET_UPAGES * TARGET_NBPG \
|
||
)
|
||
|
||
/* Address of end of stack space. */
|
||
|
||
#define STACK_END_ADDR 0xfff00000
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BREAKPOINT {0x4e, 0x42}
|
||
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
register int regnum; \
|
||
char raw_buffer[12]; \
|
||
sp = push_word (sp, read_register (PC_REGNUM)); \
|
||
sp = push_word (sp, read_register (FP_REGNUM)); \
|
||
write_register (FP_REGNUM, sp); \
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
||
{ read_register_gen (regnum, raw_buffer); \
|
||
sp = push_bytes (sp, raw_buffer, 12); } \
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||
sp = push_word (sp, read_register (regnum)); \
|
||
sp = push_word (sp, read_register (PS_REGNUM)); \
|
||
write_register (SP_REGNUM, sp); }
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
|
||
#define POP_FRAME \
|
||
{ register FRAME frame = get_current_frame (); \
|
||
register CORE_ADDR fp; \
|
||
register int regnum; \
|
||
struct frame_saved_regs fsr; \
|
||
struct frame_info *fi; \
|
||
char raw_buffer[12]; \
|
||
fi = get_frame_info (frame); \
|
||
fp = fi->frame; \
|
||
get_frame_saved_regs (fi, &fsr); \
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
||
if (fsr.regs[regnum]) \
|
||
{ read_memory (fsr.regs[regnum], raw_buffer, 12); \
|
||
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); }\
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||
if (fsr.regs[regnum]) \
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
||
if (fsr.regs[PS_REGNUM]) \
|
||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
||
write_register (SP_REGNUM, fp + 8); \
|
||
flush_cached_frames (); \
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
|
||
read_pc ())); }
|
||
|
||
/* This sequence of words is the instructions
|
||
fmovem 0xff,-(sp)
|
||
moveml 0xfffc,-(sp)
|
||
clrw -(sp)
|
||
movew ccr,-(sp)
|
||
/..* The arguments are pushed at this point by GDB;
|
||
no code is needed in the dummy for this.
|
||
The CALL_DUMMY_START_OFFSET gives the position of
|
||
the following jsr instruction. *../
|
||
jsr @#32323232
|
||
addl #69696969,sp
|
||
trap #2
|
||
nop
|
||
Note this is 28 bytes.
|
||
We actually start executing at the jsr, since the pushing of the
|
||
registers is done by PUSH_DUMMY_FRAME. If this were real code,
|
||
the arguments for the function called by the jsr would be pushed
|
||
between the moveml and the jsr, and we could allow it to execute through.
|
||
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
|
||
and we cannot allow the moveml to push the registers again lest they be
|
||
taken for the arguments. */
|
||
|
||
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e424e71}
|
||
|
||
#define CALL_DUMMY_LENGTH 28
|
||
|
||
#define CALL_DUMMY_START_OFFSET 12
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ *(int *)((char *) dummyname + 20) = nargs * 4; \
|
||
*(int *)((char *) dummyname + 14) = fun; }
|
||
|
||
#define HAVE_68881
|
||
|
||
#include "tm-68k.h"
|