darling-libxml2/trionan.c

613 lines
16 KiB
C
Raw Normal View History

2001-08-21 09:23:53 +00:00
/*************************************************************************
*
* $Id$
*
* Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
* CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
*
************************************************************************
*
* Functions to handle special quantities in floating-point numbers
* (that is, NaNs and infinity). They provide the capability to detect
* and fabricate special quantities.
*
* Although written to be as portable as possible, it can never be
* guaranteed to work on all platforms, as not all hardware supports
* special quantities.
*
* The approach used here (approximately) is to:
*
* 1. Use C99 functionality when available.
* 2. Use IEEE 754 bit-patterns if possible.
* 3. Use platform-specific techniques.
*
* This program has been tested on the following platforms (in
* alphabetic order)
*
* OS CPU Compiler
* -------------------------------------------------
* AIX 4.1.4 PowerPC gcc
* Darwin 1.3.7 PowerPC gcc
* FreeBSD 2.2 x86 gcc
* FreeBSD 3.3 x86 gcc
* FreeBSD 4.3 x86 gcc
* FreeBSD 4.3 Alpha gcc
* HP-UX 10.20 PA-RISC gcc
* HP-UX 10.20 PA-RISC HP C++
* IRIX 6.5 MIPS MIPSpro C
* Linux 2.2 x86 gcc
* Linux 2.2 Alpha gcc
* Linux 2.4 IA64 gcc
* Linux 2.4 StrongARM gcc
* NetBSD 1.4 x86 gcc
* NetBSD 1.4 StrongARM gcc
* NetBSD 1.5 Alpha gcc
2002-01-19 15:40:18 +00:00
* OpenVMS 7.1 Alpha DEC C 6.0
2001-08-21 09:23:53 +00:00
* RISC OS 4 StrongARM Norcroft C
* Solaris 2.5.1 x86 gcc
* Solaris 2.5.1 Sparc gcc
* Solaris 2.6 Sparc WorkShop 4.2
* Solaris 8 Sparc Forte C 6
* Tru64 4.0D Alpha gcc
* Tru64 5.1 Alpha gcc
* WinNT x86 MSVC 5.0 & 6.0
*
************************************************************************/
static const char rcsid[] = "@(#)$Id$";
/*************************************************************************
* Include files
*/
#include "triodef.h"
#include "trionan.h"
#include <math.h>
#include <string.h>
#include <limits.h>
#include <float.h>
#if defined(TRIO_PLATFORM_UNIX)
# include <signal.h>
#endif
2002-01-19 15:40:18 +00:00
#if defined(TRIO_COMPILER_DECC)
# include <fp_class.h>
#endif
2001-08-21 09:23:53 +00:00
#include <assert.h>
2002-01-19 15:40:18 +00:00
#if defined(TRIO_DOCUMENTATION)
# include "doc/doc_nan.h"
2001-08-21 09:23:53 +00:00
#endif
2002-01-19 15:40:18 +00:00
/** @addtogroup SpecialQuantities
@{
*/
2001-08-21 09:23:53 +00:00
/*************************************************************************
* Definitions
*/
/* We must enable IEEE floating-point on Alpha */
#if defined(__alpha) && !defined(_IEEE_FP)
# if defined(TRIO_COMPILER_DECC)
2002-01-19 15:40:18 +00:00
# if defined(TRIO_PLATFORM_VMS)
# error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
# else
# error "Must be compiled with option -ieee"
# endif
2001-08-21 09:23:53 +00:00
# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
# error "Must be compiled with option -mieee"
# endif
#endif /* __alpha && ! _IEEE_FP */
/*
* In ANSI/IEEE 754-1985 64-bits double format numbers have the
* following properties (amoungst others)
*
* o FLT_RADIX == 2: binary encoding
* o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
* to indicate special numbers (e.g. NaN and Infinity), so the
* maximum exponent is 10 bits wide (2^10 == 1024).
* o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
* numbers are normalized the initial binary 1 is represented
* implicitly (the so-called "hidden bit"), which leaves us with
2001-08-21 09:23:53 +00:00
* the ability to represent 53 bits wide mantissa.
*/
#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
# define USE_IEEE_754
#endif
/*************************************************************************
* Data
*/
#if defined(USE_IEEE_754)
/*
* Endian-agnostic indexing macro.
*
* The value of internalEndianMagic, when converted into a 64-bit
2002-01-19 15:40:18 +00:00
* integer, becomes 0x0706050403020100 (we could have used a 64-bit
2001-08-21 09:23:53 +00:00
* integer value instead of a double, but not all platforms supports
* that type). The value is automatically encoded with the correct
* endianess by the compiler, which means that we can support any
* kind of endianess. The individual bytes are then used as an index
* for the IEEE 754 bit-patterns and masks.
*/
2002-01-19 15:40:18 +00:00
#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
2001-08-21 09:23:53 +00:00
2002-01-19 15:40:18 +00:00
static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
2001-08-21 09:23:53 +00:00
/* Mask for the sign */
static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
2001-08-21 09:23:53 +00:00
/* Mask for the exponent */
2002-01-19 15:40:18 +00:00
static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
2001-08-21 09:23:53 +00:00
0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* Mask for the mantissa */
2002-01-19 15:40:18 +00:00
static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
2001-08-21 09:23:53 +00:00
0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
/* Bit-pattern for negative zero */
static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
2001-08-21 09:23:53 +00:00
/* Bit-pattern for infinity */
2002-01-19 15:40:18 +00:00
static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
2001-08-21 09:23:53 +00:00
0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* Bit-pattern for quiet NaN */
2002-01-19 15:40:18 +00:00
static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
2001-08-21 09:23:53 +00:00
0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*************************************************************************
2002-01-19 15:40:18 +00:00
* Functions
*/
/*
2001-08-21 09:23:53 +00:00
* trio_make_double
*/
2002-01-19 15:40:18 +00:00
TRIO_PRIVATE double
trio_make_double(TRIO_CONST unsigned char *values)
2001-08-21 09:23:53 +00:00
{
2002-01-19 15:40:18 +00:00
TRIO_VOLATILE double result;
2001-08-21 09:23:53 +00:00
int i;
for (i = 0; i < (int)sizeof(double); i++) {
2002-01-19 15:40:18 +00:00
((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
2001-08-21 09:23:53 +00:00
}
return result;
}
2002-01-19 15:40:18 +00:00
/*
2001-08-21 09:23:53 +00:00
* trio_examine_double
*/
2002-01-19 15:40:18 +00:00
TRIO_PRIVATE int
2001-08-21 09:23:53 +00:00
trio_is_special_quantity(double number,
int *has_mantissa)
{
unsigned int i;
unsigned char current;
int is_special_quantity = (1 == 1);
*has_mantissa = 0;
for (i = 0; i < (unsigned int)sizeof(double); i++) {
current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
is_special_quantity
&= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
*has_mantissa |= (current & ieee_754_mantissa_mask[i]);
}
return is_special_quantity;
}
/**
Get the sign value
@return 1 for negative, 0 for positive
*/
TRIO_PUBLIC int
trio_get_sign(double number)
{
unsigned int i;
unsigned char current;
int sign = (1 == 1);
for (i = 0; i < (unsigned int)sizeof(double); i++) {
current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
sign
&= ((current & ieee_754_sign_mask[i]) == ieee_754_sign_mask[i]);
}
return sign;
}
/**
Generate negative zero
@return Floating-point representation of negative zero.
*/
TRIO_PUBLIC double
trio_nzero(void)
{
return trio_make_double(ieee_754_negzero_array);
}
2001-08-21 09:23:53 +00:00
#endif /* USE_IEEE_754 */
2002-01-19 15:40:18 +00:00
/**
Generate positive infinity.
@return Floating-point representation of positive infinity.
*/
TRIO_PUBLIC double
2001-08-21 09:23:53 +00:00
trio_pinf(void)
{
/* Cache the result */
static double result = 0.0;
if (result == 0.0) {
#if defined(INFINITY) && defined(__STDC_IEC_559__)
result = (double)INFINITY;
#elif defined(USE_IEEE_754)
result = trio_make_double(ieee_754_infinity_array);
#else
/*
* If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
* as infinity. Otherwise we have to resort to an overflow
* operation to generate infinity.
*/
# if defined(TRIO_PLATFORM_UNIX)
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
result = HUGE_VAL;
if (HUGE_VAL == DBL_MAX) {
/* Force overflow */
result += HUGE_VAL;
}
# if defined(TRIO_PLATFORM_UNIX)
signal(SIGFPE, signal_handler);
# endif
#endif
}
return result;
}
2002-01-19 15:40:18 +00:00
/**
Generate negative infinity.
@return Floating-point value of negative infinity.
*/
TRIO_PUBLIC double
2001-08-21 09:23:53 +00:00
trio_ninf(void)
{
static double result = 0.0;
if (result == 0.0) {
/*
* Negative infinity is calculated by negating positive infinity,
* which can be done because it is legal to do calculations on
* infinity (for example, 1 / infinity == 0).
*/
result = -trio_pinf();
}
return result;
}
2002-01-19 15:40:18 +00:00
/**
Generate NaN.
@return Floating-point representation of NaN.
*/
TRIO_PUBLIC double
2001-08-21 09:23:53 +00:00
trio_nan(void)
{
/* Cache the result */
static double result = 0.0;
if (result == 0.0) {
#if defined(TRIO_COMPILER_SUPPORTS_C99)
result = nan(NULL);
#elif defined(NAN) && defined(__STDC_IEC_559__)
result = (double)NAN;
#elif defined(USE_IEEE_754)
result = trio_make_double(ieee_754_qnan_array);
#else
/*
* There are several ways to generate NaN. The one used here is
* to divide infinity by infinity. I would have preferred to add
* negative infinity to positive infinity, but that yields wrong
* result (infinity) on FreeBSD.
*
* This may fail if the hardware does not support NaN, or if
* the Invalid Operation floating-point exception is unmasked.
*/
# if defined(TRIO_PLATFORM_UNIX)
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
result = trio_pinf() / trio_pinf();
# if defined(TRIO_PLATFORM_UNIX)
signal(SIGFPE, signal_handler);
# endif
#endif
}
return result;
}
2002-01-19 15:40:18 +00:00
/**
Check for NaN.
@param number An arbitrary floating-point number.
@return Boolean value indicating whether or not the number is a NaN.
*/
TRIO_PUBLIC int
2002-01-19 15:40:18 +00:00
trio_isnan(TRIO_VOLATILE double number)
2001-08-21 09:23:53 +00:00
{
#if defined(isnan) || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
/*
* C99 defines isnan() as a macro. UNIX95 defines isnan() as a
* function. This function was already present in XPG4, but this
* is a bit tricky to detect with compiler defines, so we choose
* the conservative approach and only use it for UNIX95.
*/
return isnan(number);
#elif defined(TRIO_COMPILER_MSVC)
/*
* MSC has an _isnan() function
*/
return _isnan(number);
#elif defined(USE_IEEE_754)
/*
* Examine IEEE 754 bit-pattern. A NaN must have a special exponent
* pattern, and a non-empty mantissa.
*/
int has_mantissa;
int is_special_quantity;
is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
return (is_special_quantity && has_mantissa);
#else
/*
* Fallback solution
*/
int status;
double integral, fraction;
# if defined(TRIO_PLATFORM_UNIX)
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
status = (/*
* NaN is the only number which does not compare to itself
*/
(number != number) ||
/*
* Fallback solution if NaN compares to NaN
*/
((number != 0.0) &&
(fraction = modf(number, &integral),
integral == fraction)));
# if defined(TRIO_PLATFORM_UNIX)
signal(SIGFPE, signal_handler);
# endif
return status;
#endif
}
2002-01-19 15:40:18 +00:00
/**
Check for infinity.
@param number An arbitrary floating-point number.
@return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
*/
TRIO_PUBLIC int
2002-01-19 15:40:18 +00:00
trio_isinf(TRIO_VOLATILE double number)
2001-08-21 09:23:53 +00:00
{
#if defined(TRIO_COMPILER_DECC)
/*
* DECC has an isinf() macro, but it works differently than that
* of C99, so we use the fp_class() function instead.
*/
return ((fp_class(number) == FP_POS_INF)
? 1
: ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
#elif defined(isinf)
/*
* C99 defines isinf() as a macro.
*/
return isinf(number);
#elif defined(TRIO_COMPILER_MSVC)
/*
* MSVC has an _fpclass() function that can be used to detect infinity.
*/
return ((_fpclass(number) == _FPCLASS_PINF)
? 1
: ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
#elif defined(USE_IEEE_754)
/*
* Examine IEEE 754 bit-pattern. Infinity must have a special exponent
* pattern, and an empty mantissa.
*/
int has_mantissa;
int is_special_quantity;
is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
return (is_special_quantity && !has_mantissa)
? ((number < 0.0) ? -1 : 1)
: 0;
#else
/*
* Fallback solution.
*/
int status;
# if defined(TRIO_PLATFORM_UNIX)
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
double infinity = trio_pinf();
status = ((number == infinity)
? 1
: ((number == -infinity) ? -1 : 0));
# if defined(TRIO_PLATFORM_UNIX)
signal(SIGFPE, signal_handler);
# endif
return status;
#endif
}
2002-01-19 15:40:18 +00:00
/** @} SpecialQuantities */
2001-08-21 09:23:53 +00:00
/*************************************************************************
2002-01-19 15:40:18 +00:00
* For test purposes.
*
* Add the following compiler option to include this test code.
*
* Unix : -DSTANDALONE
* VMS : /DEFINE=(STANDALONE)
2001-08-21 09:23:53 +00:00
*/
#if defined(STANDALONE)
# include <stdio.h>
int main(void)
{
double my_nan;
double my_pinf;
double my_ninf;
# if defined(TRIO_PLATFORM_UNIX)
void (*signal_handler)(int);
# endif
my_nan = trio_nan();
my_pinf = trio_pinf();
my_ninf = trio_ninf();
printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_nan,
((unsigned char *)&my_nan)[0],
((unsigned char *)&my_nan)[1],
((unsigned char *)&my_nan)[2],
((unsigned char *)&my_nan)[3],
((unsigned char *)&my_nan)[4],
((unsigned char *)&my_nan)[5],
((unsigned char *)&my_nan)[6],
((unsigned char *)&my_nan)[7],
trio_isnan(my_nan), trio_isinf(my_nan));
printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_pinf,
((unsigned char *)&my_pinf)[0],
((unsigned char *)&my_pinf)[1],
((unsigned char *)&my_pinf)[2],
((unsigned char *)&my_pinf)[3],
((unsigned char *)&my_pinf)[4],
((unsigned char *)&my_pinf)[5],
((unsigned char *)&my_pinf)[6],
((unsigned char *)&my_pinf)[7],
trio_isnan(my_pinf), trio_isinf(my_pinf));
printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_ninf,
((unsigned char *)&my_ninf)[0],
((unsigned char *)&my_ninf)[1],
((unsigned char *)&my_ninf)[2],
((unsigned char *)&my_ninf)[3],
((unsigned char *)&my_ninf)[4],
((unsigned char *)&my_ninf)[5],
((unsigned char *)&my_ninf)[6],
((unsigned char *)&my_ninf)[7],
trio_isnan(my_ninf), trio_isinf(my_ninf));
# if defined(TRIO_PLATFORM_UNIX)
signal_handler = signal(SIGFPE, SIG_IGN);
# endif
my_pinf = DBL_MAX + DBL_MAX;
my_ninf = -my_pinf;
my_nan = my_pinf / my_pinf;
# if defined(TRIO_PLATFORM_UNIX)
signal(SIGFPE, signal_handler);
# endif
printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_nan,
((unsigned char *)&my_nan)[0],
((unsigned char *)&my_nan)[1],
((unsigned char *)&my_nan)[2],
((unsigned char *)&my_nan)[3],
((unsigned char *)&my_nan)[4],
((unsigned char *)&my_nan)[5],
((unsigned char *)&my_nan)[6],
((unsigned char *)&my_nan)[7],
trio_isnan(my_nan), trio_isinf(my_nan));
printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_pinf,
((unsigned char *)&my_pinf)[0],
((unsigned char *)&my_pinf)[1],
((unsigned char *)&my_pinf)[2],
((unsigned char *)&my_pinf)[3],
((unsigned char *)&my_pinf)[4],
((unsigned char *)&my_pinf)[5],
((unsigned char *)&my_pinf)[6],
((unsigned char *)&my_pinf)[7],
trio_isnan(my_pinf), trio_isinf(my_pinf));
printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
my_ninf,
((unsigned char *)&my_ninf)[0],
((unsigned char *)&my_ninf)[1],
((unsigned char *)&my_ninf)[2],
((unsigned char *)&my_ninf)[3],
((unsigned char *)&my_ninf)[4],
((unsigned char *)&my_ninf)[5],
((unsigned char *)&my_ninf)[6],
((unsigned char *)&my_ninf)[7],
trio_isnan(my_ninf), trio_isinf(my_ninf));
return 0;
}
#endif