darling-libxpc/mpack.c
Jakub Klama 404e5c1b70 Initial import.
This code is based on original libxpc from NextBSD.
Improvements:
* MessagePack serialization instead of heavily-modified libnv
* Support for multiple transports (UNIX domain sockets and Mach IPC)
2015-09-11 16:37:32 +02:00

3629 lines
117 KiB
C

/**
* The MIT License (MIT)
*
* Copyright (c) 2015 Nicholas Fraser
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* This is the MPack 0.5.1 amalgamation package.
*
* http://github.com/ludocode/mpack
*/
#define MPACK_INTERNAL 1
#include "mpack.h"
/* mpack-platform.c */
#define MPACK_INTERNAL 1
/* #include "mpack-platform.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
#if MPACK_DEBUG && MPACK_STDIO
void mpack_assert_fail_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_assert_fail(buffer);
}
void mpack_break_hit_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_break_hit(buffer);
}
#endif
#if MPACK_CUSTOM_ASSERT
void mpack_break_hit(const char* message) {
// If we have a custom assert handler, break just wraps it
// for simplicity.
mpack_assert_fail(message);
}
#else
void mpack_assert_fail(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
#if defined(__GCC__) || defined(__clang__)
__builtin_trap();
#elif WIN32
__debugbreak();
#endif
#if MPACK_STDLIB
abort();
#elif defined(__GCC__) || defined(__clang__)
__builtin_abort();
#endif
MPACK_UNREACHABLE;
}
void mpack_break_hit(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
#if defined(__GCC__) || defined(__clang__)
__builtin_trap();
#elif WIN32
__debugbreak();
#elif MPACK_STDLIB
abort();
#elif defined(__GCC__) || defined(__clang__)
__builtin_abort();
#endif
}
#endif
#if !MPACK_STDLIB
// The below are adapted from the C wikibook:
// https://en.wikibooks.org/wiki/C_Programming/Strings
void* mpack_memset(void *s, int c, size_t n) {
unsigned char *us = (unsigned char *)s;
unsigned char uc = (unsigned char)c;
while (n-- != 0)
*us++ = uc;
return s;
}
void* mpack_memcpy(void *s1, const void *s2, size_t n) {
char * __restrict dst = (char *)s1;
const char * __restrict src = (const char *)s2;
while (n-- != 0)
*dst++ = *src++;
return s1;
}
void* mpack_memmove(void *s1, const void *s2, size_t n) {
char *p1 = (char *)s1;
const char *p2 = (const char *)s2;
if (p2 < p1 && p1 < p2 + n) {
p2 += n;
p1 += n;
while (n-- != 0)
*--p1 = *--p2;
} else
while (n-- != 0)
*p1++ = *p2++;
return s1;
}
int mpack_memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char *us1 = (const unsigned char *) s1;
const unsigned char *us2 = (const unsigned char *) s2;
while (n-- != 0) {
if (*us1 != *us2)
return (*us1 < *us2) ? -1 : +1;
us1++;
us2++;
}
return 0;
}
size_t mpack_strlen(const char *s) {
const char *p = s;
while (*p != '\0')
p++;
return (size_t)(p - s);
}
#endif
#if defined(MPACK_MALLOC) && !defined(MPACK_REALLOC)
void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) {
void* new_ptr = malloc(new_size);
if (new_ptr == NULL)
return NULL;
mpack_memcpy(new_ptr, old_ptr, used_size);
MPACK_FREE(old_ptr);
return new_ptr;
}
#endif
/* mpack-common.c */
#define MPACK_INTERNAL 1
/* #include "mpack-common.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
const char* mpack_error_to_string(mpack_error_t error) {
#if MPACK_DEBUG
switch (error) {
#define MPACK_ERROR_STRING_CASE(e) case e: return #e
MPACK_ERROR_STRING_CASE(mpack_ok);
MPACK_ERROR_STRING_CASE(mpack_error_io);
MPACK_ERROR_STRING_CASE(mpack_error_invalid);
MPACK_ERROR_STRING_CASE(mpack_error_type);
MPACK_ERROR_STRING_CASE(mpack_error_too_big);
MPACK_ERROR_STRING_CASE(mpack_error_memory);
MPACK_ERROR_STRING_CASE(mpack_error_bug);
MPACK_ERROR_STRING_CASE(mpack_error_data);
#undef MPACK_ERROR_STRING_CASE
default: break;
}
mpack_assert(0, "unrecognized error %i", (int)error);
return "(unknown mpack_error_t)";
#else
MPACK_UNUSED(error);
return "";
#endif
}
const char* mpack_type_to_string(mpack_type_t type) {
#if MPACK_DEBUG
switch (type) {
#define MPACK_TYPE_STRING_CASE(e) case e: return #e
MPACK_TYPE_STRING_CASE(mpack_type_nil);
MPACK_TYPE_STRING_CASE(mpack_type_bool);
MPACK_TYPE_STRING_CASE(mpack_type_float);
MPACK_TYPE_STRING_CASE(mpack_type_double);
MPACK_TYPE_STRING_CASE(mpack_type_int);
MPACK_TYPE_STRING_CASE(mpack_type_uint);
MPACK_TYPE_STRING_CASE(mpack_type_str);
MPACK_TYPE_STRING_CASE(mpack_type_bin);
MPACK_TYPE_STRING_CASE(mpack_type_ext);
MPACK_TYPE_STRING_CASE(mpack_type_array);
MPACK_TYPE_STRING_CASE(mpack_type_map);
#undef MPACK_TYPE_STRING_CASE
default: break;
}
mpack_assert(0, "unrecognized type %i", (int)type);
return "(unknown mpack_type_t)";
#else
MPACK_UNUSED(type);
return "";
#endif
}
int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right) {
// positive numbers may be stored as int; convert to uint
if (left.type == mpack_type_int && left.v.i >= 0) {
left.type = mpack_type_uint;
left.v.u = left.v.i;
}
if (right.type == mpack_type_int && right.v.i >= 0) {
right.type = mpack_type_uint;
right.v.u = right.v.i;
}
if (left.type != right.type)
return (int)left.type - (int)right.type;
switch (left.type) {
case mpack_type_nil:
return 0;
case mpack_type_bool:
return (int)left.v.b - (int)right.v.b;
case mpack_type_int:
if (left.v.i == right.v.i)
return 0;
return (left.v.i < right.v.i) ? -1 : 1;
case mpack_type_uint:
if (left.v.u == right.v.u)
return 0;
return (left.v.u < right.v.u) ? -1 : 1;
case mpack_type_array:
case mpack_type_map:
if (left.v.n == right.v.n)
return 0;
return (left.v.n < right.v.n) ? -1 : 1;
case mpack_type_str:
case mpack_type_bin:
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
case mpack_type_ext:
if (left.exttype == right.exttype) {
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
}
return (int)left.exttype - (int)right.exttype;
// floats should not normally be compared for equality. we compare
// with memcmp() to silence compiler warnings, but this will return
// equal if both are NaNs with the same representation (though we may
// want this, for instance if you are for some bizarre reason using
// floats as map keys.) i'm not sure what the right thing to
// do is here. check for NaN first? always return false if the type
// is float? use operator== and pragmas to silence compiler warning?
// please send me your suggestions.
// note also that we don't convert floats to doubles, so when this is
// used for ordering purposes, all floats are ordered before all
// doubles.
case mpack_type_float:
return mpack_memcmp(&left.v.f, &right.v.f, sizeof(left.v.f));
case mpack_type_double:
return mpack_memcmp(&left.v.d, &right.v.d, sizeof(left.v.d));
default:
break;
}
mpack_assert(0, "unrecognized type %i", (int)left.type);
return false;
}
#if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING
#ifndef MPACK_TRACKING_INITIAL_CAPACITY
// seems like a reasonable number. we grow by doubling, and it only
// needs to be as long as the maximum depth of the message.
#define MPACK_TRACKING_INITIAL_CAPACITY 8
#endif
MPACK_INTERNAL_STATIC mpack_error_t mpack_track_init(mpack_track_t* track) {
track->count = 0;
track->capacity = MPACK_TRACKING_INITIAL_CAPACITY;
track->elements = (mpack_track_element_t*)MPACK_MALLOC(sizeof(mpack_track_element_t) * track->capacity);
if (track->elements == NULL)
return mpack_error_memory;
return mpack_ok;
}
MPACK_INTERNAL_STATIC mpack_error_t mpack_track_grow(mpack_track_t* track) {
mpack_assert(track->elements, "null track elements!");
mpack_assert(track->count == track->capacity, "incorrect growing?");
size_t new_capacity = track->capacity * 2;
mpack_track_element_t* new_elements = (mpack_track_element_t*)mpack_realloc(track->elements,
sizeof(mpack_track_element_t) * track->count, sizeof(mpack_track_element_t) * new_capacity);
if (new_elements == NULL)
return mpack_error_memory;
track->elements = new_elements;
track->capacity = new_capacity;
return mpack_ok;
}
#endif
/* mpack-writer.c */
#define MPACK_INTERNAL 1
/* #include "mpack-writer.h" */
#if MPACK_WRITER
#if MPACK_WRITE_TRACKING
#define MPACK_WRITER_TRACK(writer, error) mpack_writer_flag_if_error(writer, error)
static inline void mpack_writer_flag_if_error(mpack_writer_t* writer, mpack_error_t error) {
if (error != mpack_ok)
mpack_writer_flag_error(writer, error);
}
#else
#define MPACK_WRITER_TRACK(writer, error) MPACK_UNUSED(writer)
#endif
static inline void mpack_writer_track_element(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_element(&writer->track, true));
}
void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size) {
mpack_memset(writer, 0, sizeof(*writer));
writer->buffer = buffer;
writer->size = size;
MPACK_WRITER_TRACK(writer, mpack_track_init(&writer->track));
}
void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_memset(writer, 0, sizeof(*writer));
writer->error = error;
}
#ifdef MPACK_MALLOC
typedef struct mpack_growable_writer_t {
char** target_data;
size_t* target_size;
} mpack_growable_writer_t;
static void mpack_growable_writer_flush(mpack_writer_t* writer, const char* data, size_t count) {
// This is an intrusive flush function which modifies the writer's buffer
// in response to a flush instead of emptying it in order to add more
// capacity for data. This removes the need to copy data from a fixed buffer
// into a growable one, improving performance.
//
// There are three ways flush can be called:
// - flushing the buffer during writing (used is zero, count is all data, data is buffer)
// - flushing extra data during writing (used is all flushed data, count is extra data, data is not buffer)
// - flushing during teardown (used and count are both all flushed data, data is buffer)
//
// We handle these here, making sure used is the total count in all three cases.
mpack_log("flush size %i used %i data %p buffer %p\n", (int)writer->size, (int)writer->used, data, writer->buffer);
// if the given data is not the old buffer, we'll need to actually copy it into the buffer
bool is_extra_data = (data != writer->buffer);
// if we're flushing all data (used is zero), we should actually grow
size_t new_size = writer->size;
if (writer->used == 0 && count != 0)
new_size *= 2;
while (new_size < (is_extra_data ? writer->used + count : count))
new_size *= 2;
if (new_size > writer->size) {
mpack_log("flush growing from %i to %i\n", (int)writer->size, (int)new_size);
char* new_buffer = (char*)mpack_realloc(writer->buffer, count, new_size);
if (new_buffer == NULL) {
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->buffer = new_buffer;
writer->size = new_size;
}
if (is_extra_data) {
mpack_memcpy(writer->buffer + writer->used, data, count);
// add our extra data to count
writer->used += count;
} else {
// used is either zero or count; set it to count
writer->used = count;
}
}
static void mpack_growable_writer_teardown(mpack_writer_t* writer) {
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)writer->context;
if (mpack_writer_error(writer) == mpack_ok) {
// shrink the buffer to an appropriate size if the data is
// much smaller than the buffer
if (writer->used < writer->size / 2) {
char* buffer = (char*)mpack_realloc(writer->buffer, writer->used, writer->used);
if (!buffer) {
MPACK_FREE(writer->buffer);
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->buffer = buffer;
writer->size = writer->used;
}
*growable_writer->target_data = writer->buffer;
*growable_writer->target_size = writer->used;
writer->buffer = NULL;
} else if (writer->buffer) {
MPACK_FREE(writer->buffer);
writer->buffer = NULL;
}
MPACK_FREE(growable_writer);
writer->context = NULL;
}
void mpack_writer_init_growable(mpack_writer_t* writer, char** target_data, size_t* target_size) {
*target_data = NULL;
*target_size = 0;
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*) MPACK_MALLOC(sizeof(mpack_growable_writer_t));
if (growable_writer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
return;
}
mpack_memset(growable_writer, 0, sizeof(*growable_writer));
growable_writer->target_data = target_data;
growable_writer->target_size = target_size;
size_t capacity = MPACK_BUFFER_SIZE;
char* buffer = (char*)MPACK_MALLOC(capacity);
mpack_writer_init(writer, buffer, capacity);
mpack_writer_set_context(writer, growable_writer);
mpack_writer_set_flush(writer, mpack_growable_writer_flush);
mpack_writer_set_teardown(writer, mpack_growable_writer_teardown);
}
#endif
#if MPACK_STDIO
typedef struct mpack_file_writer_t {
FILE* file;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_writer_t;
static void mpack_file_writer_flush(mpack_writer_t* writer, const char* buffer, size_t count) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*)writer->context;
size_t written = fwrite((const void*)buffer, 1, count, file_writer->file);
if (written != count)
mpack_writer_flag_error(writer, mpack_error_io);
}
static void mpack_file_writer_teardown(mpack_writer_t* writer) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*)writer->context;
if (file_writer->file) {
int ret = fclose(file_writer->file);
file_writer->file = NULL;
if (ret != 0)
mpack_writer_flag_error(writer, mpack_error_io);
}
MPACK_FREE(file_writer);
}
void mpack_writer_init_file(mpack_writer_t* writer, const char* filename) {
mpack_file_writer_t* file_writer = (mpack_file_writer_t*) MPACK_MALLOC(sizeof(mpack_file_writer_t));
if (file_writer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
return;
}
file_writer->file = fopen(filename, "wb");
if (file_writer->file == NULL) {
mpack_writer_init_error(writer, mpack_error_io);
MPACK_FREE(file_writer);
return;
}
mpack_writer_init(writer, file_writer->buffer, sizeof(file_writer->buffer));
mpack_writer_set_context(writer, file_writer);
mpack_writer_set_flush(writer, mpack_file_writer_flush);
mpack_writer_set_teardown(writer, mpack_file_writer_teardown);
}
#endif
void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_log("writer %p setting error %i: %s\n", writer, (int)error, mpack_error_to_string(error));
if (writer->error == mpack_ok) {
writer->error = error;
#if MPACK_SETJMP
if (writer->jump_env)
longjmp(*writer->jump_env, 1);
#endif
}
}
static void mpack_write_native_big(mpack_writer_t* writer, const char* p, size_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_log("big write for %i bytes from %p, %i space left in buffer\n",
(int)count, p, (int)(writer->size - writer->used));
mpack_assert(count > writer->size - writer->used,
"big write requested for %i bytes, but there is %i available "
"space in buffer. call mpack_write_native() instead",
(int)count, (int)(writer->size - writer->used));
// we'll need a flush function
if (!writer->flush) {
mpack_writer_flag_error(writer, mpack_error_io);
return;
}
// we assume that the flush function is orders of magnitude slower
// than memcpy(), so we fill the buffer up first to try to flush as
// infrequently as possible.
// fill the remaining space in the buffer
size_t n = writer->size - writer->used;
if (count < n)
n = count;
mpack_memcpy(writer->buffer + writer->used, p, n);
writer->used += n;
p += n;
count -= n;
if (count == 0)
return;
// flush the buffer
size_t used = writer->used;
writer->used = 0;
writer->flush(writer, writer->buffer, used);
if (mpack_writer_error(writer) != mpack_ok)
return;
// note that an intrusive flush function (such as mpack_growable_writer_flush())
// may have changed size and/or reset used to a non-zero value. we treat both as
// though they may have changed, and there may still be data in the buffer.
// flush the extra data directly if it doesn't fit in the buffer
if (count > writer->size - writer->used) {
writer->flush(writer, p, count);
if (mpack_writer_error(writer) != mpack_ok)
return;
} else {
mpack_memcpy(writer->buffer + writer->used, p, count);
writer->used += count;
}
}
static inline void mpack_write_native(mpack_writer_t* writer, const char* p, size_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
if (writer->size - writer->used < count) {
mpack_write_native_big(writer, p, count);
} else {
mpack_memcpy(writer->buffer + writer->used, p, count);
writer->used += count;
}
}
MPACK_ALWAYS_INLINE void mpack_store_native_u8_at(char* p, uint8_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = val;
}
MPACK_ALWAYS_INLINE void mpack_store_native_u16_at(char* p, uint16_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 8) & 0xFF);
u[1] = (uint8_t)( val & 0xFF);
}
MPACK_ALWAYS_INLINE void mpack_store_native_u32_at(char* p, uint32_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 24) & 0xFF);
u[1] = (uint8_t)((val >> 16) & 0xFF);
u[2] = (uint8_t)((val >> 8) & 0xFF);
u[3] = (uint8_t)( val & 0xFF);
}
MPACK_ALWAYS_INLINE void mpack_store_native_u64_at(char* p, uint64_t val) {
uint8_t* u = (uint8_t*)p;
u[0] = (uint8_t)((val >> 56) & 0xFF);
u[1] = (uint8_t)((val >> 48) & 0xFF);
u[2] = (uint8_t)((val >> 40) & 0xFF);
u[3] = (uint8_t)((val >> 32) & 0xFF);
u[4] = (uint8_t)((val >> 24) & 0xFF);
u[5] = (uint8_t)((val >> 16) & 0xFF);
u[6] = (uint8_t)((val >> 8) & 0xFF);
u[7] = (uint8_t)( val & 0xFF);
}
static inline void mpack_write_native_u8(mpack_writer_t* writer, uint8_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u8_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u8_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
static inline void mpack_write_native_u16(mpack_writer_t* writer, uint16_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u16_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u16_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
static inline void mpack_write_native_u32(mpack_writer_t* writer, uint32_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u32_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u32_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
static inline void mpack_write_native_u64(mpack_writer_t* writer, uint64_t val) {
if (writer->size - writer->used >= sizeof(val)) {
mpack_store_native_u64_at(writer->buffer + writer->used, val);
writer->used += sizeof(val);
} else {
char c[sizeof(val)];
mpack_store_native_u64_at(c, val);
mpack_write_native_big(writer, c, sizeof(c));
}
}
static inline void mpack_write_native_i8 (mpack_writer_t* writer, int8_t val) {mpack_write_native_u8 (writer, (uint8_t )val);}
static inline void mpack_write_native_i16 (mpack_writer_t* writer, int16_t val) {mpack_write_native_u16 (writer, (uint16_t)val);}
static inline void mpack_write_native_i32 (mpack_writer_t* writer, int32_t val) {mpack_write_native_u32 (writer, (uint32_t)val);}
static inline void mpack_write_native_i64 (mpack_writer_t* writer, int64_t val) {mpack_write_native_u64 (writer, (uint64_t)val);}
static inline void mpack_write_native_float(mpack_writer_t* writer, float value) {
union {
float f;
uint32_t i;
} u;
u.f = value;
mpack_write_native_u32(writer, u.i);
}
static inline void mpack_write_native_double(mpack_writer_t* writer, double value) {
union {
double d;
uint64_t i;
} u;
u.d = value;
mpack_write_native_u64(writer, u.i);
}
mpack_error_t mpack_writer_destroy(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_destroy(&writer->track, false));
// flush any outstanding data
if (mpack_writer_error(writer) == mpack_ok && writer->used != 0 && writer->flush != NULL) {
writer->flush(writer, writer->buffer, writer->used);
writer->flush = NULL;
}
if (writer->teardown) {
writer->teardown(writer);
writer->teardown = NULL;
}
#if MPACK_SETJMP
if (writer->jump_env)
MPACK_FREE(writer->jump_env);
writer->jump_env = NULL;
#endif
return writer->error;
}
void mpack_writer_destroy_cancel(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_destroy(&writer->track, true));
if (writer->teardown)
writer->teardown(writer);
writer->teardown = NULL;
#if MPACK_SETJMP
if (writer->jump_env)
MPACK_FREE(writer->jump_env);
writer->jump_env = NULL;
#endif
}
void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t value) {
mpack_writer_track_element(writer);
switch (value.type) {
case mpack_type_nil: mpack_write_nil (writer); break;
case mpack_type_bool: mpack_write_bool (writer, value.v.b); break;
case mpack_type_float: mpack_write_float (writer, value.v.f); break;
case mpack_type_double: mpack_write_double(writer, value.v.d); break;
case mpack_type_int: mpack_write_int (writer, value.v.i); break;
case mpack_type_uint: mpack_write_uint (writer, value.v.u); break;
case mpack_type_str: mpack_start_str(writer, value.v.l); break;
case mpack_type_bin: mpack_start_bin(writer, value.v.l); break;
case mpack_type_ext: mpack_start_ext(writer, value.exttype, value.v.l); break;
case mpack_type_array: mpack_start_array(writer, value.v.n); break;
case mpack_type_map: mpack_start_map(writer, value.v.n); break;
default:
mpack_assert(0, "unrecognized type %i", (int)value.type);
break;
}
}
void mpack_write_u8(mpack_writer_t* writer, uint8_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
}
}
void mpack_write_u16(mpack_writer_t* writer, uint16_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, value);
}
}
void mpack_write_u32(mpack_writer_t* writer, uint32_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, (uint16_t)value);
} else {
mpack_write_native_u8(writer, 0xce);
mpack_write_native_u32(writer, value);
}
}
void mpack_write_u64(mpack_writer_t* writer, uint64_t value) {
mpack_writer_track_element(writer);
if (value <= 0x7f) {
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xcc);
mpack_write_native_u8(writer, (uint8_t)value);
} else if (value <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xcd);
mpack_write_native_u16(writer, (uint16_t)value);
} else if (value <= UINT32_MAX) {
mpack_write_native_u8(writer, 0xce);
mpack_write_native_u32(writer, (uint32_t)value);
} else {
mpack_write_native_u8(writer, 0xcf);
mpack_write_native_u64(writer, value);
}
}
void mpack_write_i8(mpack_writer_t* writer, int8_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u8(writer, (uint8_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, value);
}
}
void mpack_write_i16(mpack_writer_t* writer, int16_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u16(writer, (uint16_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, value);
}
}
void mpack_write_i32(mpack_writer_t* writer, int32_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u32(writer, (uint32_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else if (value >= INT16_MIN) {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, (int16_t)value);
} else {
mpack_write_native_u8(writer, 0xd2);
mpack_write_native_i32(writer, value);
}
}
void mpack_write_i64(mpack_writer_t* writer, int64_t value) {
// write any non-negative number as a uint
if (value >= 0) {
mpack_write_u64(writer, (uint64_t)value);
return;
}
mpack_writer_track_element(writer);
if (value >= -32) {
mpack_write_native_i8(writer, (int8_t)0xe0 | (int8_t)value); // TODO: remove this (compatibility/1.1 difference?)
} else if (value >= INT8_MIN) {
mpack_write_native_u8(writer, 0xd0);
mpack_write_native_i8(writer, (int8_t)value);
} else if (value >= INT16_MIN) {
mpack_write_native_u8(writer, 0xd1);
mpack_write_native_i16(writer, (int16_t)value);
} else if (value >= INT32_MIN) {
mpack_write_native_u8(writer, 0xd2);
mpack_write_native_i32(writer, (int32_t)value);
} else {
mpack_write_native_u8(writer, 0xd3);
mpack_write_native_i64(writer, value);
}
}
void mpack_write_bool(mpack_writer_t* writer, bool value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)(0xc2 | (value ? 1 : 0)));
}
void mpack_write_true(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)0xc3);
}
void mpack_write_false(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, (uint8_t)0xc2);
}
void mpack_write_nil(mpack_writer_t* writer) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xc0);
}
void mpack_write_float(mpack_writer_t* writer, float value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xca);
mpack_write_native_float(writer, value);
}
void mpack_write_double(mpack_writer_t* writer, double value) {
mpack_writer_track_element(writer);
mpack_write_native_u8(writer, 0xcb);
mpack_write_native_double(writer, value);
}
#if MPACK_WRITE_TRACKING
void mpack_finish_array(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_array));
}
void mpack_finish_map(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_map));
}
void mpack_finish_str(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_str));
}
void mpack_finish_bin(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_bin));
}
void mpack_finish_ext(mpack_writer_t* writer) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, mpack_type_ext));
}
void mpack_finish_type(mpack_writer_t* writer, mpack_type_t type) {
MPACK_WRITER_TRACK(writer, mpack_track_pop(&writer->track, type));
}
#endif
void mpack_start_array(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 15) {
mpack_write_native_u8(writer, (uint8_t)(0x90 | count));
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xdc);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdd);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_array, count));
}
void mpack_start_map(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 15) {
mpack_write_native_u8(writer, (uint8_t)(0x80 | count));
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xde);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdf);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_map, count));
}
void mpack_start_str(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= 31) {
mpack_write_native_u8(writer, (uint8_t)(0xa0 | count));
} else if (count <= UINT8_MAX) {
// TODO: THIS NOT AVAILABLE IN COMPATIBILITY MODE?? was not in 1.0?
mpack_write_native_u8(writer, 0xd9);
mpack_write_native_u8(writer, (uint8_t)count);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xda);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xdb);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_str, count));
}
void mpack_start_bin(mpack_writer_t* writer, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_writer_track_element(writer);
if (count <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xc4);
mpack_write_native_u8(writer, (uint8_t)count);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xc5);
mpack_write_native_u16(writer, (uint16_t)count);
} else {
mpack_write_native_u8(writer, 0xc6);
mpack_write_native_u32(writer, count);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_bin, count));
}
void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count) {
if (mpack_writer_error(writer) != mpack_ok)
return;
// TODO: fail if compatibility mode
mpack_writer_track_element(writer);
if (count == 1) {
mpack_write_native_u8(writer, 0xd4);
mpack_write_native_i8(writer, exttype);
} else if (count == 2) {
mpack_write_native_u8(writer, 0xd5);
mpack_write_native_i8(writer, exttype);
} else if (count == 4) {
mpack_write_native_u8(writer, 0xd6);
mpack_write_native_i8(writer, exttype);
} else if (count == 8) {
mpack_write_native_u8(writer, 0xd7);
mpack_write_native_i8(writer, exttype);
} else if (count == 16) {
mpack_write_native_u8(writer, 0xd8);
mpack_write_native_i8(writer, exttype);
} else if (count <= UINT8_MAX) {
mpack_write_native_u8(writer, 0xc7);
mpack_write_native_u8(writer, (uint8_t)count);
mpack_write_native_i8(writer, exttype);
} else if (count <= UINT16_MAX) {
mpack_write_native_u8(writer, 0xc8);
mpack_write_native_u16(writer, (uint16_t)count);
mpack_write_native_i8(writer, exttype);
} else {
mpack_write_native_u8(writer, 0xc9);
mpack_write_native_u32(writer, count);
mpack_write_native_i8(writer, exttype);
}
MPACK_WRITER_TRACK(writer, mpack_track_push(&writer->track, mpack_type_ext, count));
}
void mpack_write_str(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_start_str(writer, count);
mpack_write_bytes(writer, data, count);
mpack_finish_str(writer);
}
void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_start_bin(writer, count);
mpack_write_bytes(writer, data, count);
mpack_finish_bin(writer);
}
void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count) {
mpack_start_ext(writer, exttype, count);
mpack_write_bytes(writer, data, count);
mpack_finish_ext(writer);
}
void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count) {
MPACK_WRITER_TRACK(writer, mpack_track_bytes(&writer->track, false, count));
mpack_write_native(writer, data, count);
}
void mpack_write_cstr(mpack_writer_t* writer, const char* str) {
size_t len = mpack_strlen(str);
if (len > UINT32_MAX)
mpack_writer_flag_error(writer, mpack_error_invalid);
mpack_write_str(writer, str, (uint32_t)len);
}
#endif
/* mpack-reader.c */
#define MPACK_INTERNAL 1
/* #include "mpack-reader.h" */
#if MPACK_READER
void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count) {
mpack_memset(reader, 0, sizeof(*reader));
reader->buffer = buffer;
reader->size = size;
reader->left = count;
MPACK_READER_TRACK(reader, mpack_track_init(&reader->track));
}
void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_memset(reader, 0, sizeof(*reader));
reader->error = error;
}
void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count) {
mpack_memset(reader, 0, sizeof(*reader));
reader->left = count;
// unfortunately we have to cast away the const to store the buffer,
// but we won't be modifying it because there's no fill function.
// the buffer size is left at 0 to ensure no fill function can be
// set or used (see mpack_reader_set_fill().)
#ifdef __cplusplus
reader->buffer = const_cast<char*>(data);
#else
reader->buffer = (char*)data;
#endif
MPACK_READER_TRACK(reader, mpack_track_init(&reader->track));
}
#if MPACK_STDIO
typedef struct mpack_file_reader_t {
FILE* file;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_reader_t;
static size_t mpack_file_reader_fill(mpack_reader_t* reader, char* buffer, size_t count) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*)reader->context;
return fread((void*)buffer, 1, count, file_reader->file);
}
static void mpack_file_reader_teardown(mpack_reader_t* reader) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*)reader->context;
if (file_reader->file) {
int ret = fclose(file_reader->file);
file_reader->file = NULL;
if (ret != 0)
mpack_reader_flag_error(reader, mpack_error_io);
}
MPACK_FREE(file_reader);
}
void mpack_reader_init_file(mpack_reader_t* reader, const char* filename) {
mpack_file_reader_t* file_reader = (mpack_file_reader_t*) MPACK_MALLOC(sizeof(mpack_file_reader_t));
if (file_reader == NULL) {
mpack_reader_init_error(reader, mpack_error_memory);
return;
}
file_reader->file = fopen(filename, "rb");
if (file_reader->file == NULL) {
mpack_reader_init_error(reader, mpack_error_io);
MPACK_FREE(file_reader);
return;
}
mpack_reader_init(reader, file_reader->buffer, sizeof(file_reader->buffer), 0);
mpack_reader_set_context(reader, file_reader);
mpack_reader_set_fill(reader, mpack_file_reader_fill);
mpack_reader_set_teardown(reader, mpack_file_reader_teardown);
}
#endif
mpack_error_t mpack_reader_destroy_impl(mpack_reader_t* reader, bool cancel) {
MPACK_UNUSED(cancel);
MPACK_READER_TRACK(reader, mpack_track_destroy(&reader->track, cancel));
if (reader->teardown)
reader->teardown(reader);
reader->teardown = NULL;
#if MPACK_SETJMP
if (reader->jump_env)
MPACK_FREE(reader->jump_env);
reader->jump_env = NULL;
#endif
return reader->error;
}
void mpack_reader_destroy_cancel(mpack_reader_t* reader) {
mpack_reader_destroy_impl(reader, true);
}
mpack_error_t mpack_reader_destroy(mpack_reader_t* reader) {
return mpack_reader_destroy_impl(reader, false);
}
size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data) {
MPACK_READER_TRACK(reader, mpack_track_check_empty(&reader->track));
if (data)
*data = reader->buffer + reader->pos;
return reader->left;
}
void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_log("reader %p setting error %i: %s\n", reader, (int)error, mpack_error_to_string(error));
if (reader->error == mpack_ok) {
reader->error = error;
#if MPACK_SETJMP
if (reader->jump_env)
longjmp(*reader->jump_env, 1);
#endif
}
}
// A helper to call the reader fill function. This makes sure it's
// implemented and guards against overflow in case it returns -1.
static inline size_t mpack_fill(mpack_reader_t* reader, char* p, size_t count) {
if (!reader->fill)
return 0;
size_t ret = reader->fill(reader, p, count);
if (ret == ((size_t)(-1)))
return 0;
return ret;
}
// Reads count bytes into p. Used when there are not enough bytes
// left in the buffer to satisfy a read.
void mpack_read_native_big(mpack_reader_t* reader, char* p, size_t count) {
if (mpack_reader_error(reader) != mpack_ok) {
mpack_memset(p, 0, count);
return;
}
mpack_log("big read for %i bytes into %p, %i left in buffer, buffer size %i\n",
(int)count, p, (int)reader->left, (int)reader->size);
if (count <= reader->left) {
mpack_assert(0,
"big read requested for %i bytes, but there are %i bytes "
"left in buffer. call mpack_read_native() instead",
(int)count, (int)reader->left);
mpack_reader_flag_error(reader, mpack_error_bug);
mpack_memset(p, 0, count);
return;
}
if (reader->size == 0) {
// somewhat debatable what error should be returned here. when
// initializing a reader with an in-memory buffer it's not
// necessarily a bug if the data is blank; it might just have
// been truncated to zero. for this reason we return the same
// error as if the data was truncated.
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
// flush what's left of the buffer
if (reader->left > 0) {
mpack_log("flushing %i bytes remaining in buffer\n", (int)reader->left);
mpack_memcpy(p, reader->buffer + reader->pos, reader->left);
count -= reader->left;
p += reader->left;
reader->pos += reader->left;
reader->left = 0;
}
// we read only in multiples of the buffer size. read the middle portion, if any
size_t middle = count - (count % reader->size);
if (middle > 0) {
mpack_log("reading %i bytes in middle\n", (int)middle);
if (mpack_fill(reader, p, middle) < middle) {
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
count -= middle;
p += middle;
if (count == 0)
return;
}
// fill the buffer
reader->pos = 0;
reader->left = mpack_fill(reader, reader->buffer, reader->size);
mpack_log("filled %i bytes into buffer\n", (int)reader->left);
if (reader->left < count) {
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
// serve the remainder
mpack_log("serving %i remaining bytes from %p to %p\n", (int)count, reader->buffer+reader->pos,p);
mpack_memcpy(p, reader->buffer + reader->pos, count);
reader->pos += count;
reader->left -= count;
}
void mpack_skip_bytes(mpack_reader_t* reader, size_t count) {
// TODO: This is currently very slow, potentially even slower than just
// reading the data. Skip needs to be implemented properly.
char c[128];
size_t i = 0;
while (i < count && mpack_reader_error(reader) == mpack_ok) {
size_t amount = ((count - i) > sizeof(c)) ? sizeof(c) : (count - i);
mpack_read_bytes(reader, c, amount);
i += amount;
}
}
void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count) {
mpack_reader_track_bytes(reader, count);
mpack_read_native(reader, p, count);
}
// internal inplace reader for when it straddles the end of the buffer
// this is split out to inline the common case, although this isn't done
// right now because we can't inline tracking yet
static const char* mpack_read_bytes_inplace_big(mpack_reader_t* reader, size_t count) {
// we should only arrive here from inplace straddle; this should already be checked
mpack_assert(mpack_reader_error(reader) == mpack_ok, "already in error state? %s",
mpack_error_to_string(mpack_reader_error(reader)));
mpack_assert(reader->left < count, "already enough bytes in buffer: %i left, %i count", (int)reader->left, (int)count);
// we'll need a fill function to get more data
if (!reader->fill) {
mpack_reader_flag_error(reader, mpack_error_io);
return NULL;
}
// make sure the buffer is big enough to actually fit the data
if (count > reader->size) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return NULL;
}
// shift the remaining data back to the start and fill the buffer back up
mpack_memmove(reader->buffer, reader->buffer + reader->pos, reader->left);
reader->pos = 0;
reader->left += mpack_fill(reader, reader->buffer + reader->left, reader->size - reader->left);
if (reader->left < count) {
mpack_reader_flag_error(reader, mpack_error_io);
return NULL;
}
reader->pos += count;
reader->left -= count;
return reader->buffer;
}
const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return NULL;
mpack_reader_track_bytes(reader, count);
// if we have enough bytes already in the buffer, we can return it directly.
if (reader->left >= count) {
reader->pos += count;
reader->left -= count;
return reader->buffer + reader->pos - count;
}
return mpack_read_bytes_inplace_big(reader, count);
}
mpack_tag_t mpack_read_tag(mpack_reader_t* reader) {
mpack_tag_t var;
mpack_memset(&var, 0, sizeof(var));
var.type = mpack_type_nil;
// get the type
uint8_t type = mpack_read_native_u8(reader);
if (mpack_reader_error(reader))
return var;
mpack_reader_track_element(reader);
// unfortunately, by far the fastest way to parse a tag is to switch
// on the first byte, and to explicitly list every possible byte. so for
// infix types, the list of cases is quite large. the compiler optimizes
// this nicely (and it takes very little space.)
switch (type) {
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
var.type = mpack_type_uint;
var.v.u = type;
return var;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
var.type = mpack_type_int;
var.v.i = (int8_t)type;
return var;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
var.type = mpack_type_map;
var.v.n = type & ~0xf0;
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n));
return var;
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
var.type = mpack_type_array;
var.v.n = type & ~0xf0;
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n));
return var;
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
var.type = mpack_type_str;
var.v.l = type & ~0xe0;
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l));
return var;
// nil
case 0xc0:
var.type = mpack_type_nil;
return var;
// bool
case 0xc2: case 0xc3:
var.type = mpack_type_bool;
var.v.b = type & 1;
return var;
// bin8
case 0xc4:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l));
return var;
// bin16
case 0xc5:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u16(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l));
return var;
// bin32
case 0xc6:
var.type = mpack_type_bin;
var.v.l = mpack_read_native_u32(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_bin, var.v.l));
return var;
// ext8
case 0xc7:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u8(reader);
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// ext16
case 0xc8:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u16(reader);
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// ext32
case 0xc9:
var.type = mpack_type_ext;
var.v.l = mpack_read_native_u32(reader);
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// float
case 0xca:
var.type = mpack_type_float;
var.v.f = mpack_read_native_float(reader);
return var;
// double
case 0xcb:
var.type = mpack_type_double;
var.v.d = mpack_read_native_double(reader);
return var;
// uint8
case 0xcc:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u8(reader);
return var;
// uint16
case 0xcd:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u16(reader);
return var;
// uint32
case 0xce:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u32(reader);
return var;
// uint64
case 0xcf:
var.type = mpack_type_uint;
var.v.u = mpack_read_native_u64(reader);
return var;
// int8
case 0xd0:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i8(reader);
return var;
// int16
case 0xd1:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i16(reader);
return var;
// int32
case 0xd2:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i32(reader);
return var;
// int64
case 0xd3:
var.type = mpack_type_int;
var.v.i = mpack_read_native_i64(reader);
return var;
// fixext1
case 0xd4:
var.type = mpack_type_ext;
var.v.l = 1;
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// fixext2
case 0xd5:
var.type = mpack_type_ext;
var.v.l = 2;
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// fixext4
case 0xd6:
var.type = mpack_type_ext;
var.v.l = 4;
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// fixext8
case 0xd7:
var.type = mpack_type_ext;
var.v.l = 8;
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// fixext16
case 0xd8:
var.type = mpack_type_ext;
var.v.l = 16;
var.exttype = mpack_read_native_i8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_ext, var.v.l));
return var;
// str8
case 0xd9:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u8(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l));
return var;
// str16
case 0xda:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u16(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l));
return var;
// str32
case 0xdb:
var.type = mpack_type_str;
var.v.l = mpack_read_native_u32(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_str, var.v.l));
return var;
// array16
case 0xdc:
var.type = mpack_type_array;
var.v.n = mpack_read_native_u16(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n));
return var;
// array32
case 0xdd:
var.type = mpack_type_array;
var.v.n = mpack_read_native_u32(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_array, var.v.n));
return var;
// map16
case 0xde:
var.type = mpack_type_map;
var.v.n = mpack_read_native_u16(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n));
return var;
// map32
case 0xdf:
var.type = mpack_type_map;
var.v.n = mpack_read_native_u32(reader);
MPACK_READER_TRACK(reader, mpack_track_push(&reader->track, mpack_type_map, var.v.n));
return var;
// reserved
case 0xc1:
break;
}
// unrecognized type
mpack_reader_flag_error(reader, mpack_error_invalid);
return var;
}
void mpack_discard(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (mpack_reader_error(reader))
return;
switch (var.type) {
case mpack_type_str:
mpack_skip_bytes(reader, var.v.l);
mpack_done_str(reader);
break;
case mpack_type_bin:
mpack_skip_bytes(reader, var.v.l);
mpack_done_bin(reader);
break;
case mpack_type_ext:
mpack_skip_bytes(reader, var.v.l);
mpack_done_ext(reader);
break;
case mpack_type_array: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
break;
}
case mpack_type_map: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
break;
}
default:
break;
}
}
#if MPACK_READ_TRACKING
void mpack_done_array(mpack_reader_t* reader) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_array));
}
void mpack_done_map(mpack_reader_t* reader) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_map));
}
void mpack_done_str(mpack_reader_t* reader) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_str));
}
void mpack_done_bin(mpack_reader_t* reader) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_bin));
}
void mpack_done_ext(mpack_reader_t* reader) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, mpack_type_ext));
}
void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) {
MPACK_READER_TRACK(reader, mpack_track_pop(&reader->track, type));
}
#endif
#if MPACK_DEBUG && MPACK_STDIO && MPACK_SETJMP && !MPACK_NO_PRINT
static void mpack_debug_print_element(mpack_reader_t* reader, size_t depth) {
mpack_tag_t val = mpack_read_tag(reader);
switch (val.type) {
case mpack_type_nil:
printf("null");
break;
case mpack_type_bool:
printf(val.v.b ? "true" : "false");
break;
case mpack_type_float:
printf("%f", val.v.f);
break;
case mpack_type_double:
printf("%f", val.v.d);
break;
case mpack_type_int:
printf("%" PRIi64, val.v.i);
break;
case mpack_type_uint:
printf("%" PRIu64, val.v.u);
break;
case mpack_type_bin:
// skip data
for (size_t i = 0; i < val.v.l; ++i)
mpack_read_native_u8(reader);
printf("<binary data>");
mpack_done_bin(reader);
break;
case mpack_type_ext:
// skip data
for (size_t i = 0; i < val.v.l; ++i)
mpack_read_native_u8(reader);
printf("<ext data of type %i>", val.exttype);
mpack_done_ext(reader);
break;
case mpack_type_str:
putchar('"');
for (size_t i = 0; i < val.v.l; ++i) {
char c;
mpack_read_bytes(reader, &c, 1);
switch (c) {
case '\n': printf("\\n"); break;
case '\\': printf("\\\\"); break;
case '"': printf("\\\""); break;
default: putchar(c); break;
}
}
putchar('"');
mpack_done_str(reader);
break;
case mpack_type_array:
printf("[\n");
for (size_t i = 0; i < val.v.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_debug_print_element(reader, depth + 1);
if (i != val.v.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar(']');
mpack_done_array(reader);
break;
case mpack_type_map:
printf("{\n");
for (size_t i = 0; i < val.v.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_debug_print_element(reader, depth + 1);
printf(": ");
mpack_debug_print_element(reader, depth + 1);
if (i != val.v.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar('}');
mpack_done_map(reader);
break;
}
}
void mpack_debug_print(const char* data, int len) {
mpack_reader_t reader;
mpack_reader_init_data(&reader, data, len);
if (MPACK_READER_SETJMP(&reader)) {
printf("<mpack parsing error %s>\n", mpack_error_to_string(mpack_reader_error(&reader)));
return;
}
int depth = 2;
for (int i = 0; i < depth; ++i)
printf(" ");
mpack_debug_print_element(&reader, depth);
putchar('\n');
if (mpack_reader_remaining(&reader, NULL) > 0)
printf("<%i extra bytes at end of mpack>\n", (int)mpack_reader_remaining(&reader, NULL));
}
#endif
#endif
/* mpack-expect.c */
#define MPACK_INTERNAL 1
/* #include "mpack-expect.h" */
#if MPACK_EXPECT
// Basic Number Functions
uint8_t mpack_expect_u8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT8_MAX)
return (uint8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT8_MAX)
return (uint8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint16_t mpack_expect_u16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT16_MAX)
return (uint16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT16_MAX)
return (uint16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint32_t mpack_expect_u32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT32_MAX)
return (uint32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT32_MAX)
return (uint32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint64_t mpack_expect_u64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
return var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0)
return (uint64_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int8_t mpack_expect_i8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT8_MAX)
return (int8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT8_MIN && var.v.i <= INT8_MAX)
return (int8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int16_t mpack_expect_i16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT16_MAX)
return (int16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT16_MIN && var.v.i <= INT16_MAX)
return (int16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int32_t mpack_expect_i32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT32_MAX)
return (int32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT32_MIN && var.v.i <= INT32_MAX)
return (int32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int64_t mpack_expect_i64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT64_MAX)
return (int64_t)var.v.u;
} else if (var.type == mpack_type_int) {
return var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
float mpack_expect_float(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (float)var.v.u;
else if (var.type == mpack_type_int)
return (float)var.v.i;
else if (var.type == mpack_type_float)
return var.v.f;
else if (var.type == mpack_type_double)
return (float)var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (double)var.v.u;
else if (var.type == mpack_type_int)
return (double)var.v.i;
else if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
float mpack_expect_float_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return var.v.f;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
// Ranged Number Functions
int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %i must be less than or equal to max_value %i",
min_value, max_value);
// read the value
int8_t val = mpack_expect_i8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
// TODO: missing i16_range, i32_range, i64_range?
uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint8_t val = mpack_expect_u8(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint16_t val = mpack_expect_u16(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %u must be less than or equal to max_value %u",
min_value, max_value);
// read the value
uint32_t val = mpack_expect_u32(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value,
"min_value %" PRIu64 " must be less than or equal to max_value %" PRIu64, min_value, max_value);
// read the value
uint64_t val = mpack_expect_u64(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %f must be less than or equal to max_value %f",
min_value, max_value);
// read the value
float val = mpack_expect_float(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value) {
// make sure the range is sensible
mpack_assert(min_value <= max_value, "min_value %f must be less than or equal to max_value %f",
min_value, max_value);
// read the value
double val = mpack_expect_double(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_value;
// make sure it fits
if (val < min_value || val > max_value) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_value;
}
return val;
}
// Matching Number Functions
void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value) {
if (mpack_expect_u64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_int_match(mpack_reader_t* reader, int64_t value) {
if (mpack_expect_i64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
// Other Basic Types
void mpack_expect_nil(mpack_reader_t* reader) {
mpack_reader_track_element(reader);
uint8_t type = mpack_read_native_u8(reader);
if (reader->error != mpack_ok)
return;
if (type != 0xc0)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_bool(mpack_reader_t* reader) {
mpack_reader_track_element(reader);
uint8_t type = mpack_read_native_u8(reader);
if (reader->error != mpack_ok)
return false;
if ((type & ~1) != 0xc2)
mpack_reader_flag_error(reader, mpack_error_type);
return (bool)(type & 1);
}
void mpack_expect_true(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != true)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_false(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != false)
mpack_reader_flag_error(reader, mpack_error_type);
}
// Compound Types
uint32_t mpack_expect_map(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_map)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_map(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_nil) {
*count = 0;
return false;
}
if (var.type == mpack_type_map) {
*count = var.v.n;
return true;
}
mpack_reader_flag_error(reader, mpack_error_type);
*count = 0;
return false;
}
uint32_t mpack_expect_array(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_array)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_array(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_count, uint32_t max_count) {
// make sure the range is sensible
mpack_assert(min_count <= max_count, "min_count %u must be less than or equal to max_count %u",
min_count, max_count);
// read the count
uint32_t count = mpack_expect_array(reader);
if (mpack_reader_error(reader) != mpack_ok)
return min_count;
// make sure it fits
if (count < min_count || count > max_count) {
mpack_reader_flag_error(reader, mpack_error_type);
return min_count;
}
return count;
}
#ifdef MPACK_MALLOC
void* mpack_expect_array_alloc_impl(mpack_reader_t* reader, size_t element_size, uint32_t max_count, size_t* out_count) {
size_t count = *out_count = mpack_expect_array(reader);
if (mpack_reader_error(reader))
return NULL;
if (count > max_count) {
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
void* p = MPACK_MALLOC(element_size * count);
if (p == NULL)
mpack_reader_flag_error(reader, mpack_error_memory);
return p;
}
#endif
// String Functions
uint32_t mpack_expect_str(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_str)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
size_t strsize = mpack_expect_str(reader);
if (mpack_reader_error(reader))
return 0;
if (strsize > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, strsize);
if (mpack_reader_error(reader))
return 0;
mpack_done_str(reader);
return strsize;
}
// Binary Blob Functions
uint32_t mpack_expect_bin(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_bin)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
size_t binsize = mpack_expect_bin(reader);
if (mpack_reader_error(reader))
return 0;
if (binsize > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, binsize);
if (mpack_reader_error(reader))
return 0;
mpack_done_bin(reader);
return binsize;
}
void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
// make sure buffer makes sense
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
// expect a str
size_t rawsize = mpack_expect_str_buf(reader, buf, bufsize - 1);
if (mpack_reader_error(reader)) {
buf[0] = 0;
return;
}
buf[rawsize] = 0;
// check it for null bytes
for (size_t i = 0; i < rawsize; ++i) {
if (buf[i] == 0) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
}
void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
// make sure buffer makes sense
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
// expect a raw
size_t rawsize = mpack_expect_str_buf(reader, buf, bufsize - 1);
if (mpack_reader_error(reader)) {
buf[0] = 0;
return;
}
buf[rawsize] = 0;
// check encoding
uint32_t state = 0;
uint32_t codepoint = 0;
for (size_t i = 0; i < rawsize; ++i) {
if (mpack_utf8_decode(&state, &codepoint, buf[i]) == MPACK_UTF8_REJECT) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
}
#ifdef MPACK_MALLOC
char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize) {
// make sure argument makes sense
if (maxsize < 1) {
mpack_break("maxsize is zero; you must have room for at least a null-terminator");
mpack_reader_flag_error(reader, mpack_error_bug);
return NULL;
}
// read size
size_t length = mpack_expect_str(reader); // TODO: use expect str max? create expect str max...
if (mpack_reader_error(reader))
return NULL;
if (length > (maxsize - 1)) {
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
// allocate
char* str = (char*)MPACK_MALLOC(length + 1);
if (str == NULL) {
mpack_reader_flag_error(reader, mpack_error_memory);
return NULL;
}
// read with jump disabled so we don't leak our buffer
mpack_reader_track_bytes(reader, length);
mpack_read_native_nojump(reader, str, length);
if (mpack_reader_error(reader)) {
MPACK_FREE(str);
return NULL;
}
str[length] = 0;
mpack_done_str(reader);
return str;
}
#endif
void mpack_expect_cstr_match(mpack_reader_t* reader, const char* str) {
if (reader->error != mpack_ok)
return;
// expect a str the correct length
size_t len = mpack_strlen(str);
if (len > UINT32_MAX)
mpack_reader_flag_error(reader, mpack_error_invalid);
mpack_expect_str_length(reader, (uint32_t)len);
if (mpack_reader_error(reader))
return;
// check each byte
for (size_t i = 0; i < len; ++i) {
mpack_reader_track_bytes(reader, 1);
if (mpack_read_native_u8(reader) != *str++) {
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
mpack_done_str(reader);
}
#endif
/* mpack-node.c */
#define MPACK_INTERNAL 1
/* #include "mpack-node.h" */
#if MPACK_NODE
/*
* Tree Parsing
*/
typedef struct mpack_level_t {
mpack_node_data_t* child;
size_t left; // children left in level
} mpack_level_t;
typedef struct mpack_tree_parser_t {
mpack_tree_t* tree;
const char* data;
size_t left; // bytes left in data
size_t possible_nodes_left;
size_t level;
size_t depth;
mpack_level_t* stack;
bool stack_allocated;
} mpack_tree_parser_t;
static inline uint8_t mpack_tree_u8(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint8_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint8_t val = mpack_load_native_u8(parser->data);
parser->data += sizeof(uint8_t);
parser->left -= sizeof(uint8_t);
parser->possible_nodes_left -= sizeof(uint8_t);
return val;
}
static inline uint16_t mpack_tree_u16(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint16_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint16_t val = mpack_load_native_u16(parser->data);
parser->data += sizeof(uint16_t);
parser->left -= sizeof(uint16_t);
parser->possible_nodes_left -= sizeof(uint16_t);
return val;
}
static inline uint32_t mpack_tree_u32(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint32_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint32_t val = mpack_load_native_u32(parser->data);
parser->data += sizeof(uint32_t);
parser->left -= sizeof(uint32_t);
parser->possible_nodes_left -= sizeof(uint32_t);
return val;
}
static inline uint64_t mpack_tree_u64(mpack_tree_parser_t* parser) {
if (parser->possible_nodes_left < sizeof(uint64_t)) {
mpack_tree_flag_error(parser->tree, mpack_error_io);
return 0;
}
uint64_t val = mpack_load_native_u64(parser->data);
parser->data += sizeof(uint64_t);
parser->left -= sizeof(uint64_t);
parser->possible_nodes_left -= sizeof(uint64_t);
return val;
}
static inline int8_t mpack_tree_i8 (mpack_tree_parser_t* parser) {return (int8_t) mpack_tree_u8(parser); }
static inline int16_t mpack_tree_i16(mpack_tree_parser_t* parser) {return (int16_t)mpack_tree_u16(parser);}
static inline int32_t mpack_tree_i32(mpack_tree_parser_t* parser) {return (int32_t)mpack_tree_u32(parser);}
static inline int64_t mpack_tree_i64(mpack_tree_parser_t* parser) {return (int64_t)mpack_tree_u64(parser);}
static inline float mpack_tree_float(mpack_tree_parser_t* parser) {
union {
float f;
uint32_t i;
} u;
u.i = mpack_tree_u32(parser);
return u.f;
}
static inline double mpack_tree_double(mpack_tree_parser_t* parser) {
union {
double d;
uint64_t i;
} u;
u.i = mpack_tree_u64(parser);
return u.d;
}
void mpack_tree_parse_children(mpack_tree_parser_t* parser, mpack_node_data_t* node) {
mpack_type_t type = node->type;
size_t total = node->value.content.n;
// Make sure we have enough room in the stack
if (parser->level + 1 == parser->depth) {
#ifdef MPACK_MALLOC
size_t new_depth = parser->depth * 2;
mpack_log("growing stack to depth %i\n", (int)new_depth);
// Replace the stack-allocated parsing stack
if (parser->stack_allocated) {
mpack_level_t* new_stack = (mpack_level_t*)MPACK_MALLOC(sizeof(mpack_level_t) * new_depth);
if (!new_stack) {
mpack_tree_flag_error(parser->tree, mpack_error_memory);
parser->level = 0;
return;
}
memcpy(new_stack, parser->stack, sizeof(mpack_level_t) * parser->depth);
parser->stack = new_stack;
parser->stack_allocated = false;
// Realloc the allocated parsing stack
} else {
parser->stack = (mpack_level_t*)mpack_realloc(parser->stack, sizeof(mpack_level_t) * parser->depth, sizeof(mpack_level_t) * new_depth);
if (!parser->stack) {
mpack_tree_flag_error(parser->tree, mpack_error_memory);
parser->level = 0;
return;
}
}
parser->depth = new_depth;
#else
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
#endif
}
// Calculate total elements to read
if (type == mpack_type_map) {
if ((uint64_t)total * 2 > (uint64_t)SIZE_MAX) {
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
}
total *= 2;
}
// Each node is at least one byte. Count these bytes now to make
// sure there is enough data left.
if (total > parser->possible_nodes_left) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
parser->possible_nodes_left -= total;
// If there are enough nodes left in the current page, no need to grow
if (total <= parser->tree->page.left) {
node->value.content.children = parser->tree->page.nodes + parser->tree->page.pos;
parser->tree->page.pos += total;
parser->tree->page.left -= total;
} else {
#ifdef MPACK_MALLOC
// We can't grow if we're using a fixed pool
if (!parser->tree->owned) {
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
}
// Otherwise we need to grow, and the node's children need to be contiguous.
// This is a heuristic to decide whether we should waste the remaining space
// in the current page and start a new one, or give the children their
// own page. With a fraction of 1/8, this causes at most 12% additional
// waste. Note that reducing this too much causes less cache coherence and
// more malloc() overhead due to smaller allocations, so there's a tradeoff
// here. This heuristic could use some improvement, especially with custom
// page sizes.
// Allocate the new link first. The two cases below put it into the list before trying
// to allocate its nodes so it gets freed later in case of allocation failure.
mpack_tree_link_t* link = (mpack_tree_link_t*)MPACK_MALLOC(sizeof(mpack_tree_link_t));
if (link == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
if (total > MPACK_NODE_PAGE_SIZE || parser->tree->page.left > MPACK_NODE_PAGE_SIZE / 8) {
mpack_log("allocating seperate page for %i children, %i left in page of size %i\n",
(int)total, (int)parser->tree->page.left, (int)MPACK_NODE_PAGE_SIZE);
// Allocate only this node's children and insert it after the current page
link->next = parser->tree->page.next;
parser->tree->page.next = link;
link->nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * total);
if (link->nodes == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
// Use the new page for the node's children. pos and left are not used.
node->value.content.children = link->nodes;
} else {
mpack_log("allocating new page for %i children, wasting %i in page of size %i\n",
(int)total, (int)parser->tree->page.left, (int)MPACK_NODE_PAGE_SIZE);
// Move the current page into the new link, and allocate a new page
*link = parser->tree->page;
parser->tree->page.next = link;
parser->tree->page.nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * MPACK_NODE_PAGE_SIZE);
if (parser->tree->page.nodes == NULL) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
// Take this node's children from the page
node->value.content.children = parser->tree->page.nodes;
parser->tree->page.pos = total;
parser->tree->page.left = MPACK_NODE_PAGE_SIZE - total;
}
#else
// We can't grow if we don't have an allocator
mpack_tree_flag_error(parser->tree, mpack_error_too_big);
parser->level = 0;
return;
#endif
}
// Push this node onto the stack to read its children
++parser->level;
parser->stack[parser->level].child = node->value.content.children;
parser->stack[parser->level].left = total;
}
void mpack_tree_parse_bytes(mpack_tree_parser_t* parser, mpack_node_data_t* node) {
size_t length = node->value.data.l;
if (length > parser->possible_nodes_left) {
mpack_tree_flag_error(parser->tree, mpack_error_invalid);
parser->level = 0;
return;
}
node->value.data.bytes = parser->data;
parser->data += length;
parser->left -= length;
parser->possible_nodes_left -= length;
}
void mpack_tree_parse(mpack_tree_t* tree, const char* data, size_t length) {
mpack_log("starting parse\n");
// This function is unfortunately huge and ugly, but there isn't
// a good way to break it apart without losing performance. It's
// well-commented to try to make up for it.
if (length == 0) {
mpack_tree_init_error(tree, mpack_error_io);
return;
}
if (tree->page.left == 0) {
mpack_break("initial page has no nodes!");
mpack_tree_init_error(tree, mpack_error_bug);
return;
}
tree->root = tree->page.nodes + tree->page.pos;
++tree->page.pos;
--tree->page.left;
// Setup parser
mpack_tree_parser_t parser;
mpack_memset(&parser, 0, sizeof(parser));
parser.tree = tree;
parser.data = data;
parser.left = length;
// We read nodes in a loop instead of recursively for maximum
// performance. The stack holds the amount of children left to
// read in each level of the tree.
// Even when we have a malloc() function, it's much faster to
// allocate the initial parsing stack on the call stack. We
// replace it with a heap allocation if we need to grow it.
#ifdef MPACK_MALLOC
static const size_t initial_depth = MPACK_NODE_INITIAL_DEPTH;
parser.stack_allocated = true;
#else
static const size_t initial_depth = MPACK_NODE_MAX_DEPTH_WITHOUT_MALLOC;
#endif
mpack_level_t stack_[initial_depth];
parser.depth = initial_depth;
parser.stack = stack_;
// We keep track of the number of possible nodes left in the data. This
// is to ensure that malicious nested data is not trying to make us
// run out of memory by allocating too many nodes. (For example malicious
// data that repeats 0xDE 0xFF 0xFF would otherwise cause us to run out
// of memory. With this, the parser can only allocate as many nodes as
// there are bytes in the data (plus the paging overhead, 12%.) An error
// will be flagged immediately if and when there isn't enough data left
// to fully read all children of all open compound types on the stack.)
parser.possible_nodes_left = length;
// configure the root node
--parser.possible_nodes_left;
tree->node_count = 1;
parser.level = 0;
parser.stack[0].child = tree->root;
parser.stack[0].left = 1;
do {
mpack_node_data_t* node = parser.stack[parser.level].child;
--parser.stack[parser.level].left;
++parser.stack[parser.level].child;
// read the type (we've already counted this byte in possible_nodes_left)
++parser.possible_nodes_left;
uint8_t type = mpack_tree_u8(&parser);
// as with mpack_read_tag(), the fastest way to parse a node is to switch
// on the first byte, and to explicitly list every possible byte.
switch (type) {
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
node->type = mpack_type_uint;
node->value.u = type;
break;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
node->type = mpack_type_int;
node->value.i = (int8_t)type;
break;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
node->type = mpack_type_map;
node->value.content.n = type & ~0xf0;
mpack_tree_parse_children(&parser, node);
break;
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
node->type = mpack_type_array;
node->value.content.n = type & ~0xf0;
mpack_tree_parse_children(&parser, node);
break;
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
node->type = mpack_type_str;
node->value.data.l = type & ~0xe0;
mpack_tree_parse_bytes(&parser, node);
break;
// nil
case 0xc0:
node->type = mpack_type_nil;
break;
// bool
case 0xc2: case 0xc3:
node->type = mpack_type_bool;
node->value.b = type & 1;
break;
// bin8
case 0xc4:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// bin16
case 0xc5:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u16(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// bin32
case 0xc6:
node->type = mpack_type_bin;
node->value.data.l = mpack_tree_u32(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext8
case 0xc7:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u8(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext16
case 0xc8:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u16(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// ext32
case 0xc9:
node->type = mpack_type_ext;
node->value.data.l = mpack_tree_u32(&parser);
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// float
case 0xca:
node->type = mpack_type_float;
node->value.f = mpack_tree_float(&parser);
break;
// double
case 0xcb:
node->type = mpack_type_double;
node->value.d = mpack_tree_double(&parser);
break;
// uint8
case 0xcc:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u8(&parser);
break;
// uint16
case 0xcd:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u16(&parser);
break;
// uint32
case 0xce:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u32(&parser);
break;
// uint64
case 0xcf:
node->type = mpack_type_uint;
node->value.u = mpack_tree_u64(&parser);
break;
// int8
case 0xd0:
node->type = mpack_type_int;
node->value.i = mpack_tree_i8(&parser);
break;
// int16
case 0xd1:
node->type = mpack_type_int;
node->value.i = mpack_tree_i16(&parser);
break;
// int32
case 0xd2:
node->type = mpack_type_int;
node->value.i = mpack_tree_i32(&parser);
break;
// int64
case 0xd3:
node->type = mpack_type_int;
node->value.i = mpack_tree_i64(&parser);
break;
// fixext1
case 0xd4:
node->type = mpack_type_ext;
node->value.data.l = 1;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext2
case 0xd5:
node->type = mpack_type_ext;
node->value.data.l = 2;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext4
case 0xd6:
node->type = mpack_type_ext;
node->value.data.l = 4;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext8
case 0xd7:
node->type = mpack_type_ext;
node->value.data.l = 8;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// fixext16
case 0xd8:
node->type = mpack_type_ext;
node->value.data.l = 16;
node->exttype = mpack_tree_i8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str8
case 0xd9:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u8(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str16
case 0xda:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u16(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// str32
case 0xdb:
node->type = mpack_type_str;
node->value.data.l = mpack_tree_u32(&parser);
mpack_tree_parse_bytes(&parser, node);
break;
// array16
case 0xdc:
node->type = mpack_type_array;
node->value.content.n = mpack_tree_u16(&parser);
mpack_tree_parse_children(&parser, node);
break;
// array32
case 0xdd:
node->type = mpack_type_array;
node->value.content.n = mpack_tree_u32(&parser);
mpack_tree_parse_children(&parser, node);
break;
// map16
case 0xde:
node->type = mpack_type_map;
node->value.content.n = mpack_tree_u16(&parser);
mpack_tree_parse_children(&parser, node);
break;
// map32
case 0xdf:
node->type = mpack_type_map;
node->value.content.n = mpack_tree_u32(&parser);
mpack_tree_parse_children(&parser, node);
break;
// reserved
case 0xc1:
mpack_tree_flag_error(tree, mpack_error_invalid);
break;
}
// Pop any empty compound types from the stack
while (parser.level != 0 && parser.stack[parser.level].left == 0)
--parser.level;
} while (parser.level != 0 && mpack_tree_error(parser.tree) == mpack_ok);
#ifdef MPACK_MALLOC
if (!parser.stack_allocated)
MPACK_FREE(parser.stack);
#endif
tree->size = length - parser.left;
mpack_log("parsed tree of %i bytes, %i bytes left\n", (int)tree->size, (int)parser.left);
mpack_log("%i nodes in final page\n", (int)tree->page.pos);
// This seems like a bug / performance flaw in GCC. In release the
// below assert would compile to:
//
// (!(possible_nodes_left == remaining) ? __builtin_unreachable() : ((void)0))
//
// This produces identical assembly with GCC 5.1 on ARM64 under -O3, but
// with -O3 -flto, node parsing is over 4% slower. This should be a no-op
// even in -flto since the function ends here and possible_nodes_left
// does not escape this function.
//
// Leaving a TODO: here to explore this further. In the meantime we preproc it
// under MPACK_DEBUG.
#if MPACK_DEBUG
mpack_assert(parser.possible_nodes_left == parser.left,
"incorrect calculation of possible nodes! %i possible nodes, but %i bytes remaining",
(int)parser.possible_nodes_left, (int)parser.left);
#endif
}
/*
* Tree functions
*/
mpack_node_t mpack_tree_root(mpack_tree_t* tree) {
return mpack_node(tree, (mpack_tree_error(tree) != mpack_ok) ? &tree->nil_node : tree->root);
}
void mpack_tree_init_clear(mpack_tree_t* tree) {
mpack_memset(tree, 0, sizeof(*tree));
tree->nil_node.type = mpack_type_nil;
}
#ifdef MPACK_MALLOC
void mpack_tree_init(mpack_tree_t* tree, const char* data, size_t length) {
mpack_tree_init_clear(tree);
tree->owned = true;
// allocate first page
mpack_log("allocating initial page of size %i\n", (int)MPACK_NODE_PAGE_SIZE);
tree->page.nodes = (mpack_node_data_t*)MPACK_MALLOC(sizeof(mpack_node_data_t) * MPACK_NODE_PAGE_SIZE);
if (tree->page.nodes == NULL) {
tree->error = mpack_error_memory;
return;
}
tree->page.next = NULL;
tree->page.pos = 0;
tree->page.left = MPACK_NODE_PAGE_SIZE;
mpack_tree_parse(tree, data, length);
}
#endif
void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length, mpack_node_data_t* node_pool, size_t node_pool_count) {
mpack_tree_init_clear(tree);
tree->page.next = NULL;
tree->page.nodes = node_pool;
tree->page.pos = 0;
tree->page.left = node_pool_count;
mpack_tree_parse(tree, data, length);
}
void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error) {
mpack_tree_init_clear(tree);
tree->error = error;
}
#if MPACK_STDIO
typedef struct mpack_file_tree_t {
char* data;
size_t size;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_tree_t;
static void mpack_file_tree_teardown(mpack_tree_t* tree) {
mpack_file_tree_t* file_tree = (mpack_file_tree_t*)tree->context;
MPACK_FREE(file_tree->data);
MPACK_FREE(file_tree);
}
static bool mpack_file_tree_read(mpack_tree_t* tree, mpack_file_tree_t* file_tree, const char* filename, size_t max_size) {
// open the file
FILE* file = fopen(filename, "rb");
if (!file) {
mpack_tree_init_error(tree, mpack_error_io);
return false;
}
// get the file size
fseek(file, 0, SEEK_END);
long size = ftell(file);
fseek(file, 0, SEEK_SET);
if (size < 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_io);
return false;
}
if (size == 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_invalid);
return false;
}
// make sure the size is less than max_size
// (this mess exists to safely convert between long and size_t regardless of their widths)
if (max_size != 0 && (((uint64_t)LONG_MAX > (uint64_t)SIZE_MAX && size > (long)SIZE_MAX) || (size_t)size > max_size)) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_too_big);
return false;
}
// allocate data
file_tree->data = (char*)MPACK_MALLOC(size);
if (file_tree->data == NULL) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_memory);
return false;
}
// read the file
long total = 0;
while (total < size) {
size_t read = fread(file_tree->data + total, 1, (size_t)(size - total), file);
if (read <= 0) {
fclose(file);
mpack_tree_init_error(tree, mpack_error_io);
MPACK_FREE(file_tree->data);
return false;
}
total += read;
}
fclose(file);
file_tree->size = (size_t)size;
return true;
}
void mpack_tree_init_file(mpack_tree_t* tree, const char* filename, size_t max_size) {
// the C STDIO family of file functions use long (e.g. ftell)
if (max_size > LONG_MAX) {
mpack_break("max_size of %" PRIu64 " is invalid, maximum is LONG_MAX", (uint64_t)max_size);
mpack_tree_init_error(tree, mpack_error_too_big);
return;
}
// allocate file tree
mpack_file_tree_t* file_tree = (mpack_file_tree_t*) MPACK_MALLOC(sizeof(mpack_file_tree_t));
if (file_tree == NULL) {
mpack_tree_init_error(tree, mpack_error_memory);
return;
}
// read all data
if (!mpack_file_tree_read(tree, file_tree, filename, max_size)) {
MPACK_FREE(file_tree);
return;
}
mpack_tree_init(tree, file_tree->data, file_tree->size);
mpack_tree_set_context(tree, file_tree);
mpack_tree_set_teardown(tree, mpack_file_tree_teardown);
}
#endif
mpack_error_t mpack_tree_destroy(mpack_tree_t* tree) {
#ifdef MPACK_MALLOC
if (tree->owned) {
if (tree->page.nodes)
MPACK_FREE(tree->page.nodes);
mpack_tree_link_t* link = tree->page.next;
while (link) {
mpack_tree_link_t* next = link->next;
if (link->nodes)
MPACK_FREE(link->nodes);
MPACK_FREE(link);
link = next;
}
}
#endif
if (tree->teardown)
tree->teardown(tree);
tree->teardown = NULL;
#if MPACK_SETJMP
if (tree->jump_env)
MPACK_FREE(tree->jump_env);
tree->jump_env = NULL;
#endif
return tree->error;
}
void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error) {
mpack_log("tree %p setting error %i: %s\n", tree, (int)error, mpack_error_to_string(error));
if (tree->error == mpack_ok) {
tree->error = error;
#if MPACK_SETJMP
if (tree->jump_env)
longjmp(*tree->jump_env, 1);
#endif
}
}
/*
* Node misc functions
*/
void mpack_node_flag_error(mpack_node_t node, mpack_error_t error) {
mpack_tree_flag_error(node.tree, error);
}
#if MPACK_DEBUG && MPACK_STDIO && MPACK_SETJMP && !MPACK_NO_PRINT
static void mpack_node_print_element(mpack_node_t node, size_t depth) {
mpack_node_data_t* data = node.data;
switch (data->type) {
case mpack_type_nil:
printf("null");
break;
case mpack_type_bool:
printf(data->value.b ? "true" : "false");
break;
case mpack_type_float:
printf("%f", data->value.f);
break;
case mpack_type_double:
printf("%f", data->value.d);
break;
case mpack_type_int:
printf("%" PRIi64, data->value.i);
break;
case mpack_type_uint:
printf("%" PRIu64, data->value.u);
break;
case mpack_type_bin:
printf("<binary data of length %u>", data->value.data.l);
break;
case mpack_type_ext:
printf("<ext data of type %i and length %u>", data->exttype, data->value.data.l);
break;
case mpack_type_str:
{
putchar('"');
const char* bytes = mpack_node_data(node);
for (size_t i = 0; i < data->value.data.l; ++i) {
char c = bytes[i];
switch (c) {
case '\n': printf("\\n"); break;
case '\\': printf("\\\\"); break;
case '"': printf("\\\""); break;
default: putchar(c); break;
}
}
putchar('"');
}
break;
case mpack_type_array:
printf("[\n");
for (size_t i = 0; i < data->value.content.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_node_print_element(mpack_node_array_at(node, i), depth + 1);
if (i != data->value.content.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar(']');
break;
case mpack_type_map:
printf("{\n");
for (size_t i = 0; i < data->value.content.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
printf(" ");
mpack_node_print_element(mpack_node_map_key_at(node, i), depth + 1);
printf(": ");
mpack_node_print_element(mpack_node_map_value_at(node, i), depth + 1);
if (i != data->value.content.n - 1)
putchar(',');
putchar('\n');
}
for (size_t i = 0; i < depth; ++i)
printf(" ");
putchar('}');
break;
}
}
void mpack_node_print(mpack_node_t node) {
int depth = 2;
for (int i = 0; i < depth; ++i)
printf(" ");
mpack_node_print_element(node, depth);
putchar('\n');
}
#endif
/*
* Node Data Functions
*/
size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t size) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin && type != mpack_type_ext) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
if (node.data->value.data.l > size) {
mpack_node_flag_error(node, mpack_error_too_big);
return 0;
}
mpack_memcpy(buffer, node.data->value.data.bytes, node.data->value.data.l);
return (size_t)node.data->value.data.l;
}
void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t size) {
if (mpack_node_error(node) != mpack_ok)
return;
mpack_assert(size >= 1, "buffer size is zero; you must have room for at least a null-terminator");
if (node.data->type != mpack_type_str) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
if (node.data->value.data.l > size - 1) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_too_big);
return;
}
mpack_memcpy(buffer, node.data->value.data.bytes, node.data->value.data.l);
buffer[node.data->value.data.l] = '\0';
}
#ifdef MPACK_MALLOC
char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure this is a valid data type
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin && type != mpack_type_ext) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->value.data.l > maxlen) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)node.data->value.data.l);
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, node.data->value.data.bytes, node.data->value.data.l);
return ret;
}
char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure maxlen makes sense
if (maxlen < 1) {
mpack_break("maxlen is zero; you must have room for at least a null-terminator");
mpack_node_flag_error(node, mpack_error_bug);
return NULL;
}
if (node.data->type != mpack_type_str) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->value.data.l > maxlen - 1) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)(node.data->value.data.l + 1));
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, node.data->value.data.bytes, node.data->value.data.l);
ret[node.data->value.data.l] = '\0';
return ret;
}
#endif
/*
* Compound Node Functions
*/
mpack_node_t mpack_node_map_int_impl(mpack_node_t node, int64_t num, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_int && key->value.i == num)
return mpack_node(node.tree, value);
if (key->type == mpack_type_uint && num >= 0 && key->value.u == (uint64_t)num)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
mpack_node_t mpack_node_map_uint_impl(mpack_node_t node, uint64_t num, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_uint && key->value.u == num)
return mpack_node(node.tree, value);
if (key->type == mpack_type_int && key->value.i >= 0 && (uint64_t)key->value.i == num)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
mpack_node_t mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length, bool optional) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
mpack_node_data_t* value = mpack_node_child(node, i * 2 + 1);
if (key->type == mpack_type_str && key->value.data.l == length && mpack_memcmp(str, key->value.data.bytes, length) == 0)
return mpack_node(node.tree, value);
}
if (!optional)
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length) {
if (mpack_node_error(node) != mpack_ok)
return false;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return false;
}
for (size_t i = 0; i < node.data->value.content.n; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
if (key->type == mpack_type_str && key->value.data.l == length && mpack_memcmp(str, key->value.data.bytes, length) == 0)
return true;
}
return false;
}
#endif