8220159: Optimize various RegMask operations by introducing watermarks

Reviewed-by: neliasso, thartmann
This commit is contained in:
Claes Redestad 2019-03-05 16:39:18 +01:00
parent 359e6b0a42
commit 367ae10733
3 changed files with 192 additions and 151 deletions

View File

@ -114,9 +114,9 @@ public:
_msize_valid=1;
if (_is_vector) {
assert(!_fat_proj, "sanity");
_mask.verify_sets(_num_regs);
assert(_mask.is_aligned_sets(_num_regs), "mask is not aligned, adjacent sets");
} else if (_num_regs == 2 && !_fat_proj) {
_mask.verify_pairs();
assert(_mask.is_aligned_pairs(), "mask is not aligned, adjacent pairs");
}
#endif
}

View File

@ -82,69 +82,62 @@ int RegMask::num_registers(uint ireg) {
return 1;
}
//------------------------------ClearToPairs-----------------------------------
// Clear out partial bits; leave only bit pairs
void RegMask::clear_to_pairs() {
for( int i = 0; i < RM_SIZE; i++ ) {
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
bits |= (bits>>1); // Smear 1 hi-bit into a pair
_A[i] = bits;
}
verify_pairs();
assert(is_aligned_pairs(), "mask is not aligned, adjacent pairs");
}
bool RegMask::is_misaligned_pair() const {
return Size() == 2 && !is_aligned_pairs();
}
//------------------------------is_aligned_pairs-------------------------------
bool RegMask::is_aligned_pairs() const {
// Assert that the register mask contains only bit pairs.
for( int i = 0; i < RM_SIZE; i++ ) {
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
while( bits ) { // Check bits for pairing
while (bits) { // Check bits for pairing
int bit = bits & -bits; // Extract low bit
// Low bit is not odd means its mis-aligned.
if( (bit & 0x55555555) == 0 ) return false;
if ((bit & 0x55555555) == 0) return false;
bits -= bit; // Remove bit from mask
// Check for aligned adjacent bit
if( (bits & (bit<<1)) == 0 ) return false;
if ((bits & (bit<<1)) == 0) return false;
bits -= (bit<<1); // Remove other halve of pair
}
}
return true;
}
//------------------------------is_bound1--------------------------------------
// Return TRUE if the mask contains a single bit
int RegMask::is_bound1() const {
if( is_AllStack() ) return false;
int bit = -1; // Set to hold the one bit allowed
for( int i = 0; i < RM_SIZE; i++ ) {
if( _A[i] ) { // Found some bits
if( bit != -1 ) return false; // Already had bits, so fail
bit = _A[i] & -_A[i]; // Extract 1 bit from mask
if( bit != _A[i] ) return false; // Found many bits, so fail
}
}
// True for both the empty mask and for a single bit
return true;
bool RegMask::is_bound1() const {
if (is_AllStack()) return false;
return Size() == 1;
}
//------------------------------is_bound2--------------------------------------
// Return TRUE if the mask contains an adjacent pair of bits and no other bits.
int RegMask::is_bound_pair() const {
if( is_AllStack() ) return false;
bool RegMask::is_bound_pair() const {
if (is_AllStack()) return false;
int bit = -1; // Set to hold the one bit allowed
for( int i = 0; i < RM_SIZE; i++ ) {
if( _A[i] ) { // Found some bits
if( bit != -1 ) return false; // Already had bits, so fail
bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
if( (bit << 1) != 0 ) { // Bit pair stays in same word?
if( (bit | (bit<<1)) != _A[i] )
return false; // Require adjacent bit pair and no more bits
} else { // Else its a split-pair case
if( bit != _A[i] ) return false; // Found many bits, so fail
i++; // Skip iteration forward
if( i >= RM_SIZE || _A[i] != 1 )
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
if (_A[i]) { // Found some bits
if (bit != -1) return false; // Already had bits, so fail
bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
if ((bit << 1) != 0) { // Bit pair stays in same word?
if ((bit | (bit<<1)) != _A[i])
return false; // Require adjacent bit pair and no more bits
} else { // Else its a split-pair case
if(bit != _A[i]) return false; // Found many bits, so fail
i++; // Skip iteration forward
if (i > _hwm || _A[i] != 1)
return false; // Require 1 lo bit in next word
}
}
@ -153,32 +146,43 @@ int RegMask::is_bound_pair() const {
return true;
}
// Test for a single adjacent set of ideal register's size.
bool RegMask::is_bound(uint ireg) const {
if (is_vector(ireg)) {
if (is_bound_set(num_registers(ireg)))
return true;
} else if (is_bound1() || is_bound_pair()) {
return true;
}
return false;
}
// only indicies of power 2 are accessed, so index 3 is only filled in for storage.
static int low_bits[5] = { 0x55555555, 0x11111111, 0x01010101, 0x00000000, 0x00010001 };
//------------------------------find_first_set---------------------------------
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
// Works also for size 1.
OptoReg::Name RegMask::find_first_set(const int size) const {
verify_sets(size);
for (int i = 0; i < RM_SIZE; i++) {
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
if (_A[i]) { // Found some bits
int bit = _A[i] & -_A[i]; // Extract low bit
// Convert to bit number, return hi bit in pair
return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(_A[i]) + (size - 1));
}
}
return OptoReg::Bad;
}
//------------------------------clear_to_sets----------------------------------
// Clear out partial bits; leave only aligned adjacent bit pairs
void RegMask::clear_to_sets(const int size) {
if (size == 1) return;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
assert(valid_watermarks(), "sanity");
int low_bits_mask = low_bits[size>>2];
for (int i = 0; i < RM_SIZE; i++) {
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
int sets = (bits & low_bits_mask);
for (int j = 1; j < size; j++) {
@ -196,17 +200,17 @@ void RegMask::clear_to_sets(const int size) {
}
_A[i] = sets;
}
verify_sets(size);
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
}
//------------------------------smear_to_sets----------------------------------
// Smear out partial bits to aligned adjacent bit sets
void RegMask::smear_to_sets(const int size) {
if (size == 1) return;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
assert(valid_watermarks(), "sanity");
int low_bits_mask = low_bits[size>>2];
for (int i = 0; i < RM_SIZE; i++) {
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
int sets = 0;
for (int j = 0; j < size; j++) {
@ -225,17 +229,17 @@ void RegMask::smear_to_sets(const int size) {
}
_A[i] = sets;
}
verify_sets(size);
assert(is_aligned_sets(size), "mask is not aligned, adjacent sets");
}
//------------------------------is_aligned_set--------------------------------
// Assert that the register mask contains only bit sets.
bool RegMask::is_aligned_sets(const int size) const {
if (size == 1) return true;
assert(2 <= size && size <= 16, "update low bits table");
assert(is_power_of_2(size), "sanity");
int low_bits_mask = low_bits[size>>2];
// Assert that the register mask contains only bit sets.
for (int i = 0; i < RM_SIZE; i++) {
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
while (bits) { // Check bits for pairing
int bit = bits & -bits; // Extract low bit
@ -252,14 +256,14 @@ bool RegMask::is_aligned_sets(const int size) const {
return true;
}
//------------------------------is_bound_set-----------------------------------
// Return TRUE if the mask contains one adjacent set of bits and no other bits.
// Works also for size 1.
int RegMask::is_bound_set(const int size) const {
if( is_AllStack() ) return false;
if (is_AllStack()) return false;
assert(1 <= size && size <= 16, "update low bits table");
assert(valid_watermarks(), "sanity");
int bit = -1; // Set to hold the one bit allowed
for (int i = 0; i < RM_SIZE; i++) {
for (int i = _lwm; i <= _hwm; i++) {
if (_A[i] ) { // Found some bits
if (bit != -1)
return false; // Already had bits, so fail
@ -279,7 +283,7 @@ int RegMask::is_bound_set(const int size) const {
int set = bit>>clear_bit_size;
set = set & -set; // Remove sign extension.
set = (((set << size) - 1) >> shift_back_size);
if (i >= RM_SIZE || _A[i] != set)
if (i > _hwm || _A[i] != set)
return false; // Require expected low bits in next word
}
}
@ -288,31 +292,29 @@ int RegMask::is_bound_set(const int size) const {
return true;
}
//------------------------------is_UP------------------------------------------
// UP means register only, Register plus stack, or stack only is DOWN
bool RegMask::is_UP() const {
// Quick common case check for DOWN (any stack slot is legal)
if( is_AllStack() )
if (is_AllStack())
return false;
// Slower check for any stack bits set (also DOWN)
if( overlap(Matcher::STACK_ONLY_mask) )
if (overlap(Matcher::STACK_ONLY_mask))
return false;
// Not DOWN, so must be UP
return true;
}
//------------------------------Size-------------------------------------------
// Compute size of register mask in bits
uint RegMask::Size() const {
uint sum = 0;
for (int i = 0; i < RM_SIZE; i++) {
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
sum += population_count(_A[i]);
}
return sum;
}
#ifndef PRODUCT
//------------------------------print------------------------------------------
void RegMask::dump(outputStream *st) const {
st->print("[");
RegMask rm = *this; // Structure copy into local temp

View File

@ -30,22 +30,6 @@
#include "utilities/count_leading_zeros.hpp"
#include "utilities/count_trailing_zeros.hpp"
// Some fun naming (textual) substitutions:
//
// RegMask::get_low_elem() ==> RegMask::find_first_elem()
// RegMask::Special ==> RegMask::Empty
// RegMask::_flags ==> RegMask::is_AllStack()
// RegMask::operator<<=() ==> RegMask::Insert()
// RegMask::operator>>=() ==> RegMask::Remove()
// RegMask::Union() ==> RegMask::OR
// RegMask::Inter() ==> RegMask::AND
//
// OptoRegister::RegName ==> OptoReg::Name
//
// OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version
//
// numregs in chaitin ==> proper degree in chaitin
//-------------Non-zero bit search methods used by RegMask---------------------
// Find lowest 1, undefined if empty/0
static int find_lowest_bit(uint32_t mask) {
@ -78,6 +62,12 @@ class RegMask {
// is something like 90+ parameters.
int _A[RM_SIZE];
};
// The low and high water marks represents the lowest and highest word
// that might contain set register mask bits, respectively. We guarantee
// that there are no bits in words outside this range, but any word at
// and between the two marks can still be 0.
int _lwm;
int _hwm;
enum {
_WordBits = BitsPerInt,
@ -85,7 +75,7 @@ class RegMask {
_RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
};
public:
public:
enum { CHUNK_SIZE = RM_SIZE*_WordBits };
// SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
@ -113,28 +103,41 @@ public:
# define BODY(I) int a##I,
FORALL_BODY
# undef BODY
int dummy = 0 ) {
int dummy = 0) {
# define BODY(I) _A[I] = a##I;
FORALL_BODY
# undef BODY
_lwm = 0;
_hwm = RM_SIZE - 1;
while (_hwm > 0 && _A[_hwm] == 0) _hwm--;
while ((_lwm < _hwm) && _A[_lwm] == 0) _lwm++;
assert(valid_watermarks(), "post-condition");
}
// Handy copying constructor
RegMask( RegMask *rm ) {
# define BODY(I) _A[I] = rm->_A[I];
FORALL_BODY
# undef BODY
RegMask(RegMask *rm) {
_hwm = rm->_hwm;
_lwm = rm->_lwm;
for (int i = 0; i < RM_SIZE; i++) {
_A[i] = rm->_A[i];
}
assert(valid_watermarks(), "post-condition");
}
// Construct an empty mask
RegMask( ) { Clear(); }
RegMask() {
Clear();
}
// Construct a mask with a single bit
RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
RegMask(OptoReg::Name reg) {
Clear();
Insert(reg);
}
// Check for register being in mask
int Member( OptoReg::Name reg ) const {
assert( reg < CHUNK_SIZE, "" );
int Member(OptoReg::Name reg) const {
assert(reg < CHUNK_SIZE, "");
return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
}
@ -152,56 +155,69 @@ public:
void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
// Test for being a not-empty mask.
int is_NotEmpty( ) const {
int is_NotEmpty() const {
assert(valid_watermarks(), "sanity");
int tmp = 0;
# define BODY(I) tmp |= _A[I];
FORALL_BODY
# undef BODY
for (int i = _lwm; i <= _hwm; i++) {
tmp |= _A[i];
}
return tmp;
}
// Find lowest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_first_elem() const {
int base, bits;
# define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
FORALL_BODY
# undef BODY
{ base = OptoReg::Bad; bits = 1<<0; }
return OptoReg::Name(base + find_lowest_bit(bits));
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
if (bits) {
return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(bits));
}
}
return OptoReg::Name(OptoReg::Bad);
}
// Get highest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_last_elem() const {
int base, bits;
# define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
FORALL_BODY
# undef BODY
{ base = OptoReg::Bad; bits = 1<<0; }
return OptoReg::Name(base + find_highest_bit(bits));
assert(valid_watermarks(), "sanity");
for (int i = _hwm; i >= _lwm; i--) {
int bits = _A[i];
if (bits) {
return OptoReg::Name((i<<_LogWordBits) + find_highest_bit(bits));
}
}
return OptoReg::Name(OptoReg::Bad);
}
// Clear out partial bits; leave only aligned adjacent bit pairs.
void clear_to_pairs();
// Verify that the mask contains only aligned adjacent bit pairs
void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
#ifdef ASSERT
// Verify watermarks are sane, i.e., within bounds and that no
// register words below or above the watermarks have bits set.
bool valid_watermarks() const {
assert(_hwm >= 0 && _hwm < RM_SIZE, "_hwm out of range: %d", _hwm);
assert(_lwm >= 0 && _lwm < RM_SIZE, "_lwm out of range: %d", _lwm);
for (int i = 0; i < _lwm; i++) {
assert(_A[i] == 0, "_lwm too high: %d regs at: %d", _lwm, i);
}
for (int i = _hwm + 1; i < RM_SIZE; i++) {
assert(_A[i] == 0, "_hwm too low: %d regs at: %d", _hwm, i);
}
return true;
}
#endif // !ASSERT
// Test that the mask contains only aligned adjacent bit pairs
bool is_aligned_pairs() const;
// mask is a pair of misaligned registers
bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
bool is_misaligned_pair() const;
// Test for single register
int is_bound1() const;
bool is_bound1() const;
// Test for a single adjacent pair
int is_bound_pair() const;
bool is_bound_pair() const;
// Test for a single adjacent set of ideal register's size.
int is_bound(uint ireg) const {
if (is_vector(ireg)) {
if (is_bound_set(num_registers(ireg)))
return true;
} else if (is_bound1() || is_bound_pair()) {
return true;
}
return false;
}
bool is_bound(uint ireg) const;
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
@ -212,8 +228,6 @@ public:
void clear_to_sets(const int size);
// Smear out partial bits to aligned adjacent bit sets.
void smear_to_sets(const int size);
// Verify that the mask contains only aligned adjacent bit sets
void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
// Test that the mask contains only aligned adjacent bit sets
bool is_aligned_sets(const int size) const;
@ -224,12 +238,15 @@ public:
static int num_registers(uint ireg);
// Fast overlap test. Non-zero if any registers in common.
int overlap( const RegMask &rm ) const {
return
# define BODY(I) (_A[I] & rm._A[I]) |
FORALL_BODY
# undef BODY
0 ;
int overlap(const RegMask &rm) const {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
int hwm = MIN2(_hwm, rm._hwm);
int lwm = MAX2(_lwm, rm._lwm);
int result = 0;
for (int i = lwm; i <= hwm; i++) {
result |= _A[i] & rm._A[i];
}
return result;
}
// Special test for register pressure based splitting
@ -237,50 +254,72 @@ public:
bool is_UP() const;
// Clear a register mask
void Clear( ) {
# define BODY(I) _A[I] = 0;
FORALL_BODY
# undef BODY
void Clear() {
_lwm = RM_SIZE - 1;
_hwm = 0;
memset(_A, 0, sizeof(int)*RM_SIZE);
assert(valid_watermarks(), "sanity");
}
// Fill a register mask with 1's
void Set_All( ) {
# define BODY(I) _A[I] = -1;
FORALL_BODY
# undef BODY
void Set_All() {
_lwm = 0;
_hwm = RM_SIZE - 1;
memset(_A, 0xFF, sizeof(int)*RM_SIZE);
assert(valid_watermarks(), "sanity");
}
// Insert register into mask
void Insert( OptoReg::Name reg ) {
assert( reg < CHUNK_SIZE, "" );
_A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
void Insert(OptoReg::Name reg) {
assert(reg < CHUNK_SIZE, "sanity");
assert(valid_watermarks(), "pre-condition");
int index = reg>>_LogWordBits;
if (index > _hwm) _hwm = index;
if (index < _lwm) _lwm = index;
_A[index] |= (1<<(reg&(_WordBits-1)));
assert(valid_watermarks(), "post-condition");
}
// Remove register from mask
void Remove( OptoReg::Name reg ) {
assert( reg < CHUNK_SIZE, "" );
void Remove(OptoReg::Name reg) {
assert(reg < CHUNK_SIZE, "");
_A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
}
// OR 'rm' into 'this'
void OR( const RegMask &rm ) {
# define BODY(I) this->_A[I] |= rm._A[I];
FORALL_BODY
# undef BODY
void OR(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
// OR widens the live range
if (_lwm > rm._lwm) _lwm = rm._lwm;
if (_hwm < rm._hwm) _hwm = rm._hwm;
for (int i = _lwm; i <= _hwm; i++) {
_A[i] |= rm._A[i];
}
assert(valid_watermarks(), "sanity");
}
// AND 'rm' into 'this'
void AND( const RegMask &rm ) {
# define BODY(I) this->_A[I] &= rm._A[I];
FORALL_BODY
# undef BODY
void AND(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
// Do not evaluate words outside the current watermark range, as they are
// already zero and an &= would not change that
for (int i = _lwm; i <= _hwm; i++) {
_A[i] &= rm._A[i];
}
// Narrow the watermarks if &rm spans a narrower range.
// Update after to ensure non-overlapping words are zeroed out.
if (_lwm < rm._lwm) _lwm = rm._lwm;
if (_hwm > rm._hwm) _hwm = rm._hwm;
}
// Subtract 'rm' from 'this'
void SUBTRACT( const RegMask &rm ) {
# define BODY(I) _A[I] &= ~rm._A[I];
FORALL_BODY
# undef BODY
void SUBTRACT(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
int hwm = MIN2(_hwm, rm._hwm);
int lwm = MAX2(_lwm, rm._lwm);
for (int i = lwm; i <= hwm; i++) {
_A[i] &= ~rm._A[i];
}
}
// Compute size of register mask: number of bits