darling-gdb/gdb/gdbarch.sh
Daniel Jacobowitz 123dc83914 * Makefile.in (arm-tdep.o, eval.o, target-descriptions.o)
(xml-tdesc.o): Update.
	* xml-support.c: Add a comment.
	(gdb_xml_enums_boolean): New variable.
	(gdb_xml_parse_attr_enum): Use strcasecmp.
	* xml-support.h (gdb_xml_enums_boolean): Declare.
	* xml-tdesc.c (struct tdesc_parsing_data): Record current_feature,
	next_regnum, and current_union.
	(tdesc_start_feature, tdesc_start_reg, tdesc_start_union)
	(tdesc_end_union, tdesc_start_field, tdesc_start_vector)
	(field_attributes, union_children, reg_attributes, union_attributes)
	(vector_attributes, feature_attributes, feature_children): New.
	(target_children): Make static.  Add <feature>.
	(tdesc_elements): Make static.
	* target-descriptions.c (struct tdesc_reg, tdesc_reg_p, type_p)
	(struct tdesc_feature, tdesc_feature_p): New types.
	(struct target_desc): Add features member.
	(struct tdesc_arch_data, tdesc_data): New.
	(target_find_description): Clarify error message.  Warn about
	ignored register descriptions.
	(tdesc_has_registers, tdesc_find_feature, tdesc_feature_name)
	(tdesc_named_type, tdesc_data_init, tdesc_data_alloc)
	(tdesc_data_cleanup, tdesc_numbered_register)
	(tdesc_numbered_register_choices, tdesc_find_register)
	(tdesc_register_name, tdesc_register_type)
	(tdesc_remote_register_number, tdesc_register_reggroup_p)
	(set_tdesc_pseudo_register_name, set_tdesc_pseudo_register_type)
	(set_tdesc_pseudo_register_reggroup_p, tdesc_use_registers)
	(tdesc_free_reg, tdesc_create_reg, tdesc_free_feature)
	(tdesc_create_feature, tdesc_record_type): New.
	(free_target_description): Free features.
	(_initialize_target_descriptions): Initialize tdesc_data.
	* arch-utils.c (default_remote_register_number): New.
	* arch-utils.h (default_remote_register_number): New prototype.
	* target-descriptions.h (set_tdesc_pseudo_register_name)
	(set_tdesc_pseudo_register_type, set_tdesc_pseudo_register_reggroup_p)
	(tdesc_use_registers, tdesc_data_alloc, tdesc_data_cleanup)
	(tdesc_numbered_register, tdesc_numbered_register_choices)
	(tdesc_has_registers, tdesc_find_feature, tdesc_feature_name)
	(tdesc_named_type, tdesc_create_feature, tdesc_record_type)
	(tdesc_create_reg): Declare.
	* gdbarch.sh (remote_register_number): New entry.
	* gdbarch.c, gdbarch.h: Regenerate.
	* remote.c (init_remote_state): Use gdbarch_remote_register_number.
	* features/gdb-target.dtd: Add feature, reg, vector, union, and field.

	* arm-tdep.c (arm_register_aliases): New.
	(arm_register_name_strings): Rename to...
	(arm_register_names): ...this.  Make const.  Delete the old version.
	(current_option, arm_register_byte): Delete.
	(set_disassembly_style): Simplify.  Do not adjust arm_register_names.
	(value_of_arm_user_reg): New.
	(arm_gdbarch_init): Verify any described registers.  Call
	tdesc_use_registers.  Don't use arm_register_byte.  Create aliases
	for standard register names.
	(_initialize_arm_tdep): Do not adjust arm_register_names.
	* user-regs.c (struct user_reg): Add baton member.
	(append_user_reg, user_reg_add_builtin, user_regs_init)
	(user_reg_add, value_of_user_reg): Use a baton for user
	register functions.
	* std-regs.c: Update.
	* user-regs.h (user_reg_read_ftype, user_reg_add_builtin)
	(user_reg_add): Add baton argument.
	* NEWS: Mention target description register support.
	* features/arm-core.xml, features/arm-fpa.xml: New.
	* eval.c (evaluate_subexp_standard): Allow ptype $register
	when the program is not running.

	* gdb.texinfo (-target-disconnect): Use @smallexample.
	(Requirements): Add anchor for Expat.  Update description.
	(Target Descriptions): Mention Expat.
	(Target Description Format): Document new elements.  Use
	@smallexample.
	(Predefined Target Types, Standard Target Features): New sections.
	* doc/gdbint.texinfo (Target Descriptions): New section.

	* gdb.xml/single-reg.xml, gdb.xml/tdesc-regs.exp,
	gdb.xml/core-only.xml, gdb.xml/extra-regs.xml: New files.
2007-02-08 21:00:36 +00:00

2268 lines
73 KiB
Bash
Executable File

#!/bin/sh -u
# Architecture commands for GDB, the GNU debugger.
#
# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
# Free Software Foundation, Inc.
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301, USA.
# Make certain that the script is not running in an internationalized
# environment.
LANG=c ; export LANG
LC_ALL=c ; export LC_ALL
compare_new ()
{
file=$1
if test ! -r ${file}
then
echo "${file} missing? cp new-${file} ${file}" 1>&2
elif diff -u ${file} new-${file}
then
echo "${file} unchanged" 1>&2
else
echo "${file} has changed? cp new-${file} ${file}" 1>&2
fi
}
# Format of the input table
read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
do_read ()
{
comment=""
class=""
while read line
do
if test "${line}" = ""
then
continue
elif test "${line}" = "#" -a "${comment}" = ""
then
continue
elif expr "${line}" : "#" > /dev/null
then
comment="${comment}
${line}"
else
# The semantics of IFS varies between different SH's. Some
# treat ``::' as three fields while some treat it as just too.
# Work around this by eliminating ``::'' ....
line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
OFS="${IFS}" ; IFS="[:]"
eval read ${read} <<EOF
${line}
EOF
IFS="${OFS}"
if test -n "${garbage_at_eol}"
then
echo "Garbage at end-of-line in ${line}" 1>&2
kill $$
exit 1
fi
# .... and then going back through each field and strip out those
# that ended up with just that space character.
for r in ${read}
do
if eval test \"\${${r}}\" = \"\ \"
then
eval ${r}=""
fi
done
FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
if test "x${macro}" = "x="
then
# Provide a UCASE version of function (for when there isn't MACRO)
macro="${FUNCTION}"
elif test "${macro}" = "${FUNCTION}"
then
echo "${function}: Specify = for macro field" 1>&2
kill $$
exit 1
fi
# Check that macro definition wasn't supplied for multi-arch
case "${class}" in
[mM] )
if test "${macro}" != ""
then
echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
kill $$
exit 1
fi
esac
case "${class}" in
m ) staticdefault="${predefault}" ;;
M ) staticdefault="0" ;;
* ) test "${staticdefault}" || staticdefault=0 ;;
esac
case "${class}" in
F | V | M )
case "${invalid_p}" in
"" )
if test -n "${predefault}"
then
#invalid_p="gdbarch->${function} == ${predefault}"
predicate="gdbarch->${function} != ${predefault}"
elif class_is_variable_p
then
predicate="gdbarch->${function} != 0"
elif class_is_function_p
then
predicate="gdbarch->${function} != NULL"
fi
;;
* )
echo "Predicate function ${function} with invalid_p." 1>&2
kill $$
exit 1
;;
esac
esac
# PREDEFAULT is a valid fallback definition of MEMBER when
# multi-arch is not enabled. This ensures that the
# default value, when multi-arch is the same as the
# default value when not multi-arch. POSTDEFAULT is
# always a valid definition of MEMBER as this again
# ensures consistency.
if [ -n "${postdefault}" ]
then
fallbackdefault="${postdefault}"
elif [ -n "${predefault}" ]
then
fallbackdefault="${predefault}"
else
fallbackdefault="0"
fi
#NOT YET: See gdbarch.log for basic verification of
# database
break
fi
done
if [ -n "${class}" ]
then
true
else
false
fi
}
fallback_default_p ()
{
[ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
}
class_is_variable_p ()
{
case "${class}" in
*v* | *V* ) true ;;
* ) false ;;
esac
}
class_is_function_p ()
{
case "${class}" in
*f* | *F* | *m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_multiarch_p ()
{
case "${class}" in
*m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_predicate_p ()
{
case "${class}" in
*F* | *V* | *M* ) true ;;
* ) false ;;
esac
}
class_is_info_p ()
{
case "${class}" in
*i* ) true ;;
* ) false ;;
esac
}
# dump out/verify the doco
for field in ${read}
do
case ${field} in
class ) : ;;
# # -> line disable
# f -> function
# hiding a function
# F -> function + predicate
# hiding a function + predicate to test function validity
# v -> variable
# hiding a variable
# V -> variable + predicate
# hiding a variable + predicate to test variables validity
# i -> set from info
# hiding something from the ``struct info'' object
# m -> multi-arch function
# hiding a multi-arch function (parameterised with the architecture)
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
macro ) : ;;
# The name of the legacy C macro by which this method can be
# accessed. If empty, no macro is defined. If "=", a macro
# formed from the upper-case function name is used.
returntype ) : ;;
# For functions, the return type; for variables, the data type
function ) : ;;
# For functions, the member function name; for variables, the
# variable name. Member function names are always prefixed with
# ``gdbarch_'' for name-space purity.
formal ) : ;;
# The formal argument list. It is assumed that the formal
# argument list includes the actual name of each list element.
# A function with no arguments shall have ``void'' as the
# formal argument list.
actual ) : ;;
# The list of actual arguments. The arguments specified shall
# match the FORMAL list given above. Functions with out
# arguments leave this blank.
staticdefault ) : ;;
# To help with the GDB startup a static gdbarch object is
# created. STATICDEFAULT is the value to insert into that
# static gdbarch object. Since this a static object only
# simple expressions can be used.
# If STATICDEFAULT is empty, zero is used.
predefault ) : ;;
# An initial value to assign to MEMBER of the freshly
# malloc()ed gdbarch object. After initialization, the
# freshly malloc()ed object is passed to the target
# architecture code for further updates.
# If PREDEFAULT is empty, zero is used.
# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
# INVALID_P are specified, PREDEFAULT will be used as the
# default for the non- multi-arch target.
# A zero PREDEFAULT function will force the fallback to call
# internal_error().
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
postdefault ) : ;;
# A value to assign to MEMBER of the new gdbarch object should
# the target architecture code fail to change the PREDEFAULT
# value.
# If POSTDEFAULT is empty, no post update is performed.
# If both INVALID_P and POSTDEFAULT are non-empty then
# INVALID_P will be used to determine if MEMBER should be
# changed to POSTDEFAULT.
# If a non-empty POSTDEFAULT and a zero INVALID_P are
# specified, POSTDEFAULT will be used as the default for the
# non- multi-arch target (regardless of the value of
# PREDEFAULT).
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
# Variable declarations can refer to ``current_gdbarch'' which
# will contain the current architecture. Care should be
# taken.
invalid_p ) : ;;
# A predicate equation that validates MEMBER. Non-zero is
# returned if the code creating the new architecture failed to
# initialize MEMBER or the initialized the member is invalid.
# If POSTDEFAULT is non-empty then MEMBER will be updated to
# that value. If POSTDEFAULT is empty then internal_error()
# is called.
# If INVALID_P is empty, a check that MEMBER is no longer
# equal to PREDEFAULT is used.
# The expression ``0'' disables the INVALID_P check making
# PREDEFAULT a legitimate value.
# See also PREDEFAULT and POSTDEFAULT.
print ) : ;;
# An optional expression that convers MEMBER to a value
# suitable for formatting using %s.
# If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
# (anything else) is used.
garbage_at_eol ) : ;;
# Catches stray fields.
*)
echo "Bad field ${field}"
exit 1;;
esac
done
function_list ()
{
# See below (DOCO) for description of each field
cat <<EOF
i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
#
i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
#
i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
#
i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
# The ABI default bit-size and format for "float", "double", and "long
# double". These bit/format pairs should eventually be combined into
# a single object. For the moment, just initialize them as a pair.
# Each format describes both the big and little endian layouts (if
# useful).
v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
v:TARGET_FLOAT_FORMAT:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
v:TARGET_DOUBLE_FORMAT:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
#
# ptr_bit is the size of a pointer on the target
v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
# addr_bit is the size of a target address as represented in gdb
v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
# Number of bits in a BFD_VMA for the target object file format.
v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
#
F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
# UNWIND_SP is a direct replacement for TARGET_READ_SP.
F:TARGET_READ_SP:CORE_ADDR:read_sp:void
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
#
v:=:int:num_regs:::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:=:int:num_pseudo_regs:::0:0::0
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
# SP_REGNUM will hopefully be replaced by UNWIND_SP.
v:=:int:sp_regnum:::-1:-1::0
v:=:int:pc_regnum:::-1:-1::0
v:=:int:ps_regnum:::-1:-1::0
v:=:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
f:=:const char *:register_name:int regnr:regnr
# Return the type of a register specified by the architecture. Only
# the register cache should call this function directly; others should
# use "register_type".
M::struct type *:register_type:int reg_nr:reg_nr
# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
# register offsets computed using just REGISTER_TYPE, this can be
# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
# function with predicate has a valid (callable) initial value. As a
# consequence, even when the predicate is false, the corresponding
# function works. This simplifies the migration process - old code,
# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
# DEPRECATED_FP_REGNUM.
v:=:int:deprecated_fp_regnum:::-1:-1::0
# See gdbint.texinfo. See infcall.c.
M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
# DEPRECATED_REGISTER_SIZE can be deleted.
v:=:int:deprecated_register_size
v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
# setjmp/longjmp support.
F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
#
v:=:int:believe_pcc_promotion:::::::
#
f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
#
f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
#
# NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
# It has been suggested that this, well actually its predecessor,
# should take the type/value of the function to be called and not the
# return type. This is left as an exercise for the reader.
# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
# the predicate with default hack to avoid calling STORE_RETURN_VALUE
# (via legacy_return_value), when a small struct is involved.
M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
# The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
# DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
# RETURN_VALUE.
f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
# ABI suitable for the implementation of a robust extract
# struct-convention return-value address method (the sparc saves the
# address in the callers frame). All the other cases so far examined,
# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
# erreneous - the code was incorrectly assuming that the return-value
# address, stored in a register, was preserved across the entire
# function call.
# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
# the ABIs that are still to be analyzed - perhaps this should simply
# be deleted. The commented out extract_returned_value_address method
# is provided as a starting point for the 32-bit SPARC. It, or
# something like it, along with changes to both infcmd.c and stack.c
# will be needed for that case to work. NB: It is passed the callers
# frame since it is only after the callee has returned that this
# function is used.
#M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
#
f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
v:=:CORE_ADDR:decr_pc_after_break:::0:::0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
# The method "convert_from_func_ptr_addr" converting the former to the
# latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
# a simplified subset of that functionality - the function's address
# corresponds to the "function pointer" and the function's start
# corresponds to the "function entry point" - and hence is redundant.
v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
# Return the remote protocol register number associated with this
# register. Normally the identity mapping.
m::int:remote_register_number:int regno:regno::default_remote_register_number::0
# Fetch the target specific address used to represent a load module.
F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
v:=:CORE_ADDR:frame_args_skip:::0:::0
M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
F:=:int:frame_num_args:struct frame_info *frame:frame
#
# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
# to frame_align and the requirement that methods such as
# push_dummy_call and frame_red_zone_size maintain correct stack/frame
# alignment.
F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
M::CORE_ADDR:frame_align:CORE_ADDR address:address
# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
# stabs_argument_has_addr.
F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
v:=:int:frame_red_zone_size
#
m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts. It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
# ADDR_BITS_REMOVE.
f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
# the target needs software single step. An ISA method to implement it.
#
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
# using the breakpoint system instead of blatting memory directly (as with rs6000).
#
# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
# single step. If not, then implement single step using breakpoints.
F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
M::int:single_step_through_delay:struct frame_info *frame:frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
# evaluates non-zero, this is the address where the debugger will place
# a step-resume breakpoint to get us past the dynamic linker.
m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
# as the first action in a funtion's epilogue. in_function_epilogue_p()
# is defined to return a non-zero value if either the given addr is one
# instruction after the stack destroying instruction up to the trailing
# return instruction or if we can figure out that the stack frame has
# already been invalidated regardless of the value of addr. Targets
# which don't suffer from that problem could just let this functionality
# untouched.
m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
# Given a vector of command-line arguments, return a newly allocated
# string which, when passed to the create_inferior function, will be
# parsed (on Unix systems, by the shell) to yield the same vector.
# This function should call error() if the argument vector is not
# representable for this target or if this target does not support
# command-line arguments.
# ARGC is the number of elements in the vector.
# ARGV is an array of strings, one per argument.
m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
v:=:int:cannot_step_breakpoint:::0:0::0
v:=:int:have_nonsteppable_watchpoint:::0:0::0
F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
# Return the appropriate register set for a core file section with
# name SECT_NAME and size SECT_SIZE.
M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
# If the elements of C++ vtables are in-place function descriptors rather
# than normal function pointers (which may point to code or a descriptor),
# set this to one.
v::int:vtable_function_descriptors:::0:0::0
# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
v::int:vbit_in_delta:::0:0::0
EOF
}
#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
cat <<EOF
${class} ${returntype} ${function} ($formal)
EOF
for r in ${read}
do
eval echo \"\ \ \ \ ${r}=\${${r}}\"
done
if class_is_predicate_p && fallback_default_p
then
echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
kill $$
exit 1
fi
if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
then
echo "Error: postdefault is useless when invalid_p=0" 1>&2
kill $$
exit 1
fi
if class_is_multiarch_p
then
if class_is_predicate_p ; then :
elif test "x${predefault}" = "x"
then
echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
kill $$
exit 1
fi
fi
echo ""
done
exec 1>&2
compare_new gdbarch.log
copyright ()
{
cat <<EOF
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* This file was created with the aid of \`\`gdbarch.sh''.
The Bourne shell script \`\`gdbarch.sh'' creates the files
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
against the existing \`\`gdbarch.[hc]''. Any differences found
being reported.
If editing this file, please also run gdbarch.sh and merge any
changes into that script. Conversely, when making sweeping changes
to this file, modifying gdbarch.sh and using its output may prove
easier. */
EOF
}
#
# The .h file
#
exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H
struct floatformat;
struct ui_file;
struct frame_info;
struct value;
struct objfile;
struct minimal_symbol;
struct regcache;
struct reggroup;
struct regset;
struct disassemble_info;
struct target_ops;
struct obstack;
struct bp_target_info;
struct target_desc;
extern struct gdbarch *current_gdbarch;
EOF
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are pre-initialized by GDBARCH. */\n"
function_list | while do_read
do
if class_is_info_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
fi
fi
done
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are initialized by the target dependent code. */\n"
function_list | while do_read
do
if [ -n "${comment}" ]
then
echo "${comment}" | sed \
-e '2 s,#,/*,' \
-e '3,$ s,#, ,' \
-e '$ s,$, */,'
fi
if class_is_predicate_p
then
if test -n "${macro}"
then
printf "\n"
printf "#if defined (${macro})\n"
printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
printf "#if !defined (${macro}_P)\n"
printf "#define ${macro}_P() (1)\n"
printf "#endif\n"
printf "#endif\n"
fi
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro}_P)\n"
printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_variable_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_function_p
then
printf "\n"
if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
elif class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
else
printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
fi
if [ "x${formal}" = "xvoid" ]
then
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
else
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
if [ "x${actual}" = "x" ]
then
d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
elif [ "x${actual}" = "x-" ]
then
d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
else
d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
fi
printf "#if !defined (${macro})\n"
if [ "x${actual}" = "x" ]
then
printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
elif [ "x${actual}" = "x-" ]
then
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
else
printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
fi
printf "#endif\n"
fi
fi
done
# close it off
cat <<EOF
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independently register their need
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independent)
components it was determined that the global aproach was not
applicable. */
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
\`\`struct gdbarch'' for this architecture.
The INFO parameter is, as far as possible, be pre-initialized with
information obtained from INFO.ABFD or the global defaults.
The ARCHES parameter is a linked list (sorted most recently used)
of all the previously created architures for this architecture
family. The (possibly NULL) ARCHES->gdbarch can used to access
values from the previously selected architecture for this
architecture family. The global \`\`current_gdbarch'' shall not be
used.
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing \`\`struct
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
multi-arch and non- multi-arch cases. */
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
struct gdbarch_info
{
/* Use default: NULL (ZERO). */
const struct bfd_arch_info *bfd_arch_info;
/* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
int byte_order;
/* Use default: NULL (ZERO). */
bfd *abfd;
/* Use default: NULL (ZERO). */
struct gdbarch_tdep_info *tdep_info;
/* Use default: GDB_OSABI_UNINITIALIZED (-1). */
enum gdb_osabi osabi;
/* Use default: NULL (ZERO). */
const struct target_desc *target_desc;
};
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
/* DEPRECATED - use gdbarch_register() */
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
extern void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
/* Return a freshly allocated, NULL terminated, array of the valid
architecture names. Since architectures are registered during the
_initialize phase this function only returns useful information
once initialization has been completed. */
extern const char **gdbarch_printable_names (void);
/* Helper function. Search the list of ARCHES for a GDBARCH that
matches the information provided by INFO. */
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
basic initialization using values obtained from the INFO and TDEP
parameters. set_gdbarch_*() functions are called to complete the
initialization of the object. */
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
It is assumed that the caller freeds the \`\`struct
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
/* Helper function. Allocate memory from the \`\`struct gdbarch''
obstack. The memory is freed when the corresponding architecture
is also freed. */
extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
/* Helper function. Force an update of the current architecture.
The actual architecture selected is determined by INFO, \`\`(gdb) set
architecture'' et.al., the existing architecture and BFD's default
architecture. INFO should be initialized to zero and then selected
fields should be updated.
Returns non-zero if the update succeeds */
extern int gdbarch_update_p (struct gdbarch_info info);
/* Helper function. Find an architecture matching info.
INFO should be initialized using gdbarch_info_init, relevant fields
set, and then finished using gdbarch_info_fill.
Returns the corresponding architecture, or NULL if no matching
architecture was found. "current_gdbarch" is not updated. */
extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
/* Helper function. Set the global "current_gdbarch" to "gdbarch".
FIXME: kettenis/20031124: Of the functions that follow, only
gdbarch_from_bfd is supposed to survive. The others will
dissappear since in the future GDB will (hopefully) be truly
multi-arch. However, for now we're still stuck with the concept of
a single active architecture. */
extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static variable.
Memory for the per-architecture data shall be allocated using
gdbarch_obstack_zalloc. That memory will be deleted when the
corresponding architecture object is deleted.
When a previously created architecture is re-selected, the
per-architecture data-pointer for that previous architecture is
restored. INIT() is not re-called.
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
struct gdbarch_data;
typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer);
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
/* Register per-architecture memory region.
Provide a memory-region swap mechanism. Per-architecture memory
region are created. These memory regions are swapped whenever the
architecture is changed. For a new architecture, the memory region
is initialized with zero (0) and the INIT function is called.
Memory regions are swapped / initialized in the order that they are
registered. NULL DATA and/or INIT values can be specified.
New code should use gdbarch_data_register_*(). */
typedef void (gdbarch_swap_ftype) (void);
extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
/* Set the dynamic target-system-dependent parameters (architecture,
byte-order, ...) using information found in the BFD */
extern void set_gdbarch_from_file (bfd *);
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
/* gdbarch trace variable */
extern int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
compare_new gdbarch.h
#
# C file
#
exec > new-gdbarch.c
copyright
cat <<EOF
#include "defs.h"
#include "arch-utils.h"
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#include "symcat.h"
#include "floatformat.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdb-events.h"
#include "reggroups.h"
#include "osabi.h"
#include "gdb_obstack.h"
/* Static function declarations */
static void alloc_gdbarch_data (struct gdbarch *);
/* Non-zero if we want to trace architecture code. */
#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
int gdbarch_debug = GDBARCH_DEBUG;
static void
show_gdbarch_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
}
static const char *
pformat (const struct floatformat **format)
{
if (format == NULL)
return "(null)";
else
/* Just print out one of them - this is only for diagnostics. */
return format[0]->name;
}
EOF
# gdbarch open the gdbarch object
printf "\n"
printf "/* Maintain the struct gdbarch object */\n"
printf "\n"
printf "struct gdbarch\n"
printf "{\n"
printf " /* Has this architecture been fully initialized? */\n"
printf " int initialized_p;\n"
printf "\n"
printf " /* An obstack bound to the lifetime of the architecture. */\n"
printf " struct obstack *obstack;\n"
printf "\n"
printf " /* basic architectural information */\n"
function_list | while do_read
do
if class_is_info_p
then
printf " ${returntype} ${function};\n"
fi
done
printf "\n"
printf " /* target specific vector. */\n"
printf " struct gdbarch_tdep *tdep;\n"
printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
printf "\n"
printf " /* per-architecture data-pointers */\n"
printf " unsigned nr_data;\n"
printf " void **data;\n"
printf "\n"
printf " /* per-architecture swap-regions */\n"
printf " struct gdbarch_swap *swap;\n"
printf "\n"
cat <<EOF
/* Multi-arch values.
When extending this structure you must:
Add the field below.
Declare set/get functions and define the corresponding
macro in gdbarch.h.
gdbarch_alloc(): If zero/NULL is not a suitable default,
initialize the new field.
verify_gdbarch(): Confirm that the target updated the field
correctly.
gdbarch_dump(): Add a fprintf_unfiltered call so that the new
field is dumped out
\`\`startup_gdbarch()'': Append an initial value to the static
variable (base values on the host's c-type system).
get_gdbarch(): Implement the set/get functions (probably using
the macro's as shortcuts).
*/
EOF
function_list | while do_read
do
if class_is_variable_p
then
printf " ${returntype} ${function};\n"
elif class_is_function_p
then
printf " gdbarch_${function}_ftype *${function};\n"
fi
done
printf "};\n"
# A pre-initialized vector
printf "\n"
printf "\n"
cat <<EOF
/* The default architecture uses host values (for want of a better
choice). */
EOF
printf "\n"
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
printf "\n"
printf "struct gdbarch startup_gdbarch =\n"
printf "{\n"
printf " 1, /* Always initialized. */\n"
printf " NULL, /* The obstack. */\n"
printf " /* basic architecture information */\n"
function_list | while do_read
do
if class_is_info_p
then
printf " ${staticdefault}, /* ${function} */\n"
fi
done
cat <<EOF
/* target specific vector and its dump routine */
NULL, NULL,
/*per-architecture data-pointers and swap regions */
0, NULL, NULL,
/* Multi-arch values */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
printf " ${staticdefault}, /* ${function} */\n"
fi
done
cat <<EOF
/* startup_gdbarch() */
};
struct gdbarch *current_gdbarch = &startup_gdbarch;
EOF
# Create a new gdbarch struct
cat <<EOF
/* Create a new \`\`struct gdbarch'' based on information provided by
\`\`struct gdbarch_info''. */
EOF
printf "\n"
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
/* NOTE: The new architecture variable is named \`\`current_gdbarch''
so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
the current local architecture and not the previous global
architecture. This ensures that the new architectures initial
values are not influenced by the previous architecture. Once
everything is parameterised with gdbarch, this will go away. */
struct gdbarch *current_gdbarch;
/* Create an obstack for allocating all the per-architecture memory,
then use that to allocate the architecture vector. */
struct obstack *obstack = XMALLOC (struct obstack);
obstack_init (obstack);
current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
memset (current_gdbarch, 0, sizeof (*current_gdbarch));
current_gdbarch->obstack = obstack;
alloc_gdbarch_data (current_gdbarch);
current_gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
do
if class_is_info_p
then
printf " current_gdbarch->${function} = info->${function};\n"
fi
done
printf "\n"
printf " /* Force the explicit initialization of these. */\n"
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
then
printf " current_gdbarch->${function} = ${predefault};\n"
fi
fi
done
cat <<EOF
/* gdbarch_alloc() */
return current_gdbarch;
}
EOF
# Free a gdbarch struct.
printf "\n"
printf "\n"
cat <<EOF
/* Allocate extra space using the per-architecture obstack. */
void *
gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
{
void *data = obstack_alloc (arch->obstack, size);
memset (data, 0, size);
return data;
}
/* Free a gdbarch struct. This should never happen in normal
operation --- once you've created a gdbarch, you keep it around.
However, if an architecture's init function encounters an error
building the structure, it may need to clean up a partially
constructed gdbarch. */
void
gdbarch_free (struct gdbarch *arch)
{
struct obstack *obstack;
gdb_assert (arch != NULL);
gdb_assert (!arch->initialized_p);
obstack = arch->obstack;
obstack_free (obstack, 0); /* Includes the ARCH. */
xfree (obstack);
}
EOF
# verify a new architecture
cat <<EOF
/* Ensure that all values in a GDBARCH are reasonable. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
static void
verify_gdbarch (struct gdbarch *current_gdbarch)
{
struct ui_file *log;
struct cleanup *cleanups;
long dummy;
char *buf;
log = mem_fileopen ();
cleanups = make_cleanup_ui_file_delete (log);
/* fundamental */
if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
fprintf_unfiltered (log, "\n\tbyte-order");
if (current_gdbarch->bfd_arch_info == NULL)
fprintf_unfiltered (log, "\n\tbfd_arch_info");
/* Check those that need to be defined for the given multi-arch level. */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif class_is_predicate_p
then
printf " /* Skip verify of ${function}, has predicate */\n"
# FIXME: See do_read for potential simplification
elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
then
printf " if (${invalid_p})\n"
printf " current_gdbarch->${function} = ${postdefault};\n"
elif [ -n "${predefault}" -a -n "${postdefault}" ]
then
printf " if (current_gdbarch->${function} == ${predefault})\n"
printf " current_gdbarch->${function} = ${postdefault};\n"
elif [ -n "${postdefault}" ]
then
printf " if (current_gdbarch->${function} == 0)\n"
printf " current_gdbarch->${function} = ${postdefault};\n"
elif [ -n "${invalid_p}" ]
then
printf " if (${invalid_p})\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
elif [ -n "${predefault}" ]
then
printf " if (current_gdbarch->${function} == ${predefault})\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
fi
fi
done
cat <<EOF
buf = ui_file_xstrdup (log, &dummy);
make_cleanup (xfree, buf);
if (strlen (buf) > 0)
internal_error (__FILE__, __LINE__,
_("verify_gdbarch: the following are invalid ...%s"),
buf);
do_cleanups (cleanups);
}
EOF
# dump the structure
printf "\n"
printf "\n"
cat <<EOF
/* Print out the details of the current architecture. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
void
gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
{
const char *gdb_xm_file = "<not-defined>";
const char *gdb_nm_file = "<not-defined>";
const char *gdb_tm_file = "<not-defined>";
#if defined (GDB_XM_FILE)
gdb_xm_file = GDB_XM_FILE;
#endif
fprintf_unfiltered (file,
"gdbarch_dump: GDB_XM_FILE = %s\\n",
gdb_xm_file);
#if defined (GDB_NM_FILE)
gdb_nm_file = GDB_NM_FILE;
#endif
fprintf_unfiltered (file,
"gdbarch_dump: GDB_NM_FILE = %s\\n",
gdb_nm_file);
#if defined (GDB_TM_FILE)
gdb_tm_file = GDB_TM_FILE;
#endif
fprintf_unfiltered (file,
"gdbarch_dump: GDB_TM_FILE = %s\\n",
gdb_tm_file);
EOF
function_list | sort -t: -k 4 | while do_read
do
# First the predicate
if class_is_predicate_p
then
if test -n "${macro}"
then
printf "#ifdef ${macro}_P\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}_P()\",\n"
printf " XSTRING (${macro}_P ()));\n"
printf "#endif\n"
fi
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
printf " gdbarch_${function}_p (current_gdbarch));\n"
fi
# Print the macro definition.
if test -n "${macro}"
then
printf "#ifdef ${macro}\n"
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}(${actual})\",\n"
printf " XSTRING (${macro} (${actual})));\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
printf " XSTRING (${macro}));\n"
fi
printf "#endif\n"
fi
# Print the corresponding value.
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
printf " (long) current_gdbarch->${function});\n"
else
# It is a variable
case "${print}:${returntype}" in
:CORE_ADDR )
fmt="0x%s"
print="paddr_nz (current_gdbarch->${function})"
;;
:* )
fmt="%s"
print="paddr_d (current_gdbarch->${function})"
;;
* )
fmt="%s"
;;
esac
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
fi
done
cat <<EOF
if (current_gdbarch->dump_tdep != NULL)
current_gdbarch->dump_tdep (current_gdbarch, file);
}
EOF
# GET/SET
printf "\n"
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
return gdbarch->tdep;
}
EOF
printf "\n"
function_list | while do_read
do
if class_is_predicate_p
then
printf "\n"
printf "int\n"
printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
printf " return ${predicate};\n"
printf "}\n"
fi
if class_is_function_p
then
printf "\n"
printf "${returntype}\n"
if [ "x${formal}" = "xvoid" ]
then
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
else
printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
fi
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
printf " gdb_assert (gdbarch->${function} != NULL);\n"
if class_is_predicate_p && test -n "${predefault}"
then
# Allow a call to a function with a predicate.
printf " /* Do not check predicate: ${predicate}, allow call. */\n"
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
then
if class_is_multiarch_p
then
params="gdbarch"
else
params=""
fi
else
if class_is_multiarch_p
then
params="gdbarch, ${actual}"
else
params="${actual}"
fi
fi
if [ "x${returntype}" = "xvoid" ]
then
printf " gdbarch->${function} (${params});\n"
else
printf " return gdbarch->${function} (${params});\n"
fi
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_variable_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif [ -n "${invalid_p}" ]
then
printf " /* Check variable is valid. */\n"
printf " gdb_assert (!(${invalid_p}));\n"
elif [ -n "${predefault}" ]
then
printf " /* Check variable changed from pre-default. */\n"
printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_info_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
fi
done
# All the trailing guff
cat <<EOF
/* Keep a registry of per-architecture data-pointers required by GDB
modules. */
struct gdbarch_data
{
unsigned index;
int init_p;
gdbarch_data_pre_init_ftype *pre_init;
gdbarch_data_post_init_ftype *post_init;
};
struct gdbarch_data_registration
{
struct gdbarch_data *data;
struct gdbarch_data_registration *next;
};
struct gdbarch_data_registry
{
unsigned nr;
struct gdbarch_data_registration *registrations;
};
struct gdbarch_data_registry gdbarch_data_registry =
{
0, NULL,
};
static struct gdbarch_data *
gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
gdbarch_data_post_init_ftype *post_init)
{
struct gdbarch_data_registration **curr;
/* Append the new registraration. */
for (curr = &gdbarch_data_registry.registrations;
(*curr) != NULL;
curr = &(*curr)->next);
(*curr) = XMALLOC (struct gdbarch_data_registration);
(*curr)->next = NULL;
(*curr)->data = XMALLOC (struct gdbarch_data);
(*curr)->data->index = gdbarch_data_registry.nr++;
(*curr)->data->pre_init = pre_init;
(*curr)->data->post_init = post_init;
(*curr)->data->init_p = 1;
return (*curr)->data;
}
struct gdbarch_data *
gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
{
return gdbarch_data_register (pre_init, NULL);
}
struct gdbarch_data *
gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
{
return gdbarch_data_register (NULL, post_init);
}
/* Create/delete the gdbarch data vector. */
static void
alloc_gdbarch_data (struct gdbarch *gdbarch)
{
gdb_assert (gdbarch->data == NULL);
gdbarch->nr_data = gdbarch_data_registry.nr;
gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
}
/* Initialize the current value of the specified per-architecture
data-pointer. */
void
deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer)
{
gdb_assert (data->index < gdbarch->nr_data);
gdb_assert (gdbarch->data[data->index] == NULL);
gdb_assert (data->pre_init == NULL);
gdbarch->data[data->index] = pointer;
}
/* Return the current value of the specified per-architecture
data-pointer. */
void *
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
{
gdb_assert (data->index < gdbarch->nr_data);
if (gdbarch->data[data->index] == NULL)
{
/* The data-pointer isn't initialized, call init() to get a
value. */
if (data->pre_init != NULL)
/* Mid architecture creation: pass just the obstack, and not
the entire architecture, as that way it isn't possible for
pre-init code to refer to undefined architecture
fields. */
gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
else if (gdbarch->initialized_p
&& data->post_init != NULL)
/* Post architecture creation: pass the entire architecture
(as all fields are valid), but be careful to also detect
recursive references. */
{
gdb_assert (data->init_p);
data->init_p = 0;
gdbarch->data[data->index] = data->post_init (gdbarch);
data->init_p = 1;
}
else
/* The architecture initialization hasn't completed - punt -
hope that the caller knows what they are doing. Once
deprecated_set_gdbarch_data has been initialized, this can be
changed to an internal error. */
return NULL;
gdb_assert (gdbarch->data[data->index] != NULL);
}
return gdbarch->data[data->index];
}
/* Keep a registry of swapped data required by GDB modules. */
struct gdbarch_swap
{
void *swap;
struct gdbarch_swap_registration *source;
struct gdbarch_swap *next;
};
struct gdbarch_swap_registration
{
void *data;
unsigned long sizeof_data;
gdbarch_swap_ftype *init;
struct gdbarch_swap_registration *next;
};
struct gdbarch_swap_registry
{
int nr;
struct gdbarch_swap_registration *registrations;
};
struct gdbarch_swap_registry gdbarch_swap_registry =
{
0, NULL,
};
void
deprecated_register_gdbarch_swap (void *data,
unsigned long sizeof_data,
gdbarch_swap_ftype *init)
{
struct gdbarch_swap_registration **rego;
for (rego = &gdbarch_swap_registry.registrations;
(*rego) != NULL;
rego = &(*rego)->next);
(*rego) = XMALLOC (struct gdbarch_swap_registration);
(*rego)->next = NULL;
(*rego)->init = init;
(*rego)->data = data;
(*rego)->sizeof_data = sizeof_data;
}
static void
current_gdbarch_swap_init_hack (void)
{
struct gdbarch_swap_registration *rego;
struct gdbarch_swap **curr = &current_gdbarch->swap;
for (rego = gdbarch_swap_registry.registrations;
rego != NULL;
rego = rego->next)
{
if (rego->data != NULL)
{
(*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
struct gdbarch_swap);
(*curr)->source = rego;
(*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
rego->sizeof_data);
(*curr)->next = NULL;
curr = &(*curr)->next;
}
if (rego->init != NULL)
rego->init ();
}
}
static struct gdbarch *
current_gdbarch_swap_out_hack (void)
{
struct gdbarch *old_gdbarch = current_gdbarch;
struct gdbarch_swap *curr;
gdb_assert (old_gdbarch != NULL);
for (curr = old_gdbarch->swap;
curr != NULL;
curr = curr->next)
{
memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
memset (curr->source->data, 0, curr->source->sizeof_data);
}
current_gdbarch = NULL;
return old_gdbarch;
}
static void
current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
{
struct gdbarch_swap *curr;
gdb_assert (current_gdbarch == NULL);
for (curr = new_gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
current_gdbarch = new_gdbarch;
}
/* Keep a registry of the architectures known by GDB. */
struct gdbarch_registration
{
enum bfd_architecture bfd_architecture;
gdbarch_init_ftype *init;
gdbarch_dump_tdep_ftype *dump_tdep;
struct gdbarch_list *arches;
struct gdbarch_registration *next;
};
static struct gdbarch_registration *gdbarch_registry = NULL;
static void
append_name (const char ***buf, int *nr, const char *name)
{
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
(*buf)[*nr] = name;
*nr += 1;
}
const char **
gdbarch_printable_names (void)
{
/* Accumulate a list of names based on the registed list of
architectures. */
enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
{
const struct bfd_arch_info *ap;
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
if (ap == NULL)
internal_error (__FILE__, __LINE__,
_("gdbarch_architecture_names: multi-arch unknown"));
do
{
append_name (&arches, &nr_arches, ap->printable_name);
ap = ap->next;
}
while (ap != NULL);
}
append_name (&arches, &nr_arches, NULL);
return arches;
}
void
gdbarch_register (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init,
gdbarch_dump_tdep_ftype *dump_tdep)
{
struct gdbarch_registration **curr;
const struct bfd_arch_info *bfd_arch_info;
/* Check that BFD recognizes this architecture */
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
{
internal_error (__FILE__, __LINE__,
_("gdbarch: Attempt to register unknown architecture (%d)"),
bfd_architecture);
}
/* Check that we haven't seen this architecture before */
for (curr = &gdbarch_registry;
(*curr) != NULL;
curr = &(*curr)->next)
{
if (bfd_architecture == (*curr)->bfd_architecture)
internal_error (__FILE__, __LINE__,
_("gdbarch: Duplicate registraration of architecture (%s)"),
bfd_arch_info->printable_name);
}
/* log it */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
bfd_arch_info->printable_name,
(long) init);
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
(*curr)->bfd_architecture = bfd_architecture;
(*curr)->init = init;
(*curr)->dump_tdep = dump_tdep;
(*curr)->arches = NULL;
(*curr)->next = NULL;
}
void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init)
{
gdbarch_register (bfd_architecture, init, NULL);
}
/* Look for an architecture using gdbarch_info. */
struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
const struct gdbarch_info *info)
{
for (; arches != NULL; arches = arches->next)
{
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
continue;
if (info->byte_order != arches->gdbarch->byte_order)
continue;
if (info->osabi != arches->gdbarch->osabi)
continue;
if (info->target_desc != arches->gdbarch->target_desc)
continue;
return arches;
}
return NULL;
}
/* Find an architecture that matches the specified INFO. Create a new
architecture if needed. Return that new architecture. Assumes
that there is no current architecture. */
static struct gdbarch *
find_arch_by_info (struct gdbarch_info info)
{
struct gdbarch *new_gdbarch;
struct gdbarch_registration *rego;
/* The existing architecture has been swapped out - all this code
works from a clean slate. */
gdb_assert (current_gdbarch == NULL);
/* Fill in missing parts of the INFO struct using a number of
sources: "set ..."; INFOabfd supplied; and the global
defaults. */
gdbarch_info_fill (&info);
/* Must have found some sort of architecture. */
gdb_assert (info.bfd_arch_info != NULL);
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"find_arch_by_info: info.bfd_arch_info %s\n",
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
"find_arch_by_info: info.byte_order %d (%s)\n",
info.byte_order,
(info.byte_order == BFD_ENDIAN_BIG ? "big"
: info.byte_order == BFD_ENDIAN_LITTLE ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
"find_arch_by_info: info.osabi %d (%s)\n",
info.osabi, gdbarch_osabi_name (info.osabi));
fprintf_unfiltered (gdb_stdlog,
"find_arch_by_info: info.abfd 0x%lx\n",
(long) info.abfd);
fprintf_unfiltered (gdb_stdlog,
"find_arch_by_info: info.tdep_info 0x%lx\n",
(long) info.tdep_info);
}
/* Find the tdep code that knows about this architecture. */
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
if (rego->bfd_architecture == info.bfd_arch_info->arch)
break;
if (rego == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
"No matching architecture\n");
return 0;
}
/* Ask the tdep code for an architecture that matches "info". */
new_gdbarch = rego->init (info, rego->arches);
/* Did the tdep code like it? No. Reject the change and revert to
the old architecture. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
"Target rejected architecture\n");
return NULL;
}
/* Is this a pre-existing architecture (as determined by already
being initialized)? Move it to the front of the architecture
list (keeping the list sorted Most Recently Used). */
if (new_gdbarch->initialized_p)
{
struct gdbarch_list **list;
struct gdbarch_list *this;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
"Previous architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
/* Find the existing arch in the list. */
for (list = &rego->arches;
(*list) != NULL && (*list)->gdbarch != new_gdbarch;
list = &(*list)->next);
/* It had better be in the list of architectures. */
gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
/* Unlink THIS. */
this = (*list);
(*list) = this->next;
/* Insert THIS at the front. */
this->next = rego->arches;
rego->arches = this;
/* Return it. */
return new_gdbarch;
}
/* It's a new architecture. */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
"New architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
/* Insert the new architecture into the front of the architecture
list (keep the list sorted Most Recently Used). */
{
struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
this->next = rego->arches;
this->gdbarch = new_gdbarch;
rego->arches = this;
}
/* Check that the newly installed architecture is valid. Plug in
any post init values. */
new_gdbarch->dump_tdep = rego->dump_tdep;
verify_gdbarch (new_gdbarch);
new_gdbarch->initialized_p = 1;
/* Initialize any per-architecture swap areas. This phase requires
a valid global CURRENT_GDBARCH. Set it momentarially, and then
swap the entire architecture out. */
current_gdbarch = new_gdbarch;
current_gdbarch_swap_init_hack ();
current_gdbarch_swap_out_hack ();
if (gdbarch_debug)
gdbarch_dump (new_gdbarch, gdb_stdlog);
return new_gdbarch;
}
struct gdbarch *
gdbarch_find_by_info (struct gdbarch_info info)
{
/* Save the previously selected architecture, setting the global to
NULL. This stops things like gdbarch->init() trying to use the
previous architecture's configuration. The previous architecture
may not even be of the same architecture family. The most recent
architecture of the same family is found at the head of the
rego->arches list. */
struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
/* Find the specified architecture. */
struct gdbarch *new_gdbarch = find_arch_by_info (info);
/* Restore the existing architecture. */
gdb_assert (current_gdbarch == NULL);
current_gdbarch_swap_in_hack (old_gdbarch);
return new_gdbarch;
}
/* Make the specified architecture current, swapping the existing one
out. */
void
deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
{
gdb_assert (new_gdbarch != NULL);
gdb_assert (current_gdbarch != NULL);
gdb_assert (new_gdbarch->initialized_p);
current_gdbarch_swap_out_hack ();
current_gdbarch_swap_in_hack (new_gdbarch);
architecture_changed_event ();
flush_cached_frames ();
}
extern void _initialize_gdbarch (void);
void
_initialize_gdbarch (void)
{
struct cmd_list_element *c;
add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
Set architecture debugging."), _("\\
Show architecture debugging."), _("\\
When non-zero, architecture debugging is enabled."),
NULL,
show_gdbarch_debug,
&setdebuglist, &showdebuglist);
}
EOF
# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
compare_new gdbarch.c