darling-libobjc2/gc_boehm.c
theraven b5380d50d3 Added support for ARC.
Weak references are still not supported, but code that doesn't use them (i.e. any code that wants to be compatible with OS X 10.6) will work fine.

The current implementation is VERY inefficient and has a large number of missed optimisation opportunities: this is the 'make it right' phase, and should be almost equivalent to explicit retain / release code.
2011-06-28 16:29:42 +00:00

734 lines
18 KiB
C

#define GNUSTEP_LIBOBJC_NO_LEGACY
#include "objc/runtime.h"
#include "objc/toydispatch.h"
#include "class.h"
#include "ivar.h"
#include "lock.h"
#include "objc/objc-auto.h"
#include "visibility.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include "gc_ops.h"
#define I_HIDE_POINTERS
/**
* Dispatch queue used to invoke finalizers.
*/
static dispatch_queue_t finalizer_queue;
/**
* Should finalizers be invoked in their own thread?
*/
static BOOL finalizeThreaded;
/**
* Should we do some (not 100% reliable) buffer overflow checking.
*/
static size_t canarySize;
/**
* The canary value. Used to check for overruns. When an allocation is
* finalized, we check whether it ends with this value.
*/
static uint32_t canary;
/**
* Destination to write allocation log to. This can be used to implement the
* equivalent of malloc_history
*/
static FILE *allocationLog;
struct objc_slot* objc_get_slot(Class cls, SEL selector);
/*
* Citing boehm-gc's README.linux:
*
* 3a) Every file that makes thread calls should define GC_LINUX_THREADS and
* _REENTRANT and then include gc.h. Gc.h redefines some of the
* pthread primitives as macros which also provide the collector with
* information it requires.
*/
#ifdef __linux__
# define GC_LINUX_THREADS
# ifndef _REENTRANT
# define _REENTRANT
# endif
#endif
#include <gc/gc.h>
#include <gc/gc_typed.h>
#ifndef __clang__
#define __sync_swap __sync_lock_test_and_set
#endif
#ifdef NO_EXECINFO
static inline void dump_stack(char *msg, void *addr) {}
#else
#include <execinfo.h>
static inline void dump_stack(char *msg, void *addr)
{
if (NULL == allocationLog) { return; }
void *array[30];
int frames = backtrace(array, 30);
fprintf(allocationLog, "%s %p\n", msg, addr);
fflush(allocationLog);
backtrace_symbols_fd(array, frames, fileno(allocationLog));
fflush(allocationLog);
}
#endif
Class dead_class;
Class objc_lookup_class(const char*);
GC_descr gc_typeForClass(Class cls);
void gc_setTypeForClass(Class cls, GC_descr type);
static unsigned long collectionType(unsigned options)
{
// Low 2 bits in GC options are used for the
return options & 3;
}
static size_t CollectRatio = 0x10000;
static size_t CollectThreshold = 0x10000;
void objc_set_collection_threshold(size_t threshold)
{
CollectThreshold = threshold;
}
void objc_set_collection_ratio(size_t ratio)
{
CollectRatio = ratio;
}
void objc_collect(unsigned long options)
{
size_t newAllocations = GC_get_bytes_since_gc();
// Skip collection if we haven't allocated much memory and this is a
// collect if needed collection
if ((options & OBJC_COLLECT_IF_NEEDED) && (newAllocations < CollectThreshold))
{
return;
}
switch (collectionType(options))
{
case OBJC_RATIO_COLLECTION:
if (newAllocations >= CollectRatio)
{
GC_gcollect();
}
else
{
GC_collect_a_little();
}
break;
case OBJC_GENERATIONAL_COLLECTION:
GC_collect_a_little();
break;
case OBJC_FULL_COLLECTION:
GC_gcollect();
break;
case OBJC_EXHAUSTIVE_COLLECTION:
{
size_t freeBytes = 0;
while (GC_get_free_bytes() != freeBytes)
{
freeBytes = GC_get_free_bytes();
GC_gcollect();
}
}
}
}
BOOL objc_collectingEnabled(void)
{
return GC_dont_gc == 0;
}
void objc_gc_disable(void)
{
GC_disable();
}
void objc_gc_enable(void)
{
GC_enable();
}
void* objc_gc_collectable_address(void* ptr)
{
return GC_base(ptr);
}
BOOL objc_atomicCompareAndSwapPtr(id predicate, id replacement, volatile id *objectLocation)
{
return __sync_bool_compare_and_swap(objectLocation, predicate, replacement);
}
BOOL objc_atomicCompareAndSwapPtrBarrier(id predicate, id replacement, volatile id *objectLocation)
{
return __sync_bool_compare_and_swap(objectLocation, predicate, replacement);
}
BOOL objc_atomicCompareAndSwapGlobal(id predicate, id replacement, volatile id *objectLocation)
{
return objc_atomicCompareAndSwapPtr(predicate, replacement, objectLocation);
}
BOOL objc_atomicCompareAndSwapGlobalBarrier(id predicate, id replacement, volatile id *objectLocation)
{
return objc_atomicCompareAndSwapPtr(predicate, replacement, objectLocation);
}
BOOL objc_atomicCompareAndSwapInstanceVariable(id predicate, id replacement, volatile id *objectLocation)
{
return objc_atomicCompareAndSwapPtr(predicate, replacement, objectLocation);
}
BOOL objc_atomicCompareAndSwapInstanceVariableBarrier(id predicate, id replacement, volatile id *objectLocation)
{
return objc_atomicCompareAndSwapPtr(predicate, replacement, objectLocation);
}
id objc_assign_strongCast(id val, id *ptr)
{
*ptr = val;
return val;
}
id objc_assign_global(id val, id *ptr)
{
if (isGCEnabled)
{
GC_add_roots(ptr, ptr+1);
}
*ptr = val;
return val;
}
id objc_assign_ivar(id val, id dest, ptrdiff_t offset)
{
*(id*)((char*)dest+offset) = val;
return val;
}
struct memmove_args
{
void *dst;
const void *src;
size_t size;
};
static void* callMemmove(void *args)
{
struct memmove_args *a = args;
memmove(a->dst, a->src, a->size);
return a->dst;
}
void *objc_memmove_collectable(void *dst, const void *src, size_t size)
{
// For small copies, we copy onto the stack then copy from the stack. This
// ensures that pointers are always present in a scanned region. For
// larger copies, we just lock the GC to prevent it from freeing the memory
// while the system memmove() does the real copy. The first case avoids
// the need to acquire the lock, but will perform worse for very large
// copies since we are copying the data twice (and because stack space is
// relatively scarce).
if (size < 128)
{
char buffer[128];
memcpy(buffer, src, size);
__sync_synchronize();
memcpy(dst, buffer, size);
// In theory, we should zero the on-stack buffer here to prevent the GC
// from seeing spurious pointers, but it's not really important because
// the contents of the buffer is duplicated on the heap and overwriting
// it will typically involve another copy to this function. This will
// not be the case if we are storing in a dead object, but that's
// probably sufficiently infrequent that we shouldn't worry about
// optimising for that case.
return dst;
}
struct memmove_args args = {dst, src, size};
return GC_call_with_alloc_lock(callMemmove, &args);
}
/**
* Weak Pointers:
*
* To implement weak pointers, we store the hidden pointer (bits all flipped)
* in the real address. We tell the GC to zero the pointer when the associated
* object is finalized. The read barrier locks the GC to prevent it from
* freeing anything, deobfuscates the pointer (at which point it becomes a
* GC-visible on-stack pointer), and then returns it.
*/
static void *readWeakLocked(void *ptr)
{
void *val = *(void**)ptr;
return 0 == val ? val : REVEAL_POINTER(val);
}
id objc_read_weak(id *location)
{
if (!isGCEnabled)
{
return *location;
}
return GC_call_with_alloc_lock(readWeakLocked, location);
}
id objc_assign_weak(id value, id *location)
{
if (!isGCEnabled)
{
*location = value;
return value;
}
// Temporarily zero this pointer and get the old value
id old = __sync_swap(location, 0);
if (0 != old)
{
GC_unregister_disappearing_link((void**)location);
}
// If the value is not GC'd memory (e.g. a class), the collector will crash
// trying to collect it when you add it as the target of a disappearing
// link.
if (0 != GC_base(value))
{
GC_GENERAL_REGISTER_DISAPPEARING_LINK((void**)location, value);
}
// If some other thread has modified this, then we may have two different
// objects registered to make this pointer 0 if either is destroyed. This
// would be bad, so we need to make sure that we unregister them and
// register the correct one.
if (!__sync_bool_compare_and_swap(location, old, (id)HIDE_POINTER(value)))
{
return objc_assign_weak(value, location);
}
return value;
}
static SEL finalize;
static SEL cxx_destruct;
Class zombie_class;
static void runFinalize(void *addr, void *context)
{
dump_stack("Freeing Object: ", addr);
id obj = addr;
size_t size = (uintptr_t)context;
if ((canarySize > 0) &&
(*(uint32_t*)((char*)obj + size) != canary))
{
fprintf(stderr, "Something wrote past the end of %p\n", addr);
if (obj->isa != Nil)
{
fprintf(stderr, "Instance of %s\n", obj->isa->name);
}
abort();
}
//fprintf(stderr, "FINALIZING %p (%s)\n", addr, ((id)addr)->isa->name);
if (Nil == ((id)addr)->isa) { return; }
struct objc_slot *slot = objc_get_slot(obj->isa, cxx_destruct);
if (NULL != slot)
{
slot->method(obj, cxx_destruct);
}
slot = objc_get_slot(obj->isa, finalize);
if (NULL != slot)
{
slot->method(obj, finalize);
}
*(void**)addr = zombie_class;
}
static void collectIvarForClass(Class cls, GC_word *bitmap)
{
for (unsigned i=0 ; (cls->ivars != 0) && (i<cls->ivars->count) ; i++)
{
struct objc_ivar *ivar = &cls->ivars->ivar_list[i];
size_t start = ivar->offset;
size_t end = i+1 < cls->ivars->count ? cls->ivars->ivar_list[i+1].offset
: cls->instance_size;
switch (ivar->type[0])
{
case '[': case '{': case '(':
// If the structure / array / union type doesn't contain any
// pointers, then skip it. We still need to be careful of packed
if ((strchr(ivar->type, '^') == 0) &&
(strchr(ivar->type, '@') == 0))
{
break;
}
// Explicit pointer types
case '^': case '@':
for (unsigned b=(start / sizeof(void*)) ; b<(end/sizeof(void*)) ; b++)
{
GC_set_bit(bitmap, b);
}
}
}
if (cls->super_class)
{
collectIvarForClass(cls->super_class, bitmap);
}
}
static GC_descr descriptor_for_class(Class cls)
{
GC_descr descr = gc_typeForClass(cls);
if (0 != descr) { return descr; }
LOCK_RUNTIME_FOR_SCOPE();
descr = (GC_descr)gc_typeForClass(cls);
if (0 != descr) { return descr; }
size_t size = cls->instance_size / 8 + 1;
GC_word bitmap[size];
memset(bitmap, 0, size);
collectIvarForClass(cls, bitmap);
// It's safe to round down here - if a class ends with an ivar that is
// smaller than a pointer, then it can't possibly be a pointer.
//fprintf(stderr, "Class is %d byes, %d words\n", cls->instance_size, cls->instance_size/sizeof(void*));
descr = GC_make_descriptor(bitmap, cls->instance_size / sizeof(void*));
gc_setTypeForClass(cls, descr);
return descr;
}
static id allocate_class(Class cls, size_t extra)
{
size_t size = class_getInstanceSize(cls);
if (canarySize)
{
extra += 4;
}
id obj = 0;
// If there are some extra bytes, they may contain pointers, so we ignore
// the type
if (extra > 0)
{
size += extra;
// FIXME: Overflow checking!
obj = GC_MALLOC(size);
}
else
{
obj = GC_MALLOC_EXPLICITLY_TYPED(size, descriptor_for_class(cls));
}
//fprintf(stderr, "Allocating %p (%s + %d). Base is %p\n", obj, cls->name, extra, GC_base(obj));
// It would be nice not to register a finaliser if the object didn't
// implement finalize or .cxx_destruct methods. Unfortunately, this is not
// possible, because a class may add a finalize method as it runs.
GC_REGISTER_FINALIZER_NO_ORDER(obj, runFinalize,
(void*)(uintptr_t)size-canarySize, 0, 0);
if (canarySize > 0)
{
*(uint32_t*)((char*)obj + size - canarySize) = canary;
}
dump_stack("Allocating object", obj);
return obj;
}
id objc_allocate_object(Class cls, int extra)
{
return class_createInstance(cls, extra);
}
static void registerThread(BOOL errorOnNotRegistered)
{
struct GC_stack_base base;
if (GC_get_stack_base(&base) != GC_SUCCESS)
{
fprintf(stderr, "Unable to find stack base for new thread\n");
abort();
}
switch (GC_register_my_thread(&base))
{
case GC_SUCCESS:
if (errorOnNotRegistered)
{
fprintf(stderr, "Thread should have already been registered with the GC\n");
}
case GC_DUPLICATE:
return;
case GC_NO_THREADS:
case GC_UNIMPLEMENTED:
fprintf(stderr, "Unable to register stack\n");
abort();
}
}
void objc_registerThreadWithCollector(void)
{
registerThread(NO);
}
void objc_unregisterThreadWithCollector(void)
{
GC_unregister_my_thread();
}
void objc_assertRegisteredThreadWithCollector()
{
registerThread(YES);
}
/**
* Structure stored for each GC
*/
static struct gc_refcount
{
/** Reference count */
intptr_t refCount;
/** Strong pointer */
id ptr;
} null_refcount = {0};
static int refcount_compare(const void *ptr, struct gc_refcount rc)
{
return ptr == rc.ptr;
}
static uint32_t ptr_hash(const void *ptr)
{
// Bit-rotate right 4, since the lowest few bits in an object pointer will
// always be 0, which is not so useful for a hash value
return ((uintptr_t)ptr >> 4) | ((uintptr_t)ptr << ((sizeof(id) * 8) - 4));
}
static uint32_t refcount_hash(struct gc_refcount rc)
{
return ptr_hash(rc.ptr);
}
static int isEmpty(struct gc_refcount rc)
{
return rc.ptr == NULL;
}
#define MAP_TABLE_VALUE_NULL isEmpty
#define MAP_TABLE_NAME refcount
#define MAP_TABLE_COMPARE_FUNCTION refcount_compare
#define MAP_TABLE_HASH_KEY ptr_hash
#define MAP_TABLE_HASH_VALUE refcount_hash
#define MAP_TABLE_VALUE_TYPE struct gc_refcount
#define MAP_TABLE_VALUE_PLACEHOLDER null_refcount
#define MAP_TABLE_TYPES_BITMAP (1<<(offsetof(struct gc_refcount, ptr) / sizeof(void*)))
#define MAP_TABLE_ACCESS_BY_REFERENCE
#include "hash_table.h"
static refcount_table *refcounts;
id objc_gc_retain(id object)
{
struct gc_refcount *refcount = refcount_table_get(refcounts, object);
if (NULL == refcount)
{
LOCK_FOR_SCOPE(&(refcounts->lock));
refcount = refcount_table_get(refcounts, object);
if (NULL == refcount)
{
struct gc_refcount rc = { 1, object};
refcount_insert(refcounts, rc);
return object;
}
}
__sync_fetch_and_add(&(refcount->refCount), 1);
return object;
}
void objc_gc_release(id object)
{
struct gc_refcount *refcount = refcount_table_get(refcounts, object);
// This object has not been explicitly retained, don't release it
if (0 == refcount) { return; }
if (0 == __sync_sub_and_fetch(&(refcount->refCount), 1))
{
LOCK_FOR_SCOPE(&(refcounts->lock));
refcount->ptr = 0;
__sync_synchronize();
// If another thread has incremented the reference count while we were
// doing this, then we need to add the count back into the table,
// otherwise we can carry on.
if (!__sync_bool_compare_and_swap(&(refcount->refCount), 0, 0))
{
refcount->ptr = object;
}
}
}
int objc_gc_retain_count(id object)
{
struct gc_refcount *refcount = refcount_table_get(refcounts, object);
return (0 == refcount) ? 0 : refcount->refCount;
}
static void nuke_buffer(void *addr, void *s)
{
return;
dump_stack("Freeing allocation: ", addr);
uintptr_t size = (uintptr_t)s;
if (canary != *(uint32_t*)((char*)addr + size))
{
fprintf(stderr,
"Something wrote past the end of memory allocation %p\n",
addr);
abort();
}
memset(addr, 0, size);
}
void* objc_gc_allocate_collectable(size_t size, BOOL isScanned)
{
void *buffer;
if (isScanned)
{
buffer = GC_MALLOC(size+canarySize);
}
else
{
buffer = GC_MALLOC_ATOMIC(size+canarySize);
memset(buffer, 0, size);
}
if (canarySize > 0)
{
*(uint32_t*)((char*)buffer + size) = canary;
GC_REGISTER_FINALIZER_NO_ORDER(buffer, nuke_buffer,
(void*)(uintptr_t)size, 0, 0);
}
dump_stack("Allocating memory", buffer);
return buffer;
}
void* objc_gc_reallocate_collectable(void *ptr, size_t size, BOOL isScanned)
{
if (0 == size) { return 0; }
void *new = isScanned ? GC_MALLOC(size) : GC_MALLOC_ATOMIC(size);
if (0 == new) { return 0; }
if (NULL != ptr)
{
size_t oldSize = GC_size(ptr);
if (oldSize < size)
{
size = oldSize;
}
memcpy(new, ptr, size);
}
dump_stack("New allocation from realloc: ", new);
return new;
}
static void collectAndDumpStats(int signalNo)
{
objc_collect(OBJC_EXHAUSTIVE_COLLECTION);
GC_dump();
}
static void deferredFinalizer(void)
{
GC_invoke_finalizers();
}
static void runFinalizers(void)
{
//fprintf(stderr, "RUNNING FINALIZERS\n");
if (finalizeThreaded)
{
dispatch_async_f(finalizer_queue, deferredFinalizer, NULL);
}
else
{
GC_invoke_finalizers();
}
}
PRIVATE void init_gc(void)
{
//GC_no_dls = 1;
GC_enable_incremental();
GC_INIT();
char *envValue;
// Dump GC stats on exit - uncomment when debugging.
if (getenv("LIBOBJC_DUMP_GC_STATUS_ON_EXIT"))
{
atexit(GC_dump);
}
if ((envValue = getenv("LIBOBJC_LOG_ALLOCATIONS")))
{
allocationLog = fopen(envValue, "a");
}
if ((envValue = getenv("LIBOBJC_CANARIES")))
{
unsigned s = envValue[0] ? strtol(envValue, NULL, 10) : 123;
srandom(s);
canarySize = sizeof(uint32_t);
canary = random();
}
if ((envValue = getenv("LIBOBJC_DUMP_GC_STATUS_ON_SIGNAL")))
{
int s = envValue[0] ? (int)strtol(envValue, NULL, 10) : SIGUSR2;
signal(s, collectAndDumpStats);
}
//GC_clear_roots();
}
BOOL objc_collecting_enabled(void)
{
// Lock the GC in the current state once it's been queried. This prevents
// the loading of any modules with an incompatible GC mode.
current_gc_mode = isGCEnabled ? GC_Required : GC_None;
return isGCEnabled;
}
void objc_startCollectorThread(void)
{
if (YES == finalizeThreaded) { return; }
finalizer_queue = dispatch_queue_create("ObjC finalizeation thread", 0);
finalizeThreaded = YES;
}
void objc_clear_stack(unsigned long options)
{
// This isn't a very good implementation - we should really be working out
// how much stack space is left somehow, but this is not possible to do
// portably.
int i[1024];
int *addr = &i[0];
memset(addr, 0, 1024);
// Tell the compiler that something that it doesn't know about is touching
// this memory, so it shouldn't optimise the allocation and memset away.
__asm__ volatile ("" : : "m"(addr) : "memory");
}
BOOL objc_is_finalized(void *ptr)
{
return *(Class*)ptr == zombie_class;
}
// FIXME: Stub implementation that should be replaced with something better
void objc_finalizeOnMainThread(Class cls) {}
static void *debug_malloc(size_t s)
{
return GC_MALLOC_UNCOLLECTABLE(s);
}
static void debug_free(void *ptr)
{
GC_FREE(ptr);
}
PRIVATE struct gc_ops gc_ops_boehm =
{
.allocate_class = allocate_class,
.malloc = debug_malloc,
.free = debug_free,
};
extern struct objc_class _NSConcreteStackBlock;
void *_Block_copy(void *src);
PRIVATE void enableGC(BOOL exclude)
{
isGCEnabled = YES;
gc = &gc_ops_boehm;
refcount_initialize(&refcounts, 4096);
finalize = sel_registerName("finalize");
cxx_destruct = sel_registerName(".cxx_destruct");
GC_finalizer_notifier = runFinalizers;
}