darling-libcxx/include/map

1664 lines
60 KiB
Plaintext
Raw Normal View History

// -*- C++ -*-
//===----------------------------- map ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_MAP
#define _LIBCPP_MAP
/*
map synopsis
namespace std
{
template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
class map
{
public:
// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const key_type, mapped_type> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class map;
protected:
key_compare comp;
value_compare(key_compare c);
public:
bool operator()(const value_type& x, const value_type& y) const;
};
// construct/copy/destroy:
map();
explicit map(const key_compare& comp);
map(const key_compare& comp, const allocator_type& a);
template <class InputIterator>
map(InputIterator first, InputIterator last,
const key_compare& comp = key_compare());
template <class InputIterator>
map(InputIterator first, InputIterator last,
const key_compare& comp, const allocator_type& a);
map(const map& m);
map(map&& m);
explicit map(const allocator_type& a);
map(const map& m, const allocator_type& a);
map(map&& m, const allocator_type& a);
map(initializer_list<value_type> il, const key_compare& comp = key_compare());
map(initializer_list<value_type> il, const key_compare& comp, const allocator_type& a);
~map();
map& operator=(const map& m);
map& operator=(map&& m);
map& operator=(initializer_list<value_type> il);
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// element access:
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;
// modifiers:
template <class... Args>
pair<iterator, bool> emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& v);
template <class P>
pair<iterator, bool> insert(P&& p);
iterator insert(const_iterator position, const value_type& v);
template <class P>
iterator insert(const_iterator position, P&& p);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type> il);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(map& m);
// observers:
allocator_type get_allocator() const;
key_compare key_comp() const;
value_compare value_comp() const;
// map operations:
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k) const;
iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;
pair<iterator,iterator> equal_range(const key_type& k);
pair<const_iterator,const_iterator> equal_range(const key_type& k) const;
};
template <class Key, class T, class Compare, class Allocator>
bool
operator==(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator< (const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator!=(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator> (const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator>=(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator<=(const map<Key, T, Compare, Allocator>& x,
const map<Key, T, Compare, Allocator>& y);
// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>
void
swap(map<Key, T, Compare, Allocator>& x, map<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
class multimap
{
public:
// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const key_type,mapped_type> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
class value_compare
: public binary_function<value_type,value_type,bool>
{
friend class multimap;
protected:
key_compare comp;
value_compare(key_compare c);
public:
bool operator()(const value_type& x, const value_type& y) const;
};
// construct/copy/destroy:
explicit multimap(const key_compare& comp = key_compare());
multimap(const key_compare& comp, const allocator_type& a);
template <class InputIterator>
multimap(InputIterator first, InputIterator last, const key_compare& comp);
template <class InputIterator>
multimap(InputIterator first, InputIterator last, const key_compare& comp,
const allocator_type& a);
multimap(const multimap& m);
multimap(multimap&& m);
explicit multimap(const allocator_type& a);
multimap(const multimap& m, const allocator_type& a);
multimap(multimap&& m, const allocator_type& a);
multimap(initializer_list<value_type> il, const key_compare& comp = key_compare());
multimap(initializer_list<value_type> il, const key_compare& comp,
const allocator_type& a);
~multimap();
multimap& operator=(const multimap& m);
multimap& operator=(multimap&& m);
multimap& operator=(initializer_list<value_type> il);
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// modifiers:
template <class... Args>
iterator emplace(Args&&... args);
template <class... Args>
iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& v);
template <class P>
iterator insert(P&& p);
iterator insert(const_iterator position, const value_type& v);
template <class P>
iterator insert(const_iterator position, P&& p);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
void insert(initializer_list<value_type> il);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(multimap& m);
// observers:
allocator_type get_allocator() const;
key_compare key_comp() const;
value_compare value_comp() const;
// map operations:
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
size_type count(const key_type& k) const;
iterator lower_bound(const key_type& k);
const_iterator lower_bound(const key_type& k) const;
iterator upper_bound(const key_type& k);
const_iterator upper_bound(const key_type& k) const;
pair<iterator,iterator> equal_range(const key_type& k);
pair<const_iterator,const_iterator> equal_range(const key_type& k) const;
};
template <class Key, class T, class Compare, class Allocator>
bool
operator==(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator< (const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator!=(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator> (const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator>=(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool
operator<=(const multimap<Key, T, Compare, Allocator>& x,
const multimap<Key, T, Compare, Allocator>& y);
// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>
void
swap(multimap<Key, T, Compare, Allocator>& x,
multimap<Key, T, Compare, Allocator>& y);
} // std
*/
#include <__config>
#include <__tree>
#include <iterator>
#include <memory>
#include <utility>
#include <functional>
#include <initializer_list>
#pragma GCC system_header
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Key, class _Tp, class _Compare, bool = is_empty<_Compare>::value>
class __map_value_compare
: private _Compare
{
typedef pair<_Key, _Tp> _P;
typedef pair<const _Key, _Tp> _CP;
public:
__map_value_compare() : _Compare() {}
__map_value_compare(_Compare c) : _Compare(c) {}
const _Compare& key_comp() const {return *this;}
bool operator()(const _CP& __x, const _CP& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y.first);}
bool operator()(const _CP& __x, const _P& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y.first);}
bool operator()(const _CP& __x, const _Key& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y);}
bool operator()(const _P& __x, const _CP& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y.first);}
bool operator()(const _P& __x, const _P& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y.first);}
bool operator()(const _P& __x, const _Key& __y) const
{return static_cast<const _Compare&>(*this)(__x.first, __y);}
bool operator()(const _Key& __x, const _CP& __y) const
{return static_cast<const _Compare&>(*this)(__x, __y.first);}
bool operator()(const _Key& __x, const _P& __y) const
{return static_cast<const _Compare&>(*this)(__x, __y.first);}
bool operator()(const _Key& __x, const _Key& __y) const
{return static_cast<const _Compare&>(*this)(__x, __y);}
// bool operator()(const _Tp& __x, const _Tp& __y) const
// {return static_cast<const _Compare&>(*this)(__x.first, __y.first);}
// bool operator()(const typename _Tp::first_type& __x, const _Tp& __y) const
// {return static_cast<const _Compare&>(*this)(__x, __y.first);}
// bool operator()(const _Tp& __x, const typename _Tp::first_type& __y) const
// {return static_cast<const _Compare&>(*this)(__x.first, __y);}
// bool operator()(const typename _Tp::first_type& __x,
// const typename _Tp::first_type& __y) const
// {return static_cast<const _Compare&>(*this)(__x, __y);}
};
template <class _Key, class _Tp, class _Compare>
class __map_value_compare<_Key, _Tp, _Compare, false>
{
_Compare comp;
typedef pair<_Key, _Tp> _P;
typedef pair<const _Key, _Tp> _CP;
public:
__map_value_compare() : comp() {}
__map_value_compare(_Compare c) : comp(c) {}
const _Compare& key_comp() const {return comp;}
bool operator()(const _CP& __x, const _CP& __y) const
{return comp(__x.first, __y.first);}
bool operator()(const _CP& __x, const _P& __y) const
{return comp(__x.first, __y.first);}
bool operator()(const _CP& __x, const _Key& __y) const
{return comp(__x.first, __y);}
bool operator()(const _P& __x, const _CP& __y) const
{return comp(__x.first, __y.first);}
bool operator()(const _P& __x, const _P& __y) const
{return comp(__x.first, __y.first);}
bool operator()(const _P& __x, const _Key& __y) const
{return comp(__x.first, __y);}
bool operator()(const _Key& __x, const _CP& __y) const
{return comp(__x, __y.first);}
bool operator()(const _Key& __x, const _P& __y) const
{return comp(__x, __y.first);}
bool operator()(const _Key& __x, const _Key& __y) const
{return comp(__x, __y);}
// bool operator()(const _Tp& __x, const _Tp& __y) const
// {return comp(__x.first, __y.first);}
// bool operator()(const typename _Tp::first_type& __x, const _Tp& __y) const
// {return comp(__x, __y.first);}
// bool operator()(const _Tp& __x, const typename _Tp::first_type& __y) const
// {return comp(__x.first, __y);}
// bool operator()(const typename _Tp::first_type& __x,
// const typename _Tp::first_type& __y) const
// {return comp(__x, __y);}
};
template <class _Allocator>
class __map_node_destructor
{
typedef _Allocator allocator_type;
typedef allocator_traits<allocator_type> __alloc_traits;
typedef typename __alloc_traits::value_type::value_type value_type;
public:
typedef typename __alloc_traits::pointer pointer;
private:
typedef typename value_type::first_type first_type;
typedef typename value_type::second_type second_type;
allocator_type& __na_;
__map_node_destructor& operator=(const __map_node_destructor&);
public:
bool __first_constructed;
bool __second_constructed;
explicit __map_node_destructor(allocator_type& __na)
: __na_(__na),
__first_constructed(false),
__second_constructed(false)
{}
#ifdef _LIBCPP_MOVE
__map_node_destructor(__tree_node_destructor<allocator_type>&& __x)
: __na_(__x.__na_),
__first_constructed(__x.__value_constructed),
__second_constructed(__x.__value_constructed)
{
__x.__value_constructed = false;
}
#endif
void operator()(pointer __p)
{
if (__second_constructed)
__alloc_traits::destroy(__na_, addressof(__p->__value_.second));
if (__first_constructed)
__alloc_traits::destroy(__na_, addressof(__p->__value_.first));
if (__p)
__alloc_traits::deallocate(__na_, __p, 1);
}
};
template <class, class, class, class> class map;
template <class, class, class, class> class multimap;
template <class> class __map_const_iterator;
template <class _TreeIterator>
class __map_iterator
{
_TreeIterator __i_;
typedef typename _TreeIterator::__pointer_traits __pointer_traits;
typedef const typename _TreeIterator::value_type::first_type key_type;
typedef typename _TreeIterator::value_type::second_type mapped_type;
public:
typedef bidirectional_iterator_tag iterator_category;
typedef pair<key_type, mapped_type> value_type;
typedef typename _TreeIterator::difference_type difference_type;
typedef value_type& reference;
typedef typename __pointer_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<value_type>
#else
rebind<value_type>::other
#endif
pointer;
__map_iterator() {}
__map_iterator(_TreeIterator __i) : __i_(__i) {}
reference operator*() const {return *operator->();}
pointer operator->() const {return (pointer)__i_.operator->();}
__map_iterator& operator++() {++__i_; return *this;}
__map_iterator operator++(int)
{
__map_iterator __t(*this);
++(*this);
return __t;
}
__map_iterator& operator--() {--__i_; return *this;}
__map_iterator operator--(int)
{
__map_iterator __t(*this);
--(*this);
return __t;
}
friend bool operator==(const __map_iterator& __x, const __map_iterator& __y)
{return __x.__i_ == __y.__i_;}
friend bool operator!=(const __map_iterator& __x, const __map_iterator& __y)
{return __x.__i_ != __y.__i_;}
template <class, class, class, class> friend class map;
template <class, class, class, class> friend class multimap;
template <class> friend class __map_const_iterator;
};
template <class _TreeIterator>
class __map_const_iterator
{
_TreeIterator __i_;
typedef typename _TreeIterator::__pointer_traits __pointer_traits;
typedef const typename _TreeIterator::value_type::first_type key_type;
typedef typename _TreeIterator::value_type::second_type mapped_type;
public:
typedef bidirectional_iterator_tag iterator_category;
typedef pair<key_type, mapped_type> value_type;
typedef typename _TreeIterator::difference_type difference_type;
typedef const value_type& reference;
typedef typename __pointer_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind<value_type>
#else
rebind<value_type>::other
#endif
pointer;
__map_const_iterator() {}
__map_const_iterator(_TreeIterator __i) : __i_(__i) {}
__map_const_iterator(
__map_iterator<typename _TreeIterator::__non_const_iterator> __i)
: __i_(__i.__i_) {}
reference operator*() const {return *operator->();}
pointer operator->() const {return (pointer)__i_.operator->();}
__map_const_iterator& operator++() {++__i_; return *this;}
__map_const_iterator operator++(int)
{
__map_const_iterator __t(*this);
++(*this);
return __t;
}
__map_const_iterator& operator--() {--__i_; return *this;}
__map_const_iterator operator--(int)
{
__map_const_iterator __t(*this);
--(*this);
return __t;
}
friend bool operator==(const __map_const_iterator& __x, const __map_const_iterator& __y)
{return __x.__i_ == __y.__i_;}
friend bool operator!=(const __map_const_iterator& __x, const __map_const_iterator& __y)
{return __x.__i_ != __y.__i_;}
template <class, class, class, class> friend class map;
template <class, class, class, class> friend class multimap;
template <class, class, class> friend class __tree_const_iterator;
};
template <class _Key, class _Tp, class _Compare = less<_Key>,
class _Allocator = allocator<pair<const _Key, _Tp> > >
class map
{
public:
// types:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef pair<const key_type, mapped_type> value_type;
typedef _Compare key_compare;
typedef _Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class map;
protected:
key_compare comp;
value_compare(key_compare c) : comp(c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const
{return comp(__x.first, __y.first);}
};
private:
typedef pair<key_type, mapped_type> __value_type;
typedef __map_value_compare<key_type, mapped_type, key_compare> __vc;
typedef typename allocator_traits<allocator_type>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<__value_type>
#else
rebind_alloc<__value_type>::other
#endif
__allocator_type;
typedef __tree<__value_type, __vc, __allocator_type> __base;
typedef typename __base::__node_traits __node_traits;
typedef allocator_traits<allocator_type> __alloc_traits;
__base __tree_;
public:
typedef typename __alloc_traits::pointer pointer;
typedef typename __alloc_traits::const_pointer const_pointer;
typedef typename __alloc_traits::size_type size_type;
typedef typename __alloc_traits::difference_type difference_type;
typedef __map_iterator<typename __base::iterator> iterator;
typedef __map_const_iterator<typename __base::const_iterator> const_iterator;
typedef _STD::reverse_iterator<iterator> reverse_iterator;
typedef _STD::reverse_iterator<const_iterator> const_reverse_iterator;
explicit map(const key_compare& __comp = key_compare())
: __tree_(__vc(__comp)) {}
explicit map(const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a) {}
template <class _InputIterator>
map(_InputIterator __f, _InputIterator __l,
const key_compare& __comp = key_compare())
: __tree_(__vc(__comp))
{
insert(__f, __l);
}
template <class _InputIterator>
map(_InputIterator __f, _InputIterator __l,
const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a)
{
insert(__f, __l);
}
map(const map& __m)
: __tree_(__m.__tree_)
{
insert(__m.begin(), __m.end());
}
#ifdef _LIBCPP_MOVE
map(map&& __m)
: __tree_(_STD::move(__m.__tree_))
{
}
map(map&& __m, const allocator_type& __a);
map(initializer_list<value_type> __il, const key_compare& __comp = key_compare())
: __tree_(__vc(__comp))
{
insert(__il.begin(), __il.end());
}
map(initializer_list<value_type> __il, const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a)
{
insert(__il.begin(), __il.end());
}
map& operator=(map&& __m)
{
__tree_ = _STD::move(__m.__tree_);
return *this;
}
map& operator=(initializer_list<value_type> __il)
{
__tree_.__assign_unique(__il.begin(), __il.end());
return *this;
}
#endif
explicit map(const allocator_type& __a)
: __tree_(__a)
{
}
map(const map& __m, const allocator_type& __a)
: __tree_(__m.__tree_.value_comp(), __a)
{
insert(__m.begin(), __m.end());
}
iterator begin() {return __tree_.begin();}
const_iterator begin() const {return __tree_.begin();}
iterator end() {return __tree_.end();}
const_iterator end() const {return __tree_.end();}
reverse_iterator rbegin() {return reverse_iterator(end());}
const_reverse_iterator rbegin() const {return const_reverse_iterator(end());}
reverse_iterator rend() {return reverse_iterator(begin());}
const_reverse_iterator rend() const {return const_reverse_iterator(begin());}
const_iterator cbegin() const {return begin();}
const_iterator cend() const {return end();}
const_reverse_iterator crbegin() const {return rbegin();}
const_reverse_iterator crend() const {return rend();}
bool empty() const {return __tree_.size() == 0;}
size_type size() const {return __tree_.size();}
size_type max_size() const {return __tree_.max_size();}
mapped_type& operator[](const key_type& __k);
#ifdef _LIBCPP_MOVE
mapped_type& operator[](key_type&& __k);
#endif
mapped_type& at(const key_type& __k);
const mapped_type& at(const key_type& __k) const;
allocator_type get_allocator() const {return __tree_.__alloc();}
key_compare key_comp() const {return __tree_.value_comp().key_comp();}
value_compare value_comp() const {return value_compare(__tree_.value_comp().key_comp());}
#ifdef _LIBCPP_MOVE
pair<iterator, bool>
emplace() {return __tree_.__emplace_unique();}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
pair<iterator, bool>
emplace(_A0&& __a0)
{return __tree_.__emplace_unique(_STD::forward<_A0>(__a0));}
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
pair<iterator, bool>
emplace(_A0&& __a0, _Args&& ...__args);
iterator
emplace_hint(const_iterator __p)
{return __tree_.__emplace_hint_unique(__p.__i_);}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator
emplace_hint(const_iterator __p, _A0&& __a0)
{return __tree_.__emplace_hint_unique(__p.__i_, _STD::forward<_A0>(__a0));}
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator
emplace_hint(const_iterator __p, _A0&& __a0, _Args&& ...__args);
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
pair<iterator, bool> insert(_P&& __p)
{return __tree_.__insert_unique(_STD::forward<_P>(__p));}
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(const_iterator __pos, _P&& __p)
{return __tree_.__insert_unique(__pos.__i_, _STD::forward<_P>(__p));}
#endif
pair<iterator, bool>
insert(const value_type& __v) {return __tree_.__insert_unique(__v);}
iterator
insert(const_iterator __p, const value_type& __v)
{return __tree_.__insert_unique(__p.__i_, __v);}
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{
for (const_iterator __e = cend(); __f != __l; ++__f)
insert(__e.__i_, *__f);
}
void insert(initializer_list<value_type> __il)
{insert(__il.begin(), __il.end());}
iterator erase(const_iterator __p) {return __tree_.erase(__p.__i_);}
size_type erase(const key_type& __k)
{return __tree_.__erase_unique(__k);}
iterator erase(const_iterator __f, const_iterator __l)
{return __tree_.erase(__f.__i_, __l.__i_);}
void clear() {__tree_.clear();}
void swap(map& __m) {__tree_.swap(__m.__tree_);}
iterator find(const key_type& __k) {return __tree_.find(__k);}
const_iterator find(const key_type& __k) const {return __tree_.find(__k);}
size_type count(const key_type& __k) const
{return __tree_.__count_unique(__k);}
iterator lower_bound(const key_type& __k)
{return __tree_.lower_bound(__k);}
const_iterator lower_bound(const key_type& __k) const
{return __tree_.lower_bound(__k);}
iterator upper_bound(const key_type& __k)
{return __tree_.upper_bound(__k);}
const_iterator upper_bound(const key_type& __k) const
{return __tree_.upper_bound(__k);}
pair<iterator,iterator> equal_range(const key_type& __k)
{return __tree_.__equal_range_unique(__k);}
pair<const_iterator,const_iterator> equal_range(const key_type& __k) const
{return __tree_.__equal_range_unique(__k);}
private:
typedef typename __base::__node __node;
typedef typename __base::__node_allocator __node_allocator;
typedef typename __base::__node_pointer __node_pointer;
typedef typename __base::__node_const_pointer __node_const_pointer;
typedef typename __base::__node_base_pointer __node_base_pointer;
typedef typename __base::__node_base_const_pointer __node_base_const_pointer;
typedef __map_node_destructor<__node_allocator> _D;
typedef unique_ptr<__node, _D> __node_holder;
#ifdef _LIBCPP_MOVE
__node_holder __construct_node();
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
__node_holder __construct_node(_A0&& __a0);
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
__node_holder __construct_node(_A0&& __a0, _Args&& ...__args);
#else
__node_holder __construct_node(const key_type& __k);
#endif
__node_base_pointer&
__find_equal_key(__node_base_pointer& __parent, const key_type& __k);
__node_base_pointer&
__find_equal_key(const_iterator __hint,
__node_base_pointer& __parent, const key_type& __k);
__node_base_const_pointer
__find_equal_key(__node_base_const_pointer& __parent, const key_type& __k) const;
};
// Find place to insert if __k doesn't exist
// Set __parent to parent of null leaf
// Return reference to null leaf
// If __k exists, set parent to node of __k and return reference to node of __k
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_base_pointer&
map<_Key, _Tp, _Compare, _Allocator>::__find_equal_key(__node_base_pointer& __parent,
const key_type& __k)
{
__node_pointer __nd = __tree_.__root();
if (__nd != nullptr)
{
while (true)
{
if (__tree_.value_comp().key_comp()(__k, __nd->__value_.first))
{
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else
{
__parent = __nd;
return __parent->__left_;
}
}
else if (__tree_.value_comp().key_comp()(__nd->__value_.first, __k))
{
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else
{
__parent = __nd;
return __parent->__right_;
}
}
else
{
__parent = __nd;
return __parent;
}
}
}
__parent = __tree_.__end_node();
return __parent->__left_;
}
// Find place to insert if __k doesn't exist
// First check prior to __hint.
// Next check after __hint.
// Next do O(log N) search.
// Set __parent to parent of null leaf
// Return reference to null leaf
// If __k exists, set parent to node of __k and return reference to node of __k
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_base_pointer&
map<_Key, _Tp, _Compare, _Allocator>::__find_equal_key(const_iterator __hint,
__node_base_pointer& __parent,
const key_type& __k)
{
if (__hint == end() || __tree_.value_comp().key_comp()(__k, __hint->first)) // check before
{
// __k < *__hint
const_iterator __prior = __hint;
if (__prior == begin() || __tree_.value_comp().key_comp()((--__prior)->first, __k))
{
// *prev(__hint) < __k < *__hint
if (__hint.__ptr_->__left_ == nullptr)
{
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent->__left_;
}
else
{
__parent = const_cast<__node_pointer&>(__prior.__ptr_);
return __parent->__right_;
}
}
// __k <= *prev(__hint)
return __find_equal_key(__parent, __k);
}
else if (__tree_.value_comp().key_comp()(__hint->first, __k)) // check after
{
// *__hint < __k
const_iterator __next = next(__hint);
if (__next == end() || __tree_.value_comp().key_comp()(__k, __next->first))
{
// *__hint < __k < *next(__hint)
if (__hint.__ptr_->__right_ == nullptr)
{
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent->__right_;
}
else
{
__parent = const_cast<__node_pointer&>(__next.__ptr_);
return __parent->__left_;
}
}
// *next(__hint) <= __k
return __find_equal_key(__parent, __k);
}
// else __k == *__hint
__parent = const_cast<__node_pointer&>(__hint.__ptr_);
return __parent;
}
// Find __k
// Set __parent to parent of null leaf and
// return reference to null leaf iv __k does not exist.
// If __k exists, set parent to node of __k and return reference to node of __k
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_base_const_pointer
map<_Key, _Tp, _Compare, _Allocator>::__find_equal_key(__node_base_const_pointer& __parent,
const key_type& __k) const
{
__node_const_pointer __nd = __tree_.__root();
if (__nd != nullptr)
{
while (true)
{
if (__tree_.value_comp().key_comp()(__k, __nd->__value_.first))
{
if (__nd->__left_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__left_);
else
{
__parent = __nd;
return const_cast<const __node_base_const_pointer&>(__parent->__left_);
}
}
else if (__tree_.value_comp().key_comp()(__nd->__value_.first, __k))
{
if (__nd->__right_ != nullptr)
__nd = static_cast<__node_pointer>(__nd->__right_);
else
{
__parent = __nd;
return const_cast<const __node_base_const_pointer&>(__parent->__right_);
}
}
else
{
__parent = __nd;
return __parent;
}
}
}
__parent = __tree_.__end_node();
return const_cast<const __node_base_const_pointer&>(__parent->__left_);
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Compare, class _Allocator>
map<_Key, _Tp, _Compare, _Allocator>::map(map&& __m, const allocator_type& __a)
: __tree_(_STD::move(__m.__tree_), __a)
{
if (__a != __m.get_allocator())
{
const_iterator __e = cend();
while (!__m.empty())
__tree_.__insert_unique(__e.__i_,
_STD::move(__m.__tree_.remove(__m.begin().__i_)->__value_));
}
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_holder
map<_Key, _Tp, _Compare, _Allocator>::__construct_node()
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second));
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0,
class>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_holder
map<_Key, _Tp, _Compare, _Allocator>::__construct_node(_A0&& __a0)
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_), _STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_holder
map<_Key, _Tp, _Compare, _Allocator>::__construct_node(_A0&& __a0, _Args&& ...__args)
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first), _STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second), _STD::forward<_Args>(__args)...);
__h.get_deleter().__second_constructed = true;
return __h;
}
#else
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename map<_Key, _Tp, _Compare, _Allocator>::__node_holder
map<_Key, _Tp, _Compare, _Allocator>::__construct_node(const key_type& __k)
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first), __k);
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second));
__h.get_deleter().__second_constructed = true;
return _STD::move(__h);
}
#endif
template <class _Key, class _Tp, class _Compare, class _Allocator>
_Tp&
map<_Key, _Tp, _Compare, _Allocator>::operator[](const key_type& __k)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal_key(__parent, __k);
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr)
{
__node_holder __h = __construct_node(__k);
__tree_.__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
}
return __r->__value_.second;
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Compare, class _Allocator>
_Tp&
map<_Key, _Tp, _Compare, _Allocator>::operator[](key_type&& __k)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal_key(__parent, __k);
__node_pointer __r = static_cast<__node_pointer>(__child);
if (__child == nullptr)
{
__node_holder __h = __construct_node(_STD::move(__k));
__tree_.__insert_node_at(__parent, __child, __h.get());
__r = __h.release();
}
return __r->__value_.second;
}
#endif
template <class _Key, class _Tp, class _Compare, class _Allocator>
_Tp&
map<_Key, _Tp, _Compare, _Allocator>::at(const key_type& __k)
{
__node_base_pointer __parent;
__node_base_pointer& __child = __find_equal_key(__parent, __k);
if (__child == nullptr)
throw out_of_range("map::at: key not found");
return static_cast<__node_pointer>(__child)->__value_.second;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
const _Tp&
map<_Key, _Tp, _Compare, _Allocator>::at(const key_type& __k) const
{
__node_base_const_pointer __parent;
__node_base_const_pointer __child = __find_equal_key(__parent, __k);
if (__child == nullptr)
throw out_of_range("map::at: key not found");
return static_cast<__node_const_pointer>(__child)->__value_.second;
}
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class //= typename enable_if<is_convertible<_A0, _Key>::value>::type
>
pair<typename map<_Key, _Tp, _Compare, _Allocator>::iterator, bool>
map<_Key, _Tp, _Compare, _Allocator>::emplace(_A0&& __a0, _Args&& ...__args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
pair<iterator, bool> __r = __tree_.__node_insert_unique(__h.get());
if (__r.second)
__h.release();
return __r;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class //= typename enable_if<is_convertible<_A0, _Key>::value>::type
>
typename map<_Key, _Tp, _Compare, _Allocator>::iterator
map<_Key, _Tp, _Compare, _Allocator>::emplace_hint(const_iterator __p,
_A0&& __a0, _Args&& ...__args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
iterator __r = __tree_.__node_insert_unique(__p.__i_, __h.get());
if (__r.__i_.__ptr_ == __h.get())
__h.release();
return __r;
}
#endif
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator==(const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return __x.size() == __y.size() && _STD::equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator< (const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return _STD::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end());
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator!=(const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__x == __y);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator> (const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return __y < __x;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator>=(const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__x < __y);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator<=(const map<_Key, _Tp, _Compare, _Allocator>& __x,
const map<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__y < __x);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
void
swap(map<_Key, _Tp, _Compare, _Allocator>& __x,
map<_Key, _Tp, _Compare, _Allocator>& __y)
{
__x.swap(__y);
}
template <class _Key, class _Tp, class _Compare = less<_Key>,
class _Allocator = allocator<pair<const _Key, _Tp> > >
class multimap
{
public:
// types:
typedef _Key key_type;
typedef _Tp mapped_type;
typedef pair<const key_type, mapped_type> value_type;
typedef _Compare key_compare;
typedef _Allocator allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class multimap;
protected:
key_compare comp;
value_compare(key_compare c) : comp(c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const
{return comp(__x.first, __y.first);}
};
private:
typedef pair<key_type, mapped_type> __value_type;
typedef __map_value_compare<key_type, mapped_type, key_compare> __vc;
typedef typename allocator_traits<allocator_type>::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<__value_type>
#else
rebind_alloc<__value_type>::other
#endif
__allocator_type;
typedef __tree<__value_type, __vc, __allocator_type> __base;
typedef typename __base::__node_traits __node_traits;
typedef allocator_traits<allocator_type> __alloc_traits;
__base __tree_;
public:
typedef typename __alloc_traits::pointer pointer;
typedef typename __alloc_traits::const_pointer const_pointer;
typedef typename __alloc_traits::size_type size_type;
typedef typename __alloc_traits::difference_type difference_type;
typedef __map_iterator<typename __base::iterator> iterator;
typedef __map_const_iterator<typename __base::const_iterator> const_iterator;
typedef _STD::reverse_iterator<iterator> reverse_iterator;
typedef _STD::reverse_iterator<const_iterator> const_reverse_iterator;
explicit multimap(const key_compare& __comp = key_compare())
: __tree_(__vc(__comp)) {}
explicit multimap(const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a) {}
template <class _InputIterator>
multimap(_InputIterator __f, _InputIterator __l,
const key_compare& __comp = key_compare())
: __tree_(__vc(__comp))
{
insert(__f, __l);
}
template <class _InputIterator>
multimap(_InputIterator __f, _InputIterator __l,
const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a)
{
insert(__f, __l);
}
multimap(const multimap& __m)
: __tree_(__m.__tree_.value_comp(),
__alloc_traits::select_on_container_copy_construction(__m.__tree_.__alloc()))
{
insert(__m.begin(), __m.end());
}
#ifdef _LIBCPP_MOVE
multimap(multimap&& __m)
: __tree_(_STD::move(__m.__tree_))
{
}
multimap(multimap&& __m, const allocator_type& __a);
multimap(initializer_list<value_type> __il, const key_compare& __comp = key_compare())
: __tree_(__vc(__comp))
{
insert(__il.begin(), __il.end());
}
multimap(initializer_list<value_type> __il, const key_compare& __comp, const allocator_type& __a)
: __tree_(__vc(__comp), __a)
{
insert(__il.begin(), __il.end());
}
multimap& operator=(multimap&& __m)
{
__tree_ = _STD::move(__m.__tree_);
return *this;
}
multimap& operator=(initializer_list<value_type> __il)
{
__tree_.__assign_multi(__il.begin(), __il.end());
return *this;
}
#endif
explicit multimap(const allocator_type& __a)
: __tree_(__a)
{
}
multimap(const multimap& __m, const allocator_type& __a)
: __tree_(__m.__tree_.value_comp(), __a)
{
insert(__m.begin(), __m.end());
}
iterator begin() {return __tree_.begin();}
const_iterator begin() const {return __tree_.begin();}
iterator end() {return __tree_.end();}
const_iterator end() const {return __tree_.end();}
reverse_iterator rbegin() {return reverse_iterator(end());}
const_reverse_iterator rbegin() const {return const_reverse_iterator(end());}
reverse_iterator rend() {return reverse_iterator(begin());}
const_reverse_iterator rend() const {return const_reverse_iterator(begin());}
const_iterator cbegin() const {return begin();}
const_iterator cend() const {return end();}
const_reverse_iterator crbegin() const {return rbegin();}
const_reverse_iterator crend() const {return rend();}
bool empty() const {return __tree_.size() == 0;}
size_type size() const {return __tree_.size();}
size_type max_size() const {return __tree_.max_size();}
allocator_type get_allocator() const {return __tree_.__alloc();}
key_compare key_comp() const {return __tree_.value_comp().key_comp();}
value_compare value_comp() const {return value_compare(__tree_.value_comp().key_comp());}
#ifdef _LIBCPP_MOVE
iterator emplace() {return __tree_.__emplace_multi();}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator
emplace(_A0&& __a0)
{return __tree_.__emplace_multi(_STD::forward<_A0>(__a0));}
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator
emplace(_A0&& __a0, _Args&& ...__args);
iterator emplace_hint(const_iterator __p)
{return __tree_.__emplace_hint_multi(__p.__i_);}
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
iterator
emplace_hint(const_iterator __p, _A0&& __a0)
{return __tree_.__emplace_hint_multi(__p.__i_, _STD::forward<_A0>(__a0));}
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
iterator
emplace_hint(const_iterator __p, _A0&& __a0, _Args&& ...__args);
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(_P&& __p)
{return __tree_.__insert_multi(_STD::forward<_P>(__p));}
template <class _P,
class = typename enable_if<is_convertible<_P, value_type>::value>::type>
iterator insert(const_iterator __pos, _P&& __p)
{return __tree_.__insert_multi(__pos.__i_, _STD::forward<_P>(__p));}
#endif
iterator insert(const value_type& __v) {return __tree_.__insert_multi(__v);}
iterator insert(const_iterator __p, const value_type& __v)
{return __tree_.__insert_multi(__p.__i_, __v);}
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{
for (const_iterator __e = cend(); __f != __l; ++__f)
__tree_.__insert_multi(__e.__i_, *__f);
}
void insert(initializer_list<value_type> __il)
{insert(__il.begin(), __il.end());}
iterator erase(const_iterator __p) {return __tree_.erase(__p.__i_);}
size_type erase(const key_type& __k) {return __tree_.__erase_multi(__k);}
iterator erase(const_iterator __f, const_iterator __l)
{return __tree_.erase(__f.__i_, __l.__i_);}
void clear() {__tree_.clear();}
void swap(multimap& __m) {__tree_.swap(__m.__tree_);}
iterator find(const key_type& __k) {return __tree_.find(__k);}
const_iterator find(const key_type& __k) const {return __tree_.find(__k);}
size_type count(const key_type& __k) const
{return __tree_.__count_multi(__k);}
iterator lower_bound(const key_type& __k)
{return __tree_.lower_bound(__k);}
const_iterator lower_bound(const key_type& __k) const
{return __tree_.lower_bound(__k);}
iterator upper_bound(const key_type& __k)
{return __tree_.upper_bound(__k);}
const_iterator upper_bound(const key_type& __k) const
{return __tree_.upper_bound(__k);}
pair<iterator,iterator> equal_range(const key_type& __k)
{return __tree_.__equal_range_multi(__k);}
pair<const_iterator,const_iterator> equal_range(const key_type& __k) const
{return __tree_.__equal_range_multi(__k);}
private:
typedef typename __base::__node __node;
typedef typename __base::__node_allocator __node_allocator;
typedef typename __base::__node_pointer __node_pointer;
typedef typename __base::__node_const_pointer __node_const_pointer;
typedef __map_node_destructor<__node_allocator> _D;
typedef unique_ptr<__node, _D> __node_holder;
#ifdef _LIBCPP_MOVE
__node_holder __construct_node();
template <class _A0,
class = typename enable_if<is_convertible<_A0, value_type>::value>::type>
__node_holder __construct_node(_A0&& __a0);
template <class _A0, class ..._Args,
class = typename enable_if<is_convertible<_A0, key_type>::value>::type>
__node_holder __construct_node(_A0&& __a0, _Args&& ...__args);
#endif
};
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Compare, class _Allocator>
multimap<_Key, _Tp, _Compare, _Allocator>::multimap(multimap&& __m, const allocator_type& __a)
: __tree_(_STD::move(__m.__tree_), __a)
{
if (__a != __m.get_allocator())
{
const_iterator __e = cend();
while (!__m.empty())
__tree_.__insert_multi(__e.__i_,
_STD::move(__m.__tree_.remove(__m.begin().__i_)->__value_));
}
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
typename multimap<_Key, _Tp, _Compare, _Allocator>::__node_holder
multimap<_Key, _Tp, _Compare, _Allocator>::__construct_node()
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second));
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0,
class // = typename enable_if<is_convertible<_A0, value_type>::value>::type
>
typename multimap<_Key, _Tp, _Compare, _Allocator>::__node_holder
multimap<_Key, _Tp, _Compare, _Allocator>::__construct_node(_A0&& __a0)
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_), _STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__h.get_deleter().__second_constructed = true;
return __h;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class // = typename enable_if<is_convertible<_A0, key_type>::value>::type
>
typename multimap<_Key, _Tp, _Compare, _Allocator>::__node_holder
multimap<_Key, _Tp, _Compare, _Allocator>::__construct_node(_A0&& __a0, _Args&& ...__args)
{
__node_allocator& __na = __tree_.__node_alloc();
__node_holder __h(__node_traits::allocate(__na, 1), _D(__na));
__node_traits::construct(__na, addressof(__h->__value_.first), _STD::forward<_A0>(__a0));
__h.get_deleter().__first_constructed = true;
__node_traits::construct(__na, addressof(__h->__value_.second), _STD::forward<_Args>(__args)...);
__h.get_deleter().__second_constructed = true;
return __h;
}
#endif
#ifdef _LIBCPP_MOVE
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class //= typename enable_if<is_convertible<_A0, _Key>::value>::type
>
typename multimap<_Key, _Tp, _Compare, _Allocator>::iterator
multimap<_Key, _Tp, _Compare, _Allocator>::emplace(_A0&& __a0, _Args&& ...__args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
iterator __r = __tree_.__node_insert_multi(__h.get());
__h.release();
return __r;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
template <class _A0, class ..._Args,
class //= typename enable_if<is_convertible<_A0, _Key>::value>::type
>
typename multimap<_Key, _Tp, _Compare, _Allocator>::iterator
multimap<_Key, _Tp, _Compare, _Allocator>::emplace_hint(const_iterator __p,
_A0&& __a0,
_Args&& ...__args)
{
__node_holder __h = __construct_node(_STD::forward<_A0>(__a0),
_STD::forward<_Args>(__args)...);
iterator __r = __tree_.__node_insert_multi(__p.__i_, __h.get());
__h.release();
return __r;
}
#endif
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator==(const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return __x.size() == __y.size() && _STD::equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator< (const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return _STD::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end());
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator!=(const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__x == __y);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator> (const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return __y < __x;
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator>=(const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__x < __y);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
bool
operator<=(const multimap<_Key, _Tp, _Compare, _Allocator>& __x,
const multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
return !(__y < __x);
}
template <class _Key, class _Tp, class _Compare, class _Allocator>
inline
void
swap(multimap<_Key, _Tp, _Compare, _Allocator>& __x,
multimap<_Key, _Tp, _Compare, _Allocator>& __y)
{
__x.swap(__y);
}
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_MAP