darling-libobjc2/arc.m

702 lines
15 KiB
Objective-C

#include <stdlib.h>
#include <assert.h>
#import "stdio.h"
#import "objc/runtime.h"
#import "objc/blocks_runtime.h"
#import "nsobject.h"
#import "class.h"
#import "selector.h"
#import "visibility.h"
#import "objc/hooks.h"
#import "objc/objc-arc.h"
#import "objc/blocks_runtime.h"
#ifndef NO_PTHREADS
#include <pthread.h>
pthread_key_t ARCThreadKey;
#endif
extern void _NSConcreteMallocBlock;
extern void _NSConcreteStackBlock;
extern void _NSConcreteGlobalBlock;
@interface NSAutoreleasePool
+ (Class)class;
+ (id)new;
- (void)release;
@end
#define POOL_SIZE (4096 / sizeof(void*) - (2 * sizeof(void*)))
/**
* Structure used for ARC-managed autorelease pools. This structure should be
* exactly one page in size, so that it can be quickly allocated. This does
* not correspond directly to an autorelease pool. The 'pool' returned by
* objc_autoreleasePoolPush() may be an interior pointer to one of these
* structures.
*/
struct arc_autorelease_pool
{
/**
* Pointer to the previous autorelease pool structure in the chain. Set
* when pushing a new structure on the stack, popped during cleanup.
*/
struct arc_autorelease_pool *previous;
/**
* The current insert point.
*/
id *insert;
/**
* The remainder of the page, an array of object pointers.
*/
id pool[POOL_SIZE];
};
struct arc_tls
{
struct arc_autorelease_pool *pool;
id returnRetained;
};
static inline struct arc_tls* getARCThreadData(void)
{
#ifdef NO_PTHREADS
return NULL;
#else
struct arc_tls *tls = pthread_getspecific(ARCThreadKey);
if (NULL == tls)
{
tls = calloc(sizeof(struct arc_tls), 1);
pthread_setspecific(ARCThreadKey, tls);
}
return tls;
#endif
}
int count = 0;
int poolCount = 0;
static inline void release(id obj);
/**
* Empties objects from the autorelease pool, stating at the head of the list
* specified by pool and continuing until it reaches the stop point. If the stop point is NULL then
*/
static void emptyPool(struct arc_tls *tls, id *stop)
{
struct arc_autorelease_pool *stopPool = NULL;
if (NULL != stop)
{
stopPool = tls->pool;
while (1)
{
// Invalid stop location
if (NULL == stopPool)
{
return;
}
// NULL is the placeholder for the top-level pool
if (NULL == stop && stopPool->previous == NULL)
{
break;
}
// Stop location was found in this pool
if ((stop >= stopPool->pool) && (stop < &stopPool->pool[POOL_SIZE]))
{
break;
}
stopPool = stopPool->previous;
}
}
while (tls->pool != stopPool)
{
while (tls->pool->insert > tls->pool->pool)
{
tls->pool->insert--;
// This may autorelease some other objects, so we have to work in
// the case where the autorelease pool is extended during a -release.
release(*tls->pool->insert);
count--;
}
void *old = tls->pool;
tls->pool = tls->pool->previous;
free(old);
}
if (NULL != tls->pool)
{
while ((stop == NULL || (tls->pool->insert > stop)) &&
(tls->pool->insert > tls->pool->pool))
{
tls->pool->insert--;
count--;
release(*tls->pool->insert);
}
}
//fprintf(stderr, "New insert: %p. Stop: %p\n", tls->pool->insert, stop);
}
static void cleanupPools(struct arc_tls* tls)
{
if (tls->returnRetained)
{
release(tls->returnRetained);
tls->returnRetained = nil;
}
if (NULL != tls->pool)
{
emptyPool(tls, NULL);
assert(NULL == tls->pool);
}
if (tls->returnRetained)
{
cleanupPools(tls);
}
free(tls);
}
static Class AutoreleasePool;
static IMP NewAutoreleasePool;
static IMP DeleteAutoreleasePool;
static IMP AutoreleaseAdd;
extern BOOL FastARCRetain;
extern BOOL FastARCRelease;
extern BOOL FastARCAutorelease;
static BOOL useARCAutoreleasePool;
static inline id retain(id obj)
{
if (isSmallObject(obj)) { return obj; }
Class cls = obj->isa;
if ((Class)&_NSConcreteMallocBlock == cls ||
(Class)&_NSConcreteStackBlock == cls)
{
return Block_copy(obj);
}
if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
intptr_t *refCount = ((intptr_t*)obj) - 1;
__sync_add_and_fetch(refCount, 1);
return obj;
}
return [obj retain];
}
static inline void release(id obj)
{
if (isSmallObject(obj)) { return; }
Class cls = obj->isa;
if (cls == &_NSConcreteMallocBlock)
{
_Block_release(obj);
return;
}
if ((cls == &_NSConcreteStackBlock) ||
(cls == &_NSConcreteGlobalBlock))
{
return;
}
if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
intptr_t *refCount = ((intptr_t*)obj) - 1;
if (__sync_sub_and_fetch(refCount, 1) < 0)
{
objc_delete_weak_refs(obj);
[obj dealloc];
}
return;
}
[obj release];
}
static inline void initAutorelease(void)
{
if (Nil == AutoreleasePool)
{
AutoreleasePool = objc_getRequiredClass("NSAutoreleasePool");
if (Nil == AutoreleasePool)
{
useARCAutoreleasePool = YES;
}
else
{
[AutoreleasePool class];
useARCAutoreleasePool = class_respondsToSelector(AutoreleasePool,
SELECTOR(_ARCCompatibleAutoreleasePool));
NewAutoreleasePool = class_getMethodImplementation(object_getClass(AutoreleasePool),
SELECTOR(new));
DeleteAutoreleasePool = class_getMethodImplementation(AutoreleasePool,
SELECTOR(release));
AutoreleaseAdd = class_getMethodImplementation(object_getClass(AutoreleasePool),
SELECTOR(addObject:));
}
}
}
static inline id autorelease(id obj)
{
//fprintf(stderr, "Autoreleasing %p\n", obj);
if (useARCAutoreleasePool)
{
struct arc_tls *tls = getARCThreadData();
if (NULL != tls)
{
struct arc_autorelease_pool *pool = tls->pool;
if (NULL == pool || (pool->insert >= &pool->pool[POOL_SIZE]))
{
pool = calloc(sizeof(struct arc_autorelease_pool), 1);
pool->previous = tls->pool;
pool->insert = pool->pool;
tls->pool = pool;
}
count++;
*pool->insert = obj;
pool->insert++;
return obj;
}
}
if (objc_test_class_flag(classForObject(obj), objc_class_flag_fast_arc))
{
initAutorelease();
if (0 != AutoreleaseAdd)
{
AutoreleaseAdd(AutoreleasePool, SELECTOR(addObject:), obj);
}
return obj;
}
return [obj autorelease];
}
unsigned long objc_arc_autorelease_count_np(void)
{
struct arc_tls* tls = getARCThreadData();
unsigned long count = 0;
if (!tls) { return 0; }
for (struct arc_autorelease_pool *pool=tls->pool ;
NULL != pool ;
pool = pool->previous)
{
count += (((intptr_t)pool->insert) - ((intptr_t)pool->pool)) / sizeof(id);
}
return count;
}
unsigned long objc_arc_autorelease_count_for_object_np(id obj)
{
struct arc_tls* tls = getARCThreadData();
unsigned long count = 0;
if (!tls) { return 0; }
for (struct arc_autorelease_pool *pool=tls->pool ;
NULL != pool ;
pool = pool->previous)
{
for (id* o = pool->insert-1 ; o >= pool->pool ; o--)
{
if (*o == obj)
{
count++;
}
}
}
return count;
}
void *objc_autoreleasePoolPush(void)
{
initAutorelease();
struct arc_tls* tls = getARCThreadData();
// If there is an object in the return-retained slot, then we need to
// promote it to the real autorelease pool BEFORE pushing the new
// autorelease pool. If we don't, then it may be prematurely autoreleased.
if ((NULL != tls) && (nil != tls->returnRetained))
{
autorelease(tls->returnRetained);
tls->returnRetained = nil;
}
if (useARCAutoreleasePool)
{
if (NULL != tls)
{
struct arc_autorelease_pool *pool = tls->pool;
if (NULL == pool || (pool->insert >= &pool->pool[POOL_SIZE]))
{
pool = calloc(sizeof(struct arc_autorelease_pool), 1);
pool->previous = tls->pool;
pool->insert = pool->pool;
tls->pool = pool;
}
// If there is no autorelease pool allocated for this thread, then
// we lazily allocate one the first time something is autoreleased.
return (NULL != tls->pool) ? tls->pool->insert : NULL;
}
}
initAutorelease();
if (0 == NewAutoreleasePool) { return NULL; }
return NewAutoreleasePool(AutoreleasePool, SELECTOR(new));
}
void objc_autoreleasePoolPop(void *pool)
{
if (useARCAutoreleasePool)
{
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
if (NULL != tls->pool)
{
emptyPool(tls, pool);
}
return;
}
}
DeleteAutoreleasePool(pool, SELECTOR(release));
struct arc_tls* tls = getARCThreadData();
if (tls && tls->returnRetained)
{
release(tls->returnRetained);
tls->returnRetained = nil;
}
}
id objc_autorelease(id obj)
{
if (nil != obj)
{
obj = autorelease(obj);
}
return obj;
}
id objc_autoreleaseReturnValue(id obj)
{
if (!useARCAutoreleasePool)
{
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
objc_autorelease(tls->returnRetained);
tls->returnRetained = obj;
return obj;
}
}
return objc_autorelease(obj);
}
id objc_retainAutoreleasedReturnValue(id obj)
{
// If the previous object was released with objc_autoreleaseReturnValue()
// just before return, then it will not have actually been autoreleased.
// Instead, it will have been stored in TLS. We just remove it from TLS
// and undo the fake autorelease.
//
// If the object was not returned with objc_autoreleaseReturnValue() then
// we actually autorelease the fake object. and then retain the argument.
// In tis case, this is equivalent to objc_retain().
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
// If we're using our own autorelease pool, just pop the object from the top
if (useARCAutoreleasePool)
{
if ((NULL != tls->pool) &&
(*(tls->pool->insert-1) == obj))
{
tls->pool->insert--;
return obj;
}
}
else if (obj == tls->returnRetained)
{
tls->returnRetained = NULL;
return obj;
}
}
return objc_retain(obj);
}
id objc_retain(id obj)
{
if (nil == obj) { return nil; }
return retain(obj);
}
id objc_retainAutorelease(id obj)
{
return objc_autorelease(objc_retain(obj));
}
id objc_retainAutoreleaseReturnValue(id obj)
{
if (nil == obj) { return obj; }
return objc_autoreleaseReturnValue(retain(obj));
}
id objc_retainBlock(id b)
{
return _Block_copy(b);
}
void objc_release(id obj)
{
if (nil == obj) { return; }
release(obj);
}
id objc_storeStrong(id *addr, id value)
{
value = objc_retain(value);
id oldValue = *addr;
*addr = value;
objc_release(oldValue);
return value;
}
////////////////////////////////////////////////////////////////////////////////
// Weak references
////////////////////////////////////////////////////////////////////////////////
typedef struct objc_weak_ref
{
id obj;
id *ref[4];
struct objc_weak_ref *next;
} WeakRef;
static int weak_ref_compare(const id obj, const WeakRef weak_ref)
{
return obj == weak_ref.obj;
}
static uint32_t ptr_hash(const void *ptr)
{
// Bit-rotate right 4, since the lowest few bits in an object pointer will
// always be 0, which is not so useful for a hash value
return ((uintptr_t)ptr >> 4) | ((uintptr_t)ptr << ((sizeof(id) * 8) - 4));
}
static int weak_ref_hash(const WeakRef weak_ref)
{
return ptr_hash(weak_ref.obj);
}
static int weak_ref_is_null(const WeakRef weak_ref)
{
return weak_ref.obj == NULL;
}
const static WeakRef NullWeakRef;
#define MAP_TABLE_NAME weak_ref
#define MAP_TABLE_COMPARE_FUNCTION weak_ref_compare
#define MAP_TABLE_HASH_KEY ptr_hash
#define MAP_TABLE_HASH_VALUE weak_ref_hash
#define MAP_TABLE_HASH_VALUE weak_ref_hash
#define MAP_TABLE_VALUE_TYPE struct objc_weak_ref
#define MAP_TABLE_VALUE_NULL weak_ref_is_null
#define MAP_TABLE_VALUE_PLACEHOLDER NullWeakRef
#define MAP_TABLE_ACCESS_BY_REFERENCE 1
#define MAP_TABLE_SINGLE_THREAD 1
#define MAP_TABLE_NO_LOCK 1
#include "hash_table.h"
static weak_ref_table *weakRefs;
mutex_t weakRefLock;
PRIVATE void init_arc(void)
{
weak_ref_initialize(&weakRefs, 128);
INIT_LOCK(weakRefLock);
#ifndef NO_PTHREADS
pthread_key_create(&ARCThreadKey, (void(*)(void*))cleanupPools);
#endif
}
void* block_load_weak(void *block);
id objc_storeWeak(id *addr, id obj)
{
id old = *addr;
LOCK_FOR_SCOPE(&weakRefLock);
if (nil != old)
{
WeakRef *oldRef = weak_ref_table_get(weakRefs, old);
while (NULL != oldRef)
{
for (int i=0 ; i<4 ; i++)
{
if (oldRef->ref[i] == addr)
{
oldRef->ref[i] = 0;
oldRef = 0;
break;
}
}
oldRef = (oldRef == NULL) ? NULL : oldRef->next;
}
}
if (nil == obj)
{
*addr = obj;
return nil;
}
Class cls = classForObject(obj);
if (&_NSConcreteGlobalBlock == cls)
{
// If this is a global block, it's never deallocated, so secretly make
// this a strong reference
// TODO: We probably also want to do the same for constant strings and
// classes.
*addr = obj;
return obj;
}
if (&_NSConcreteMallocBlock == cls)
{
obj = block_load_weak(obj);
}
else if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
if ((*(((intptr_t*)obj) - 1)) < 0)
{
return nil;
}
}
else
{
obj = _objc_weak_load(obj);
}
if (nil != obj)
{
WeakRef *ref = weak_ref_table_get(weakRefs, obj);
while (NULL != ref)
{
for (int i=0 ; i<4 ; i++)
{
if (0 == ref->ref[i])
{
ref->ref[i] = addr;
*addr = obj;
return obj;
}
}
if (ref->next == NULL)
{
break;
}
ref = ref->next;
}
if (NULL != ref)
{
ref->next = calloc(sizeof(WeakRef), 1);
ref->next->ref[0] = addr;
}
else
{
WeakRef newRef = {0};
newRef.obj = obj;
newRef.ref[0] = addr;
weak_ref_insert(weakRefs, newRef);
}
}
*addr = obj;
return obj;
}
static void zeroRefs(WeakRef *ref, BOOL shouldFree)
{
if (NULL != ref->next)
{
zeroRefs(ref->next, YES);
}
for (int i=0 ; i<4 ; i++)
{
if (0 != ref->ref[i])
{
*ref->ref[i] = 0;
}
}
if (shouldFree)
{
free(ref);
}
else
{
memset(ref, 0, sizeof(WeakRef));
}
}
void objc_delete_weak_refs(id obj)
{
LOCK_FOR_SCOPE(&weakRefLock);
WeakRef *oldRef = weak_ref_table_get(weakRefs, obj);
if (0 != oldRef)
{
zeroRefs(oldRef, NO);
}
}
id objc_loadWeakRetained(id* addr)
{
LOCK_FOR_SCOPE(&weakRefLock);
id obj = *addr;
if (nil == obj) { return nil; }
Class cls = classForObject(obj);
if (&_NSConcreteMallocBlock == cls)
{
obj = block_load_weak(obj);
}
else if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
if ((*(((intptr_t*)obj) - 1)) < 0)
{
return nil;
}
}
else
{
obj = _objc_weak_load(obj);
}
return objc_retain(obj);
}
id objc_loadWeak(id* object)
{
return objc_autorelease(objc_loadWeakRetained(object));
}
void objc_copyWeak(id *dest, id *src)
{
objc_release(objc_initWeak(dest, objc_loadWeakRetained(src)));
}
void objc_moveWeak(id *dest, id *src)
{
// Don't retain or release. While the weak ref lock is held, we know that
// the object can't be deallocated, so we just move the value and update
// the weak reference table entry to indicate the new address.
LOCK_FOR_SCOPE(&weakRefLock);
*dest = *src;
*src = nil;
WeakRef *oldRef = weak_ref_table_get(weakRefs, *dest);
while (NULL != oldRef)
{
for (int i=0 ; i<4 ; i++)
{
if (oldRef->ref[i] == src)
{
oldRef->ref[i] = dest;
return;
}
}
}
}
void objc_destroyWeak(id* obj)
{
objc_storeWeak(obj, nil);
}
id objc_initWeak(id *object, id value)
{
*object = nil;
return objc_storeWeak(object, value);
}