darling-gdb/bfd/xtensa-isa.c
Alan Modra 60d8b5244d * cpu-arm.c (arm_check_note): Warning fix.
* elf32-iq2000.c (iq2000_elf_check_relocs): Warning fixes.  Arrange
	to keep relocs if edited.
	(iq2000_elf_print_private_bfd_data): Return TRUE.
	* elfxx-ia64.c (elfNN_ia64_relax_section): Use ELFNN_R_SYM, not
	ELF64_R_SYM.
	(elfNN_ia64_relax_ldxmov): Warning fix.
	* xtensa-isa.c (xtensa_add_isa): Warning fix.
	* xtensa-modules.c (get_num_opcodes): Warning fix.
2003-05-09 11:35:35 +00:00

594 lines
15 KiB
C

/* Configurable Xtensa ISA support.
Copyright 2003 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include "xtensa-isa.h"
#include "xtensa-isa-internal.h"
xtensa_isa xtensa_default_isa = NULL;
static int
opname_lookup_compare (const void *v1, const void *v2)
{
opname_lookup_entry *e1 = (opname_lookup_entry *)v1;
opname_lookup_entry *e2 = (opname_lookup_entry *)v2;
return strcmp (e1->key, e2->key);
}
xtensa_isa
xtensa_isa_init (void)
{
xtensa_isa isa;
int mod;
isa = xtensa_load_isa (0);
if (isa == 0)
{
fprintf (stderr, "Failed to initialize Xtensa base ISA module\n");
return NULL;
}
for (mod = 1; xtensa_isa_modules[mod].get_num_opcodes_fn; mod++)
{
if (!xtensa_extend_isa (isa, mod))
{
fprintf (stderr, "Failed to initialize Xtensa TIE ISA module\n");
return NULL;
}
}
return isa;
}
/* ISA information. */
static int
xtensa_check_isa_config (xtensa_isa_internal *isa,
struct config_struct *config_table)
{
int i, j;
if (!config_table)
{
fprintf (stderr, "Error: Empty configuration table in ISA DLL\n");
return 0;
}
/* For the first module, save a pointer to the table and record the
specified endianness and availability of the density option. */
if (isa->num_modules == 0)
{
int found_memory_order = 0;
isa->config = config_table;
isa->has_density = 1; /* Default to have density option. */
for (i = 0; config_table[i].param_name; i++)
{
if (!strcmp (config_table[i].param_name, "IsaMemoryOrder"))
{
isa->is_big_endian =
(strcmp (config_table[i].param_value, "BigEndian") == 0);
found_memory_order = 1;
}
if (!strcmp (config_table[i].param_name, "IsaUseDensityInstruction"))
{
isa->has_density = atoi (config_table[i].param_value);
}
}
if (!found_memory_order)
{
fprintf (stderr, "Error: \"IsaMemoryOrder\" missing from "
"configuration table in ISA DLL\n");
return 0;
}
return 1;
}
/* For subsequent modules, check that the parameters match. Note: This
code is sufficient to handle the current model where there are never
more than 2 modules; we might at some point want to handle cases where
module N > 0 specifies some parameters not included in the base table,
and we would then add those to isa->config so that subsequent modules
would check against them. */
for (i = 0; config_table[i].param_name; i++)
{
for (j = 0; isa->config[j].param_name; j++)
{
if (!strcmp (config_table[i].param_name, isa->config[j].param_name))
{
int mismatch;
if (!strcmp (config_table[i].param_name, "IsaCoprocessorCount"))
{
/* Only require the coprocessor count to be <= the base. */
int tiecnt = atoi (config_table[i].param_value);
int basecnt = atoi (isa->config[j].param_value);
mismatch = (tiecnt > basecnt);
}
else
mismatch = strcmp (config_table[i].param_value,
isa->config[j].param_value);
if (mismatch)
{
#define MISMATCH_MESSAGE \
"Error: Configuration mismatch in the \"%s\" parameter:\n\
the configuration used when the TIE file was compiled had a value of\n\
\"%s\", while the current configuration has a value of\n\
\"%s\". Please rerun the TIE compiler with a matching\n\
configuration.\n"
fprintf (stderr, MISMATCH_MESSAGE,
config_table[i].param_name,
config_table[i].param_value,
isa->config[j].param_value);
return 0;
}
break;
}
}
}
return 1;
}
static int
xtensa_add_isa (xtensa_isa_internal *isa, libisa_module_specifier libisa)
{
int (*get_num_opcodes_fn) (void);
struct config_struct *(*get_config_table_fn) (void);
xtensa_opcode_internal **(*get_opcodes_fn) (void);
int (*decode_insn_fn) (const xtensa_insnbuf);
xtensa_opcode_internal **opcodes;
int opc, insn_size, prev_num_opcodes, new_num_opcodes, this_module;
get_num_opcodes_fn = xtensa_isa_modules[libisa].get_num_opcodes_fn;
get_opcodes_fn = xtensa_isa_modules[libisa].get_opcodes_fn;
decode_insn_fn = xtensa_isa_modules[libisa].decode_insn_fn;
get_config_table_fn = xtensa_isa_modules[libisa].get_config_table_fn;
if (!get_num_opcodes_fn || !get_opcodes_fn || !decode_insn_fn
|| (!get_config_table_fn && isa->num_modules == 0))
return 0;
if (get_config_table_fn
&& !xtensa_check_isa_config (isa, get_config_table_fn ()))
return 0;
prev_num_opcodes = isa->num_opcodes;
new_num_opcodes = (*get_num_opcodes_fn) ();
isa->num_opcodes += new_num_opcodes;
isa->opcode_table = (xtensa_opcode_internal **)
realloc (isa->opcode_table, isa->num_opcodes *
sizeof (xtensa_opcode_internal *));
isa->opname_lookup_table = (opname_lookup_entry *)
realloc (isa->opname_lookup_table, isa->num_opcodes *
sizeof (opname_lookup_entry));
opcodes = (*get_opcodes_fn) ();
insn_size = isa->insn_size;
for (opc = 0; opc < new_num_opcodes; opc++)
{
xtensa_opcode_internal *intopc = opcodes[opc];
int newopc = prev_num_opcodes + opc;
isa->opcode_table[newopc] = intopc;
isa->opname_lookup_table[newopc].key = intopc->name;
isa->opname_lookup_table[newopc].opcode = newopc;
if (intopc->length > insn_size)
insn_size = intopc->length;
}
isa->insn_size = insn_size;
isa->insnbuf_size = ((isa->insn_size + sizeof (xtensa_insnbuf_word) - 1) /
sizeof (xtensa_insnbuf_word));
qsort (isa->opname_lookup_table, isa->num_opcodes,
sizeof (opname_lookup_entry), opname_lookup_compare);
/* Check for duplicate opcode names. */
for (opc = 1; opc < isa->num_opcodes; opc++)
{
if (!opname_lookup_compare (&isa->opname_lookup_table[opc-1],
&isa->opname_lookup_table[opc]))
{
fprintf (stderr, "Error: Duplicate TIE opcode \"%s\"\n",
isa->opname_lookup_table[opc].key);
return 0;
}
}
this_module = isa->num_modules;
isa->num_modules += 1;
isa->module_opcode_base = (int *) realloc (isa->module_opcode_base,
isa->num_modules * sizeof (int));
isa->module_decode_fn = (xtensa_insn_decode_fn *)
realloc (isa->module_decode_fn, isa->num_modules *
sizeof (xtensa_insn_decode_fn));
isa->module_opcode_base[this_module] = prev_num_opcodes;
isa->module_decode_fn[this_module] = decode_insn_fn;
xtensa_default_isa = isa;
return 1; /* Library was successfully added. */
}
xtensa_isa
xtensa_load_isa (libisa_module_specifier libisa)
{
xtensa_isa_internal *isa;
isa = (xtensa_isa_internal *) malloc (sizeof (xtensa_isa_internal));
memset (isa, 0, sizeof (xtensa_isa_internal));
if (!xtensa_add_isa (isa, libisa))
{
xtensa_isa_free (isa);
return NULL;
}
return (xtensa_isa) isa;
}
int
xtensa_extend_isa (xtensa_isa isa, libisa_module_specifier libisa)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return xtensa_add_isa (intisa, libisa);
}
void
xtensa_isa_free (xtensa_isa isa)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
if (intisa->opcode_table)
free (intisa->opcode_table);
if (intisa->opname_lookup_table)
free (intisa->opname_lookup_table);
if (intisa->module_opcode_base)
free (intisa->module_opcode_base);
if (intisa->module_decode_fn)
free (intisa->module_decode_fn);
free (intisa);
}
int
xtensa_insn_maxlength (xtensa_isa isa)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return intisa->insn_size;
}
int
xtensa_insnbuf_size (xtensa_isa isa)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa;
return intisa->insnbuf_size;
}
int
xtensa_num_opcodes (xtensa_isa isa)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return intisa->num_opcodes;
}
xtensa_opcode
xtensa_opcode_lookup (xtensa_isa isa, const char *opname)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
opname_lookup_entry entry, *result;
entry.key = opname;
result = bsearch (&entry, intisa->opname_lookup_table, intisa->num_opcodes,
sizeof (opname_lookup_entry), opname_lookup_compare);
if (!result) return XTENSA_UNDEFINED;
return result->opcode;
}
xtensa_opcode
xtensa_decode_insn (xtensa_isa isa, const xtensa_insnbuf insn)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
int n, opc;
for (n = 0; n < intisa->num_modules; n++) {
opc = (intisa->module_decode_fn[n]) (insn);
if (opc != XTENSA_UNDEFINED)
return intisa->module_opcode_base[n] + opc;
}
return XTENSA_UNDEFINED;
}
/* Opcode information. */
void
xtensa_encode_insn (xtensa_isa isa, xtensa_opcode opc, xtensa_insnbuf insn)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
xtensa_insnbuf template = intisa->opcode_table[opc]->template();
int len = intisa->opcode_table[opc]->length;
int n;
/* Convert length to 32-bit words. */
len = (len + 3) / 4;
/* Copy the template. */
for (n = 0; n < len; n++)
insn[n] = template[n];
/* Fill any unused buffer space with zeros. */
for ( ; n < intisa->insnbuf_size; n++)
insn[n] = 0;
}
const char *
xtensa_opcode_name (xtensa_isa isa, xtensa_opcode opc)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return intisa->opcode_table[opc]->name;
}
int
xtensa_insn_length (xtensa_isa isa, xtensa_opcode opc)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return intisa->opcode_table[opc]->length;
}
int
xtensa_insn_length_from_first_byte (xtensa_isa isa, char first_byte)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
int is_density = (first_byte & (intisa->is_big_endian ? 0x80 : 0x08)) != 0;
return (intisa->has_density && is_density ? 2 : 3);
}
int
xtensa_num_operands (xtensa_isa isa, xtensa_opcode opc)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
return intisa->opcode_table[opc]->iclass->num_operands;
}
xtensa_operand
xtensa_get_operand (xtensa_isa isa, xtensa_opcode opc, int opnd)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
xtensa_iclass_internal *iclass = intisa->opcode_table[opc]->iclass;
if (opnd >= iclass->num_operands)
return NULL;
return (xtensa_operand) iclass->operands[opnd];
}
/* Operand information. */
char *
xtensa_operand_kind (xtensa_operand opnd)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return intop->operand_kind;
}
char
xtensa_operand_inout (xtensa_operand opnd)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return intop->inout;
}
uint32
xtensa_operand_get_field (xtensa_operand opnd, const xtensa_insnbuf insn)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return (*intop->get_field) (insn);
}
void
xtensa_operand_set_field (xtensa_operand opnd, xtensa_insnbuf insn, uint32 val)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return (*intop->set_field) (insn, val);
}
xtensa_encode_result
xtensa_operand_encode (xtensa_operand opnd, uint32 *valp)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return (*intop->encode) (valp);
}
uint32
xtensa_operand_decode (xtensa_operand opnd, uint32 val)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return (*intop->decode) (val);
}
int
xtensa_operand_isPCRelative (xtensa_operand opnd)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
return intop->isPCRelative;
}
uint32
xtensa_operand_do_reloc (xtensa_operand opnd, uint32 addr, uint32 pc)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
if (!intop->isPCRelative)
return addr;
return (*intop->do_reloc) (addr, pc);
}
uint32
xtensa_operand_undo_reloc (xtensa_operand opnd, uint32 offset, uint32 pc)
{
xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
if (!intop->isPCRelative)
return offset;
return (*intop->undo_reloc) (offset, pc);
}
/* Instruction buffers. */
xtensa_insnbuf
xtensa_insnbuf_alloc (xtensa_isa isa)
{
return (xtensa_insnbuf) malloc (xtensa_insnbuf_size (isa) *
sizeof (xtensa_insnbuf_word));
}
void
xtensa_insnbuf_free (xtensa_insnbuf buf)
{
free( buf );
}
/* Given <byte_index>, the index of a byte in a xtensa_insnbuf, our
internal representation of a xtensa instruction word, return the index of
its word and the bit index of its low order byte in the xtensa_insnbuf. */
static inline int
byte_to_word_index (int byte_index)
{
return byte_index / sizeof (xtensa_insnbuf_word);
}
static inline int
byte_to_bit_index (int byte_index)
{
return (byte_index & 0x3) * 8;
}
/* Copy an instruction in the 32 bit words pointed at by <insn> to characters
pointed at by <cp>. This is more complicated than you might think because
we want 16 bit instructions in bytes 2,3 for big endian. This function
allows us to specify which byte in <insn> to start with and which way to
increment, allowing trivial implementation for both big and little endian.
And it seems to make pretty good code for both. */
void
xtensa_insnbuf_to_chars (xtensa_isa isa, const xtensa_insnbuf insn, char *cp)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
int insn_size = xtensa_insn_maxlength (intisa);
int fence_post, start, increment, i, byte_count;
xtensa_opcode opc;
if (intisa->is_big_endian)
{
start = insn_size - 1;
increment = -1;
}
else
{
start = 0;
increment = 1;
}
/* Find the opcode; do nothing if the buffer does not contain a valid
instruction since we need to know how many bytes to copy. */
opc = xtensa_decode_insn (isa, insn);
if (opc == XTENSA_UNDEFINED)
return;
byte_count = xtensa_insn_length (isa, opc);
fence_post = start + (byte_count * increment);
for (i = start; i != fence_post; i += increment, ++cp)
{
int word_inx = byte_to_word_index (i);
int bit_inx = byte_to_bit_index (i);
*cp = (insn[word_inx] >> bit_inx) & 0xff;
}
}
/* Inward conversion from byte stream to xtensa_insnbuf. See
xtensa_insnbuf_to_chars for a discussion of why this is
complicated by endianness. */
void
xtensa_insnbuf_from_chars (xtensa_isa isa, xtensa_insnbuf insn, const char* cp)
{
xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
int insn_size = xtensa_insn_maxlength (intisa);
int fence_post, start, increment, i;
if (intisa->is_big_endian)
{
start = insn_size - 1;
increment = -1;
}
else
{
start = 0;
increment = 1;
}
fence_post = start + (insn_size * increment);
memset (insn, 0, xtensa_insnbuf_size (isa) * sizeof (xtensa_insnbuf_word));
for ( i = start; i != fence_post; i += increment, ++cp )
{
int word_inx = byte_to_word_index (i);
int bit_inx = byte_to_bit_index (i);
insn[word_inx] |= (*cp & 0xff) << bit_inx;
}
}