darling-objc4/runtime/objc-runtime-new.h
2022-03-31 21:15:07 -07:00

2231 lines
70 KiB
C++

/*
* Copyright (c) 2005-2007 Apple Inc. All Rights Reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
#ifndef _OBJC_RUNTIME_NEW_H
#define _OBJC_RUNTIME_NEW_H
#include "PointerUnion.h"
#include <type_traits>
// class_data_bits_t is the class_t->data field (class_rw_t pointer plus flags)
// The extra bits are optimized for the retain/release and alloc/dealloc paths.
// Values for class_ro_t->flags
// These are emitted by the compiler and are part of the ABI.
// Note: See CGObjCNonFragileABIMac::BuildClassRoTInitializer in clang
// class is a metaclass
#define RO_META (1<<0)
// class is a root class
#define RO_ROOT (1<<1)
// class has .cxx_construct/destruct implementations
#define RO_HAS_CXX_STRUCTORS (1<<2)
// class has +load implementation
// #define RO_HAS_LOAD_METHOD (1<<3)
// class has visibility=hidden set
#define RO_HIDDEN (1<<4)
// class has attribute(objc_exception): OBJC_EHTYPE_$_ThisClass is non-weak
#define RO_EXCEPTION (1<<5)
// class has ro field for Swift metadata initializer callback
#define RO_HAS_SWIFT_INITIALIZER (1<<6)
// class compiled with ARC
#define RO_IS_ARC (1<<7)
// class has .cxx_destruct but no .cxx_construct (with RO_HAS_CXX_STRUCTORS)
#define RO_HAS_CXX_DTOR_ONLY (1<<8)
// class is not ARC but has ARC-style weak ivar layout
#define RO_HAS_WEAK_WITHOUT_ARC (1<<9)
// class does not allow associated objects on instances
#define RO_FORBIDS_ASSOCIATED_OBJECTS (1<<10)
// class is in an unloadable bundle - must never be set by compiler
#define RO_FROM_BUNDLE (1<<29)
// class is unrealized future class - must never be set by compiler
#define RO_FUTURE (1<<30)
// class is realized - must never be set by compiler
#define RO_REALIZED (1<<31)
// Values for class_rw_t->flags
// These are not emitted by the compiler and are never used in class_ro_t.
// Their presence should be considered in future ABI versions.
// class_t->data is class_rw_t, not class_ro_t
#define RW_REALIZED (1<<31)
// class is unresolved future class
#define RW_FUTURE (1<<30)
// class is initialized
#define RW_INITIALIZED (1<<29)
// class is initializing
#define RW_INITIALIZING (1<<28)
// class_rw_t->ro is heap copy of class_ro_t
#define RW_COPIED_RO (1<<27)
// class allocated but not yet registered
#define RW_CONSTRUCTING (1<<26)
// class allocated and registered
#define RW_CONSTRUCTED (1<<25)
// available for use; was RW_FINALIZE_ON_MAIN_THREAD
// #define RW_24 (1<<24)
// class +load has been called
#define RW_LOADED (1<<23)
#if !SUPPORT_NONPOINTER_ISA
// class instances may have associative references
#define RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS (1<<22)
#endif
// class has instance-specific GC layout
#define RW_HAS_INSTANCE_SPECIFIC_LAYOUT (1 << 21)
// class does not allow associated objects on its instances
#define RW_FORBIDS_ASSOCIATED_OBJECTS (1<<20)
// class has started realizing but not yet completed it
#define RW_REALIZING (1<<19)
#if CONFIG_USE_PREOPT_CACHES
// this class and its descendants can't have preopt caches with inlined sels
#define RW_NOPREOPT_SELS (1<<2)
// this class and its descendants can't have preopt caches
#define RW_NOPREOPT_CACHE (1<<1)
#endif
// class is a metaclass (copied from ro)
#define RW_META RO_META // (1<<0)
// NOTE: MORE RW_ FLAGS DEFINED BELOW
// Values for class_rw_t->flags (RW_*), cache_t->_flags (FAST_CACHE_*),
// or class_t->bits (FAST_*).
//
// FAST_* and FAST_CACHE_* are stored on the class, reducing pointer indirection.
#if __LP64__
// class is a Swift class from the pre-stable Swift ABI
#define FAST_IS_SWIFT_LEGACY (1UL<<0)
// class is a Swift class from the stable Swift ABI
#define FAST_IS_SWIFT_STABLE (1UL<<1)
// class or superclass has default retain/release/autorelease/retainCount/
// _tryRetain/_isDeallocating/retainWeakReference/allowsWeakReference
#define FAST_HAS_DEFAULT_RR (1UL<<2)
// data pointer
#define FAST_DATA_MASK 0x00007ffffffffff8UL
#if __arm64__
// class or superclass has .cxx_construct/.cxx_destruct implementation
// FAST_CACHE_HAS_CXX_DTOR is the first bit so that setting it in
// isa_t::has_cxx_dtor is a single bfi
#define FAST_CACHE_HAS_CXX_DTOR (1<<0)
#define FAST_CACHE_HAS_CXX_CTOR (1<<1)
// Denormalized RO_META to avoid an indirection
#define FAST_CACHE_META (1<<2)
#else
// Denormalized RO_META to avoid an indirection
#define FAST_CACHE_META (1<<0)
// class or superclass has .cxx_construct/.cxx_destruct implementation
// FAST_CACHE_HAS_CXX_DTOR is chosen to alias with isa_t::has_cxx_dtor
#define FAST_CACHE_HAS_CXX_CTOR (1<<1)
#define FAST_CACHE_HAS_CXX_DTOR (1<<2)
#endif
// Fast Alloc fields:
// This stores the word-aligned size of instances + "ALLOC_DELTA16",
// or 0 if the instance size doesn't fit.
//
// These bits occupy the same bits than in the instance size, so that
// the size can be extracted with a simple mask operation.
//
// FAST_CACHE_ALLOC_MASK16 allows to extract the instance size rounded
// rounded up to the next 16 byte boundary, which is a fastpath for
// _objc_rootAllocWithZone()
#define FAST_CACHE_ALLOC_MASK 0x1ff8
#define FAST_CACHE_ALLOC_MASK16 0x1ff0
#define FAST_CACHE_ALLOC_DELTA16 0x0008
// class's instances requires raw isa
#define FAST_CACHE_REQUIRES_RAW_ISA (1<<13)
// class or superclass has default alloc/allocWithZone: implementation
// Note this is is stored in the metaclass.
#define FAST_CACHE_HAS_DEFAULT_AWZ (1<<14)
// class or superclass has default new/self/class/respondsToSelector/isKindOfClass
#define FAST_CACHE_HAS_DEFAULT_CORE (1<<15)
#else
// class or superclass has .cxx_construct implementation
#define RW_HAS_CXX_CTOR (1<<18)
// class or superclass has .cxx_destruct implementation
#define RW_HAS_CXX_DTOR (1<<17)
// class or superclass has default alloc/allocWithZone: implementation
// Note this is is stored in the metaclass.
#define RW_HAS_DEFAULT_AWZ (1<<16)
// class's instances requires raw isa
#if SUPPORT_NONPOINTER_ISA
#define RW_REQUIRES_RAW_ISA (1<<15)
#endif
// class or superclass has default retain/release/autorelease/retainCount/
// _tryRetain/_isDeallocating/retainWeakReference/allowsWeakReference
#define RW_HAS_DEFAULT_RR (1<<14)
// class or superclass has default new/self/class/respondsToSelector/isKindOfClass
#define RW_HAS_DEFAULT_CORE (1<<13)
// class is a Swift class from the pre-stable Swift ABI
#define FAST_IS_SWIFT_LEGACY (1UL<<0)
// class is a Swift class from the stable Swift ABI
#define FAST_IS_SWIFT_STABLE (1UL<<1)
// data pointer
#define FAST_DATA_MASK 0xfffffffcUL
#endif // __LP64__
// The Swift ABI requires that these bits be defined like this on all platforms.
static_assert(FAST_IS_SWIFT_LEGACY == 1, "resistance is futile");
static_assert(FAST_IS_SWIFT_STABLE == 2, "resistance is futile");
#if __LP64__
typedef uint32_t mask_t; // x86_64 & arm64 asm are less efficient with 16-bits
#else
typedef uint16_t mask_t;
#endif
typedef uintptr_t SEL;
struct swift_class_t;
enum Atomicity { Atomic = true, NotAtomic = false };
enum IMPEncoding { Encoded = true, Raw = false };
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
// Compute the ptrauth signing modifier from &_imp, newSel, and cls.
uintptr_t modifierForSEL(bucket_t *base, SEL newSel, Class cls) const {
return (uintptr_t)base ^ (uintptr_t)newSel ^ (uintptr_t)cls;
}
// Sign newImp, with &_imp, newSel, and cls as modifiers.
uintptr_t encodeImp(UNUSED_WITHOUT_PTRAUTH bucket_t *base, IMP newImp, UNUSED_WITHOUT_PTRAUTH SEL newSel, Class cls) const {
if (!newImp) return 0;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
return (uintptr_t)
ptrauth_auth_and_resign(newImp,
ptrauth_key_function_pointer, 0,
ptrauth_key_process_dependent_code,
modifierForSEL(base, newSel, cls));
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
return (uintptr_t)newImp ^ (uintptr_t)cls;
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
return (uintptr_t)newImp;
#else
#error Unknown method cache IMP encoding.
#endif
}
public:
static inline size_t offsetOfSel() { return offsetof(bucket_t, _sel); }
inline SEL sel() const { return _sel.load(memory_order_relaxed); }
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
#define MAYBE_UNUSED_ISA
#else
#define MAYBE_UNUSED_ISA __attribute__((unused))
#endif
inline IMP rawImp(MAYBE_UNUSED_ISA objc_class *cls) const {
uintptr_t imp = _imp.load(memory_order_relaxed);
if (!imp) return nil;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
imp ^= (uintptr_t)cls;
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
#else
#error Unknown method cache IMP encoding.
#endif
return (IMP)imp;
}
inline IMP imp(UNUSED_WITHOUT_PTRAUTH bucket_t *base, Class cls) const {
uintptr_t imp = _imp.load(memory_order_relaxed);
if (!imp) return nil;
#if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
SEL sel = _sel.load(memory_order_relaxed);
return (IMP)
ptrauth_auth_and_resign((const void *)imp,
ptrauth_key_process_dependent_code,
modifierForSEL(base, sel, cls),
ptrauth_key_function_pointer, 0);
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
return (IMP)(imp ^ (uintptr_t)cls);
#elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
return (IMP)imp;
#else
#error Unknown method cache IMP encoding.
#endif
}
template <Atomicity, IMPEncoding>
void set(bucket_t *base, SEL newSel, IMP newImp, Class cls);
};
/* dyld_shared_cache_builder and obj-C agree on these definitions */
enum {
OBJC_OPT_METHODNAME_START = 0,
OBJC_OPT_METHODNAME_END = 1,
OBJC_OPT_INLINED_METHODS_START = 2,
OBJC_OPT_INLINED_METHODS_END = 3,
__OBJC_OPT_OFFSETS_COUNT,
};
#if CONFIG_USE_PREOPT_CACHES
extern uintptr_t objc_opt_offsets[__OBJC_OPT_OFFSETS_COUNT];
#endif
/* dyld_shared_cache_builder and obj-C agree on these definitions */
struct preopt_cache_entry_t {
uint32_t sel_offs;
uint32_t imp_offs;
};
/* dyld_shared_cache_builder and obj-C agree on these definitions */
struct preopt_cache_t {
int32_t fallback_class_offset;
union {
struct {
uint16_t shift : 5;
uint16_t mask : 11;
};
uint16_t hash_params;
};
uint16_t occupied : 14;
uint16_t has_inlines : 1;
uint16_t bit_one : 1;
preopt_cache_entry_t entries[];
inline int capacity() const {
return mask + 1;
}
};
// returns:
// - the cached IMP when one is found
// - nil if there's no cached value and the cache is dynamic
// - `value_on_constant_cache_miss` if there's no cached value and the cache is preoptimized
extern "C" IMP cache_getImp(Class cls, SEL sel, IMP value_on_constant_cache_miss = nil);
struct cache_t {
private:
explicit_atomic<uintptr_t> _bucketsAndMaybeMask;
union {
struct {
explicit_atomic<mask_t> _maybeMask;
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
};
explicit_atomic<preopt_cache_t *> _originalPreoptCache;
};
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
// _bucketsAndMaybeMask is a buckets_t pointer
// _maybeMask is the buckets mask
static constexpr uintptr_t bucketsMask = ~0ul;
static_assert(!CONFIG_USE_PREOPT_CACHES, "preoptimized caches not supported");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS
static constexpr uintptr_t maskShift = 48;
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << maskShift) - 1;
static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
#if CONFIG_USE_PREOPT_CACHES
static constexpr uintptr_t preoptBucketsMarker = 1ul;
static constexpr uintptr_t preoptBucketsMask = bucketsMask & ~preoptBucketsMarker;
#endif
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
// _bucketsAndMaybeMask is a buckets_t pointer in the low 48 bits
// _maybeMask is unused, the mask is stored in the top 16 bits.
// How much the mask is shifted by.
static constexpr uintptr_t maskShift = 48;
// Additional bits after the mask which must be zero. msgSend
// takes advantage of these additional bits to construct the value
// `mask << 4` from `_maskAndBuckets` in a single instruction.
static constexpr uintptr_t maskZeroBits = 4;
// The largest mask value we can store.
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
// The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
// Ensure we have enough bits for the buckets pointer.
static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS,
"Bucket field doesn't have enough bits for arbitrary pointers.");
#if CONFIG_USE_PREOPT_CACHES
static constexpr uintptr_t preoptBucketsMarker = 1ul;
#if __has_feature(ptrauth_calls)
// 63..60: hash_mask_shift
// 59..55: hash_shift
// 54.. 1: buckets ptr + auth
// 0: always 1
static constexpr uintptr_t preoptBucketsMask = 0x007ffffffffffffe;
static inline uintptr_t preoptBucketsHashParams(const preopt_cache_t *cache) {
uintptr_t value = (uintptr_t)cache->shift << 55;
// masks have 11 bits but can be 0, so we compute
// the right shift for 0x7fff rather than 0xffff
return value | ((objc::mask16ShiftBits(cache->mask) - 1) << 60);
}
#else
// 63..53: hash_mask
// 52..48: hash_shift
// 47.. 1: buckets ptr
// 0: always 1
static constexpr uintptr_t preoptBucketsMask = 0x0000fffffffffffe;
static inline uintptr_t preoptBucketsHashParams(const preopt_cache_t *cache) {
return (uintptr_t)cache->hash_params << 48;
}
#endif
#endif // CONFIG_USE_PREOPT_CACHES
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
// _bucketsAndMaybeMask is a buckets_t pointer in the top 28 bits
// _maybeMask is unused, the mask length is stored in the low 4 bits
static constexpr uintptr_t maskBits = 4;
static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
static constexpr uintptr_t bucketsMask = ~maskMask;
static_assert(!CONFIG_USE_PREOPT_CACHES, "preoptimized caches not supported");
#else
#error Unknown cache mask storage type.
#endif
bool isConstantEmptyCache() const;
bool canBeFreed() const;
mask_t mask() const;
#if CONFIG_USE_PREOPT_CACHES
void initializeToPreoptCacheInDisguise(const preopt_cache_t *cache);
const preopt_cache_t *disguised_preopt_cache() const;
#endif
void incrementOccupied();
void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
void collect_free(bucket_t *oldBuckets, mask_t oldCapacity);
static bucket_t *emptyBuckets();
static bucket_t *allocateBuckets(mask_t newCapacity);
static bucket_t *emptyBucketsForCapacity(mask_t capacity, bool allocate = true);
static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);
void bad_cache(id receiver, SEL sel) __attribute__((noreturn, cold));
public:
// The following four fields are public for objcdt's use only.
// objcdt reaches into fields while the process is suspended
// hence doesn't care for locks and pesky little details like this
// and can safely use these.
unsigned capacity() const;
struct bucket_t *buckets() const;
Class cls() const;
#if CONFIG_USE_PREOPT_CACHES
const preopt_cache_t *preopt_cache() const;
#endif
mask_t occupied() const;
void initializeToEmpty();
#if CONFIG_USE_PREOPT_CACHES
bool isConstantOptimizedCache(bool strict = false, uintptr_t empty_addr = (uintptr_t)&_objc_empty_cache) const;
bool shouldFlush(SEL sel, IMP imp) const;
bool isConstantOptimizedCacheWithInlinedSels() const;
Class preoptFallbackClass() const;
void maybeConvertToPreoptimized();
void initializeToEmptyOrPreoptimizedInDisguise();
#else
inline bool isConstantOptimizedCache(bool strict = false, uintptr_t empty_addr = 0) const { return false; }
inline bool shouldFlush(SEL sel, IMP imp) const {
return cache_getImp(cls(), sel) == imp;
}
inline bool isConstantOptimizedCacheWithInlinedSels() const { return false; }
inline void initializeToEmptyOrPreoptimizedInDisguise() { initializeToEmpty(); }
#endif
void insert(SEL sel, IMP imp, id receiver);
void copyCacheNolock(objc_imp_cache_entry *buffer, int len);
void destroy();
void eraseNolock(const char *func);
static void init();
static void collectNolock(bool collectALot);
static size_t bytesForCapacity(uint32_t cap);
#if __LP64__
bool getBit(uint16_t flags) const {
return _flags & flags;
}
void setBit(uint16_t set) {
__c11_atomic_fetch_or((_Atomic(uint16_t) *)&_flags, set, __ATOMIC_RELAXED);
}
void clearBit(uint16_t clear) {
__c11_atomic_fetch_and((_Atomic(uint16_t) *)&_flags, ~clear, __ATOMIC_RELAXED);
}
#endif
#if FAST_CACHE_ALLOC_MASK
bool hasFastInstanceSize(size_t extra) const
{
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
}
return _flags & FAST_CACHE_ALLOC_MASK;
}
size_t fastInstanceSize(size_t extra) const
{
ASSERT(hasFastInstanceSize(extra));
if (__builtin_constant_p(extra) && extra == 0) {
return _flags & FAST_CACHE_ALLOC_MASK16;
} else {
size_t size = _flags & FAST_CACHE_ALLOC_MASK;
// remove the FAST_CACHE_ALLOC_DELTA16 that was added
// by setFastInstanceSize
return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
}
}
void setFastInstanceSize(size_t newSize)
{
// Set during realization or construction only. No locking needed.
uint16_t newBits = _flags & ~FAST_CACHE_ALLOC_MASK;
uint16_t sizeBits;
// Adding FAST_CACHE_ALLOC_DELTA16 allows for FAST_CACHE_ALLOC_MASK16
// to yield the proper 16byte aligned allocation size with a single mask
sizeBits = word_align(newSize) + FAST_CACHE_ALLOC_DELTA16;
sizeBits &= FAST_CACHE_ALLOC_MASK;
if (newSize <= sizeBits) {
newBits |= sizeBits;
}
_flags = newBits;
}
#else
bool hasFastInstanceSize(size_t extra) const {
return false;
}
size_t fastInstanceSize(size_t extra) const {
abort();
}
void setFastInstanceSize(size_t extra) {
// nothing
}
#endif
};
// classref_t is unremapped class_t*
typedef struct classref * classref_t;
/***********************************************************************
* RelativePointer<T>
* A pointer stored as an offset from the address of that offset.
*
* The target address is computed by taking the address of this struct
* and adding the offset stored within it. This is a 32-bit signed
* offset giving ±2GB of range.
**********************************************************************/
template <typename T>
struct RelativePointer: nocopy_t {
int32_t offset;
T get() const {
if (offset == 0)
return nullptr;
uintptr_t base = (uintptr_t)&offset;
uintptr_t signExtendedOffset = (uintptr_t)(intptr_t)offset;
uintptr_t pointer = base + signExtendedOffset;
return (T)pointer;
}
};
#ifdef __PTRAUTH_INTRINSICS__
# define StubClassInitializerPtrauth __ptrauth(ptrauth_key_function_pointer, 1, 0xc671)
#else
# define StubClassInitializerPtrauth
#endif
struct stub_class_t {
uintptr_t isa;
_objc_swiftMetadataInitializer StubClassInitializerPtrauth initializer;
};
// A pointer modifier that does nothing to the pointer.
struct PointerModifierNop {
template <typename ListType, typename T>
static T *modify(__unused const ListType &list, T *ptr) { return ptr; }
};
/***********************************************************************
* entsize_list_tt<Element, List, FlagMask, PointerModifier>
* Generic implementation of an array of non-fragile structs.
*
* Element is the struct type (e.g. method_t)
* List is the specialization of entsize_list_tt (e.g. method_list_t)
* FlagMask is used to stash extra bits in the entsize field
* (e.g. method list fixup markers)
* PointerModifier is applied to the element pointers retrieved from
* the array.
**********************************************************************/
template <typename Element, typename List, uint32_t FlagMask, typename PointerModifier = PointerModifierNop>
struct entsize_list_tt {
uint32_t entsizeAndFlags;
uint32_t count;
uint32_t entsize() const {
return entsizeAndFlags & ~FlagMask;
}
uint32_t flags() const {
return entsizeAndFlags & FlagMask;
}
Element& getOrEnd(uint32_t i) const {
ASSERT(i <= count);
return *PointerModifier::modify(*this, (Element *)((uint8_t *)this + sizeof(*this) + i*entsize()));
}
Element& get(uint32_t i) const {
ASSERT(i < count);
return getOrEnd(i);
}
size_t byteSize() const {
return byteSize(entsize(), count);
}
static size_t byteSize(uint32_t entsize, uint32_t count) {
return sizeof(entsize_list_tt) + count*entsize;
}
struct iterator;
const iterator begin() const {
return iterator(*static_cast<const List*>(this), 0);
}
iterator begin() {
return iterator(*static_cast<const List*>(this), 0);
}
const iterator end() const {
return iterator(*static_cast<const List*>(this), count);
}
iterator end() {
return iterator(*static_cast<const List*>(this), count);
}
struct iterator {
uint32_t entsize;
uint32_t index; // keeping track of this saves a divide in operator-
Element* element;
typedef std::random_access_iterator_tag iterator_category;
typedef Element value_type;
typedef ptrdiff_t difference_type;
typedef Element* pointer;
typedef Element& reference;
iterator() { }
iterator(const List& list, uint32_t start = 0)
: entsize(list.entsize())
, index(start)
, element(&list.getOrEnd(start))
{ }
const iterator& operator += (ptrdiff_t delta) {
element = (Element*)((uint8_t *)element + delta*entsize);
index += (int32_t)delta;
return *this;
}
const iterator& operator -= (ptrdiff_t delta) {
element = (Element*)((uint8_t *)element - delta*entsize);
index -= (int32_t)delta;
return *this;
}
const iterator operator + (ptrdiff_t delta) const {
return iterator(*this) += delta;
}
const iterator operator - (ptrdiff_t delta) const {
return iterator(*this) -= delta;
}
iterator& operator ++ () { *this += 1; return *this; }
iterator& operator -- () { *this -= 1; return *this; }
iterator operator ++ (int) {
iterator result(*this); *this += 1; return result;
}
iterator operator -- (int) {
iterator result(*this); *this -= 1; return result;
}
ptrdiff_t operator - (const iterator& rhs) const {
return (ptrdiff_t)this->index - (ptrdiff_t)rhs.index;
}
Element& operator * () const { return *element; }
Element* operator -> () const { return element; }
operator Element& () const { return *element; }
bool operator == (const iterator& rhs) const {
return this->element == rhs.element;
}
bool operator != (const iterator& rhs) const {
return this->element != rhs.element;
}
bool operator < (const iterator& rhs) const {
return this->element < rhs.element;
}
bool operator > (const iterator& rhs) const {
return this->element > rhs.element;
}
};
};
namespace objc {
// Let method_t::small use this from objc-private.h.
static inline bool inSharedCache(uintptr_t ptr);
}
struct method_t {
static const uint32_t smallMethodListFlag = 0x80000000;
method_t(const method_t &other) = delete;
// The representation of a "big" method. This is the traditional
// representation of three pointers storing the selector, types
// and implementation.
struct big {
SEL name;
const char *types;
MethodListIMP imp;
};
private:
bool isSmall() const {
return ((uintptr_t)this & 1) == 1;
}
// The representation of a "small" method. This stores three
// relative offsets to the name, types, and implementation.
struct small {
// The name field either refers to a selector (in the shared
// cache) or a selref (everywhere else).
RelativePointer<const void *> name;
RelativePointer<const char *> types;
RelativePointer<IMP> imp;
bool inSharedCache() const {
return (CONFIG_SHARED_CACHE_RELATIVE_DIRECT_SELECTORS &&
objc::inSharedCache((uintptr_t)this));
}
};
small &small() const {
ASSERT(isSmall());
return *(struct small *)((uintptr_t)this & ~(uintptr_t)1);
}
IMP remappedImp(bool needsLock) const;
void remapImp(IMP imp);
objc_method_description *getSmallDescription() const;
public:
static const auto bigSize = sizeof(struct big);
static const auto smallSize = sizeof(struct small);
// The pointer modifier used with method lists. When the method
// list contains small methods, set the bottom bit of the pointer.
// We use that bottom bit elsewhere to distinguish between big
// and small methods.
struct pointer_modifier {
template <typename ListType>
static method_t *modify(const ListType &list, method_t *ptr) {
if (list.flags() & smallMethodListFlag)
return (method_t *)((uintptr_t)ptr | 1);
return ptr;
}
};
big &big() const {
ASSERT(!isSmall());
return *(struct big *)this;
}
SEL name() const {
if (isSmall()) {
return (small().inSharedCache()
? (SEL)small().name.get()
: *(SEL *)small().name.get());
} else {
return big().name;
}
}
const char *types() const {
return isSmall() ? small().types.get() : big().types;
}
IMP imp(bool needsLock) const {
if (isSmall()) {
IMP imp = remappedImp(needsLock);
if (!imp)
imp = ptrauth_sign_unauthenticated(small().imp.get(),
ptrauth_key_function_pointer, 0);
return imp;
}
return big().imp;
}
SEL getSmallNameAsSEL() const {
ASSERT(small().inSharedCache());
return (SEL)small().name.get();
}
SEL getSmallNameAsSELRef() const {
ASSERT(!small().inSharedCache());
return *(SEL *)small().name.get();
}
void setName(SEL name) {
if (isSmall()) {
ASSERT(!small().inSharedCache());
*(SEL *)small().name.get() = name;
} else {
big().name = name;
}
}
void setImp(IMP imp) {
if (isSmall()) {
remapImp(imp);
} else {
big().imp = imp;
}
}
objc_method_description *getDescription() const {
return isSmall() ? getSmallDescription() : (struct objc_method_description *)this;
}
struct SortBySELAddress :
public std::binary_function<const struct method_t::big&,
const struct method_t::big&, bool>
{
bool operator() (const struct method_t::big& lhs,
const struct method_t::big& rhs)
{ return lhs.name < rhs.name; }
};
method_t &operator=(const method_t &other) {
ASSERT(!isSmall());
big().name = other.name();
big().types = other.types();
big().imp = other.imp(false);
return *this;
}
};
struct ivar_t {
#if __x86_64__
// *offset was originally 64-bit on some x86_64 platforms.
// We read and write only 32 bits of it.
// Some metadata provides all 64 bits. This is harmless for unsigned
// little-endian values.
// Some code uses all 64 bits. class_addIvar() over-allocates the
// offset for their benefit.
#endif
int32_t *offset;
const char *name;
const char *type;
// alignment is sometimes -1; use alignment() instead
uint32_t alignment_raw;
uint32_t size;
uint32_t alignment() const {
if (alignment_raw == ~(uint32_t)0) return 1U << WORD_SHIFT;
return 1 << alignment_raw;
}
};
struct property_t {
const char *name;
const char *attributes;
};
// Two bits of entsize are used for fixup markers.
// Reserve the top half of entsize for more flags. We never
// need entry sizes anywhere close to 64kB.
//
// Currently there is one flag defined: the small method list flag,
// method_t::smallMethodListFlag. Other flags are currently ignored.
// (NOTE: these bits are only ignored on runtimes that support small
// method lists. Older runtimes will treat them as part of the entry
// size!)
struct method_list_t : entsize_list_tt<method_t, method_list_t, 0xffff0003, method_t::pointer_modifier> {
bool isUniqued() const;
bool isFixedUp() const;
void setFixedUp();
uint32_t indexOfMethod(const method_t *meth) const {
uint32_t i =
(uint32_t)(((uintptr_t)meth - (uintptr_t)this) / entsize());
ASSERT(i < count);
return i;
}
bool isSmallList() const {
return flags() & method_t::smallMethodListFlag;
}
bool isExpectedSize() const {
if (isSmallList())
return entsize() == method_t::smallSize;
else
return entsize() == method_t::bigSize;
}
method_list_t *duplicate() const {
method_list_t *dup;
if (isSmallList()) {
dup = (method_list_t *)calloc(byteSize(method_t::bigSize, count), 1);
dup->entsizeAndFlags = method_t::bigSize;
} else {
dup = (method_list_t *)calloc(this->byteSize(), 1);
dup->entsizeAndFlags = this->entsizeAndFlags;
}
dup->count = this->count;
std::copy(begin(), end(), dup->begin());
return dup;
}
};
struct ivar_list_t : entsize_list_tt<ivar_t, ivar_list_t, 0> {
bool containsIvar(Ivar ivar) const {
return (ivar >= (Ivar)&*begin() && ivar < (Ivar)&*end());
}
};
struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> {
};
typedef uintptr_t protocol_ref_t; // protocol_t *, but unremapped
// Values for protocol_t->flags
#define PROTOCOL_FIXED_UP_2 (1<<31) // must never be set by compiler
#define PROTOCOL_FIXED_UP_1 (1<<30) // must never be set by compiler
#define PROTOCOL_IS_CANONICAL (1<<29) // must never be set by compiler
// Bits 0..15 are reserved for Swift's use.
#define PROTOCOL_FIXED_UP_MASK (PROTOCOL_FIXED_UP_1 | PROTOCOL_FIXED_UP_2)
struct protocol_t : objc_object {
const char *mangledName;
struct protocol_list_t *protocols;
method_list_t *instanceMethods;
method_list_t *classMethods;
method_list_t *optionalInstanceMethods;
method_list_t *optionalClassMethods;
property_list_t *instanceProperties;
uint32_t size; // sizeof(protocol_t)
uint32_t flags;
// Fields below this point are not always present on disk.
const char **_extendedMethodTypes;
const char *_demangledName;
property_list_t *_classProperties;
const char *demangledName();
const char *nameForLogging() {
return demangledName();
}
bool isFixedUp() const;
void setFixedUp();
bool isCanonical() const;
void clearIsCanonical();
# define HAS_FIELD(f) ((uintptr_t)(&f) < ((uintptr_t)this + size))
bool hasExtendedMethodTypesField() const {
return HAS_FIELD(_extendedMethodTypes);
}
bool hasDemangledNameField() const {
return HAS_FIELD(_demangledName);
}
bool hasClassPropertiesField() const {
return HAS_FIELD(_classProperties);
}
# undef HAS_FIELD
const char **extendedMethodTypes() const {
return hasExtendedMethodTypesField() ? _extendedMethodTypes : nil;
}
property_list_t *classProperties() const {
return hasClassPropertiesField() ? _classProperties : nil;
}
};
struct protocol_list_t {
// count is pointer-sized by accident.
uintptr_t count;
protocol_ref_t list[0]; // variable-size
size_t byteSize() const {
return sizeof(*this) + count*sizeof(list[0]);
}
protocol_list_t *duplicate() const {
return (protocol_list_t *)memdup(this, this->byteSize());
}
typedef protocol_ref_t* iterator;
typedef const protocol_ref_t* const_iterator;
const_iterator begin() const {
return list;
}
iterator begin() {
return list;
}
const_iterator end() const {
return list + count;
}
iterator end() {
return list + count;
}
};
struct class_ro_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
#ifdef __LP64__
uint32_t reserved;
#endif
union {
const uint8_t * ivarLayout;
Class nonMetaclass;
};
explicit_atomic<const char *> name;
// With ptrauth, this is signed if it points to a small list, but
// may be unsigned if it points to a big list.
void *baseMethodList;
protocol_list_t * baseProtocols;
const ivar_list_t * ivars;
const uint8_t * weakIvarLayout;
property_list_t *baseProperties;
// This field exists only when RO_HAS_SWIFT_INITIALIZER is set.
_objc_swiftMetadataInitializer __ptrauth_objc_method_list_imp _swiftMetadataInitializer_NEVER_USE[0];
_objc_swiftMetadataInitializer swiftMetadataInitializer() const {
if (flags & RO_HAS_SWIFT_INITIALIZER) {
return _swiftMetadataInitializer_NEVER_USE[0];
} else {
return nil;
}
}
const char *getName() const {
return name.load(std::memory_order_acquire);
}
static const uint16_t methodListPointerDiscriminator = 0xC310;
#if 0 // FIXME: enable this when we get a non-empty definition of __ptrauth_objc_method_list_pointer from ptrauth.h.
static_assert(std::is_same<
void * __ptrauth_objc_method_list_pointer *,
void * __ptrauth(ptrauth_key_method_list_pointer, 1, methodListPointerDiscriminator) *>::value,
"Method list pointer signing discriminator must match ptrauth.h");
#endif
method_list_t *baseMethods() const {
#if __has_feature(ptrauth_calls)
method_list_t *ptr = ptrauth_strip((method_list_t *)baseMethodList, ptrauth_key_method_list_pointer);
if (ptr == nullptr)
return nullptr;
// Don't auth if the class_ro and the method list are both in the shared cache.
// This is secure since they'll be read-only, and this allows the shared cache
// to cut down on the number of signed pointers it has.
bool roInSharedCache = objc::inSharedCache((uintptr_t)this);
bool listInSharedCache = objc::inSharedCache((uintptr_t)ptr);
if (roInSharedCache && listInSharedCache)
return ptr;
// Auth all other small lists.
if (ptr->isSmallList())
ptr = ptrauth_auth_data((method_list_t *)baseMethodList,
ptrauth_key_method_list_pointer,
ptrauth_blend_discriminator(&baseMethodList,
methodListPointerDiscriminator));
return ptr;
#else
return (method_list_t *)baseMethodList;
#endif
}
uintptr_t baseMethodListPtrauthData() const {
return ptrauth_blend_discriminator(&baseMethodList,
methodListPointerDiscriminator);
}
class_ro_t *duplicate() const {
bool hasSwiftInitializer = flags & RO_HAS_SWIFT_INITIALIZER;
size_t size = sizeof(*this);
if (hasSwiftInitializer)
size += sizeof(_swiftMetadataInitializer_NEVER_USE[0]);
class_ro_t *ro = (class_ro_t *)memdup(this, size);
if (hasSwiftInitializer)
ro->_swiftMetadataInitializer_NEVER_USE[0] = this->_swiftMetadataInitializer_NEVER_USE[0];
#if __has_feature(ptrauth_calls)
// Re-sign the method list pointer if it was signed.
// NOTE: It is possible for a signed pointer to have a signature
// that is all zeroes. This is indistinguishable from a raw pointer.
// This code will treat such a pointer as signed and re-sign it. A
// false positive is safe: method list pointers are either authed or
// stripped, so if baseMethods() doesn't expect it to be signed, it
// will ignore the signature.
void *strippedBaseMethodList = ptrauth_strip(baseMethodList, ptrauth_key_method_list_pointer);
void *signedBaseMethodList = ptrauth_sign_unauthenticated(strippedBaseMethodList,
ptrauth_key_method_list_pointer,
baseMethodListPtrauthData());
if (baseMethodList == signedBaseMethodList) {
ro->baseMethodList = ptrauth_auth_and_resign(baseMethodList,
ptrauth_key_method_list_pointer,
baseMethodListPtrauthData(),
ptrauth_key_method_list_pointer,
ro->baseMethodListPtrauthData());
} else {
// Special case: a class_ro_t in the shared cache pointing to a
// method list in the shared cache will not have a signed pointer,
// but the duplicate will be expected to have a signed pointer since
// it's not in the shared cache. Detect that and sign it.
bool roInSharedCache = objc::inSharedCache((uintptr_t)this);
bool listInSharedCache = objc::inSharedCache((uintptr_t)strippedBaseMethodList);
if (roInSharedCache && listInSharedCache)
ro->baseMethodList = ptrauth_sign_unauthenticated(strippedBaseMethodList,
ptrauth_key_method_list_pointer,
ro->baseMethodListPtrauthData());
}
#endif
return ro;
}
Class getNonMetaclass() const {
ASSERT(flags & RO_META);
return nonMetaclass;
}
const uint8_t *getIvarLayout() const {
if (flags & RO_META)
return nullptr;
return ivarLayout;
}
};
/***********************************************************************
* list_array_tt<Element, List, Ptr>
* Generic implementation for metadata that can be augmented by categories.
*
* Element is the underlying metadata type (e.g. method_t)
* List is the metadata's list type (e.g. method_list_t)
* List is a template applied to Element to make Element*. Useful for
* applying qualifiers to the pointer type.
*
* A list_array_tt has one of three values:
* - empty
* - a pointer to a single list
* - an array of pointers to lists
*
* countLists/beginLists/endLists iterate the metadata lists
* count/begin/end iterate the underlying metadata elements
**********************************************************************/
template <typename Element, typename List, template<typename> class Ptr>
class list_array_tt {
struct array_t {
uint32_t count;
Ptr<List> lists[0];
static size_t byteSize(uint32_t count) {
return sizeof(array_t) + count*sizeof(lists[0]);
}
size_t byteSize() {
return byteSize(count);
}
};
protected:
class iterator {
const Ptr<List> *lists;
const Ptr<List> *listsEnd;
typename List::iterator m, mEnd;
public:
iterator(const Ptr<List> *begin, const Ptr<List> *end)
: lists(begin), listsEnd(end)
{
if (begin != end) {
m = (*begin)->begin();
mEnd = (*begin)->end();
}
}
const Element& operator * () const {
return *m;
}
Element& operator * () {
return *m;
}
bool operator != (const iterator& rhs) const {
if (lists != rhs.lists) return true;
if (lists == listsEnd) return false; // m is undefined
if (m != rhs.m) return true;
return false;
}
const iterator& operator ++ () {
ASSERT(m != mEnd);
m++;
if (m == mEnd) {
ASSERT(lists != listsEnd);
lists++;
if (lists != listsEnd) {
m = (*lists)->begin();
mEnd = (*lists)->end();
}
}
return *this;
}
};
private:
union {
Ptr<List> list;
uintptr_t arrayAndFlag;
};
bool hasArray() const {
return arrayAndFlag & 1;
}
array_t *array() const {
return (array_t *)(arrayAndFlag & ~1);
}
void setArray(array_t *array) {
arrayAndFlag = (uintptr_t)array | 1;
}
void validate() {
for (auto cursor = beginLists(), end = endLists(); cursor != end; cursor++)
cursor->validate();
}
public:
list_array_tt() : list(nullptr) { }
list_array_tt(List *l) : list(l) { }
list_array_tt(const list_array_tt &other) {
*this = other;
}
list_array_tt &operator =(const list_array_tt &other) {
if (other.hasArray()) {
arrayAndFlag = other.arrayAndFlag;
} else {
list = other.list;
}
return *this;
}
uint32_t count() const {
uint32_t result = 0;
for (auto lists = beginLists(), end = endLists();
lists != end;
++lists)
{
result += (*lists)->count;
}
return result;
}
iterator begin() const {
return iterator(beginLists(), endLists());
}
iterator end() const {
auto e = endLists();
return iterator(e, e);
}
inline uint32_t countLists(const std::function<const array_t * (const array_t *)> & peek) const {
if (hasArray()) {
return peek(array())->count;
} else if (list) {
return 1;
} else {
return 0;
}
}
uint32_t countLists() {
return countLists([](array_t *x) { return x; });
}
const Ptr<List>* beginLists() const {
if (hasArray()) {
return array()->lists;
} else {
return &list;
}
}
const Ptr<List>* endLists() const {
if (hasArray()) {
return array()->lists + array()->count;
} else if (list) {
return &list + 1;
} else {
return &list;
}
}
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount));
newArray->count = newCount;
array()->count = newCount;
for (int i = oldCount - 1; i >= 0; i--)
newArray->lists[i + addedCount] = array()->lists[i];
for (unsigned i = 0; i < addedCount; i++)
newArray->lists[i] = addedLists[i];
free(array());
setArray(newArray);
validate();
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
validate();
}
else {
// 1 list -> many lists
Ptr<List> oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
for (unsigned i = 0; i < addedCount; i++)
array()->lists[i] = addedLists[i];
validate();
}
}
void tryFree() {
if (hasArray()) {
for (uint32_t i = 0; i < array()->count; i++) {
try_free(array()->lists[i]);
}
try_free(array());
}
else if (list) {
try_free(list);
}
}
template<typename Other>
void duplicateInto(Other &other) {
if (hasArray()) {
array_t *a = array();
other.setArray((array_t *)memdup(a, a->byteSize()));
for (uint32_t i = 0; i < a->count; i++) {
other.array()->lists[i] = a->lists[i]->duplicate();
}
} else if (list) {
other.list = list->duplicate();
} else {
other.list = nil;
}
}
};
DECLARE_AUTHED_PTR_TEMPLATE(method_list_t)
class method_array_t :
public list_array_tt<method_t, method_list_t, method_list_t_authed_ptr>
{
typedef list_array_tt<method_t, method_list_t, method_list_t_authed_ptr> Super;
public:
method_array_t() : Super() { }
method_array_t(method_list_t *l) : Super(l) { }
const method_list_t_authed_ptr<method_list_t> *beginCategoryMethodLists() const {
return beginLists();
}
const method_list_t_authed_ptr<method_list_t> *endCategoryMethodLists(Class cls) const;
};
class property_array_t :
public list_array_tt<property_t, property_list_t, RawPtr>
{
typedef list_array_tt<property_t, property_list_t, RawPtr> Super;
public:
property_array_t() : Super() { }
property_array_t(property_list_t *l) : Super(l) { }
};
class protocol_array_t :
public list_array_tt<protocol_ref_t, protocol_list_t, RawPtr>
{
typedef list_array_tt<protocol_ref_t, protocol_list_t, RawPtr> Super;
public:
protocol_array_t() : Super() { }
protocol_array_t(protocol_list_t *l) : Super(l) { }
};
struct class_rw_ext_t {
DECLARE_AUTHED_PTR_TEMPLATE(class_ro_t)
class_ro_t_authed_ptr<const class_ro_t> ro;
method_array_t methods;
property_array_t properties;
protocol_array_t protocols;
char *demangledName;
uint32_t version;
};
struct class_rw_t {
// Be warned that Symbolication knows the layout of this structure.
uint32_t flags;
uint16_t witness;
#if SUPPORT_INDEXED_ISA
uint16_t index;
#endif
explicit_atomic<uintptr_t> ro_or_rw_ext;
Class firstSubclass;
Class nextSiblingClass;
private:
using ro_or_rw_ext_t = objc::PointerUnion<const class_ro_t, class_rw_ext_t, PTRAUTH_STR("class_ro_t"), PTRAUTH_STR("class_rw_ext_t")>;
const ro_or_rw_ext_t get_ro_or_rwe() const {
return ro_or_rw_ext_t{ro_or_rw_ext};
}
void set_ro_or_rwe(const class_ro_t *ro) {
ro_or_rw_ext_t{ro, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_relaxed);
}
void set_ro_or_rwe(class_rw_ext_t *rwe, const class_ro_t *ro) {
// the release barrier is so that the class_rw_ext_t::ro initialization
// is visible to lockless readers
rwe->ro = ro;
ro_or_rw_ext_t{rwe, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_release);
}
class_rw_ext_t *extAlloc(const class_ro_t *ro, bool deep = false);
public:
void setFlags(uint32_t set)
{
__c11_atomic_fetch_or((_Atomic(uint32_t) *)&flags, set, __ATOMIC_RELAXED);
}
void clearFlags(uint32_t clear)
{
__c11_atomic_fetch_and((_Atomic(uint32_t) *)&flags, ~clear, __ATOMIC_RELAXED);
}
// set and clear must not overlap
void changeFlags(uint32_t set, uint32_t clear)
{
ASSERT((set & clear) == 0);
uint32_t oldf, newf;
do {
oldf = flags;
newf = (oldf | set) & ~clear;
} while (!OSAtomicCompareAndSwap32Barrier(oldf, newf, (volatile int32_t *)&flags));
}
class_rw_ext_t *ext() const {
return get_ro_or_rwe().dyn_cast<class_rw_ext_t *>(&ro_or_rw_ext);
}
class_rw_ext_t *extAllocIfNeeded() {
auto v = get_ro_or_rwe();
if (fastpath(v.is<class_rw_ext_t *>())) {
return v.get<class_rw_ext_t *>(&ro_or_rw_ext);
} else {
return extAlloc(v.get<const class_ro_t *>(&ro_or_rw_ext));
}
}
class_rw_ext_t *deepCopy(const class_ro_t *ro) {
return extAlloc(ro, true);
}
const class_ro_t *ro() const {
auto v = get_ro_or_rwe();
if (slowpath(v.is<class_rw_ext_t *>())) {
return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro;
}
return v.get<const class_ro_t *>(&ro_or_rw_ext);
}
void set_ro(const class_ro_t *ro) {
auto v = get_ro_or_rwe();
if (v.is<class_rw_ext_t *>()) {
v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro = ro;
} else {
set_ro_or_rwe(ro);
}
}
const method_array_t methods() const {
auto v = get_ro_or_rwe();
if (v.is<class_rw_ext_t *>()) {
return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->methods;
} else {
return method_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseMethods()};
}
}
const property_array_t properties() const {
auto v = get_ro_or_rwe();
if (v.is<class_rw_ext_t *>()) {
return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->properties;
} else {
return property_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProperties};
}
}
const protocol_array_t protocols() const {
auto v = get_ro_or_rwe();
if (v.is<class_rw_ext_t *>()) {
return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->protocols;
} else {
return protocol_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProtocols};
}
}
};
struct class_data_bits_t {
friend objc_class;
// Values are the FAST_ flags above.
uintptr_t bits;
private:
bool getBit(uintptr_t bit) const
{
return bits & bit;
}
// Atomically set the bits in `set` and clear the bits in `clear`.
// set and clear must not overlap.
void setAndClearBits(uintptr_t set, uintptr_t clear)
{
ASSERT((set & clear) == 0);
uintptr_t newBits, oldBits = LoadExclusive(&bits);
do {
newBits = (oldBits | set) & ~clear;
} while (slowpath(!StoreReleaseExclusive(&bits, &oldBits, newBits)));
}
void setBits(uintptr_t set) {
__c11_atomic_fetch_or((_Atomic(uintptr_t) *)&bits, set, __ATOMIC_RELAXED);
}
void clearBits(uintptr_t clear) {
__c11_atomic_fetch_and((_Atomic(uintptr_t) *)&bits, ~clear, __ATOMIC_RELAXED);
}
public:
class_rw_t* data() const {
return (class_rw_t *)(bits & FAST_DATA_MASK);
}
void setData(class_rw_t *newData)
{
ASSERT(!data() || (newData->flags & (RW_REALIZING | RW_FUTURE)));
// Set during realization or construction only. No locking needed.
// Use a store-release fence because there may be concurrent
// readers of data and data's contents.
uintptr_t newBits = (bits & ~FAST_DATA_MASK) | (uintptr_t)newData;
atomic_thread_fence(memory_order_release);
bits = newBits;
}
// Get the class's ro data, even in the presence of concurrent realization.
// fixme this isn't really safe without a compiler barrier at least
// and probably a memory barrier when realizeClass changes the data field
const class_ro_t *safe_ro() const {
class_rw_t *maybe_rw = data();
if (maybe_rw->flags & RW_REALIZED) {
// maybe_rw is rw
return maybe_rw->ro();
} else {
// maybe_rw is actually ro
return (class_ro_t *)maybe_rw;
}
}
#if SUPPORT_INDEXED_ISA
void setClassArrayIndex(unsigned Idx) {
// 0 is unused as then we can rely on zero-initialisation from calloc.
ASSERT(Idx > 0);
data()->index = Idx;
}
#else
void setClassArrayIndex(__unused unsigned Idx) {
}
#endif
unsigned classArrayIndex() {
#if SUPPORT_INDEXED_ISA
return data()->index;
#else
return 0;
#endif
}
bool isAnySwift() {
return isSwiftStable() || isSwiftLegacy();
}
bool isSwiftStable() {
return getBit(FAST_IS_SWIFT_STABLE);
}
void setIsSwiftStable() {
setAndClearBits(FAST_IS_SWIFT_STABLE, FAST_IS_SWIFT_LEGACY);
}
bool isSwiftLegacy() {
return getBit(FAST_IS_SWIFT_LEGACY);
}
void setIsSwiftLegacy() {
setAndClearBits(FAST_IS_SWIFT_LEGACY, FAST_IS_SWIFT_STABLE);
}
// fixme remove this once the Swift runtime uses the stable bits
bool isSwiftStable_ButAllowLegacyForNow() {
return isAnySwift();
}
_objc_swiftMetadataInitializer swiftMetadataInitializer() {
// This function is called on un-realized classes without
// holding any locks.
// Beware of races with other realizers.
return safe_ro()->swiftMetadataInitializer();
}
};
struct objc_class : objc_object {
objc_class(const objc_class&) = delete;
objc_class(objc_class&&) = delete;
void operator=(const objc_class&) = delete;
void operator=(objc_class&&) = delete;
// Class ISA;
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
Class getSuperclass() const {
#if __has_feature(ptrauth_calls)
# if ISA_SIGNING_AUTH_MODE == ISA_SIGNING_AUTH
if (superclass == Nil)
return Nil;
#if SUPERCLASS_SIGNING_TREAT_UNSIGNED_AS_NIL
void *stripped = ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
if ((void *)superclass == stripped) {
void *resigned = ptrauth_sign_unauthenticated(stripped, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
if ((void *)superclass != resigned)
return Nil;
}
#endif
void *result = ptrauth_auth_data((void *)superclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
return (Class)result;
# else
return (Class)ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
# endif
#else
return superclass;
#endif
}
void setSuperclass(Class newSuperclass) {
#if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
superclass = (Class)ptrauth_sign_unauthenticated((void *)newSuperclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
#else
superclass = newSuperclass;
#endif
}
class_rw_t *data() const {
return bits.data();
}
void setData(class_rw_t *newData) {
bits.setData(newData);
}
void setInfo(uint32_t set) {
ASSERT(isFuture() || isRealized());
data()->setFlags(set);
}
void clearInfo(uint32_t clear) {
ASSERT(isFuture() || isRealized());
data()->clearFlags(clear);
}
// set and clear must not overlap
void changeInfo(uint32_t set, uint32_t clear) {
ASSERT(isFuture() || isRealized());
ASSERT((set & clear) == 0);
data()->changeFlags(set, clear);
}
#if FAST_HAS_DEFAULT_RR
bool hasCustomRR() const {
return !bits.getBit(FAST_HAS_DEFAULT_RR);
}
void setHasDefaultRR() {
bits.setBits(FAST_HAS_DEFAULT_RR);
}
void setHasCustomRR() {
bits.clearBits(FAST_HAS_DEFAULT_RR);
}
#else
bool hasCustomRR() const {
return !(bits.data()->flags & RW_HAS_DEFAULT_RR);
}
void setHasDefaultRR() {
bits.data()->setFlags(RW_HAS_DEFAULT_RR);
}
void setHasCustomRR() {
bits.data()->clearFlags(RW_HAS_DEFAULT_RR);
}
#endif
#if FAST_CACHE_HAS_DEFAULT_AWZ
bool hasCustomAWZ() const {
return !cache.getBit(FAST_CACHE_HAS_DEFAULT_AWZ);
}
void setHasDefaultAWZ() {
cache.setBit(FAST_CACHE_HAS_DEFAULT_AWZ);
}
void setHasCustomAWZ() {
cache.clearBit(FAST_CACHE_HAS_DEFAULT_AWZ);
}
#else
bool hasCustomAWZ() const {
return !(bits.data()->flags & RW_HAS_DEFAULT_AWZ);
}
void setHasDefaultAWZ() {
bits.data()->setFlags(RW_HAS_DEFAULT_AWZ);
}
void setHasCustomAWZ() {
bits.data()->clearFlags(RW_HAS_DEFAULT_AWZ);
}
#endif
#if FAST_CACHE_HAS_DEFAULT_CORE
bool hasCustomCore() const {
return !cache.getBit(FAST_CACHE_HAS_DEFAULT_CORE);
}
void setHasDefaultCore() {
return cache.setBit(FAST_CACHE_HAS_DEFAULT_CORE);
}
void setHasCustomCore() {
return cache.clearBit(FAST_CACHE_HAS_DEFAULT_CORE);
}
#else
bool hasCustomCore() const {
return !(bits.data()->flags & RW_HAS_DEFAULT_CORE);
}
void setHasDefaultCore() {
bits.data()->setFlags(RW_HAS_DEFAULT_CORE);
}
void setHasCustomCore() {
bits.data()->clearFlags(RW_HAS_DEFAULT_CORE);
}
#endif
#if FAST_CACHE_HAS_CXX_CTOR
bool hasCxxCtor() {
ASSERT(isRealized());
return cache.getBit(FAST_CACHE_HAS_CXX_CTOR);
}
void setHasCxxCtor() {
cache.setBit(FAST_CACHE_HAS_CXX_CTOR);
}
#else
bool hasCxxCtor() {
ASSERT(isRealized());
return bits.data()->flags & RW_HAS_CXX_CTOR;
}
void setHasCxxCtor() {
bits.data()->setFlags(RW_HAS_CXX_CTOR);
}
#endif
#if FAST_CACHE_HAS_CXX_DTOR
bool hasCxxDtor() {
ASSERT(isRealized());
return cache.getBit(FAST_CACHE_HAS_CXX_DTOR);
}
void setHasCxxDtor() {
cache.setBit(FAST_CACHE_HAS_CXX_DTOR);
}
#else
bool hasCxxDtor() {
ASSERT(isRealized());
return bits.data()->flags & RW_HAS_CXX_DTOR;
}
void setHasCxxDtor() {
bits.data()->setFlags(RW_HAS_CXX_DTOR);
}
#endif
#if FAST_CACHE_REQUIRES_RAW_ISA
bool instancesRequireRawIsa() {
return cache.getBit(FAST_CACHE_REQUIRES_RAW_ISA);
}
void setInstancesRequireRawIsa() {
cache.setBit(FAST_CACHE_REQUIRES_RAW_ISA);
}
#elif SUPPORT_NONPOINTER_ISA
bool instancesRequireRawIsa() {
return bits.data()->flags & RW_REQUIRES_RAW_ISA;
}
void setInstancesRequireRawIsa() {
bits.data()->setFlags(RW_REQUIRES_RAW_ISA);
}
#else
bool instancesRequireRawIsa() {
return true;
}
void setInstancesRequireRawIsa() {
// nothing
}
#endif
void setInstancesRequireRawIsaRecursively(bool inherited = false);
void printInstancesRequireRawIsa(bool inherited);
#if CONFIG_USE_PREOPT_CACHES
bool allowsPreoptCaches() const {
return !(bits.data()->flags & RW_NOPREOPT_CACHE);
}
bool allowsPreoptInlinedSels() const {
return !(bits.data()->flags & RW_NOPREOPT_SELS);
}
void setDisallowPreoptCaches() {
bits.data()->setFlags(RW_NOPREOPT_CACHE | RW_NOPREOPT_SELS);
}
void setDisallowPreoptInlinedSels() {
bits.data()->setFlags(RW_NOPREOPT_SELS);
}
void setDisallowPreoptCachesRecursively(const char *why);
void setDisallowPreoptInlinedSelsRecursively(const char *why);
#else
bool allowsPreoptCaches() const { return false; }
bool allowsPreoptInlinedSels() const { return false; }
void setDisallowPreoptCaches() { }
void setDisallowPreoptInlinedSels() { }
void setDisallowPreoptCachesRecursively(const char *why) { }
void setDisallowPreoptInlinedSelsRecursively(const char *why) { }
#endif
bool canAllocNonpointer() {
ASSERT(!isFuture());
return !instancesRequireRawIsa();
}
bool isSwiftStable() {
return bits.isSwiftStable();
}
bool isSwiftLegacy() {
return bits.isSwiftLegacy();
}
bool isAnySwift() {
return bits.isAnySwift();
}
bool isSwiftStable_ButAllowLegacyForNow() {
return bits.isSwiftStable_ButAllowLegacyForNow();
}
uint32_t swiftClassFlags() {
return *(uint32_t *)(&bits + 1);
}
bool usesSwiftRefcounting() {
if (!isSwiftStable()) return false;
return bool(swiftClassFlags() & 2); //ClassFlags::UsesSwiftRefcounting
}
bool canCallSwiftRR() {
// !hasCustomCore() is being used as a proxy for isInitialized(). All
// classes with Swift refcounting are !hasCustomCore() (unless there are
// category or swizzling shenanigans), but that bit is not set until a
// class is initialized. Checking isInitialized requires an extra
// indirection that we want to avoid on RR fast paths.
//
// In the unlikely event that someone causes a class with Swift
// refcounting to be hasCustomCore(), we'll fall back to sending -retain
// or -release, which is still correct.
return !hasCustomCore() && usesSwiftRefcounting();
}
bool isStubClass() const {
uintptr_t isa = (uintptr_t)isaBits();
return 1 <= isa && isa < 16;
}
// Swift stable ABI built for old deployment targets looks weird.
// The is-legacy bit is set for compatibility with old libobjc.
// We are on a "new" deployment target so we need to rewrite that bit.
// These stable-with-legacy-bit classes are distinguished from real
// legacy classes using another bit in the Swift data
// (ClassFlags::IsSwiftPreStableABI)
bool isUnfixedBackwardDeployingStableSwift() {
// Only classes marked as Swift legacy need apply.
if (!bits.isSwiftLegacy()) return false;
// Check the true legacy vs stable distinguisher.
// The low bit of Swift's ClassFlags is SET for true legacy
// and UNSET for stable pretending to be legacy.
bool isActuallySwiftLegacy = bool(swiftClassFlags() & 1);
return !isActuallySwiftLegacy;
}
void fixupBackwardDeployingStableSwift() {
if (isUnfixedBackwardDeployingStableSwift()) {
// Class really is stable Swift, pretending to be pre-stable.
// Fix its lie.
bits.setIsSwiftStable();
}
}
_objc_swiftMetadataInitializer swiftMetadataInitializer() {
return bits.swiftMetadataInitializer();
}
// Return YES if the class's ivars are managed by ARC,
// or the class is MRC but has ARC-style weak ivars.
bool hasAutomaticIvars() {
return data()->ro()->flags & (RO_IS_ARC | RO_HAS_WEAK_WITHOUT_ARC);
}
// Return YES if the class's ivars are managed by ARC.
bool isARC() {
return data()->ro()->flags & RO_IS_ARC;
}
bool forbidsAssociatedObjects() {
return (data()->flags & RW_FORBIDS_ASSOCIATED_OBJECTS);
}
#if SUPPORT_NONPOINTER_ISA
// Tracked in non-pointer isas; not tracked otherwise
#else
bool instancesHaveAssociatedObjects() {
// this may be an unrealized future class in the CF-bridged case
ASSERT(isFuture() || isRealized());
return data()->flags & RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS;
}
void setInstancesHaveAssociatedObjects() {
// this may be an unrealized future class in the CF-bridged case
ASSERT(isFuture() || isRealized());
setInfo(RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS);
}
#endif
bool shouldGrowCache() {
return true;
}
void setShouldGrowCache(bool) {
// fixme good or bad for memory use?
}
bool isInitializing() {
return getMeta()->data()->flags & RW_INITIALIZING;
}
void setInitializing() {
ASSERT(!isMetaClass());
ISA()->setInfo(RW_INITIALIZING);
}
bool isInitialized() {
return getMeta()->data()->flags & RW_INITIALIZED;
}
void setInitialized();
bool isLoadable() {
ASSERT(isRealized());
return true; // any class registered for +load is definitely loadable
}
IMP getLoadMethod();
// Locking: To prevent concurrent realization, hold runtimeLock.
bool isRealized() const {
return !isStubClass() && (data()->flags & RW_REALIZED);
}
// Returns true if this is an unrealized future class.
// Locking: To prevent concurrent realization, hold runtimeLock.
bool isFuture() const {
if (isStubClass())
return false;
return data()->flags & RW_FUTURE;
}
bool isMetaClass() const {
ASSERT_THIS_NOT_NULL;
ASSERT(isRealized());
#if FAST_CACHE_META
return cache.getBit(FAST_CACHE_META);
#else
return data()->flags & RW_META;
#endif
}
// Like isMetaClass, but also valid on un-realized classes
bool isMetaClassMaybeUnrealized() {
static_assert(offsetof(class_rw_t, flags) == offsetof(class_ro_t, flags), "flags alias");
static_assert(RO_META == RW_META, "flags alias");
if (isStubClass())
return false;
return data()->flags & RW_META;
}
// NOT identical to this->ISA when this is a metaclass
Class getMeta() {
if (isMetaClassMaybeUnrealized()) return (Class)this;
else return this->ISA();
}
bool isRootClass() {
return getSuperclass() == nil;
}
bool isRootMetaclass() {
return ISA() == (Class)this;
}
// If this class does not have a name already, we can ask Swift to construct one for us.
const char *installMangledNameForLazilyNamedClass();
// Get the class's mangled name, or NULL if the class has a lazy
// name that hasn't been created yet.
const char *nonlazyMangledName() const {
return bits.safe_ro()->getName();
}
const char *mangledName() {
// fixme can't assert locks here
ASSERT_THIS_NOT_NULL;
const char *result = nonlazyMangledName();
if (!result) {
// This class lazily instantiates its name. Emplace and
// return it.
result = installMangledNameForLazilyNamedClass();
}
return result;
}
const char *demangledName(bool needsLock);
const char *nameForLogging();
// May be unaligned depending on class's ivars.
uint32_t unalignedInstanceStart() const {
ASSERT(isRealized());
return data()->ro()->instanceStart;
}
// Class's instance start rounded up to a pointer-size boundary.
// This is used for ARC layout bitmaps.
uint32_t alignedInstanceStart() const {
return word_align(unalignedInstanceStart());
}
// May be unaligned depending on class's ivars.
uint32_t unalignedInstanceSize() const {
ASSERT(isRealized());
return data()->ro()->instanceSize;
}
// Class's ivar size rounded up to a pointer-size boundary.
uint32_t alignedInstanceSize() const {
return word_align(unalignedInstanceSize());
}
inline size_t instanceSize(size_t extraBytes) const {
if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
return cache.fastInstanceSize(extraBytes);
}
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
void setInstanceSize(uint32_t newSize) {
ASSERT(isRealized());
ASSERT(data()->flags & RW_REALIZING);
auto ro = data()->ro();
if (newSize != ro->instanceSize) {
ASSERT(data()->flags & RW_COPIED_RO);
*const_cast<uint32_t *>(&ro->instanceSize) = newSize;
}
cache.setFastInstanceSize(newSize);
}
void chooseClassArrayIndex();
void setClassArrayIndex(unsigned Idx) {
bits.setClassArrayIndex(Idx);
}
unsigned classArrayIndex() {
return bits.classArrayIndex();
}
};
struct swift_class_t : objc_class {
uint32_t flags;
uint32_t instanceAddressOffset;
uint32_t instanceSize;
uint16_t instanceAlignMask;
uint16_t reserved;
uint32_t classSize;
uint32_t classAddressOffset;
void *description;
// ...
void *baseAddress() {
return (void *)((uint8_t *)this - classAddressOffset);
}
};
struct category_t {
const char *name;
classref_t cls;
WrappedPtr<method_list_t, PtrauthStrip> instanceMethods;
WrappedPtr<method_list_t, PtrauthStrip> classMethods;
struct protocol_list_t *protocols;
struct property_list_t *instanceProperties;
// Fields below this point are not always present on disk.
struct property_list_t *_classProperties;
method_list_t *methodsForMeta(bool isMeta) {
if (isMeta) return classMethods;
else return instanceMethods;
}
property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
protocol_list_t *protocolsForMeta(bool isMeta) {
if (isMeta) return nullptr;
else return protocols;
}
};
struct objc_super2 {
id receiver;
Class current_class;
};
struct message_ref_t {
IMP imp;
SEL sel;
};
extern Method protocol_getMethod(protocol_t *p, SEL sel, bool isRequiredMethod, bool isInstanceMethod, bool recursive);
#endif