darling-objc4/runtime/objc-object.h
2022-03-31 21:15:07 -07:00

1459 lines
38 KiB
C

/*
* Copyright (c) 2010-2012 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/***********************************************************************
* Inlineable parts of NSObject / objc_object implementation
**********************************************************************/
#ifndef _OBJC_OBJCOBJECT_H_
#define _OBJC_OBJCOBJECT_H_
#include "objc-private.h"
enum ReturnDisposition : bool {
ReturnAtPlus0 = false, ReturnAtPlus1 = true
};
static ALWAYS_INLINE
bool prepareOptimizedReturn(ReturnDisposition disposition);
#if SUPPORT_TAGGED_POINTERS
extern "C" {
extern Class objc_debug_taggedpointer_classes[_OBJC_TAG_SLOT_COUNT];
extern Class objc_debug_taggedpointer_ext_classes[_OBJC_TAG_EXT_SLOT_COUNT];
}
#define objc_tag_classes objc_debug_taggedpointer_classes
#define objc_tag_ext_classes objc_debug_taggedpointer_ext_classes
#endif
#if SUPPORT_INDEXED_ISA
ALWAYS_INLINE Class &
classForIndex(uintptr_t index) {
ASSERT(index > 0);
ASSERT(index < (uintptr_t)objc_indexed_classes_count);
return objc_indexed_classes[index];
}
#endif
inline bool
objc_object::isClass()
{
if (isTaggedPointer()) return false;
return ISA()->isMetaClass();
}
#if SUPPORT_TAGGED_POINTERS
inline Class
objc_object::getIsa()
{
if (fastpath(!isTaggedPointer())) return ISA();
extern objc_class OBJC_CLASS_$___NSUnrecognizedTaggedPointer;
uintptr_t slot, ptr = (uintptr_t)this;
Class cls;
slot = (ptr >> _OBJC_TAG_SLOT_SHIFT) & _OBJC_TAG_SLOT_MASK;
cls = objc_tag_classes[slot];
if (slowpath(cls == (Class)&OBJC_CLASS_$___NSUnrecognizedTaggedPointer)) {
slot = (ptr >> _OBJC_TAG_EXT_SLOT_SHIFT) & _OBJC_TAG_EXT_SLOT_MASK;
cls = objc_tag_ext_classes[slot];
}
return cls;
}
inline uintptr_t
objc_object::isaBits() const
{
return isa.bits;
}
inline bool
objc_object::isTaggedPointer()
{
return _objc_isTaggedPointer(this);
}
inline bool
objc_object::isTaggedPointerOrNil()
{
return _objc_isTaggedPointerOrNil(this);
}
inline bool
objc_object::isBasicTaggedPointer()
{
return isTaggedPointer() && !isExtTaggedPointer();
}
inline bool
objc_object::isExtTaggedPointer()
{
uintptr_t ptr = _objc_decodeTaggedPointer(this);
return (ptr & _OBJC_TAG_EXT_MASK) == _OBJC_TAG_EXT_MASK;
}
// SUPPORT_TAGGED_POINTERS
#else
// not SUPPORT_TAGGED_POINTERS
inline Class
objc_object::getIsa()
{
return ISA();
}
inline uintptr_t
objc_object::isaBits() const
{
return isa.bits;
}
inline bool
objc_object::isTaggedPointer()
{
return false;
}
inline bool
objc_object::isTaggedPointerOrNil()
{
return !this;
}
inline bool
objc_object::isBasicTaggedPointer()
{
return false;
}
inline bool
objc_object::isExtTaggedPointer()
{
return false;
}
// not SUPPORT_TAGGED_POINTERS
#endif
#if SUPPORT_NONPOINTER_ISA
// Set the class field in an isa. Takes both the class to set and
// a pointer to the object where the isa will ultimately be used.
// This is necessary to get the pointer signing right.
//
// Note: this method does not support setting an indexed isa. When
// indexed isas are in use, it can only be used to set the class of a
// raw isa.
inline void
isa_t::setClass(Class newCls, UNUSED_WITHOUT_PTRAUTH objc_object *obj)
{
// Match the conditional in isa.h.
#if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_NONE
// No signing, just use the raw pointer.
uintptr_t signedCls = (uintptr_t)newCls;
# elif ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ONLY_SWIFT
// We're only signing Swift classes. Non-Swift classes just use
// the raw pointer
uintptr_t signedCls = (uintptr_t)newCls;
if (newCls->isSwiftStable())
signedCls = (uintptr_t)ptrauth_sign_unauthenticated((void *)newCls, ISA_SIGNING_KEY, ptrauth_blend_discriminator(obj, ISA_SIGNING_DISCRIMINATOR));
# elif ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
// We're signing everything
uintptr_t signedCls = (uintptr_t)ptrauth_sign_unauthenticated((void *)newCls, ISA_SIGNING_KEY, ptrauth_blend_discriminator(obj, ISA_SIGNING_DISCRIMINATOR));
# else
# error Unknown isa signing mode.
# endif
shiftcls_and_sig = signedCls >> 3;
#elif SUPPORT_INDEXED_ISA
// Indexed isa only uses this method to set a raw pointer class.
// Setting an indexed class is handled separately.
cls = newCls;
#else // Nonpointer isa, no ptrauth
shiftcls = (uintptr_t)newCls >> 3;
#endif
}
// Get the class pointer out of an isa. When ptrauth is supported,
// this operation is optionally authenticated. Many code paths don't
// need the authentication, so it can be skipped in those cases for
// better performance.
//
// Note: this method does not support retrieving indexed isas. When
// indexed isas are in use, it can only be used to retrieve the class
// of a raw isa.
#if SUPPORT_INDEXED_ISA || (ISA_SIGNING_AUTH_MODE != ISA_SIGNING_AUTH)
#define MAYBE_UNUSED_AUTHENTICATED_PARAM __attribute__((unused))
#else
#define MAYBE_UNUSED_AUTHENTICATED_PARAM UNUSED_WITHOUT_PTRAUTH
#endif
inline Class
isa_t::getClass(MAYBE_UNUSED_AUTHENTICATED_PARAM bool authenticated) {
#if SUPPORT_INDEXED_ISA
return cls;
#else
uintptr_t clsbits = bits;
# if __has_feature(ptrauth_calls)
# if ISA_SIGNING_AUTH_MODE == ISA_SIGNING_AUTH
// Most callers aren't security critical, so skip the
// authentication unless they ask for it. Message sending and
// cache filling are protected by the auth code in msgSend.
if (authenticated) {
// Mask off all bits besides the class pointer and signature.
clsbits &= ISA_MASK;
if (clsbits == 0)
return Nil;
clsbits = (uintptr_t)ptrauth_auth_data((void *)clsbits, ISA_SIGNING_KEY, ptrauth_blend_discriminator(this, ISA_SIGNING_DISCRIMINATOR));
} else {
// If not authenticating, strip using the precomputed class mask.
clsbits &= objc_debug_isa_class_mask;
}
# else
// If not authenticating, strip using the precomputed class mask.
clsbits &= objc_debug_isa_class_mask;
# endif
# else
clsbits &= ISA_MASK;
# endif
return (Class)clsbits;
#endif
}
inline Class
isa_t::getDecodedClass(bool authenticated) {
#if SUPPORT_INDEXED_ISA
if (nonpointer) {
return classForIndex(indexcls);
}
return (Class)cls;
#else
return getClass(authenticated);
#endif
}
inline Class
objc_object::ISA(bool authenticated)
{
ASSERT(!isTaggedPointer());
return isa.getDecodedClass(authenticated);
}
inline Class
objc_object::rawISA()
{
ASSERT(!isTaggedPointer() && !isa.nonpointer);
return (Class)isa.bits;
}
inline bool
objc_object::hasNonpointerIsa()
{
return isa.nonpointer;
}
inline void
objc_object::initIsa(Class cls)
{
initIsa(cls, false, false);
}
inline void
objc_object::initClassIsa(Class cls)
{
if (DisableNonpointerIsa || cls->instancesRequireRawIsa()) {
initIsa(cls, false/*not nonpointer*/, false);
} else {
initIsa(cls, true/*nonpointer*/, false);
}
}
inline void
objc_object::initProtocolIsa(Class cls)
{
return initClassIsa(cls);
}
inline void
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
ASSERT(!cls->instancesRequireRawIsa());
ASSERT(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
#if !SUPPORT_INDEXED_ISA && !ISA_HAS_CXX_DTOR_BIT
#define UNUSED_WITHOUT_INDEXED_ISA_AND_DTOR_BIT __attribute__((unused))
#else
#define UNUSED_WITHOUT_INDEXED_ISA_AND_DTOR_BIT
#endif
inline void
objc_object::initIsa(Class cls, bool nonpointer, UNUSED_WITHOUT_INDEXED_ISA_AND_DTOR_BIT bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
isa_t newisa(0);
if (!nonpointer) {
newisa.setClass(cls, this);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
# if ISA_HAS_CXX_DTOR_BIT
newisa.has_cxx_dtor = hasCxxDtor;
# endif
newisa.setClass(cls, this);
#endif
newisa.extra_rc = 1;
}
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
inline Class
objc_object::changeIsa(Class newCls)
{
// This is almost always true but there are
// enough edge cases that we can't assert it.
// assert(newCls->isFuture() ||
// newCls->isInitializing() || newCls->isInitialized());
ASSERT(!isTaggedPointer());
isa_t oldisa;
isa_t newisa(0);
bool sideTableLocked = false;
bool transcribeToSideTable = false;
oldisa = LoadExclusive(&isa.bits);
do {
transcribeToSideTable = false;
if ((oldisa.bits == 0 || oldisa.nonpointer) &&
!newCls->isFuture() && newCls->canAllocNonpointer())
{
// 0 -> nonpointer
// nonpointer -> nonpointer
#if SUPPORT_INDEXED_ISA
if (oldisa.bits == 0) {
newisa.bits = ISA_INDEX_MAGIC_VALUE;
newisa.extra_rc = 1;
} else {
newisa = oldisa;
}
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = newCls->hasCxxDtor();
ASSERT(newCls->classArrayIndex() > 0);
newisa.indexcls = (uintptr_t)newCls->classArrayIndex();
#else
if (oldisa.bits == 0) {
newisa.bits = ISA_MAGIC_VALUE;
newisa.extra_rc = 1;
}
else {
newisa = oldisa;
}
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
# if ISA_HAS_CXX_DTOR_BIT
newisa.has_cxx_dtor = newCls->hasCxxDtor();
# endif
newisa.setClass(newCls, this);
#endif
}
else if (oldisa.nonpointer) {
// nonpointer -> raw pointer
// Need to copy retain count et al to side table.
// Acquire side table lock before setting isa to
// prevent races such as concurrent -release.
if (!sideTableLocked) sidetable_lock();
sideTableLocked = true;
transcribeToSideTable = true;
newisa.setClass(newCls, this);
}
else {
// raw pointer -> raw pointer
newisa.setClass(newCls, this);
}
} while (slowpath(!StoreExclusive(&isa.bits, &oldisa.bits, newisa.bits)));
if (transcribeToSideTable) {
// Copy oldisa's retain count et al to side table.
// oldisa.has_assoc: nothing to do
// oldisa.has_cxx_dtor: nothing to do
sidetable_moveExtraRC_nolock(oldisa.extra_rc,
oldisa.isDeallocating(),
oldisa.weakly_referenced);
}
if (sideTableLocked) sidetable_unlock();
return oldisa.getDecodedClass(false);
}
inline bool
objc_object::hasAssociatedObjects()
{
if (isTaggedPointer()) return true;
if (isa.nonpointer) return isa.has_assoc;
return true;
}
inline void
objc_object::setHasAssociatedObjects()
{
if (isTaggedPointer()) return;
if (slowpath(!hasNonpointerIsa() && ISA()->hasCustomRR()) && !ISA()->isFuture() && !ISA()->isMetaClass()) {
void(*setAssoc)(id, SEL) = (void(*)(id, SEL)) object_getMethodImplementation((id)this, @selector(_noteAssociatedObjects));
if ((IMP)setAssoc != _objc_msgForward) {
(*setAssoc)((id)this, @selector(_noteAssociatedObjects));
}
}
isa_t newisa, oldisa = LoadExclusive(&isa.bits);
do {
newisa = oldisa;
if (!newisa.nonpointer || newisa.has_assoc) {
ClearExclusive(&isa.bits);
return;
}
newisa.has_assoc = true;
} while (slowpath(!StoreExclusive(&isa.bits, &oldisa.bits, newisa.bits)));
}
inline bool
objc_object::isWeaklyReferenced()
{
ASSERT(!isTaggedPointer());
if (isa.nonpointer) return isa.weakly_referenced;
else return sidetable_isWeaklyReferenced();
}
inline void
objc_object::setWeaklyReferenced_nolock()
{
isa_t newisa, oldisa = LoadExclusive(&isa.bits);
do {
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
sidetable_setWeaklyReferenced_nolock();
return;
}
if (newisa.weakly_referenced) {
ClearExclusive(&isa.bits);
return;
}
newisa.weakly_referenced = true;
} while (slowpath(!StoreExclusive(&isa.bits, &oldisa.bits, newisa.bits)));
}
inline bool
objc_object::hasCxxDtor()
{
ASSERT(!isTaggedPointer());
#if ISA_HAS_CXX_DTOR_BIT
if (isa.nonpointer)
return isa.has_cxx_dtor;
else
#endif
return ISA()->hasCxxDtor();
}
inline bool
objc_object::rootIsDeallocating()
{
if (isTaggedPointer()) return false;
if (isa.nonpointer) return isa.isDeallocating();
return sidetable_isDeallocating();
}
inline void
objc_object::clearDeallocating()
{
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
sidetable_clearDeallocating();
}
else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
clearDeallocating_slow();
}
assert(!sidetable_present());
}
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return; // fixme necessary?
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
#if ISA_HAS_CXX_DTOR_BIT
!isa.has_cxx_dtor &&
#else
!isa.getClass(false)->hasCxxDtor() &&
#endif
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);
}
else {
object_dispose((id)this);
}
}
extern explicit_atomic<id(*)(id)> swiftRetain;
extern explicit_atomic<void(*)(id)> swiftRelease;
// Equivalent to calling [this retain], with shortcuts if there is no override
inline id
objc_object::retain()
{
ASSERT(!isTaggedPointer());
return rootRetain(false, RRVariant::FastOrMsgSend);
}
// Base retain implementation, ignoring overrides.
// This does not check isa.fast_rr; if there is an RR override then
// it was already called and it chose to call [super retain].
//
// tryRetain=true is the -_tryRetain path.
// handleOverflow=false is the frameless fast path.
// handleOverflow=true is the framed slow path including overflow to side table
// The code is structured this way to prevent duplication.
ALWAYS_INLINE id
objc_object::rootRetain()
{
return rootRetain(false, RRVariant::Fast);
}
ALWAYS_INLINE bool
objc_object::rootTryRetain()
{
return rootRetain(true, RRVariant::Fast) ? true : false;
}
ALWAYS_INLINE id
objc_object::rootRetain(bool tryRetain, objc_object::RRVariant variant)
{
if (slowpath(isTaggedPointer())) return (id)this;
bool sideTableLocked = false;
bool transcribeToSideTable = false;
isa_t oldisa;
isa_t newisa;
oldisa = LoadExclusive(&isa.bits);
if (variant == RRVariant::FastOrMsgSend) {
// These checks are only meaningful for objc_retain()
// They are here so that we avoid a re-load of the isa.
if (slowpath(oldisa.getDecodedClass(false)->hasCustomRR())) {
ClearExclusive(&isa.bits);
if (oldisa.getDecodedClass(false)->canCallSwiftRR()) {
return swiftRetain.load(memory_order_relaxed)((id)this);
}
return ((id(*)(objc_object *, SEL))objc_msgSend)(this, @selector(retain));
}
}
if (slowpath(!oldisa.nonpointer)) {
// a Class is a Class forever, so we can perform this check once
// outside of the CAS loop
if (oldisa.getDecodedClass(false)->isMetaClass()) {
ClearExclusive(&isa.bits);
return (id)this;
}
}
do {
transcribeToSideTable = false;
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
else return sidetable_retain(sideTableLocked);
}
// don't check newisa.fast_rr; we already called any RR overrides
if (slowpath(newisa.isDeallocating())) {
ClearExclusive(&isa.bits);
if (sideTableLocked) {
ASSERT(variant == RRVariant::Full);
sidetable_unlock();
}
if (slowpath(tryRetain)) {
return nil;
} else {
return (id)this;
}
}
uintptr_t carry;
newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry); // extra_rc++
if (slowpath(carry)) {
// newisa.extra_rc++ overflowed
if (variant != RRVariant::Full) {
ClearExclusive(&isa.bits);
return rootRetain_overflow(tryRetain);
}
// Leave half of the retain counts inline and
// prepare to copy the other half to the side table.
if (!tryRetain && !sideTableLocked) sidetable_lock();
sideTableLocked = true;
transcribeToSideTable = true;
newisa.extra_rc = RC_HALF;
newisa.has_sidetable_rc = true;
}
} while (slowpath(!StoreExclusive(&isa.bits, &oldisa.bits, newisa.bits)));
if (variant == RRVariant::Full) {
if (slowpath(transcribeToSideTable)) {
// Copy the other half of the retain counts to the side table.
sidetable_addExtraRC_nolock(RC_HALF);
}
if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
} else {
ASSERT(!transcribeToSideTable);
ASSERT(!sideTableLocked);
}
return (id)this;
}
// Equivalent to calling [this release], with shortcuts if there is no override
inline void
objc_object::release()
{
ASSERT(!isTaggedPointer());
rootRelease(true, RRVariant::FastOrMsgSend);
}
// Base release implementation, ignoring overrides.
// Does not call -dealloc.
// Returns true if the object should now be deallocated.
// This does not check isa.fast_rr; if there is an RR override then
// it was already called and it chose to call [super release].
//
// handleUnderflow=false is the frameless fast path.
// handleUnderflow=true is the framed slow path including side table borrow
// The code is structured this way to prevent duplication.
ALWAYS_INLINE bool
objc_object::rootRelease()
{
return rootRelease(true, RRVariant::Fast);
}
ALWAYS_INLINE bool
objc_object::rootReleaseShouldDealloc()
{
return rootRelease(false, RRVariant::Fast);
}
ALWAYS_INLINE bool
objc_object::rootRelease(bool performDealloc, objc_object::RRVariant variant)
{
if (slowpath(isTaggedPointer())) return false;
bool sideTableLocked = false;
isa_t newisa, oldisa;
oldisa = LoadExclusive(&isa.bits);
if (variant == RRVariant::FastOrMsgSend) {
// These checks are only meaningful for objc_release()
// They are here so that we avoid a re-load of the isa.
if (slowpath(oldisa.getDecodedClass(false)->hasCustomRR())) {
ClearExclusive(&isa.bits);
if (oldisa.getDecodedClass(false)->canCallSwiftRR()) {
swiftRelease.load(memory_order_relaxed)((id)this);
return true;
}
((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(release));
return true;
}
}
if (slowpath(!oldisa.nonpointer)) {
// a Class is a Class forever, so we can perform this check once
// outside of the CAS loop
if (oldisa.getDecodedClass(false)->isMetaClass()) {
ClearExclusive(&isa.bits);
return false;
}
}
retry:
do {
newisa = oldisa;
if (slowpath(!newisa.nonpointer)) {
ClearExclusive(&isa.bits);
return sidetable_release(sideTableLocked, performDealloc);
}
if (slowpath(newisa.isDeallocating())) {
ClearExclusive(&isa.bits);
if (sideTableLocked) {
ASSERT(variant == RRVariant::Full);
sidetable_unlock();
}
return false;
}
// don't check newisa.fast_rr; we already called any RR overrides
uintptr_t carry;
newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry); // extra_rc--
if (slowpath(carry)) {
// don't ClearExclusive()
goto underflow;
}
} while (slowpath(!StoreReleaseExclusive(&isa.bits, &oldisa.bits, newisa.bits)));
if (slowpath(newisa.isDeallocating()))
goto deallocate;
if (variant == RRVariant::Full) {
if (slowpath(sideTableLocked)) sidetable_unlock();
} else {
ASSERT(!sideTableLocked);
}
return false;
underflow:
// newisa.extra_rc-- underflowed: borrow from side table or deallocate
// abandon newisa to undo the decrement
newisa = oldisa;
if (slowpath(newisa.has_sidetable_rc)) {
if (variant != RRVariant::Full) {
ClearExclusive(&isa.bits);
return rootRelease_underflow(performDealloc);
}
// Transfer retain count from side table to inline storage.
if (!sideTableLocked) {
ClearExclusive(&isa.bits);
sidetable_lock();
sideTableLocked = true;
// Need to start over to avoid a race against
// the nonpointer -> raw pointer transition.
oldisa = LoadExclusive(&isa.bits);
goto retry;
}
// Try to remove some retain counts from the side table.
auto borrow = sidetable_subExtraRC_nolock(RC_HALF);
bool emptySideTable = borrow.remaining == 0; // we'll clear the side table if no refcounts remain there
if (borrow.borrowed > 0) {
// Side table retain count decreased.
// Try to add them to the inline count.
bool didTransitionToDeallocating = false;
newisa.extra_rc = borrow.borrowed - 1; // redo the original decrement too
newisa.has_sidetable_rc = !emptySideTable;
bool stored = StoreReleaseExclusive(&isa.bits, &oldisa.bits, newisa.bits);
if (!stored && oldisa.nonpointer) {
// Inline update failed.
// Try it again right now. This prevents livelock on LL/SC
// architectures where the side table access itself may have
// dropped the reservation.
uintptr_t overflow;
newisa.bits =
addc(oldisa.bits, RC_ONE * (borrow.borrowed-1), 0, &overflow);
newisa.has_sidetable_rc = !emptySideTable;
if (!overflow) {
stored = StoreReleaseExclusive(&isa.bits, &oldisa.bits, newisa.bits);
if (stored) {
didTransitionToDeallocating = newisa.isDeallocating();
}
}
}
if (!stored) {
// Inline update failed.
// Put the retains back in the side table.
ClearExclusive(&isa.bits);
sidetable_addExtraRC_nolock(borrow.borrowed);
oldisa = LoadExclusive(&isa.bits);
goto retry;
}
// Decrement successful after borrowing from side table.
if (emptySideTable)
sidetable_clearExtraRC_nolock();
if (!didTransitionToDeallocating) {
if (slowpath(sideTableLocked)) sidetable_unlock();
return false;
}
}
else {
// Side table is empty after all. Fall-through to the dealloc path.
}
}
deallocate:
// Really deallocate.
ASSERT(newisa.isDeallocating());
ASSERT(isa.isDeallocating());
if (slowpath(sideTableLocked)) sidetable_unlock();
__c11_atomic_thread_fence(__ATOMIC_ACQUIRE);
if (performDealloc) {
((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));
}
return true;
}
// Equivalent to [this autorelease], with shortcuts if there is no override
inline id
objc_object::autorelease()
{
ASSERT(!isTaggedPointer());
if (fastpath(!ISA()->hasCustomRR())) {
return rootAutorelease();
}
return ((id(*)(objc_object *, SEL))objc_msgSend)(this, @selector(autorelease));
}
// Base autorelease implementation, ignoring overrides.
inline id
objc_object::rootAutorelease()
{
if (isTaggedPointer()) return (id)this;
if (prepareOptimizedReturn(ReturnAtPlus1)) return (id)this;
return rootAutorelease2();
}
inline uintptr_t
objc_object::rootRetainCount()
{
if (isTaggedPointer()) return (uintptr_t)this;
sidetable_lock();
isa_t bits = __c11_atomic_load((_Atomic uintptr_t *)&isa.bits, __ATOMIC_RELAXED);
if (bits.nonpointer) {
uintptr_t rc = bits.extra_rc;
if (bits.has_sidetable_rc) {
rc += sidetable_getExtraRC_nolock();
}
sidetable_unlock();
return rc;
}
sidetable_unlock();
return sidetable_retainCount();
}
// SUPPORT_NONPOINTER_ISA
#else
// not SUPPORT_NONPOINTER_ISA
inline void
isa_t::setClass(Class cls, objc_object *obj)
{
this->cls = cls;
}
inline Class
isa_t::getClass(bool authenticated __unused)
{
return cls;
}
inline Class
isa_t::getDecodedClass(bool authenticated)
{
return getClass(authenticated);
}
inline Class
objc_object::ISA(bool authenticated __unused)
{
ASSERT(!isTaggedPointer());
return isa.getClass(/*authenticated*/false);
}
inline Class
objc_object::rawISA()
{
return ISA();
}
inline bool
objc_object::hasNonpointerIsa()
{
return false;
}
inline void
objc_object::initIsa(Class cls)
{
ASSERT(!isTaggedPointer());
isa.setClass(cls, this);
}
inline void
objc_object::initClassIsa(Class cls)
{
initIsa(cls);
}
inline void
objc_object::initProtocolIsa(Class cls)
{
initIsa(cls);
}
inline void
objc_object::initInstanceIsa(Class cls, bool)
{
initIsa(cls);
}
inline void
objc_object::initIsa(Class cls, bool, bool)
{
initIsa(cls);
}
inline Class
objc_object::changeIsa(Class cls)
{
// This is almost always rue but there are
// enough edge cases that we can't assert it.
// assert(cls->isFuture() ||
// cls->isInitializing() || cls->isInitialized());
ASSERT(!isTaggedPointer());
isa_t newisa, oldisa;
newisa.setClass(cls, this);
oldisa.bits = __c11_atomic_exchange((_Atomic uintptr_t *)&isa.bits, newisa.bits, __ATOMIC_RELAXED);
Class oldcls = oldisa.getDecodedClass(/*authenticated*/false);
if (oldcls && oldcls->instancesHaveAssociatedObjects()) {
cls->setInstancesHaveAssociatedObjects();
}
return oldcls;
}
inline bool
objc_object::hasAssociatedObjects()
{
return getIsa()->instancesHaveAssociatedObjects();
}
inline void
objc_object::setHasAssociatedObjects()
{
getIsa()->setInstancesHaveAssociatedObjects();
}
inline bool
objc_object::isWeaklyReferenced()
{
ASSERT(!isTaggedPointer());
return sidetable_isWeaklyReferenced();
}
inline void
objc_object::setWeaklyReferenced_nolock()
{
ASSERT(!isTaggedPointer());
sidetable_setWeaklyReferenced_nolock();
}
inline bool
objc_object::hasCxxDtor()
{
ASSERT(!isTaggedPointer());
return isa.getClass(/*authenticated*/false)->hasCxxDtor();
}
inline bool
objc_object::rootIsDeallocating()
{
if (isTaggedPointer()) return false;
return sidetable_isDeallocating();
}
inline void
objc_object::clearDeallocating()
{
sidetable_clearDeallocating();
}
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return;
object_dispose((id)this);
}
// Equivalent to calling [this retain], with shortcuts if there is no override
inline id
objc_object::retain()
{
ASSERT(!isTaggedPointer());
if (fastpath(!ISA()->hasCustomRR())) {
return sidetable_retain();
}
return ((id(*)(objc_object *, SEL))objc_msgSend)(this, @selector(retain));
}
// Base retain implementation, ignoring overrides.
// This does not check isa.fast_rr; if there is an RR override then
// it was already called and it chose to call [super retain].
inline id
objc_object::rootRetain()
{
if (isTaggedPointer()) return (id)this;
return sidetable_retain();
}
// Equivalent to calling [this release], with shortcuts if there is no override
inline void
objc_object::release()
{
ASSERT(!isTaggedPointer());
if (fastpath(!ISA()->hasCustomRR())) {
sidetable_release();
return;
}
((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(release));
}
// Base release implementation, ignoring overrides.
// Does not call -dealloc.
// Returns true if the object should now be deallocated.
// This does not check isa.fast_rr; if there is an RR override then
// it was already called and it chose to call [super release].
inline bool
objc_object::rootRelease()
{
if (isTaggedPointer()) return false;
return sidetable_release();
}
inline bool
objc_object::rootReleaseShouldDealloc()
{
if (isTaggedPointer()) return false;
return sidetable_release(/*locked*/false, /*performDealloc*/false);
}
// Equivalent to [this autorelease], with shortcuts if there is no override
inline id
objc_object::autorelease()
{
if (isTaggedPointer()) return (id)this;
if (fastpath(!ISA()->hasCustomRR())) return rootAutorelease();
return ((id(*)(objc_object *, SEL))objc_msgSend)(this, @selector(autorelease));
}
// Base autorelease implementation, ignoring overrides.
inline id
objc_object::rootAutorelease()
{
if (isTaggedPointer()) return (id)this;
if (prepareOptimizedReturn(ReturnAtPlus1)) return (id)this;
return rootAutorelease2();
}
// Base tryRetain implementation, ignoring overrides.
// This does not check isa.fast_rr; if there is an RR override then
// it was already called and it chose to call [super _tryRetain].
inline bool
objc_object::rootTryRetain()
{
if (isTaggedPointer()) return true;
return sidetable_tryRetain();
}
inline uintptr_t
objc_object::rootRetainCount()
{
if (isTaggedPointer()) return (uintptr_t)this;
return sidetable_retainCount();
}
// not SUPPORT_NONPOINTER_ISA
#endif
#if SUPPORT_RETURN_AUTORELEASE
/***********************************************************************
Fast handling of return through Cocoa's +0 autoreleasing convention.
The caller and callee cooperate to keep the returned object
out of the autorelease pool and eliminate redundant retain/release pairs.
An optimized callee looks at the caller's instructions following the
return. If the caller's instructions are also optimized then the callee
skips all retain count operations: no autorelease, no retain/autorelease.
Instead it saves the result's current retain count (+0 or +1) in
thread-local storage. If the caller does not look optimized then
the callee performs autorelease or retain/autorelease as usual.
An optimized caller looks at the thread-local storage. If the result
is set then it performs any retain or release needed to change the
result from the retain count left by the callee to the retain count
desired by the caller. Otherwise the caller assumes the result is
currently at +0 from an unoptimized callee and performs any retain
needed for that case.
There are two optimized callees:
objc_autoreleaseReturnValue
result is currently +1. The unoptimized path autoreleases it.
objc_retainAutoreleaseReturnValue
result is currently +0. The unoptimized path retains and autoreleases it.
There are two optimized callers:
objc_retainAutoreleasedReturnValue
caller wants the value at +1. The unoptimized path retains it.
objc_unsafeClaimAutoreleasedReturnValue
caller wants the value at +0 unsafely. The unoptimized path does nothing.
Example:
Callee:
// compute ret at +1
return objc_autoreleaseReturnValue(ret);
Caller:
ret = callee();
ret = objc_retainAutoreleasedReturnValue(ret);
// use ret at +1 here
Callee sees the optimized caller, sets TLS, and leaves the result at +1.
Caller sees the TLS, clears it, and accepts the result at +1 as-is.
The callee's recognition of the optimized caller is architecture-dependent.
x86_64: Callee looks for `mov rax, rdi` followed by a call or
jump instruction to objc_retainAutoreleasedReturnValue or
objc_unsafeClaimAutoreleasedReturnValue.
i386: Callee looks for a magic nop `movl %ebp, %ebp` (frame pointer register)
armv7: Callee looks for a magic nop `mov r7, r7` (frame pointer register).
arm64: Callee looks for a magic nop `mov x29, x29` (frame pointer register).
Tagged pointer objects do participate in the optimized return scheme,
because it saves message sends. They are not entered in the autorelease
pool in the unoptimized case.
**********************************************************************/
# if __x86_64__
static ALWAYS_INLINE bool
callerAcceptsOptimizedReturn(const void * const ra0)
{
const uint8_t *ra1 = (const uint8_t *)ra0;
const unaligned_uint16_t *ra2;
const unaligned_uint32_t *ra4 = (const unaligned_uint32_t *)ra1;
const void **sym;
#define PREFER_GOTPCREL 0
#if PREFER_GOTPCREL
// 48 89 c7 movq %rax,%rdi
// ff 15 callq *symbol@GOTPCREL(%rip)
if (*ra4 != 0xffc78948) {
return false;
}
if (ra1[4] != 0x15) {
return false;
}
ra1 += 3;
#else
// 48 89 c7 movq %rax,%rdi
// e8 callq symbol
if (*ra4 != 0xe8c78948) {
return false;
}
ra1 += (long)*(const unaligned_int32_t *)(ra1 + 4) + 8l;
ra2 = (const unaligned_uint16_t *)ra1;
// ff 25 jmpq *symbol@DYLDMAGIC(%rip)
if (*ra2 != 0x25ff) {
return false;
}
#endif
ra1 += 6l + (long)*(const unaligned_int32_t *)(ra1 + 2);
sym = (const void **)ra1;
if (*sym != objc_retainAutoreleasedReturnValue &&
*sym != objc_unsafeClaimAutoreleasedReturnValue)
{
return false;
}
return true;
}
// __x86_64__
# elif __arm__
static ALWAYS_INLINE bool
callerAcceptsOptimizedReturn(const void *ra)
{
// if the low bit is set, we're returning to thumb mode
if ((uintptr_t)ra & 1) {
// 3f 46 mov r7, r7
// we mask off the low bit via subtraction
// 16-bit instructions are well-aligned
if (*(uint16_t *)((uint8_t *)ra - 1) == 0x463f) {
return true;
}
} else {
// 07 70 a0 e1 mov r7, r7
// 32-bit instructions may be only 16-bit aligned
if (*(unaligned_uint32_t *)ra == 0xe1a07007) {
return true;
}
}
return false;
}
// __arm__
# elif __arm64__
static ALWAYS_INLINE bool
callerAcceptsOptimizedReturn(const void *ra)
{
// fd 03 1d aa mov fp, fp
// arm64 instructions are well-aligned
if (*(uint32_t *)ra == 0xaa1d03fd) {
return true;
}
return false;
}
// __arm64__
# elif __i386__
static ALWAYS_INLINE bool
callerAcceptsOptimizedReturn(const void *ra)
{
// 89 ed movl %ebp, %ebp
if (*(unaligned_uint16_t *)ra == 0xed89) {
return true;
}
return false;
}
// __i386__
# else
#warning unknown architecture
static ALWAYS_INLINE bool
callerAcceptsOptimizedReturn(const void *ra)
{
return false;
}
// unknown architecture
# endif
static ALWAYS_INLINE ReturnDisposition
getReturnDisposition()
{
return (ReturnDisposition)(uintptr_t)tls_get_direct(RETURN_DISPOSITION_KEY);
}
static ALWAYS_INLINE void
setReturnDisposition(ReturnDisposition disposition)
{
tls_set_direct(RETURN_DISPOSITION_KEY, (void*)(uintptr_t)disposition);
}
// Try to prepare for optimized return with the given disposition (+0 or +1).
// Returns true if the optimized path is successful.
// Otherwise the return value must be retained and/or autoreleased as usual.
static ALWAYS_INLINE bool
prepareOptimizedReturn(ReturnDisposition disposition)
{
ASSERT(getReturnDisposition() == ReturnAtPlus0);
if (callerAcceptsOptimizedReturn(__builtin_return_address(0))) {
if (disposition) setReturnDisposition(disposition);
return true;
}
return false;
}
// Try to accept an optimized return.
// Returns the disposition of the returned object (+0 or +1).
// An un-optimized return is +0.
static ALWAYS_INLINE ReturnDisposition
acceptOptimizedReturn()
{
ReturnDisposition disposition = getReturnDisposition();
setReturnDisposition(ReturnAtPlus0); // reset to the unoptimized state
return disposition;
}
// SUPPORT_RETURN_AUTORELEASE
#else
// not SUPPORT_RETURN_AUTORELEASE
static ALWAYS_INLINE bool
prepareOptimizedReturn(ReturnDisposition disposition __unused)
{
return false;
}
static ALWAYS_INLINE ReturnDisposition
acceptOptimizedReturn()
{
return ReturnAtPlus0;
}
// not SUPPORT_RETURN_AUTORELEASE
#endif
// _OBJC_OBJECT_H_
#endif