diff --git a/src/java.base/share/classes/java/util/Arrays.java b/src/java.base/share/classes/java/util/Arrays.java index e46107773f..b87b1643cd 100644 --- a/src/java.base/share/classes/java/util/Arrays.java +++ b/src/java.base/share/classes/java/util/Arrays.java @@ -74,17 +74,658 @@ import java.util.stream.StreamSupport; */ public class Arrays { - /** - * The minimum array length below which a parallel sorting - * algorithm will not further partition the sorting task. Using - * smaller sizes typically results in memory contention across - * tasks that makes parallel speedups unlikely. - */ - private static final int MIN_ARRAY_SORT_GRAN = 1 << 13; - // Suppresses default constructor, ensuring non-instantiability. private Arrays() {} + /* + * Sorting methods. Note that all public "sort" methods take the + * same form: performing argument checks if necessary, and then + * expanding arguments into those required for the internal + * implementation methods residing in other package-private + * classes (except for legacyMergeSort, included in this class). + */ + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(int[] a) { + DualPivotQuicksort.sort(a, 0, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(int[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(long[] a) { + DualPivotQuicksort.sort(a, 0, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(long[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(short[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(short[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(char[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(char[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(byte[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(byte[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + *

The {@code <} relation does not provide a total order on all float + * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Float#compareTo}: {@code -0.0f} is treated as less than value + * {@code 0.0f} and {@code Float.NaN} is considered greater than any + * other value and all {@code Float.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(float[] a) { + DualPivotQuicksort.sort(a, 0, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + *

The {@code <} relation does not provide a total order on all float + * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Float#compareTo}: {@code -0.0f} is treated as less than value + * {@code 0.0f} and {@code Float.NaN} is considered greater than any + * other value and all {@code Float.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(float[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + *

The {@code <} relation does not provide a total order on all double + * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Double#compareTo}: {@code -0.0d} is treated as less than value + * {@code 0.0d} and {@code Double.NaN} is considered greater than any + * other value and all {@code Double.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + */ + public static void sort(double[] a) { + DualPivotQuicksort.sort(a, 0, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending order. The range + * to be sorted extends from the index {@code fromIndex}, inclusive, to + * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, + * the range to be sorted is empty. + * + *

The {@code <} relation does not provide a total order on all double + * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Double#compareTo}: {@code -0.0d} is treated as less than value + * {@code 0.0d} and {@code Double.NaN} is considered greater than any + * other value and all {@code Double.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort + * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + */ + public static void sort(double[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(byte[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(byte[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(char[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(char[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(short[] a) { + DualPivotQuicksort.sort(a, 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(short[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(int[] a) { + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(int[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(long[] a) { + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(long[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + *

The {@code <} relation does not provide a total order on all float + * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Float#compareTo}: {@code -0.0f} is treated as less than value + * {@code 0.0f} and {@code Float.NaN} is considered greater than any + * other value and all {@code Float.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(float[] a) { + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + *

The {@code <} relation does not provide a total order on all float + * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Float#compareTo}: {@code -0.0f} is treated as less than value + * {@code 0.0f} and {@code Float.NaN} is considered greater than any + * other value and all {@code Float.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(float[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); + } + + /** + * Sorts the specified array into ascending numerical order. + * + *

The {@code <} relation does not provide a total order on all double + * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Double#compareTo}: {@code -0.0d} is treated as less than value + * {@code 0.0d} and {@code Double.NaN} is considered greater than any + * other value and all {@code Double.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * + * @since 1.8 + */ + public static void parallelSort(double[] a) { + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); + } + + /** + * Sorts the specified range of the array into ascending numerical order. + * The range to be sorted extends from the index {@code fromIndex}, + * inclusive, to the index {@code toIndex}, exclusive. If + * {@code fromIndex == toIndex}, the range to be sorted is empty. + * + *

The {@code <} relation does not provide a total order on all double + * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} + * value compares neither less than, greater than, nor equal to any value, + * even itself. This method uses the total order imposed by the method + * {@link Double#compareTo}: {@code -0.0d} is treated as less than value + * {@code 0.0d} and {@code Double.NaN} is considered greater than any + * other value and all {@code Double.NaN} values are considered equal. + * + * @implNote The sorting algorithm is a Dual-Pivot Quicksort by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically + * faster than traditional (one-pivot) Quicksort implementations. + * + * @param a the array to be sorted + * @param fromIndex the index of the first element, inclusive, to be sorted + * @param toIndex the index of the last element, exclusive, to be sorted + * + * @throws IllegalArgumentException if {@code fromIndex > toIndex} + * @throws ArrayIndexOutOfBoundsException + * if {@code fromIndex < 0} or {@code toIndex > a.length} + * + * @since 1.8 + */ + public static void parallelSort(double[] a, int fromIndex, int toIndex) { + rangeCheck(a.length, fromIndex, toIndex); + DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); + } + + /** + * Checks that {@code fromIndex} and {@code toIndex} are in + * the range and throws an exception if they aren't. + */ + static void rangeCheck(int arrayLength, int fromIndex, int toIndex) { + if (fromIndex > toIndex) { + throw new IllegalArgumentException( + "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); + } + if (fromIndex < 0) { + throw new ArrayIndexOutOfBoundsException(fromIndex); + } + if (toIndex > arrayLength) { + throw new ArrayIndexOutOfBoundsException(toIndex); + } + } + /** * A comparator that implements the natural ordering of a group of * mutually comparable elements. May be used when a supplied @@ -109,863 +750,12 @@ public class Arrays { } /** - * Checks that {@code fromIndex} and {@code toIndex} are in - * the range and throws an exception if they aren't. + * The minimum array length below which a parallel sorting + * algorithm will not further partition the sorting task. Using + * smaller sizes typically results in memory contention across + * tasks that makes parallel speedups unlikely. */ - static void rangeCheck(int arrayLength, int fromIndex, int toIndex) { - if (fromIndex > toIndex) { - throw new IllegalArgumentException( - "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); - } - if (fromIndex < 0) { - throw new ArrayIndexOutOfBoundsException(fromIndex); - } - if (toIndex > arrayLength) { - throw new ArrayIndexOutOfBoundsException(toIndex); - } - } - - /* - * Sorting methods. Note that all public "sort" methods take the - * same form: Performing argument checks if necessary, and then - * expanding arguments into those required for the internal - * implementation methods residing in other package-private - * classes (except for legacyMergeSort, included in this class). - */ - - /** - * Sorts the specified array into ascending numerical order. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(int[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(int[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(long[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(long[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(short[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(short[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(char[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(char[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(byte[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(byte[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

The {@code <} relation does not provide a total order on all float - * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Float#compareTo}: {@code -0.0f} is treated as less than value - * {@code 0.0f} and {@code Float.NaN} is considered greater than any - * other value and all {@code Float.NaN} values are considered equal. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(float[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

The {@code <} relation does not provide a total order on all float - * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Float#compareTo}: {@code -0.0f} is treated as less than value - * {@code 0.0f} and {@code Float.NaN} is considered greater than any - * other value and all {@code Float.NaN} values are considered equal. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(float[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

The {@code <} relation does not provide a total order on all double - * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Double#compareTo}: {@code -0.0d} is treated as less than value - * {@code 0.0d} and {@code Double.NaN} is considered greater than any - * other value and all {@code Double.NaN} values are considered equal. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - */ - public static void sort(double[] a) { - DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); - } - - /** - * Sorts the specified range of the array into ascending order. The range - * to be sorted extends from the index {@code fromIndex}, inclusive, to - * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, - * the range to be sorted is empty. - * - *

The {@code <} relation does not provide a total order on all double - * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Double#compareTo}: {@code -0.0d} is treated as less than value - * {@code 0.0d} and {@code Double.NaN} is considered greater than any - * other value and all {@code Double.NaN} values are considered equal. - * - *

Implementation note: The sorting algorithm is a Dual-Pivot Quicksort - * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically - * faster than traditional (one-pivot) Quicksort implementations. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - */ - public static void sort(double[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - } - - /** - * Sorts the specified array into ascending numerical order. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(byte[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1); - else - new ArraysParallelSortHelpers.FJByte.Sorter - (null, a, new byte[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(byte[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1); - else - new ArraysParallelSortHelpers.FJByte.Sorter - (null, a, new byte[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(char[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJChar.Sorter - (null, a, new char[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(char[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJChar.Sorter - (null, a, new char[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(short[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJShort.Sorter - (null, a, new short[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(short[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJShort.Sorter - (null, a, new short[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(int[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJInt.Sorter - (null, a, new int[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(int[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJInt.Sorter - (null, a, new int[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(long[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJLong.Sorter - (null, a, new long[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(long[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJLong.Sorter - (null, a, new long[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

The {@code <} relation does not provide a total order on all float - * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Float#compareTo}: {@code -0.0f} is treated as less than value - * {@code 0.0f} and {@code Float.NaN} is considered greater than any - * other value and all {@code Float.NaN} values are considered equal. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(float[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJFloat.Sorter - (null, a, new float[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - *

The {@code <} relation does not provide a total order on all float - * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Float#compareTo}: {@code -0.0f} is treated as less than value - * {@code 0.0f} and {@code Float.NaN} is considered greater than any - * other value and all {@code Float.NaN} values are considered equal. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(float[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJFloat.Sorter - (null, a, new float[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified array into ascending numerical order. - * - *

The {@code <} relation does not provide a total order on all double - * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Double#compareTo}: {@code -0.0d} is treated as less than value - * {@code 0.0d} and {@code Double.NaN} is considered greater than any - * other value and all {@code Double.NaN} values are considered equal. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a - * working space no greater than the size of the original array. The - * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to - * execute any parallel tasks. - * - * @param a the array to be sorted - * - * @since 1.8 - */ - public static void parallelSort(double[] a) { - int n = a.length, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJDouble.Sorter - (null, a, new double[n], 0, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } - - /** - * Sorts the specified range of the array into ascending numerical order. - * The range to be sorted extends from the index {@code fromIndex}, - * inclusive, to the index {@code toIndex}, exclusive. If - * {@code fromIndex == toIndex}, the range to be sorted is empty. - * - *

The {@code <} relation does not provide a total order on all double - * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} - * value compares neither less than, greater than, nor equal to any value, - * even itself. This method uses the total order imposed by the method - * {@link Double#compareTo}: {@code -0.0d} is treated as less than value - * {@code 0.0d} and {@code Double.NaN} is considered greater than any - * other value and all {@code Double.NaN} values are considered equal. - * - * @implNote The sorting algorithm is a parallel sort-merge that breaks the - * array into sub-arrays that are themselves sorted and then merged. When - * the sub-array length reaches a minimum granularity, the sub-array is - * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort} - * method. If the length of the specified array is less than the minimum - * granularity, then it is sorted using the appropriate {@link - * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a working - * space no greater than the size of the specified range of the original - * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is - * used to execute any parallel tasks. - * - * @param a the array to be sorted - * @param fromIndex the index of the first element, inclusive, to be sorted - * @param toIndex the index of the last element, exclusive, to be sorted - * - * @throws IllegalArgumentException if {@code fromIndex > toIndex} - * @throws ArrayIndexOutOfBoundsException - * if {@code fromIndex < 0} or {@code toIndex > a.length} - * - * @since 1.8 - */ - public static void parallelSort(double[] a, int fromIndex, int toIndex) { - rangeCheck(a.length, fromIndex, toIndex); - int n = toIndex - fromIndex, p, g; - if (n <= MIN_ARRAY_SORT_GRAN || - (p = ForkJoinPool.getCommonPoolParallelism()) == 1) - DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0); - else - new ArraysParallelSortHelpers.FJDouble.Sorter - (null, a, new double[n], fromIndex, n, 0, - ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? - MIN_ARRAY_SORT_GRAN : g).invoke(); - } + private static final int MIN_ARRAY_SORT_GRAN = 1 << 13; /** * Sorts the specified array of objects into ascending order, according diff --git a/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java b/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java index 13bb9c6142..5fca0cd41d 100644 --- a/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java +++ b/src/java.base/share/classes/java/util/ArraysParallelSortHelpers.java @@ -24,7 +24,6 @@ */ package java.util; -import java.util.concurrent.RecursiveAction; import java.util.concurrent.CountedCompleter; /** @@ -36,7 +35,7 @@ import java.util.concurrent.CountedCompleter; * Sorter classes based mainly on CilkSort * Cilk: * Basic algorithm: - * if array size is small, just use a sequential quicksort (via Arrays.sort) + * if array size is small, just use a sequential sort (via Arrays.sort) * Otherwise: * 1. Break array in half. * 2. For each half, @@ -63,14 +62,10 @@ import java.util.concurrent.CountedCompleter; * need to keep track of the arrays, and are never themselves forked, * so don't hold any task state. * - * The primitive class versions (FJByte... FJDouble) are - * identical to each other except for type declarations. - * * The base sequential sorts rely on non-public versions of TimSort, - * ComparableTimSort, and DualPivotQuicksort sort methods that accept - * temp workspace array slices that we will have already allocated, so - * avoids redundant allocation. (Except for DualPivotQuicksort byte[] - * sort, that does not ever use a workspace array.) + * ComparableTimSort sort methods that accept temp workspace array + * slices that we will have already allocated, so avoids redundant + * allocation. */ /*package*/ class ArraysParallelSortHelpers { @@ -142,7 +137,7 @@ import java.util.concurrent.CountedCompleter; Relay rc = new Relay(new Merger<>(fc, a, w, b+h, q, b+u, n-u, wb+h, g, c)); new Sorter<>(rc, a, w, b+u, n-u, wb+u, g, c).fork(); - new Sorter<>(rc, a, w, b+h, q, wb+h, g, c).fork();; + new Sorter<>(rc, a, w, b+h, q, wb+h, g, c).fork(); Relay bc = new Relay(new Merger<>(fc, a, w, b, q, b+q, h-q, wb, g, c)); new Sorter<>(bc, a, w, b+q, h-q, wb+q, g, c).fork(); @@ -239,799 +234,6 @@ import java.util.concurrent.CountedCompleter; tryComplete(); } - } - } // FJObject - - /** byte support class */ - static final class FJByte { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final byte[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, byte[] a, byte[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - byte[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final byte[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, byte[] a, byte[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - byte[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - byte split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - byte split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - byte t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJByte - - /** char support class */ - static final class FJChar { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final char[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, char[] a, char[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - char[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final char[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, char[] a, char[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - char[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - char split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - char split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - char t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJChar - - /** short support class */ - static final class FJShort { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final short[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, short[] a, short[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - short[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final short[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, short[] a, short[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - short[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - short split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - short split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - short t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJShort - - /** int support class */ - static final class FJInt { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final int[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, int[] a, int[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - int[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final int[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, int[] a, int[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - int[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - int split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - int split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - int t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJInt - - /** long support class */ - static final class FJLong { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final long[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, long[] a, long[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - long[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final long[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, long[] a, long[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - long[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - long split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - long split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - long t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJLong - - /** float support class */ - static final class FJFloat { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final float[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, float[] a, float[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - float[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final float[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, float[] a, float[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - float[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - float split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - float split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - float t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJFloat - - /** double support class */ - static final class FJDouble { - static final class Sorter extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final double[] a, w; - final int base, size, wbase, gran; - Sorter(CountedCompleter par, double[] a, double[] w, int base, - int size, int wbase, int gran) { - super(par); - this.a = a; this.w = w; this.base = base; this.size = size; - this.wbase = wbase; this.gran = gran; - } - public final void compute() { - CountedCompleter s = this; - double[] a = this.a, w = this.w; // localize all params - int b = this.base, n = this.size, wb = this.wbase, g = this.gran; - while (n > g) { - int h = n >>> 1, q = h >>> 1, u = h + q; // quartiles - Relay fc = new Relay(new Merger(s, w, a, wb, h, - wb+h, n-h, b, g)); - Relay rc = new Relay(new Merger(fc, a, w, b+h, q, - b+u, n-u, wb+h, g)); - new Sorter(rc, a, w, b+u, n-u, wb+u, g).fork(); - new Sorter(rc, a, w, b+h, q, wb+h, g).fork();; - Relay bc = new Relay(new Merger(fc, a, w, b, q, - b+q, h-q, wb, g)); - new Sorter(bc, a, w, b+q, h-q, wb+q, g).fork(); - s = new EmptyCompleter(bc); - n = q; - } - DualPivotQuicksort.sort(a, b, b + n - 1, w, wb, n); - s.tryComplete(); - } - } - - static final class Merger extends CountedCompleter { - @java.io.Serial - static final long serialVersionUID = 2446542900576103244L; - final double[] a, w; // main and workspace arrays - final int lbase, lsize, rbase, rsize, wbase, gran; - Merger(CountedCompleter par, double[] a, double[] w, - int lbase, int lsize, int rbase, - int rsize, int wbase, int gran) { - super(par); - this.a = a; this.w = w; - this.lbase = lbase; this.lsize = lsize; - this.rbase = rbase; this.rsize = rsize; - this.wbase = wbase; this.gran = gran; - } - - public final void compute() { - double[] a = this.a, w = this.w; // localize all params - int lb = this.lbase, ln = this.lsize, rb = this.rbase, - rn = this.rsize, k = this.wbase, g = this.gran; - if (a == null || w == null || lb < 0 || rb < 0 || k < 0) - throw new IllegalStateException(); // hoist checks - for (int lh, rh;;) { // split larger, find point in smaller - if (ln >= rn) { - if (ln <= g) - break; - rh = rn; - double split = a[(lh = ln >>> 1) + lb]; - for (int lo = 0; lo < rh; ) { - int rm = (lo + rh) >>> 1; - if (split <= a[rm + rb]) - rh = rm; - else - lo = rm + 1; - } - } - else { - if (rn <= g) - break; - lh = ln; - double split = a[(rh = rn >>> 1) + rb]; - for (int lo = 0; lo < lh; ) { - int lm = (lo + lh) >>> 1; - if (split <= a[lm + lb]) - lh = lm; - else - lo = lm + 1; - } - } - Merger m = new Merger(this, a, w, lb + lh, ln - lh, - rb + rh, rn - rh, - k + lh + rh, g); - rn = rh; - ln = lh; - addToPendingCount(1); - m.fork(); - } - - int lf = lb + ln, rf = rb + rn; // index bounds - while (lb < lf && rb < rf) { - double t, al, ar; - if ((al = a[lb]) <= (ar = a[rb])) { - lb++; t = al; - } - else { - rb++; t = ar; - } - w[k++] = t; - } - if (rb < rf) - System.arraycopy(a, rb, w, k, rf - rb); - else if (lb < lf) - System.arraycopy(a, lb, w, k, lf - lb); - tryComplete(); - } - } - } // FJDouble - + } } diff --git a/src/java.base/share/classes/java/util/DualPivotQuicksort.java b/src/java.base/share/classes/java/util/DualPivotQuicksort.java index 97a48ae301..ac96b34c5f 100644 --- a/src/java.base/share/classes/java/util/DualPivotQuicksort.java +++ b/src/java.base/share/classes/java/util/DualPivotQuicksort.java @@ -1,5 +1,5 @@ /* - * Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -25,24 +25,28 @@ package java.util; +import java.util.concurrent.CountedCompleter; +import java.util.concurrent.RecursiveTask; + /** - * This class implements the Dual-Pivot Quicksort algorithm by - * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm - * offers O(n log(n)) performance on many data sets that cause other - * quicksorts to degrade to quadratic performance, and is typically + * This class implements powerful and fully optimized versions, both + * sequential and parallel, of the Dual-Pivot Quicksort algorithm by + * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm + * offers O(n log(n)) performance on all data sets, and is typically * faster than traditional (one-pivot) Quicksort implementations. * - * All exposed methods are package-private, designed to be invoked - * from public methods (in class Arrays) after performing any - * necessary array bounds checks and expanding parameters into the - * required forms. + * There are also additional algorithms, invoked from the Dual-Pivot + * Quicksort, such as mixed insertion sort, merging of runs and heap + * sort, counting sort and parallel merge sort. * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch + * @author Doug Lea * - * @version 2011.02.11 m765.827.12i:5\7pm - * @since 1.7 + * @version 2018.08.18 + * + * @since 1.7 * 14 */ final class DualPivotQuicksort { @@ -51,3131 +55,4107 @@ final class DualPivotQuicksort { */ private DualPivotQuicksort() {} - /* - * Tuning parameters. + /** + * Max array size to use mixed insertion sort. */ + private static final int MAX_MIXED_INSERTION_SORT_SIZE = 65; /** - * The maximum number of runs in merge sort. + * Max array size to use insertion sort. */ - private static final int MAX_RUN_COUNT = 67; + private static final int MAX_INSERTION_SORT_SIZE = 44; /** - * If the length of an array to be sorted is less than this - * constant, Quicksort is used in preference to merge sort. + * Min array size to perform sorting in parallel. */ - private static final int QUICKSORT_THRESHOLD = 286; + private static final int MIN_PARALLEL_SORT_SIZE = 4 << 10; /** - * If the length of an array to be sorted is less than this - * constant, insertion sort is used in preference to Quicksort. + * Min array size to try merging of runs. */ - private static final int INSERTION_SORT_THRESHOLD = 47; + private static final int MIN_TRY_MERGE_SIZE = 4 << 10; /** - * If the length of a byte array to be sorted is greater than this - * constant, counting sort is used in preference to insertion sort. + * Min size of the first run to continue with scanning. */ - private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29; + private static final int MIN_FIRST_RUN_SIZE = 16; /** - * If the length of a short or char array to be sorted is greater - * than this constant, counting sort is used in preference to Quicksort. - */ - private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200; - - /* - * Sorting methods for seven primitive types. + * Min factor for the first runs to continue scanning. */ + private static final int MIN_FIRST_RUNS_FACTOR = 7; /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging + * Max capacity of the index array for tracking runs. + */ + private static final int MAX_RUN_CAPACITY = 5 << 10; + + /** + * Min number of runs, required by parallel merging. + */ + private static final int MIN_RUN_COUNT = 4; + + /** + * Min array size to use parallel merging of parts. + */ + private static final int MIN_PARALLEL_MERGE_PARTS_SIZE = 4 << 10; + + /** + * Min size of a byte array to use counting sort. + */ + private static final int MIN_BYTE_COUNTING_SORT_SIZE = 64; + + /** + * Min size of a short or char array to use counting sort. + */ + private static final int MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE = 1750; + + /** + * Threshold of mixed insertion sort is incremented by this value. + */ + private static final int DELTA = 3 << 1; + + /** + * Max recursive partitioning depth before using heap sort. + */ + private static final int MAX_RECURSION_DEPTH = 64 * DELTA; + + /** + * Calculates the double depth of parallel merging. + * Depth is negative, if tasks split before sorting. + * + * @param parallelism the parallelism level + * @param size the target size + * @return the depth of parallel merging + */ + private static int getDepth(int parallelism, int size) { + int depth = 0; + + while ((parallelism >>= 3) > 0 && (size >>= 2) > 0) { + depth -= 2; + } + return depth; + } + + /** + * Sorts the specified range of the array using parallel merge + * sort and/or Dual-Pivot Quicksort. + * + * To balance the faster splitting and parallelism of merge sort + * with the faster element partitioning of Quicksort, ranges are + * subdivided in tiers such that, if there is enough parallelism, + * the four-way parallel merge is started, still ensuring enough + * parallelism to process the partitions. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array + * @param parallelism the parallelism level + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - static void sort(int[] a, int left, int right, - int[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); - return; - } + static void sort(int[] a, int parallelism, int low, int high) { + int size = high - low; - /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). - */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; - - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - int t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } - } - - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } - - /* - * The array is not highly structured, - * use Quicksort instead of merge sort. - */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); - return; - } - } - - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - int[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new int[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; + if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { + int depth = getDepth(parallelism, size >> 12); + int[] b = depth == 0 ? null : new int[size]; + new Sorter(null, a, b, low, size, low, depth).invoke(); } else { - b = work; - ao = 0; - bo = workBase - left; - } - - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; - } - } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - int[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; + sort(null, a, 0, low, high); } } /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. * + * @param sorter parallel context * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - private static void sort(int[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; + static void sort(Sorter sorter, int[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { - /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. - */ - for (int i = left, j = i; i < right; j = ++i) { - int ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; - } - } else { - /* - * Skip the longest ascending sequence. - */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); - - /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. - */ - for (int k = left; ++left <= right; k = ++left) { - int a1 = a[k], a2 = a[left]; - - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - int last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; + /* + * Run mixed insertion sort on small non-leftmost parts. + */ + if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) { + mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); + return; } - return; - } - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } + /* + * Invoke insertion sort on small leftmost part. + */ + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; } - } - if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } + + /* + * Check if the whole array or large non-leftmost + * parts are nearly sorted and then merge runs. + */ + if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) + && tryMergeRuns(sorter, a, low, size)) { + return; + } + + /* + * Switch to heap sort if execution + * time is becoming quadratic. + */ + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + heapSort(a, low, high); + return; + } + + /* + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + int a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. + * + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ + */ + if (a[e5] < a[e2]) { int t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { int t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { int t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { - /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. - */ - int pivot1 = a[e2]; - int pivot2 = a[e4]; - - /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. - */ - a[e2] = a[left]; - a[e4] = a[right]; - - /* - * Skip elements, which are less or greater than pivot values. - */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); - - /* - * Partitioning: - * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. - */ - outer: - for (int k = less - 1; ++k <= great; ) { - int ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; } } - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. + * Partitioning with 2 pivots in case of different elements. */ - if (less < e1 && e5 < great) { + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + /* - * Skip elements, which are equal to pivot values. + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } + int pivot1 = a[e1]; + int pivot2 = a[e5]; /* - * Partitioning: + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper * * Invariants: * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 * - * Pointer k is the first index of ?-part. + * Pointer k is the last index of ?-part */ - outer: - for (int k = less - 1; ++k <= great; ) { + for (int unused = --lower, k = ++upper; --k > lower; ) { int ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; } } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = pivot1; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; - } - a[great] = ak; - --great; + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; } } - } - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot - /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. - */ - int pivot = a[e3]; - - /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. - */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { - continue; - } - int ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ - a[k] = pivot; - } - a[great] = ak; - --great; - } - } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); - } - } - - /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array - */ - static void sort(long[] a, int left, int right, - long[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); - return; - } - - /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). - */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; - - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - long t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } - } - - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } - - /* - * The array is not highly structured, - * use Quicksort instead of merge sort. - */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); - return; - } - } - - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - long[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new long[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; - } else { - b = work; - ao = 0; - bo = workBase - left; - } - - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; - } - } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - long[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } - - /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range - */ - private static void sort(long[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; - - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. + * Swap the pivots into their final positions. */ - for (int i = left, j = i; i < right; j = ++i) { - long ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; - } - } else { + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + /* - * Skip the longest ascending sequence. + * Sort non-left parts recursively (possibly in parallel), + * excluding known pivots. */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, lower + 1, upper); + sorter.forkSorter(bits | 1, upper + 1, high); + } else { + sort(sorter, a, bits | 1, lower + 1, upper); + sort(sorter, a, bits | 1, upper + 1, high); + } + + } else { // Use single pivot in case of many equal elements /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. */ - for (int k = left; ++left <= right; k = ++left) { - long a1 = a[k], a2 = a[left]; + int pivot = a[e3]; - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - long last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; - } - return; - } - - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { - /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. - */ - long pivot1 = a[e2]; - long pivot2 = a[e4]; - - /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. - */ - a[e2] = a[left]; - a[e4] = a[right]; - - /* - * Skip elements, which are less or greater than pivot values. - */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); - - /* - * Partitioning: - * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. - */ - outer: - for (int k = less - 1; ++k <= great; ) { - long ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; - } - } - - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); - - /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. - */ - if (less < e1 && e5 < great) { /* - * Skip elements, which are equal to pivot values. + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } + a[e3] = a[lower]; /* - * Partitioning: + * Traditional 3-way (Dutch National Flag) partitioning * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper * * Invariants: * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot * - * Pointer k is the first index of ?-part. + * Pointer k is the last index of ?-part */ - outer: - for (int k = less - 1; ++k <= great; ) { + for (int k = ++upper; --k > lower; ) { + int ak = a[k]; + + if (ak != pivot) { + a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } + } + } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part (possibly in parallel), excluding + * known pivot. All elements from the central part are + * equal and therefore already sorted. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, upper, high); + } else { + sort(sorter, a, bits | 1, upper, high); + } + } + high = lower; // Iterate along the left part + } + } + + /** + * Sorts the specified range of the array using mixed insertion sort. + * + * Mixed insertion sort is combination of simple insertion sort, + * pin insertion sort and pair insertion sort. + * + * In the context of Dual-Pivot Quicksort, the pivot element + * from the left part plays the role of sentinel, because it + * is less than any elements from the given part. Therefore, + * expensive check of the left range can be skipped on each + * iteration unless it is the leftmost call. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param end the index of the last element for simple insertion sort + * @param high the index of the last element, exclusive, to be sorted + */ + private static void mixedInsertionSort(int[] a, int low, int end, int high) { + if (end == high) { + + /* + * Invoke simple insertion sort on tiny array. + */ + for (int i; ++low < end; ) { + int ai = a[i = low]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } else { + + /* + * Start with pin insertion sort on small part. + * + * Pin insertion sort is extended simple insertion sort. + * The main idea of this sort is to put elements larger + * than an element called pin to the end of array (the + * proper area for such elements). It avoids expensive + * movements of these elements through the whole array. + */ + int pin = a[end]; + + for (int i, p = high; ++low < end; ) { + int ai = a[i = low]; + + if (ai < a[i - 1]) { // Small element + + /* + * Insert small element into sorted part. + */ + a[i] = a[--i]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + + } else if (p > i && ai > pin) { // Large element + + /* + * Find element smaller than pin. + */ + while (a[--p] > pin); + + /* + * Swap it with large element. + */ + if (p > i) { + ai = a[p]; + a[p] = a[i]; + } + + /* + * Insert small element into sorted part. + */ + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + + /* + * Continue with pair insertion sort on remain part. + */ + for (int i; low < high; ++low) { + int a1 = a[i = low], a2 = a[++low]; + + /* + * Insert two elements per iteration: at first, insert the + * larger element and then insert the smaller element, but + * from the position where the larger element was inserted. + */ + if (a1 > a2) { + + while (a1 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a1; + + while (a2 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a2; + + } else if (a1 < a[i - 1]) { + + while (a2 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a2; + + while (a1 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a1; + } + } + } + } + + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(int[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + int ai = a[i = k]; + + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + } + + /** + * Sorts the specified range of the array using heap sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void heapSort(int[] a, int low, int high) { + for (int k = (low + high) >>> 1; k > low; ) { + pushDown(a, --k, a[k], low, high); + } + while (--high > low) { + int max = a[low]; + pushDown(a, low, a[high], low, high); + a[high] = max; + } + } + + /** + * Pushes specified element down during heap sort. + * + * @param a the given array + * @param p the start index + * @param value the given element + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void pushDown(int[] a, int p, int value, int low, int high) { + for (int k ;; a[p] = a[p = k]) { + k = (p << 1) - low + 2; // Index of the right child + + if (k > high) { + break; + } + if (k == high || a[k] < a[k - 1]) { + --k; + } + if (a[k] <= value) { + break; + } + } + a[p] = value; + } + + /** + * Tries to sort the specified range of the array. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param low the index of the first element to be sorted + * @param size the array size + * @return true if finally sorted, false otherwise + */ + private static boolean tryMergeRuns(Sorter sorter, int[] a, int low, int size) { + + /* + * The run array is constructed only if initial runs are + * long enough to continue, run[i] then holds start index + * of the i-th sequence of elements in non-descending order. + */ + int[] run = null; + int high = low + size; + int count = 1, last = low; + + /* + * Identify all possible runs. + */ + for (int k = low + 1; k < high; ) { + + /* + * Find the end index of the current run. + */ + if (a[k - 1] < a[k]) { + + // Identify ascending sequence + while (++k < high && a[k - 1] <= a[k]); + + } else if (a[k - 1] > a[k]) { + + // Identify descending sequence + while (++k < high && a[k - 1] >= a[k]); + + // Reverse into ascending order + for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { + int ai = a[i]; a[i] = a[j]; a[j] = ai; + } + } else { // Identify constant sequence + for (int ak = a[k]; ++k < high && ak == a[k]; ); + + if (k < high) { + continue; + } + } + + /* + * Check special cases. + */ + if (run == null) { + if (k == high) { + + /* + * The array is monotonous sequence, + * and therefore already sorted. + */ + return true; + } + + if (k - low < MIN_FIRST_RUN_SIZE) { + + /* + * The first run is too small + * to proceed with scanning. + */ + return false; + } + + run = new int[((size >> 10) | 0x7F) & 0x3FF]; + run[0] = low; + + } else if (a[last - 1] > a[last]) { + + if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { + + /* + * The first runs are not long + * enough to continue scanning. + */ + return false; + } + + if (++count == MAX_RUN_CAPACITY) { + + /* + * Array is not highly structured. + */ + return false; + } + + if (count == run.length) { + + /* + * Increase capacity of index array. + */ + run = Arrays.copyOf(run, count << 1); + } + } + run[count] = (last = k); + } + + /* + * Merge runs of highly structured array. + */ + if (count > 1) { + int[] b; int offset = low; + + if (sorter == null || (b = (int[]) sorter.b) == null) { + b = new int[size]; + } else { + offset = sorter.offset; + } + mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); + } + return true; + } + + /** + * Merges the specified runs. + * + * @param a the source array + * @param b the temporary buffer used in merging + * @param offset the start index in the source, inclusive + * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) + * @param parallel indicates whether merging is performed in parallel + * @param run the start indexes of the runs, inclusive + * @param lo the start index of the first run, inclusive + * @param hi the start index of the last run, inclusive + * @return the destination where runs are merged + */ + private static int[] mergeRuns(int[] a, int[] b, int offset, + int aim, boolean parallel, int[] run, int lo, int hi) { + + if (hi - lo == 1) { + if (aim >= 0) { + return a; + } + for (int i = run[hi], j = i - offset, low = run[lo]; i > low; + b[--j] = a[--i] + ); + return b; + } + + /* + * Split into approximately equal parts. + */ + int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; + while (run[++mi + 1] <= rmi); + + /* + * Merge the left and right parts. + */ + int[] a1, a2; + + if (parallel && hi - lo > MIN_RUN_COUNT) { + RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); + a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); + a2 = (int[]) merger.getDestination(); + } else { + a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); + a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); + } + + int[] dst = a1 == a ? b : a; + + int k = a1 == a ? run[lo] - offset : run[lo]; + int lo1 = a1 == b ? run[lo] - offset : run[lo]; + int hi1 = a1 == b ? run[mi] - offset : run[mi]; + int lo2 = a2 == b ? run[mi] - offset : run[mi]; + int hi2 = a2 == b ? run[hi] - offset : run[hi]; + + if (parallel) { + new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); + } else { + mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); + } + return dst; + } + + /** + * Merges the sorted parts. + * + * @param merger parallel context + * @param dst the destination where parts are merged + * @param k the start index of the destination, inclusive + * @param a1 the first part + * @param lo1 the start index of the first part, inclusive + * @param hi1 the end index of the first part, exclusive + * @param a2 the second part + * @param lo2 the start index of the second part, inclusive + * @param hi2 the end index of the second part, exclusive + */ + private static void mergeParts(Merger merger, int[] dst, int k, + int[] a1, int lo1, int hi1, int[] a2, int lo2, int hi2) { + + if (merger != null && a1 == a2) { + + while (true) { + + /* + * The first part must be larger. + */ + if (hi1 - lo1 < hi2 - lo2) { + int lo = lo1; lo1 = lo2; lo2 = lo; + int hi = hi1; hi1 = hi2; hi2 = hi; + } + + /* + * Small parts will be merged sequentially. + */ + if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { + break; + } + + /* + * Find the median of the larger part. + */ + int mi1 = (lo1 + hi1) >>> 1; + int key = a1[mi1]; + int mi2 = hi2; + + /* + * Partition the smaller part. + */ + for (int loo = lo2; loo < mi2; ) { + int t = (loo + mi2) >>> 1; + + if (key > a2[t]) { + loo = t + 1; + } else { + mi2 = t; + } + } + + int d = mi2 - lo2 + mi1 - lo1; + + /* + * Merge the right sub-parts in parallel. + */ + merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); + + /* + * Process the sub-left parts. + */ + hi1 = mi1; + hi2 = mi2; + } + } + + /* + * Merge small parts sequentially. + */ + while (lo1 < hi1 && lo2 < hi2) { + dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; + } + if (dst != a1 || k < lo1) { + while (lo1 < hi1) { + dst[k++] = a1[lo1++]; + } + } + if (dst != a2 || k < lo2) { + while (lo2 < hi2) { + dst[k++] = a2[lo2++]; + } + } + } + +// [long] + + /** + * Sorts the specified range of the array using parallel merge + * sort and/or Dual-Pivot Quicksort. + * + * To balance the faster splitting and parallelism of merge sort + * with the faster element partitioning of Quicksort, ranges are + * subdivided in tiers such that, if there is enough parallelism, + * the four-way parallel merge is started, still ensuring enough + * parallelism to process the partitions. + * + * @param a the array to be sorted + * @param parallelism the parallelism level + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(long[] a, int parallelism, int low, int high) { + int size = high - low; + + if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { + int depth = getDepth(parallelism, size >> 12); + long[] b = depth == 0 ? null : new long[size]; + new Sorter(null, a, b, low, size, low, depth).invoke(); + } else { + sort(null, a, 0, low, high); + } + } + + /** + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(Sorter sorter, long[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; + + /* + * Run mixed insertion sort on small non-leftmost parts. + */ + if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) { + mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); + return; + } + + /* + * Invoke insertion sort on small leftmost part. + */ + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; + } + + /* + * Check if the whole array or large non-leftmost + * parts are nearly sorted and then merge runs. + */ + if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) + && tryMergeRuns(sorter, a, low, size)) { + return; + } + + /* + * Switch to heap sort if execution + * time is becoming quadratic. + */ + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + heapSort(a, low, high); + return; + } + + /* + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + long a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. + * + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ + */ + if (a[e5] < a[e2]) { long t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { long t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { long t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; + } + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; + } + } + + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part + + /* + * Partitioning with 2 pivots in case of different elements. + */ + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + + /* + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. + */ + long pivot1 = a[e1]; + long pivot2 = a[e5]; + + /* + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning + * + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 + * + * Pointer k is the last index of ?-part + */ + for (int unused = --lower, k = ++upper; --k > lower; ) { long ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; } } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = pivot1; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; - } - a[great] = ak; - --great; + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; } } - } - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot - /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. - */ - long pivot = a[e3]; - - /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. - */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { - continue; - } - long ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ - a[k] = pivot; - } - a[great] = ak; - --great; - } - } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); - } - } - - /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array - */ - static void sort(short[] a, int left, int right, - short[] work, int workBase, int workLen) { - // Use counting sort on large arrays - if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { - int[] count = new int[NUM_SHORT_VALUES]; - - for (int i = left - 1; ++i <= right; - count[a[i] - Short.MIN_VALUE]++ - ); - for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) { - while (count[--i] == 0); - short value = (short) (i + Short.MIN_VALUE); - int s = count[i]; - - do { - a[--k] = value; - } while (--s > 0); - } - } else { // Use Dual-Pivot Quicksort on small arrays - doSort(a, left, right, work, workBase, workLen); - } - } - - /** The number of distinct short values. */ - private static final int NUM_SHORT_VALUES = 1 << 16; - - /** - * Sorts the specified range of the array. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array - */ - private static void doSort(short[] a, int left, int right, - short[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); - return; - } - - /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). - */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; - - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - short t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } - } - - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } - - /* - * The array is not highly structured, - * use Quicksort instead of merge sort. - */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); - return; - } - } - - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - short[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new short[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; - } else { - b = work; - ao = 0; - bo = workBase - left; - } - - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; - } - } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - short[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } - - /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range - */ - private static void sort(short[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; - - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. + * Swap the pivots into their final positions. */ - for (int i = left, j = i; i < right; j = ++i) { - short ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; - } - } else { + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + /* - * Skip the longest ascending sequence. + * Sort non-left parts recursively (possibly in parallel), + * excluding known pivots. */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, lower + 1, upper); + sorter.forkSorter(bits | 1, upper + 1, high); + } else { + sort(sorter, a, bits | 1, lower + 1, upper); + sort(sorter, a, bits | 1, upper + 1, high); + } + + } else { // Use single pivot in case of many equal elements /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. */ - for (int k = left; ++left <= right; k = ++left) { - short a1 = a[k], a2 = a[left]; + long pivot = a[e3]; - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - short last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; - } - return; - } - - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { - /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. - */ - short pivot1 = a[e2]; - short pivot2 = a[e4]; - - /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. - */ - a[e2] = a[left]; - a[e4] = a[right]; - - /* - * Skip elements, which are less or greater than pivot values. - */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); - - /* - * Partitioning: - * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. - */ - outer: - for (int k = less - 1; ++k <= great; ) { - short ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; - } - } - - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); - - /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. - */ - if (less < e1 && e5 < great) { /* - * Skip elements, which are equal to pivot values. + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } + a[e3] = a[lower]; /* - * Partitioning: + * Traditional 3-way (Dutch National Flag) partitioning * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper * * Invariants: * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot * - * Pointer k is the first index of ?-part. + * Pointer k is the last index of ?-part */ - outer: - for (int k = less - 1; ++k <= great; ) { - short ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = pivot1; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; - } - a[great] = ak; - --great; - } - } - } + for (int k = ++upper; --k > lower; ) { + long ak = a[k]; - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot - /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. - */ - short pivot = a[e3]; - - /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. - */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { - continue; - } - short ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ + if (ak != pivot) { a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } } - a[great] = ak; - --great; + } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part (possibly in parallel), excluding + * known pivot. All elements from the central part are + * equal and therefore already sorted. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, upper, high); + } else { + sort(sorter, a, bits | 1, upper, high); } } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); + high = lower; // Iterate along the left part } } /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging + * Sorts the specified range of the array using mixed insertion sort. + * + * Mixed insertion sort is combination of simple insertion sort, + * pin insertion sort and pair insertion sort. + * + * In the context of Dual-Pivot Quicksort, the pivot element + * from the left part plays the role of sentinel, because it + * is less than any elements from the given part. Therefore, + * expensive check of the left range can be skipped on each + * iteration unless it is the leftmost call. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array + * @param low the index of the first element, inclusive, to be sorted + * @param end the index of the last element for simple insertion sort + * @param high the index of the last element, exclusive, to be sorted */ - static void sort(char[] a, int left, int right, - char[] work, int workBase, int workLen) { - // Use counting sort on large arrays - if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { - int[] count = new int[NUM_CHAR_VALUES]; - - for (int i = left - 1; ++i <= right; - count[a[i]]++ - ); - for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) { - while (count[--i] == 0); - char value = (char) i; - int s = count[i]; - - do { - a[--k] = value; - } while (--s > 0); - } - } else { // Use Dual-Pivot Quicksort on small arrays - doSort(a, left, right, work, workBase, workLen); - } - } - - /** The number of distinct char values. */ - private static final int NUM_CHAR_VALUES = 1 << 16; - - /** - * Sorts the specified range of the array. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array - */ - private static void doSort(char[] a, int left, int right, - char[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); - return; - } - - /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). - */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; - - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - char t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } - } - - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } + private static void mixedInsertionSort(long[] a, int low, int end, int high) { + if (end == high) { /* - * The array is not highly structured, - * use Quicksort instead of merge sort. + * Invoke simple insertion sort on tiny array. */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); - return; + for (int i; ++low < end; ) { + long ai = a[i = low]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; } - } - - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - char[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new char[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; } else { - b = work; - ao = 0; - bo = workBase - left; - } - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; + /* + * Start with pin insertion sort on small part. + * + * Pin insertion sort is extended simple insertion sort. + * The main idea of this sort is to put elements larger + * than an element called pin to the end of array (the + * proper area for such elements). It avoids expensive + * movements of these elements through the whole array. + */ + long pin = a[end]; + + for (int i, p = high; ++low < end; ) { + long ai = a[i = low]; + + if (ai < a[i - 1]) { // Small element + + /* + * Insert small element into sorted part. + */ + a[i] = a[--i]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; } + a[i + 1] = ai; + + } else if (p > i && ai > pin) { // Large element + + /* + * Find element smaller than pin. + */ + while (a[--p] > pin); + + /* + * Swap it with large element. + */ + if (p > i) { + ai = a[p]; + a[p] = a[i]; + } + + /* + * Insert small element into sorted part. + */ + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; } - run[++last] = hi; } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; + + /* + * Continue with pair insertion sort on remain part. + */ + for (int i; low < high; ++low) { + long a1 = a[i = low], a2 = a[++low]; + + /* + * Insert two elements per iteration: at first, insert the + * larger element and then insert the smaller element, but + * from the position where the larger element was inserted. + */ + if (a1 > a2) { + + while (a1 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a1; + + while (a2 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a2; + + } else if (a1 < a[i - 1]) { + + while (a2 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a2; + + while (a1 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a1; + } } - char[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; } } /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. + * Sorts the specified range of the array using insertion sort. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - private static void sort(char[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; + private static void insertionSort(long[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + long ai = a[i = k]; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { - /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. - */ - for (int i = left, j = i; i < right; j = ++i) { - char ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; } - } else { - /* - * Skip the longest ascending sequence. - */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); - - /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. - */ - for (int k = left; ++left <= right; k = ++left) { - char a1 = a[k], a2 = a[left]; - - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - char last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; + a[i + 1] = ai; } - return; - } - - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { - /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. - */ - char pivot1 = a[e2]; - char pivot2 = a[e4]; - - /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. - */ - a[e2] = a[left]; - a[e4] = a[right]; - - /* - * Skip elements, which are less or greater than pivot values. - */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); - - /* - * Partitioning: - * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. - */ - outer: - for (int k = less - 1; ++k <= great; ) { - char ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; - } - } - - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); - - /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. - */ - if (less < e1 && e5 < great) { - /* - * Skip elements, which are equal to pivot values. - */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } - - /* - * Partitioning: - * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 - * - * Pointer k is the first index of ?-part. - */ - outer: - for (int k = less - 1; ++k <= great; ) { - char ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = pivot1; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; - } - a[great] = ak; - --great; - } - } - } - - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot - /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. - */ - char pivot = a[e3]; - - /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. - */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { - continue; - } - char ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ - a[k] = pivot; - } - a[great] = ak; - --great; - } - } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); } } - /** The number of distinct byte values. */ + /** + * Sorts the specified range of the array using heap sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void heapSort(long[] a, int low, int high) { + for (int k = (low + high) >>> 1; k > low; ) { + pushDown(a, --k, a[k], low, high); + } + while (--high > low) { + long max = a[low]; + pushDown(a, low, a[high], low, high); + a[high] = max; + } + } + + /** + * Pushes specified element down during heap sort. + * + * @param a the given array + * @param p the start index + * @param value the given element + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void pushDown(long[] a, int p, long value, int low, int high) { + for (int k ;; a[p] = a[p = k]) { + k = (p << 1) - low + 2; // Index of the right child + + if (k > high) { + break; + } + if (k == high || a[k] < a[k - 1]) { + --k; + } + if (a[k] <= value) { + break; + } + } + a[p] = value; + } + + /** + * Tries to sort the specified range of the array. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param low the index of the first element to be sorted + * @param size the array size + * @return true if finally sorted, false otherwise + */ + private static boolean tryMergeRuns(Sorter sorter, long[] a, int low, int size) { + + /* + * The run array is constructed only if initial runs are + * long enough to continue, run[i] then holds start index + * of the i-th sequence of elements in non-descending order. + */ + int[] run = null; + int high = low + size; + int count = 1, last = low; + + /* + * Identify all possible runs. + */ + for (int k = low + 1; k < high; ) { + + /* + * Find the end index of the current run. + */ + if (a[k - 1] < a[k]) { + + // Identify ascending sequence + while (++k < high && a[k - 1] <= a[k]); + + } else if (a[k - 1] > a[k]) { + + // Identify descending sequence + while (++k < high && a[k - 1] >= a[k]); + + // Reverse into ascending order + for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { + long ai = a[i]; a[i] = a[j]; a[j] = ai; + } + } else { // Identify constant sequence + for (long ak = a[k]; ++k < high && ak == a[k]; ); + + if (k < high) { + continue; + } + } + + /* + * Check special cases. + */ + if (run == null) { + if (k == high) { + + /* + * The array is monotonous sequence, + * and therefore already sorted. + */ + return true; + } + + if (k - low < MIN_FIRST_RUN_SIZE) { + + /* + * The first run is too small + * to proceed with scanning. + */ + return false; + } + + run = new int[((size >> 10) | 0x7F) & 0x3FF]; + run[0] = low; + + } else if (a[last - 1] > a[last]) { + + if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { + + /* + * The first runs are not long + * enough to continue scanning. + */ + return false; + } + + if (++count == MAX_RUN_CAPACITY) { + + /* + * Array is not highly structured. + */ + return false; + } + + if (count == run.length) { + + /* + * Increase capacity of index array. + */ + run = Arrays.copyOf(run, count << 1); + } + } + run[count] = (last = k); + } + + /* + * Merge runs of highly structured array. + */ + if (count > 1) { + long[] b; int offset = low; + + if (sorter == null || (b = (long[]) sorter.b) == null) { + b = new long[size]; + } else { + offset = sorter.offset; + } + mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); + } + return true; + } + + /** + * Merges the specified runs. + * + * @param a the source array + * @param b the temporary buffer used in merging + * @param offset the start index in the source, inclusive + * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) + * @param parallel indicates whether merging is performed in parallel + * @param run the start indexes of the runs, inclusive + * @param lo the start index of the first run, inclusive + * @param hi the start index of the last run, inclusive + * @return the destination where runs are merged + */ + private static long[] mergeRuns(long[] a, long[] b, int offset, + int aim, boolean parallel, int[] run, int lo, int hi) { + + if (hi - lo == 1) { + if (aim >= 0) { + return a; + } + for (int i = run[hi], j = i - offset, low = run[lo]; i > low; + b[--j] = a[--i] + ); + return b; + } + + /* + * Split into approximately equal parts. + */ + int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; + while (run[++mi + 1] <= rmi); + + /* + * Merge the left and right parts. + */ + long[] a1, a2; + + if (parallel && hi - lo > MIN_RUN_COUNT) { + RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); + a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); + a2 = (long[]) merger.getDestination(); + } else { + a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); + a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); + } + + long[] dst = a1 == a ? b : a; + + int k = a1 == a ? run[lo] - offset : run[lo]; + int lo1 = a1 == b ? run[lo] - offset : run[lo]; + int hi1 = a1 == b ? run[mi] - offset : run[mi]; + int lo2 = a2 == b ? run[mi] - offset : run[mi]; + int hi2 = a2 == b ? run[hi] - offset : run[hi]; + + if (parallel) { + new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); + } else { + mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); + } + return dst; + } + + /** + * Merges the sorted parts. + * + * @param merger parallel context + * @param dst the destination where parts are merged + * @param k the start index of the destination, inclusive + * @param a1 the first part + * @param lo1 the start index of the first part, inclusive + * @param hi1 the end index of the first part, exclusive + * @param a2 the second part + * @param lo2 the start index of the second part, inclusive + * @param hi2 the end index of the second part, exclusive + */ + private static void mergeParts(Merger merger, long[] dst, int k, + long[] a1, int lo1, int hi1, long[] a2, int lo2, int hi2) { + + if (merger != null && a1 == a2) { + + while (true) { + + /* + * The first part must be larger. + */ + if (hi1 - lo1 < hi2 - lo2) { + int lo = lo1; lo1 = lo2; lo2 = lo; + int hi = hi1; hi1 = hi2; hi2 = hi; + } + + /* + * Small parts will be merged sequentially. + */ + if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { + break; + } + + /* + * Find the median of the larger part. + */ + int mi1 = (lo1 + hi1) >>> 1; + long key = a1[mi1]; + int mi2 = hi2; + + /* + * Partition the smaller part. + */ + for (int loo = lo2; loo < mi2; ) { + int t = (loo + mi2) >>> 1; + + if (key > a2[t]) { + loo = t + 1; + } else { + mi2 = t; + } + } + + int d = mi2 - lo2 + mi1 - lo1; + + /* + * Merge the right sub-parts in parallel. + */ + merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); + + /* + * Process the sub-left parts. + */ + hi1 = mi1; + hi2 = mi2; + } + } + + /* + * Merge small parts sequentially. + */ + while (lo1 < hi1 && lo2 < hi2) { + dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; + } + if (dst != a1 || k < lo1) { + while (lo1 < hi1) { + dst[k++] = a1[lo1++]; + } + } + if (dst != a2 || k < lo2) { + while (lo2 < hi2) { + dst[k++] = a2[lo2++]; + } + } + } + +// [byte] + + /** + * Sorts the specified range of the array using + * counting sort or insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(byte[] a, int low, int high) { + if (high - low > MIN_BYTE_COUNTING_SORT_SIZE) { + countingSort(a, low, high); + } else { + insertionSort(a, low, high); + } + } + + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(byte[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + byte ai = a[i = k]; + + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + } + + /** + * The number of distinct byte values. + */ private static final int NUM_BYTE_VALUES = 1 << 8; /** - * Sorts the specified range of the array. + * Max index of byte counter. + */ + private static final int MAX_BYTE_INDEX = Byte.MAX_VALUE + NUM_BYTE_VALUES + 1; + + /** + * Sorts the specified range of the array using counting sort. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - static void sort(byte[] a, int left, int right) { - // Use counting sort on large arrays - if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) { - int[] count = new int[NUM_BYTE_VALUES]; + private static void countingSort(byte[] a, int low, int high) { + int[] count = new int[NUM_BYTE_VALUES]; - for (int i = left - 1; ++i <= right; - count[a[i] - Byte.MIN_VALUE]++ - ); - for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) { + /* + * Compute a histogram with the number of each values. + */ + for (int i = high; i > low; ++count[a[--i] & 0xFF]); + + /* + * Place values on their final positions. + */ + if (high - low > NUM_BYTE_VALUES) { + for (int i = MAX_BYTE_INDEX; --i > Byte.MAX_VALUE; ) { + int value = i & 0xFF; + + for (low = high - count[value]; high > low; + a[--high] = (byte) value + ); + } + } else { + for (int i = MAX_BYTE_INDEX; high > low; ) { + while (count[--i & 0xFF] == 0); + + int value = i & 0xFF; + int c = count[value]; + + do { + a[--high] = (byte) value; + } while (--c > 0); + } + } + } + +// [char] + + /** + * Sorts the specified range of the array using + * counting sort or Dual-Pivot Quicksort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(char[] a, int low, int high) { + if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) { + countingSort(a, low, high); + } else { + sort(a, 0, low, high); + } + } + + /** + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. + * + * @param a the array to be sorted + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(char[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; + + /* + * Invoke insertion sort on small leftmost part. + */ + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; + } + + /* + * Switch to counting sort if execution + * time is becoming quadratic. + */ + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + countingSort(a, low, high); + return; + } + + /* + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + char a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. + * + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ + */ + if (a[e5] < a[e2]) { char t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { char t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { char t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; + } + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; + } + } + + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part + + /* + * Partitioning with 2 pivots in case of different elements. + */ + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + + /* + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. + */ + char pivot1 = a[e1]; + char pivot2 = a[e5]; + + /* + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning + * + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 + * + * Pointer k is the last index of ?-part + */ + for (int unused = --lower, k = ++upper; --k > lower; ) { + char ak = a[k]; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; + } + } + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; + } + } + + /* + * Swap the pivots into their final positions. + */ + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + + /* + * Sort non-left parts recursively, + * excluding known pivots. + */ + sort(a, bits | 1, lower + 1, upper); + sort(a, bits | 1, upper + 1, high); + + } else { // Use single pivot in case of many equal elements + + /* + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. + */ + char pivot = a[e3]; + + /* + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. + */ + a[e3] = a[lower]; + + /* + * Traditional 3-way (Dutch National Flag) partitioning + * + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot + * + * Pointer k is the last index of ?-part + */ + for (int k = ++upper; --k > lower; ) { + char ak = a[k]; + + if (ak != pivot) { + a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } + } + } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part, excluding known pivot. + * All elements from the central part are + * equal and therefore already sorted. + */ + sort(a, bits | 1, upper, high); + } + high = lower; // Iterate along the left part + } + } + + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(char[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + char ai = a[i = k]; + + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + } + + /** + * The number of distinct char values. + */ + private static final int NUM_CHAR_VALUES = 1 << 16; + + /** + * Sorts the specified range of the array using counting sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void countingSort(char[] a, int low, int high) { + int[] count = new int[NUM_CHAR_VALUES]; + + /* + * Compute a histogram with the number of each values. + */ + for (int i = high; i > low; ++count[a[--i]]); + + /* + * Place values on their final positions. + */ + if (high - low > NUM_CHAR_VALUES) { + for (int i = NUM_CHAR_VALUES; i > 0; ) { + for (low = high - count[--i]; high > low; + a[--high] = (char) i + ); + } + } else { + for (int i = NUM_CHAR_VALUES; high > low; ) { while (count[--i] == 0); - byte value = (byte) (i + Byte.MIN_VALUE); - int s = count[i]; + int c = count[i]; do { - a[--k] = value; - } while (--s > 0); + a[--high] = (char) i; + } while (--c > 0); } - } else { // Use insertion sort on small arrays - for (int i = left, j = i; i < right; j = ++i) { - byte ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; + } + } + +// [short] + + /** + * Sorts the specified range of the array using + * counting sort or Dual-Pivot Quicksort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(short[] a, int low, int high) { + if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) { + countingSort(a, low, high); + } else { + sort(a, 0, low, high); + } + } + + /** + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. + * + * @param a the array to be sorted + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(short[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; + + /* + * Invoke insertion sort on small leftmost part. + */ + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; + } + + /* + * Switch to counting sort if execution + * time is becoming quadratic. + */ + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + countingSort(a, low, high); + return; + } + + /* + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + short a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. + * + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ + */ + if (a[e5] < a[e2]) { short t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { short t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { short t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; + } + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; + } + } + + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part + + /* + * Partitioning with 2 pivots in case of different elements. + */ + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + + /* + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. + */ + short pivot1 = a[e1]; + short pivot2 = a[e5]; + + /* + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning + * + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 + * + * Pointer k is the last index of ?-part + */ + for (int unused = --lower, k = ++upper; --k > lower; ) { + short ak = a[k]; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; + } + } + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; } } - a[j + 1] = ai; + + /* + * Swap the pivots into their final positions. + */ + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + + /* + * Sort non-left parts recursively, + * excluding known pivots. + */ + sort(a, bits | 1, lower + 1, upper); + sort(a, bits | 1, upper + 1, high); + + } else { // Use single pivot in case of many equal elements + + /* + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. + */ + short pivot = a[e3]; + + /* + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. + */ + a[e3] = a[lower]; + + /* + * Traditional 3-way (Dutch National Flag) partitioning + * + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot + * + * Pointer k is the last index of ?-part + */ + for (int k = ++upper; --k > lower; ) { + short ak = a[k]; + + if (ak != pivot) { + a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } + } + } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part, excluding known pivot. + * All elements from the central part are + * equal and therefore already sorted. + */ + sort(a, bits | 1, upper, high); + } + high = lower; // Iterate along the left part + } + } + + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(short[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + short ai = a[i = k]; + + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; } } } /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging + * The number of distinct short values. + */ + private static final int NUM_SHORT_VALUES = 1 << 16; + + /** + * Max index of short counter. + */ + private static final int MAX_SHORT_INDEX = Short.MAX_VALUE + NUM_SHORT_VALUES + 1; + + /** + * Sorts the specified range of the array using counting sort. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - static void sort(float[] a, int left, int right, - float[] work, int workBase, int workLen) { + private static void countingSort(short[] a, int low, int high) { + int[] count = new int[NUM_SHORT_VALUES]; + /* - * Phase 1: Move NaNs to the end of the array. + * Compute a histogram with the number of each values. */ - while (left <= right && Float.isNaN(a[right])) { - --right; - } - for (int k = right; --k >= left; ) { - float ak = a[k]; - if (ak != ak) { // a[k] is NaN - a[k] = a[right]; - a[right] = ak; - --right; + for (int i = high; i > low; ++count[a[--i] & 0xFFFF]); + + /* + * Place values on their final positions. + */ + if (high - low > NUM_SHORT_VALUES) { + for (int i = MAX_SHORT_INDEX; --i > Short.MAX_VALUE; ) { + int value = i & 0xFFFF; + + for (low = high - count[value]; high > low; + a[--high] = (short) value + ); + } + } else { + for (int i = MAX_SHORT_INDEX; high > low; ) { + while (count[--i & 0xFFFF] == 0); + + int value = i & 0xFFFF; + int c = count[value]; + + do { + a[--high] = (short) value; + } while (--c > 0); } } + } +// [float] + + /** + * Sorts the specified range of the array using parallel merge + * sort and/or Dual-Pivot Quicksort. + * + * To balance the faster splitting and parallelism of merge sort + * with the faster element partitioning of Quicksort, ranges are + * subdivided in tiers such that, if there is enough parallelism, + * the four-way parallel merge is started, still ensuring enough + * parallelism to process the partitions. + * + * @param a the array to be sorted + * @param parallelism the parallelism level + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(float[] a, int parallelism, int low, int high) { /* - * Phase 2: Sort everything except NaNs (which are already in place). + * Phase 1. Count the number of negative zero -0.0f, + * turn them into positive zero, and move all NaNs + * to the end of the array. */ - doSort(a, left, right, work, workBase, workLen); + int numNegativeZero = 0; - /* - * Phase 3: Place negative zeros before positive zeros. - */ - int hi = right; + for (int k = high; k > low; ) { + float ak = a[--k]; - /* - * Find the first zero, or first positive, or last negative element. - */ - while (left < hi) { - int middle = (left + hi) >>> 1; - float middleValue = a[middle]; - - if (middleValue < 0.0f) { - left = middle + 1; - } else { - hi = middle; - } - } - - /* - * Skip the last negative value (if any) or all leading negative zeros. - */ - while (left <= right && Float.floatToRawIntBits(a[left]) < 0) { - ++left; - } - - /* - * Move negative zeros to the beginning of the sub-range. - * - * Partitioning: - * - * +----------------------------------------------------+ - * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | - * +----------------------------------------------------+ - * ^ ^ ^ - * | | | - * left p k - * - * Invariants: - * - * all in (*, left) < 0.0 - * all in [left, p) == -0.0 - * all in [p, k) == 0.0 - * all in [k, right] >= 0.0 - * - * Pointer k is the first index of ?-part. - */ - for (int k = left, p = left - 1; ++k <= right; ) { - float ak = a[k]; - if (ak != 0.0f) { - break; - } - if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f + if (ak == 0.0f && Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f + numNegativeZero += 1; a[k] = 0.0f; - a[++p] = -0.0f; + } else if (ak != ak) { // ak is NaN + a[k] = a[--high]; + a[high] = ak; } } - } - /** - * Sorts the specified range of the array. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array - */ - private static void doSort(float[] a, int left, int right, - float[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); + /* + * Phase 2. Sort everything except NaNs, + * which are already in place. + */ + int size = high - low; + + if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { + int depth = getDepth(parallelism, size >> 12); + float[] b = depth == 0 ? null : new float[size]; + new Sorter(null, a, b, low, size, low, depth).invoke(); + } else { + sort(null, a, 0, low, high); + } + + /* + * Phase 3. Turn positive zero 0.0f + * back into negative zero -0.0f. + */ + if (++numNegativeZero == 1) { return; } /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). + * Find the position one less than + * the index of the first zero. */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; + while (low <= high) { + int middle = (low + high) >>> 1; - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - float t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } + if (a[middle] < 0) { + low = middle + 1; + } else { + high = middle - 1; } + } - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } + /* + * Replace the required number of 0.0f by -0.0f. + */ + while (--numNegativeZero > 0) { + a[++high] = -0.0f; + } + } + + /** + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(Sorter sorter, float[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; /* - * The array is not highly structured, - * use Quicksort instead of merge sort. + * Run mixed insertion sort on small non-leftmost parts. */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); + if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) { + mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); return; } - } - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - float[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new float[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; - } else { - b = work; - ao = 0; - bo = workBase - left; - } - - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; - } - } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - float[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } - - /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range - */ - private static void sort(float[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; - - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { - /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. - */ - for (int i = left, j = i; i < right; j = ++i) { - float ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; - } - } else { - /* - * Skip the longest ascending sequence. - */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); - - /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. - */ - for (int k = left; ++left <= right; k = ++left) { - float a1 = a[k], a2 = a[left]; - - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - float last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; - } - return; - } - - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. + * Invoke insertion sort on small leftmost part. */ - float pivot1 = a[e2]; - float pivot2 = a[e4]; + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; + } /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. + * Check if the whole array or large non-leftmost + * parts are nearly sorted and then merge runs. */ - a[e2] = a[left]; - a[e4] = a[right]; + if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) + && tryMergeRuns(sorter, a, low, size)) { + return; + } /* - * Skip elements, which are less or greater than pivot values. + * Switch to heap sort if execution + * time is becoming quadratic. */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + heapSort(a, low, high); + return; + } /* - * Partitioning: + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + float a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ */ - outer: - for (int k = less - 1; ++k <= great; ) { - float ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; + if (a[e5] < a[e2]) { float t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { float t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { float t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; + } + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; } } - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. + * Partitioning with 2 pivots in case of different elements. */ - if (less < e1 && e5 < great) { + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + /* - * Skip elements, which are equal to pivot values. + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } + float pivot1 = a[e1]; + float pivot2 = a[e5]; /* - * Partitioning: + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper * * Invariants: * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 * - * Pointer k is the first index of ?-part. + * Pointer k is the last index of ?-part */ - outer: - for (int k = less - 1; ++k <= great; ) { + for (int unused = --lower, k = ++upper; --k > lower; ) { float ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; } } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = a[great]; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; + } + } + + /* + * Swap the pivots into their final positions. + */ + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + + /* + * Sort non-left parts recursively (possibly in parallel), + * excluding known pivots. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, lower + 1, upper); + sorter.forkSorter(bits | 1, upper + 1, high); + } else { + sort(sorter, a, bits | 1, lower + 1, upper); + sort(sorter, a, bits | 1, upper + 1, high); + } + + } else { // Use single pivot in case of many equal elements + + /* + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. + */ + float pivot = a[e3]; + + /* + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. + */ + a[e3] = a[lower]; + + /* + * Traditional 3-way (Dutch National Flag) partitioning + * + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot + * + * Pointer k is the last index of ?-part + */ + for (int k = ++upper; --k > lower; ) { + float ak = a[k]; + + if (ak != pivot) { + a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; } - a[great] = ak; - --great; } } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part (possibly in parallel), excluding + * known pivot. All elements from the central part are + * equal and therefore already sorted. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, upper, high); + } else { + sort(sorter, a, bits | 1, upper, high); + } } - - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot - /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. - */ - float pivot = a[e3]; - - /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. - */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { - continue; - } - float ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ - a[k] = a[great]; - } - a[great] = ak; - --great; - } - } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); + high = lower; // Iterate along the left part } } /** - * Sorts the specified range of the array using the given - * workspace array slice if possible for merging + * Sorts the specified range of the array using mixed insertion sort. + * + * Mixed insertion sort is combination of simple insertion sort, + * pin insertion sort and pair insertion sort. + * + * In the context of Dual-Pivot Quicksort, the pivot element + * from the left part plays the role of sentinel, because it + * is less than any elements from the given part. Therefore, + * expensive check of the left range can be skipped on each + * iteration unless it is the leftmost call. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array + * @param low the index of the first element, inclusive, to be sorted + * @param end the index of the last element for simple insertion sort + * @param high the index of the last element, exclusive, to be sorted */ - static void sort(double[] a, int left, int right, - double[] work, int workBase, int workLen) { - /* - * Phase 1: Move NaNs to the end of the array. - */ - while (left <= right && Double.isNaN(a[right])) { - --right; - } - for (int k = right; --k >= left; ) { - double ak = a[k]; - if (ak != ak) { // a[k] is NaN - a[k] = a[right]; - a[right] = ak; - --right; + private static void mixedInsertionSort(float[] a, int low, int end, int high) { + if (end == high) { + + /* + * Invoke simple insertion sort on tiny array. + */ + for (int i; ++low < end; ) { + float ai = a[i = low]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } else { + + /* + * Start with pin insertion sort on small part. + * + * Pin insertion sort is extended simple insertion sort. + * The main idea of this sort is to put elements larger + * than an element called pin to the end of array (the + * proper area for such elements). It avoids expensive + * movements of these elements through the whole array. + */ + float pin = a[end]; + + for (int i, p = high; ++low < end; ) { + float ai = a[i = low]; + + if (ai < a[i - 1]) { // Small element + + /* + * Insert small element into sorted part. + */ + a[i] = a[--i]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + + } else if (p > i && ai > pin) { // Large element + + /* + * Find element smaller than pin. + */ + while (a[--p] > pin); + + /* + * Swap it with large element. + */ + if (p > i) { + ai = a[p]; + a[p] = a[i]; + } + + /* + * Insert small element into sorted part. + */ + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + + /* + * Continue with pair insertion sort on remain part. + */ + for (int i; low < high; ++low) { + float a1 = a[i = low], a2 = a[++low]; + + /* + * Insert two elements per iteration: at first, insert the + * larger element and then insert the smaller element, but + * from the position where the larger element was inserted. + */ + if (a1 > a2) { + + while (a1 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a1; + + while (a2 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a2; + + } else if (a1 < a[i - 1]) { + + while (a2 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a2; + + while (a1 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a1; + } } } + } - /* - * Phase 2: Sort everything except NaNs (which are already in place). - */ - doSort(a, left, right, work, workBase, workLen); + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(float[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + float ai = a[i = k]; - /* - * Phase 3: Place negative zeros before positive zeros. - */ - int hi = right; - - /* - * Find the first zero, or first positive, or last negative element. - */ - while (left < hi) { - int middle = (left + hi) >>> 1; - double middleValue = a[middle]; - - if (middleValue < 0.0d) { - left = middle + 1; - } else { - hi = middle; + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; } } + } - /* - * Skip the last negative value (if any) or all leading negative zeros. - */ - while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) { - ++left; + /** + * Sorts the specified range of the array using heap sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void heapSort(float[] a, int low, int high) { + for (int k = (low + high) >>> 1; k > low; ) { + pushDown(a, --k, a[k], low, high); } + while (--high > low) { + float max = a[low]; + pushDown(a, low, a[high], low, high); + a[high] = max; + } + } - /* - * Move negative zeros to the beginning of the sub-range. - * - * Partitioning: - * - * +----------------------------------------------------+ - * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | - * +----------------------------------------------------+ - * ^ ^ ^ - * | | | - * left p k - * - * Invariants: - * - * all in (*, left) < 0.0 - * all in [left, p) == -0.0 - * all in [p, k) == 0.0 - * all in [k, right] >= 0.0 - * - * Pointer k is the first index of ?-part. - */ - for (int k = left, p = left - 1; ++k <= right; ) { - double ak = a[k]; - if (ak != 0.0d) { + /** + * Pushes specified element down during heap sort. + * + * @param a the given array + * @param p the start index + * @param value the given element + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void pushDown(float[] a, int p, float value, int low, int high) { + for (int k ;; a[p] = a[p = k]) { + k = (p << 1) - low + 2; // Index of the right child + + if (k > high) { break; } - if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d - a[k] = 0.0d; - a[++p] = -0.0d; + if (k == high || a[k] < a[k - 1]) { + --k; + } + if (a[k] <= value) { + break; + } + } + a[p] = value; + } + + /** + * Tries to sort the specified range of the array. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param low the index of the first element to be sorted + * @param size the array size + * @return true if finally sorted, false otherwise + */ + private static boolean tryMergeRuns(Sorter sorter, float[] a, int low, int size) { + + /* + * The run array is constructed only if initial runs are + * long enough to continue, run[i] then holds start index + * of the i-th sequence of elements in non-descending order. + */ + int[] run = null; + int high = low + size; + int count = 1, last = low; + + /* + * Identify all possible runs. + */ + for (int k = low + 1; k < high; ) { + + /* + * Find the end index of the current run. + */ + if (a[k - 1] < a[k]) { + + // Identify ascending sequence + while (++k < high && a[k - 1] <= a[k]); + + } else if (a[k - 1] > a[k]) { + + // Identify descending sequence + while (++k < high && a[k - 1] >= a[k]); + + // Reverse into ascending order + for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { + float ai = a[i]; a[i] = a[j]; a[j] = ai; + } + } else { // Identify constant sequence + for (float ak = a[k]; ++k < high && ak == a[k]; ); + + if (k < high) { + continue; + } + } + + /* + * Check special cases. + */ + if (run == null) { + if (k == high) { + + /* + * The array is monotonous sequence, + * and therefore already sorted. + */ + return true; + } + + if (k - low < MIN_FIRST_RUN_SIZE) { + + /* + * The first run is too small + * to proceed with scanning. + */ + return false; + } + + run = new int[((size >> 10) | 0x7F) & 0x3FF]; + run[0] = low; + + } else if (a[last - 1] > a[last]) { + + if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { + + /* + * The first runs are not long + * enough to continue scanning. + */ + return false; + } + + if (++count == MAX_RUN_CAPACITY) { + + /* + * Array is not highly structured. + */ + return false; + } + + if (count == run.length) { + + /* + * Increase capacity of index array. + */ + run = Arrays.copyOf(run, count << 1); + } + } + run[count] = (last = k); + } + + /* + * Merge runs of highly structured array. + */ + if (count > 1) { + float[] b; int offset = low; + + if (sorter == null || (b = (float[]) sorter.b) == null) { + b = new float[size]; + } else { + offset = sorter.offset; + } + mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); + } + return true; + } + + /** + * Merges the specified runs. + * + * @param a the source array + * @param b the temporary buffer used in merging + * @param offset the start index in the source, inclusive + * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) + * @param parallel indicates whether merging is performed in parallel + * @param run the start indexes of the runs, inclusive + * @param lo the start index of the first run, inclusive + * @param hi the start index of the last run, inclusive + * @return the destination where runs are merged + */ + private static float[] mergeRuns(float[] a, float[] b, int offset, + int aim, boolean parallel, int[] run, int lo, int hi) { + + if (hi - lo == 1) { + if (aim >= 0) { + return a; + } + for (int i = run[hi], j = i - offset, low = run[lo]; i > low; + b[--j] = a[--i] + ); + return b; + } + + /* + * Split into approximately equal parts. + */ + int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; + while (run[++mi + 1] <= rmi); + + /* + * Merge the left and right parts. + */ + float[] a1, a2; + + if (parallel && hi - lo > MIN_RUN_COUNT) { + RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); + a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); + a2 = (float[]) merger.getDestination(); + } else { + a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); + a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); + } + + float[] dst = a1 == a ? b : a; + + int k = a1 == a ? run[lo] - offset : run[lo]; + int lo1 = a1 == b ? run[lo] - offset : run[lo]; + int hi1 = a1 == b ? run[mi] - offset : run[mi]; + int lo2 = a2 == b ? run[mi] - offset : run[mi]; + int hi2 = a2 == b ? run[hi] - offset : run[hi]; + + if (parallel) { + new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); + } else { + mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); + } + return dst; + } + + /** + * Merges the sorted parts. + * + * @param merger parallel context + * @param dst the destination where parts are merged + * @param k the start index of the destination, inclusive + * @param a1 the first part + * @param lo1 the start index of the first part, inclusive + * @param hi1 the end index of the first part, exclusive + * @param a2 the second part + * @param lo2 the start index of the second part, inclusive + * @param hi2 the end index of the second part, exclusive + */ + private static void mergeParts(Merger merger, float[] dst, int k, + float[] a1, int lo1, int hi1, float[] a2, int lo2, int hi2) { + + if (merger != null && a1 == a2) { + + while (true) { + + /* + * The first part must be larger. + */ + if (hi1 - lo1 < hi2 - lo2) { + int lo = lo1; lo1 = lo2; lo2 = lo; + int hi = hi1; hi1 = hi2; hi2 = hi; + } + + /* + * Small parts will be merged sequentially. + */ + if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { + break; + } + + /* + * Find the median of the larger part. + */ + int mi1 = (lo1 + hi1) >>> 1; + float key = a1[mi1]; + int mi2 = hi2; + + /* + * Partition the smaller part. + */ + for (int loo = lo2; loo < mi2; ) { + int t = (loo + mi2) >>> 1; + + if (key > a2[t]) { + loo = t + 1; + } else { + mi2 = t; + } + } + + int d = mi2 - lo2 + mi1 - lo1; + + /* + * Merge the right sub-parts in parallel. + */ + merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); + + /* + * Process the sub-left parts. + */ + hi1 = mi1; + hi2 = mi2; + } + } + + /* + * Merge small parts sequentially. + */ + while (lo1 < hi1 && lo2 < hi2) { + dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; + } + if (dst != a1 || k < lo1) { + while (lo1 < hi1) { + dst[k++] = a1[lo1++]; + } + } + if (dst != a2 || k < lo2) { + while (lo2 < hi2) { + dst[k++] = a2[lo2++]; } } } +// [double] + /** - * Sorts the specified range of the array. + * Sorts the specified range of the array using parallel merge + * sort and/or Dual-Pivot Quicksort. + * + * To balance the faster splitting and parallelism of merge sort + * with the faster element partitioning of Quicksort, ranges are + * subdivided in tiers such that, if there is enough parallelism, + * the four-way parallel merge is started, still ensuring enough + * parallelism to process the partitions. * * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param work a workspace array (slice) - * @param workBase origin of usable space in work array - * @param workLen usable size of work array + * @param parallelism the parallelism level + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted */ - private static void doSort(double[] a, int left, int right, - double[] work, int workBase, int workLen) { - // Use Quicksort on small arrays - if (right - left < QUICKSORT_THRESHOLD) { - sort(a, left, right, true); + static void sort(double[] a, int parallelism, int low, int high) { + /* + * Phase 1. Count the number of negative zero -0.0d, + * turn them into positive zero, and move all NaNs + * to the end of the array. + */ + int numNegativeZero = 0; + + for (int k = high; k > low; ) { + double ak = a[--k]; + + if (ak == 0.0d && Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d + numNegativeZero += 1; + a[k] = 0.0d; + } else if (ak != ak) { // ak is NaN + a[k] = a[--high]; + a[high] = ak; + } + } + + /* + * Phase 2. Sort everything except NaNs, + * which are already in place. + */ + int size = high - low; + + if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { + int depth = getDepth(parallelism, size >> 12); + double[] b = depth == 0 ? null : new double[size]; + new Sorter(null, a, b, low, size, low, depth).invoke(); + } else { + sort(null, a, 0, low, high); + } + + /* + * Phase 3. Turn positive zero 0.0d + * back into negative zero -0.0d. + */ + if (++numNegativeZero == 1) { return; } /* - * Index run[i] is the start of i-th run - * (ascending or descending sequence). + * Find the position one less than + * the index of the first zero. */ - int[] run = new int[MAX_RUN_COUNT + 1]; - int count = 0; run[0] = left; + while (low <= high) { + int middle = (low + high) >>> 1; - // Check if the array is nearly sorted - for (int k = left; k < right; run[count] = k) { - // Equal items in the beginning of the sequence - while (k < right && a[k] == a[k + 1]) - k++; - if (k == right) break; // Sequence finishes with equal items - if (a[k] < a[k + 1]) { // ascending - while (++k <= right && a[k - 1] <= a[k]); - } else if (a[k] > a[k + 1]) { // descending - while (++k <= right && a[k - 1] >= a[k]); - // Transform into an ascending sequence - for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { - double t = a[lo]; a[lo] = a[hi]; a[hi] = t; - } + if (a[middle] < 0) { + low = middle + 1; + } else { + high = middle - 1; } + } - // Merge a transformed descending sequence followed by an - // ascending sequence - if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { - count--; - } + /* + * Replace the required number of 0.0d by -0.0d. + */ + while (--numNegativeZero > 0) { + a[++high] = -0.0d; + } + } + + /** + * Sorts the specified array using the Dual-Pivot Quicksort and/or + * other sorts in special-cases, possibly with parallel partitions. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param bits the combination of recursion depth and bit flag, where + * the right bit "0" indicates that array is the leftmost part + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(Sorter sorter, double[] a, int bits, int low, int high) { + while (true) { + int end = high - 1, size = high - low; /* - * The array is not highly structured, - * use Quicksort instead of merge sort. + * Run mixed insertion sort on small non-leftmost parts. */ - if (++count == MAX_RUN_COUNT) { - sort(a, left, right, true); + if (size < MAX_MIXED_INSERTION_SORT_SIZE + bits && (bits & 1) > 0) { + mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); return; } - } - // These invariants should hold true: - // run[0] = 0 - // run[] = right + 1; (terminator) - - if (count == 0) { - // A single equal run - return; - } else if (count == 1 && run[count] > right) { - // Either a single ascending or a transformed descending run. - // Always check that a final run is a proper terminator, otherwise - // we have an unterminated trailing run, to handle downstream. - return; - } - right++; - if (run[count] < right) { - // Corner case: the final run is not a terminator. This may happen - // if a final run is an equals run, or there is a single-element run - // at the end. Fix up by adding a proper terminator at the end. - // Note that we terminate with (right + 1), incremented earlier. - run[++count] = right; - } - - // Determine alternation base for merge - byte odd = 0; - for (int n = 1; (n <<= 1) < count; odd ^= 1); - - // Use or create temporary array b for merging - double[] b; // temp array; alternates with a - int ao, bo; // array offsets from 'left' - int blen = right - left; // space needed for b - if (work == null || workLen < blen || workBase + blen > work.length) { - work = new double[blen]; - workBase = 0; - } - if (odd == 0) { - System.arraycopy(a, left, work, workBase, blen); - b = a; - bo = 0; - a = work; - ao = workBase - left; - } else { - b = work; - ao = 0; - bo = workBase - left; - } - - // Merging - for (int last; count > 1; count = last) { - for (int k = (last = 0) + 2; k <= count; k += 2) { - int hi = run[k], mi = run[k - 1]; - for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { - if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { - b[i + bo] = a[p++ + ao]; - } else { - b[i + bo] = a[q++ + ao]; - } - } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - double[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } - - /** - * Sorts the specified range of the array by Dual-Pivot Quicksort. - * - * @param a the array to be sorted - * @param left the index of the first element, inclusive, to be sorted - * @param right the index of the last element, inclusive, to be sorted - * @param leftmost indicates if this part is the leftmost in the range - */ - private static void sort(double[] a, int left, int right, boolean leftmost) { - int length = right - left + 1; - - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { - /* - * Traditional (without sentinel) insertion sort, - * optimized for server VM, is used in case of - * the leftmost part. - */ - for (int i = left, j = i; i < right; j = ++i) { - double ai = a[i + 1]; - while (ai < a[j]) { - a[j + 1] = a[j]; - if (j-- == left) { - break; - } - } - a[j + 1] = ai; - } - } else { - /* - * Skip the longest ascending sequence. - */ - do { - if (left >= right) { - return; - } - } while (a[++left] >= a[left - 1]); - - /* - * Every element from adjoining part plays the role - * of sentinel, therefore this allows us to avoid the - * left range check on each iteration. Moreover, we use - * the more optimized algorithm, so called pair insertion - * sort, which is faster (in the context of Quicksort) - * than traditional implementation of insertion sort. - */ - for (int k = left; ++left <= right; k = ++left) { - double a1 = a[k], a2 = a[left]; - - if (a1 < a2) { - a2 = a1; a1 = a[left]; - } - while (a1 < a[--k]) { - a[k + 2] = a[k]; - } - a[++k + 1] = a1; - - while (a2 < a[--k]) { - a[k + 1] = a[k]; - } - a[k + 1] = a2; - } - double last = a[right]; - - while (last < a[--right]) { - a[right + 1] = a[right]; - } - a[right + 1] = last; - } - return; - } - - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - - /* - * Sort five evenly spaced elements around (and including) the - * center element in the range. These elements will be used for - * pivot selection as described below. The choice for spacing - * these elements was empirically determined to work well on - * a wide variety of inputs. - */ - int e3 = (left + right) >>> 1; // The midpoint - int e2 = e3 - seventh; - int e1 = e2 - seventh; - int e4 = e3 + seventh; - int e5 = e4 + seventh; - - // Sort these elements using insertion sort - if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; } - - if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; - if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; - if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; - if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } - } - } - } - - // Pointers - int less = left; // The index of the first element of center part - int great = right; // The index before the first element of right part - - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* - * Use the second and fourth of the five sorted elements as pivots. - * These values are inexpensive approximations of the first and - * second terciles of the array. Note that pivot1 <= pivot2. + * Invoke insertion sort on small leftmost part. */ - double pivot1 = a[e2]; - double pivot2 = a[e4]; + if (size < MAX_INSERTION_SORT_SIZE) { + insertionSort(a, low, high); + return; + } /* - * The first and the last elements to be sorted are moved to the - * locations formerly occupied by the pivots. When partitioning - * is complete, the pivots are swapped back into their final - * positions, and excluded from subsequent sorting. + * Check if the whole array or large non-leftmost + * parts are nearly sorted and then merge runs. */ - a[e2] = a[left]; - a[e4] = a[right]; + if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) + && tryMergeRuns(sorter, a, low, size)) { + return; + } /* - * Skip elements, which are less or greater than pivot values. + * Switch to heap sort if execution + * time is becoming quadratic. */ - while (a[++less] < pivot1); - while (a[--great] > pivot2); + if ((bits += DELTA) > MAX_RECURSION_DEPTH) { + heapSort(a, low, high); + return; + } /* - * Partitioning: + * Use an inexpensive approximation of the golden ratio + * to select five sample elements and determine pivots. + */ + int step = (size >> 3) * 3 + 3; + + /* + * Five elements around (and including) the central element + * will be used for pivot selection as described below. The + * unequal choice of spacing these elements was empirically + * determined to work well on a wide variety of inputs. + */ + int e1 = low + step; + int e5 = end - step; + int e3 = (e1 + e5) >>> 1; + int e2 = (e1 + e3) >>> 1; + int e4 = (e3 + e5) >>> 1; + double a3 = a[e3]; + + /* + * Sort these elements in place by the combination + * of 4-element sorting network and insertion sort. * - * left part center part right part - * +--------------------------------------------------------------+ - * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | - * +--------------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot1 - * pivot1 <= all in [less, k) <= pivot2 - * all in (great, right) > pivot2 - * - * Pointer k is the first index of ?-part. + * 5 ------o-----------o------------ + * | | + * 4 ------|-----o-----o-----o------ + * | | | + * 2 ------o-----|-----o-----o------ + * | | + * 1 ------------o-----o------------ */ - outer: - for (int k = less - 1; ++k <= great; ) { - double ak = a[k]; - if (ak < pivot1) { // Move a[k] to left part - a[k] = a[less]; - /* - * Here and below we use "a[i] = b; i++;" instead - * of "a[i++] = b;" due to performance issue. - */ - a[less] = ak; - ++less; - } else if (ak > pivot2) { // Move a[k] to right part - while (a[great] > pivot2) { - if (great-- == k) { - break outer; - } - } - if (a[great] < pivot1) { // a[great] <= pivot2 - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // pivot1 <= a[great] <= pivot2 - a[k] = a[great]; - } - /* - * Here and below we use "a[i] = b; i--;" instead - * of "a[i--] = b;" due to performance issue. - */ - a[great] = ak; - --great; + if (a[e5] < a[e2]) { double t = a[e5]; a[e5] = a[e2]; a[e2] = t; } + if (a[e4] < a[e1]) { double t = a[e4]; a[e4] = a[e1]; a[e1] = t; } + if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; } + if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; } + if (a[e4] < a[e2]) { double t = a[e4]; a[e4] = a[e2]; a[e2] = t; } + + if (a3 < a[e2]) { + if (a3 < a[e1]) { + a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; + } else { + a[e3] = a[e2]; a[e2] = a3; + } + } else if (a3 > a[e4]) { + if (a3 > a[e5]) { + a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; + } else { + a[e3] = a[e4]; a[e4] = a3; } } - // Swap pivots into their final positions - a[left] = a[less - 1]; a[less - 1] = pivot1; - a[right] = a[great + 1]; a[great + 1] = pivot2; - - // Sort left and right parts recursively, excluding known pivots - sort(a, left, less - 2, leftmost); - sort(a, great + 2, right, false); + // Pointers + int lower = low; // The index of the last element of the left part + int upper = end; // The index of the first element of the right part /* - * If center part is too large (comprises > 4/7 of the array), - * swap internal pivot values to ends. + * Partitioning with 2 pivots in case of different elements. */ - if (less < e1 && e5 < great) { + if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { + /* - * Skip elements, which are equal to pivot values. + * Use the first and fifth of the five sorted elements as + * the pivots. These values are inexpensive approximation + * of tertiles. Note, that pivot1 < pivot2. */ - while (a[less] == pivot1) { - ++less; - } - - while (a[great] == pivot2) { - --great; - } + double pivot1 = a[e1]; + double pivot2 = a[e5]; /* - * Partitioning: + * The first and the last elements to be sorted are moved + * to the locations formerly occupied by the pivots. When + * partitioning is completed, the pivots are swapped back + * into their final positions, and excluded from the next + * subsequent sorting. + */ + a[e1] = a[lower]; + a[e5] = a[upper]; + + /* + * Skip elements, which are less or greater than the pivots. + */ + while (a[++lower] < pivot1); + while (a[--upper] > pivot2); + + /* + * Backward 3-interval partitioning * - * left part center part right part - * +----------------------------------------------------------+ - * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | - * +----------------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great + * left part central part right part + * +------------------------------------------------------------+ + * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | + * +------------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper * * Invariants: * - * all in (*, less) == pivot1 - * pivot1 < all in [less, k) < pivot2 - * all in (great, *) == pivot2 + * all in (low, lower] < pivot1 + * pivot1 <= all in (k, upper) <= pivot2 + * all in [upper, end) > pivot2 * - * Pointer k is the first index of ?-part. + * Pointer k is the last index of ?-part */ - outer: - for (int k = less - 1; ++k <= great; ) { + for (int unused = --lower, k = ++upper; --k > lower; ) { double ak = a[k]; - if (ak == pivot1) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else if (ak == pivot2) { // Move a[k] to right part - while (a[great] == pivot2) { - if (great-- == k) { - break outer; + + if (ak < pivot1) { // Move a[k] to the left side + while (lower < k) { + if (a[++lower] >= pivot1) { + if (a[lower] > pivot2) { + a[k] = a[--upper]; + a[upper] = a[lower]; + } else { + a[k] = a[lower]; + } + a[lower] = ak; + break; } } - if (a[great] == pivot1) { // a[great] < pivot2 - a[k] = a[less]; - /* - * Even though a[great] equals to pivot1, the - * assignment a[less] = pivot1 may be incorrect, - * if a[great] and pivot1 are floating-point zeros - * of different signs. Therefore in float and - * double sorting methods we have to use more - * accurate assignment a[less] = a[great]. - */ - a[less] = a[great]; - ++less; - } else { // pivot1 < a[great] < pivot2 - a[k] = a[great]; - } - a[great] = ak; - --great; + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; } } + + /* + * Swap the pivots into their final positions. + */ + a[low] = a[lower]; a[lower] = pivot1; + a[end] = a[upper]; a[upper] = pivot2; + + /* + * Sort non-left parts recursively (possibly in parallel), + * excluding known pivots. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, lower + 1, upper); + sorter.forkSorter(bits | 1, upper + 1, high); + } else { + sort(sorter, a, bits | 1, lower + 1, upper); + sort(sorter, a, bits | 1, upper + 1, high); + } + + } else { // Use single pivot in case of many equal elements + + /* + * Use the third of the five sorted elements as the pivot. + * This value is inexpensive approximation of the median. + */ + double pivot = a[e3]; + + /* + * The first element to be sorted is moved to the + * location formerly occupied by the pivot. After + * completion of partitioning the pivot is swapped + * back into its final position, and excluded from + * the next subsequent sorting. + */ + a[e3] = a[lower]; + + /* + * Traditional 3-way (Dutch National Flag) partitioning + * + * left part central part right part + * +------------------------------------------------------+ + * | < pivot | ? | == pivot | > pivot | + * +------------------------------------------------------+ + * ^ ^ ^ + * | | | + * lower k upper + * + * Invariants: + * + * all in (low, lower] < pivot + * all in (k, upper) == pivot + * all in [upper, end] > pivot + * + * Pointer k is the last index of ?-part + */ + for (int k = ++upper; --k > lower; ) { + double ak = a[k]; + + if (ak != pivot) { + a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } + } + } + + /* + * Swap the pivot into its final position. + */ + a[low] = a[lower]; a[lower] = pivot; + + /* + * Sort the right part (possibly in parallel), excluding + * known pivot. All elements from the central part are + * equal and therefore already sorted. + */ + if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { + sorter.forkSorter(bits | 1, upper, high); + } else { + sort(sorter, a, bits | 1, upper, high); + } + } + high = lower; // Iterate along the left part + } + } + + /** + * Sorts the specified range of the array using mixed insertion sort. + * + * Mixed insertion sort is combination of simple insertion sort, + * pin insertion sort and pair insertion sort. + * + * In the context of Dual-Pivot Quicksort, the pivot element + * from the left part plays the role of sentinel, because it + * is less than any elements from the given part. Therefore, + * expensive check of the left range can be skipped on each + * iteration unless it is the leftmost call. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param end the index of the last element for simple insertion sort + * @param high the index of the last element, exclusive, to be sorted + */ + private static void mixedInsertionSort(double[] a, int low, int end, int high) { + if (end == high) { + + /* + * Invoke simple insertion sort on tiny array. + */ + for (int i; ++low < end; ) { + double ai = a[i = low]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } else { + + /* + * Start with pin insertion sort on small part. + * + * Pin insertion sort is extended simple insertion sort. + * The main idea of this sort is to put elements larger + * than an element called pin to the end of array (the + * proper area for such elements). It avoids expensive + * movements of these elements through the whole array. + */ + double pin = a[end]; + + for (int i, p = high; ++low < end; ) { + double ai = a[i = low]; + + if (ai < a[i - 1]) { // Small element + + /* + * Insert small element into sorted part. + */ + a[i] = a[--i]; + + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + + } else if (p > i && ai > pin) { // Large element + + /* + * Find element smaller than pin. + */ + while (a[--p] > pin); + + /* + * Swap it with large element. + */ + if (p > i) { + ai = a[p]; + a[p] = a[i]; + } + + /* + * Insert small element into sorted part. + */ + while (ai < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } } - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot /* - * Use the third of the five sorted elements as pivot. - * This value is inexpensive approximation of the median. + * Continue with pair insertion sort on remain part. */ - double pivot = a[e3]; + for (int i; low < high; ++low) { + double a1 = a[i = low], a2 = a[++low]; + + /* + * Insert two elements per iteration: at first, insert the + * larger element and then insert the smaller element, but + * from the position where the larger element was inserted. + */ + if (a1 > a2) { + + while (a1 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a1; + + while (a2 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a2; + + } else if (a1 < a[i - 1]) { + + while (a2 < a[--i]) { + a[i + 2] = a[i]; + } + a[++i + 1] = a2; + + while (a1 < a[--i]) { + a[i + 1] = a[i]; + } + a[i + 1] = a1; + } + } + } + } + + /** + * Sorts the specified range of the array using insertion sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void insertionSort(double[] a, int low, int high) { + for (int i, k = low; ++k < high; ) { + double ai = a[i = k]; + + if (ai < a[i - 1]) { + while (--i >= low && ai < a[i]) { + a[i + 1] = a[i]; + } + a[i + 1] = ai; + } + } + } + + /** + * Sorts the specified range of the array using heap sort. + * + * @param a the array to be sorted + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void heapSort(double[] a, int low, int high) { + for (int k = (low + high) >>> 1; k > low; ) { + pushDown(a, --k, a[k], low, high); + } + while (--high > low) { + double max = a[low]; + pushDown(a, low, a[high], low, high); + a[high] = max; + } + } + + /** + * Pushes specified element down during heap sort. + * + * @param a the given array + * @param p the start index + * @param value the given element + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + private static void pushDown(double[] a, int p, double value, int low, int high) { + for (int k ;; a[p] = a[p = k]) { + k = (p << 1) - low + 2; // Index of the right child + + if (k > high) { + break; + } + if (k == high || a[k] < a[k - 1]) { + --k; + } + if (a[k] <= value) { + break; + } + } + a[p] = value; + } + + /** + * Tries to sort the specified range of the array. + * + * @param sorter parallel context + * @param a the array to be sorted + * @param low the index of the first element to be sorted + * @param size the array size + * @return true if finally sorted, false otherwise + */ + private static boolean tryMergeRuns(Sorter sorter, double[] a, int low, int size) { + + /* + * The run array is constructed only if initial runs are + * long enough to continue, run[i] then holds start index + * of the i-th sequence of elements in non-descending order. + */ + int[] run = null; + int high = low + size; + int count = 1, last = low; + + /* + * Identify all possible runs. + */ + for (int k = low + 1; k < high; ) { /* - * Partitioning degenerates to the traditional 3-way - * (or "Dutch National Flag") schema: - * - * left part center part right part - * +-------------------------------------------------+ - * | < pivot | == pivot | ? | > pivot | - * +-------------------------------------------------+ - * ^ ^ ^ - * | | | - * less k great - * - * Invariants: - * - * all in (left, less) < pivot - * all in [less, k) == pivot - * all in (great, right) > pivot - * - * Pointer k is the first index of ?-part. + * Find the end index of the current run. */ - for (int k = less; k <= great; ++k) { - if (a[k] == pivot) { + if (a[k - 1] < a[k]) { + + // Identify ascending sequence + while (++k < high && a[k - 1] <= a[k]); + + } else if (a[k - 1] > a[k]) { + + // Identify descending sequence + while (++k < high && a[k - 1] >= a[k]); + + // Reverse into ascending order + for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { + double ai = a[i]; a[i] = a[j]; a[j] = ai; + } + } else { // Identify constant sequence + for (double ak = a[k]; ++k < high && ak == a[k]; ); + + if (k < high) { continue; } - double ak = a[k]; - if (ak < pivot) { // Move a[k] to left part - a[k] = a[less]; - a[less] = ak; - ++less; - } else { // a[k] > pivot - Move a[k] to right part - while (a[great] > pivot) { - --great; - } - if (a[great] < pivot) { // a[great] <= pivot - a[k] = a[less]; - a[less] = a[great]; - ++less; - } else { // a[great] == pivot - /* - * Even though a[great] equals to pivot, the - * assignment a[k] = pivot may be incorrect, - * if a[great] and pivot are floating-point - * zeros of different signs. Therefore in float - * and double sorting methods we have to use - * more accurate assignment a[k] = a[great]. - */ - a[k] = a[great]; - } - a[great] = ak; - --great; - } } /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. + * Check special cases. */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); + if (run == null) { + if (k == high) { + + /* + * The array is monotonous sequence, + * and therefore already sorted. + */ + return true; + } + + if (k - low < MIN_FIRST_RUN_SIZE) { + + /* + * The first run is too small + * to proceed with scanning. + */ + return false; + } + + run = new int[((size >> 10) | 0x7F) & 0x3FF]; + run[0] = low; + + } else if (a[last - 1] > a[last]) { + + if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { + + /* + * The first runs are not long + * enough to continue scanning. + */ + return false; + } + + if (++count == MAX_RUN_CAPACITY) { + + /* + * Array is not highly structured. + */ + return false; + } + + if (count == run.length) { + + /* + * Increase capacity of index array. + */ + run = Arrays.copyOf(run, count << 1); + } + } + run[count] = (last = k); + } + + /* + * Merge runs of highly structured array. + */ + if (count > 1) { + double[] b; int offset = low; + + if (sorter == null || (b = (double[]) sorter.b) == null) { + b = new double[size]; + } else { + offset = sorter.offset; + } + mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); + } + return true; + } + + /** + * Merges the specified runs. + * + * @param a the source array + * @param b the temporary buffer used in merging + * @param offset the start index in the source, inclusive + * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) + * @param parallel indicates whether merging is performed in parallel + * @param run the start indexes of the runs, inclusive + * @param lo the start index of the first run, inclusive + * @param hi the start index of the last run, inclusive + * @return the destination where runs are merged + */ + private static double[] mergeRuns(double[] a, double[] b, int offset, + int aim, boolean parallel, int[] run, int lo, int hi) { + + if (hi - lo == 1) { + if (aim >= 0) { + return a; + } + for (int i = run[hi], j = i - offset, low = run[lo]; i > low; + b[--j] = a[--i] + ); + return b; + } + + /* + * Split into approximately equal parts. + */ + int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; + while (run[++mi + 1] <= rmi); + + /* + * Merge the left and right parts. + */ + double[] a1, a2; + + if (parallel && hi - lo > MIN_RUN_COUNT) { + RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); + a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); + a2 = (double[]) merger.getDestination(); + } else { + a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); + a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); + } + + double[] dst = a1 == a ? b : a; + + int k = a1 == a ? run[lo] - offset : run[lo]; + int lo1 = a1 == b ? run[lo] - offset : run[lo]; + int hi1 = a1 == b ? run[mi] - offset : run[mi]; + int lo2 = a2 == b ? run[mi] - offset : run[mi]; + int hi2 = a2 == b ? run[hi] - offset : run[hi]; + + if (parallel) { + new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); + } else { + mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); + } + return dst; + } + + /** + * Merges the sorted parts. + * + * @param merger parallel context + * @param dst the destination where parts are merged + * @param k the start index of the destination, inclusive + * @param a1 the first part + * @param lo1 the start index of the first part, inclusive + * @param hi1 the end index of the first part, exclusive + * @param a2 the second part + * @param lo2 the start index of the second part, inclusive + * @param hi2 the end index of the second part, exclusive + */ + private static void mergeParts(Merger merger, double[] dst, int k, + double[] a1, int lo1, int hi1, double[] a2, int lo2, int hi2) { + + if (merger != null && a1 == a2) { + + while (true) { + + /* + * The first part must be larger. + */ + if (hi1 - lo1 < hi2 - lo2) { + int lo = lo1; lo1 = lo2; lo2 = lo; + int hi = hi1; hi1 = hi2; hi2 = hi; + } + + /* + * Small parts will be merged sequentially. + */ + if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { + break; + } + + /* + * Find the median of the larger part. + */ + int mi1 = (lo1 + hi1) >>> 1; + double key = a1[mi1]; + int mi2 = hi2; + + /* + * Partition the smaller part. + */ + for (int loo = lo2; loo < mi2; ) { + int t = (loo + mi2) >>> 1; + + if (key > a2[t]) { + loo = t + 1; + } else { + mi2 = t; + } + } + + int d = mi2 - lo2 + mi1 - lo1; + + /* + * Merge the right sub-parts in parallel. + */ + merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); + + /* + * Process the sub-left parts. + */ + hi1 = mi1; + hi2 = mi2; + } + } + + /* + * Merge small parts sequentially. + */ + while (lo1 < hi1 && lo2 < hi2) { + dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; + } + if (dst != a1 || k < lo1) { + while (lo1 < hi1) { + dst[k++] = a1[lo1++]; + } + } + if (dst != a2 || k < lo2) { + while (lo2 < hi2) { + dst[k++] = a2[lo2++]; + } + } + } + +// [class] + + /** + * This class implements parallel sorting. + */ + private static final class Sorter extends CountedCompleter { + private static final long serialVersionUID = 20180818L; + private final Object a, b; + private final int low, size, offset, depth; + + private Sorter(CountedCompleter parent, + Object a, Object b, int low, int size, int offset, int depth) { + super(parent); + this.a = a; + this.b = b; + this.low = low; + this.size = size; + this.offset = offset; + this.depth = depth; + } + + @Override + public final void compute() { + if (depth < 0) { + setPendingCount(2); + int half = size >> 1; + new Sorter(this, b, a, low, half, offset, depth + 1).fork(); + new Sorter(this, b, a, low + half, size - half, offset, depth + 1).compute(); + } else { + if (a instanceof int[]) { + sort(this, (int[]) a, depth, low, low + size); + } else if (a instanceof long[]) { + sort(this, (long[]) a, depth, low, low + size); + } else if (a instanceof float[]) { + sort(this, (float[]) a, depth, low, low + size); + } else if (a instanceof double[]) { + sort(this, (double[]) a, depth, low, low + size); + } else { + throw new IllegalArgumentException( + "Unknown type of array: " + a.getClass().getName()); + } + } + tryComplete(); + } + + @Override + public final void onCompletion(CountedCompleter caller) { + if (depth < 0) { + int mi = low + (size >> 1); + boolean src = (depth & 1) == 0; + + new Merger(null, + a, + src ? low : low - offset, + b, + src ? low - offset : low, + src ? mi - offset : mi, + b, + src ? mi - offset : mi, + src ? low + size - offset : low + size + ).invoke(); + } + } + + private void forkSorter(int depth, int low, int high) { + addToPendingCount(1); + Object a = this.a; // Use local variable for performance + new Sorter(this, a, b, low, high - low, offset, depth).fork(); + } + } + + /** + * This class implements parallel merging. + */ + private static final class Merger extends CountedCompleter { + private static final long serialVersionUID = 20180818L; + private final Object dst, a1, a2; + private final int k, lo1, hi1, lo2, hi2; + + private Merger(CountedCompleter parent, Object dst, int k, + Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) { + super(parent); + this.dst = dst; + this.k = k; + this.a1 = a1; + this.lo1 = lo1; + this.hi1 = hi1; + this.a2 = a2; + this.lo2 = lo2; + this.hi2 = hi2; + } + + @Override + public final void compute() { + if (dst instanceof int[]) { + mergeParts(this, (int[]) dst, k, + (int[]) a1, lo1, hi1, (int[]) a2, lo2, hi2); + } else if (dst instanceof long[]) { + mergeParts(this, (long[]) dst, k, + (long[]) a1, lo1, hi1, (long[]) a2, lo2, hi2); + } else if (dst instanceof float[]) { + mergeParts(this, (float[]) dst, k, + (float[]) a1, lo1, hi1, (float[]) a2, lo2, hi2); + } else if (dst instanceof double[]) { + mergeParts(this, (double[]) dst, k, + (double[]) a1, lo1, hi1, (double[]) a2, lo2, hi2); + } else { + throw new IllegalArgumentException( + "Unknown type of array: " + dst.getClass().getName()); + } + propagateCompletion(); + } + + private void forkMerger(Object dst, int k, + Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) { + addToPendingCount(1); + new Merger(this, dst, k, a1, lo1, hi1, a2, lo2, hi2).fork(); + } + } + + /** + * This class implements parallel merging of runs. + */ + private static final class RunMerger extends RecursiveTask { + private static final long serialVersionUID = 20180818L; + private final Object a, b; + private final int[] run; + private final int offset, aim, lo, hi; + + private RunMerger(Object a, Object b, int offset, + int aim, int[] run, int lo, int hi) { + this.a = a; + this.b = b; + this.offset = offset; + this.aim = aim; + this.run = run; + this.lo = lo; + this.hi = hi; + } + + @Override + protected final Object compute() { + if (a instanceof int[]) { + return mergeRuns((int[]) a, (int[]) b, offset, aim, true, run, lo, hi); + } + if (a instanceof long[]) { + return mergeRuns((long[]) a, (long[]) b, offset, aim, true, run, lo, hi); + } + if (a instanceof float[]) { + return mergeRuns((float[]) a, (float[]) b, offset, aim, true, run, lo, hi); + } + if (a instanceof double[]) { + return mergeRuns((double[]) a, (double[]) b, offset, aim, true, run, lo, hi); + } + throw new IllegalArgumentException( + "Unknown type of array: " + a.getClass().getName()); + } + + private RunMerger forkMe() { + fork(); + return this; + } + + private Object getDestination() { + join(); + return getRawResult(); } } } diff --git a/test/jdk/java/util/Arrays/ParallelSorting.java b/test/jdk/java/util/Arrays/ParallelSorting.java deleted file mode 100644 index 0edf1d63f4..0000000000 --- a/test/jdk/java/util/Arrays/ParallelSorting.java +++ /dev/null @@ -1,2067 +0,0 @@ -/* - * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -/* Adapted from test/java/util/Arrays/Sorting.java - * - * Where that test checks Arrays.sort against manual quicksort routines, - * this test checks parallelSort against either Arrays.sort or manual - * quicksort routines. - */ - -/* - * @test - * @bug 8003981 - * @run main ParallelSorting -shortrun - * @summary Exercise Arrays.parallelSort (adapted from test Sorting) - * - * @author Vladimir Yaroslavskiy - * @author Jon Bentley - * @author Josh Bloch - */ - -import java.util.Arrays; -import java.util.Random; -import java.io.PrintStream; -import java.util.Comparator; - -public class ParallelSorting { - private static final PrintStream out = System.out; - private static final PrintStream err = System.err; - - // Array lengths used in a long run (default) - private static final int[] LONG_RUN_LENGTHS = { - 1000, 10000, 100000, 1000000 }; - - // Array lengths used in a short run - private static final int[] SHORT_RUN_LENGTHS = { - 5000, 9000, 10000, 12000 }; - - // Random initial values used in a long run (default) - private static final long[] LONG_RUN_RANDOMS = { 666, 0xC0FFEE, 999 }; - - // Random initial values used in a short run - private static final long[] SHORT_RUN_RANDOMS = { 666 }; - - public static void main(String[] args) { - boolean shortRun = args.length > 0 && args[0].equals("-shortrun"); - long start = System.currentTimeMillis(); - - if (shortRun) { - testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS); - } else { - testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS); - } - long end = System.currentTimeMillis(); - - out.format("PASSED in %d sec.\n", Math.round((end - start) / 1E3)); - } - - private static void testAndCheck(int[] lengths, long[] randoms) { - testEmptyAndNullIntArray(); - testEmptyAndNullLongArray(); - testEmptyAndNullShortArray(); - testEmptyAndNullCharArray(); - testEmptyAndNullByteArray(); - testEmptyAndNullFloatArray(); - testEmptyAndNullDoubleArray(); - - for (int length : lengths) { - testMergeSort(length); - testAndCheckRange(length); - testAndCheckSubArray(length); - } - for (long seed : randoms) { - for (int length : lengths) { - testAndCheckWithInsertionSort(length, new MyRandom(seed)); - testAndCheckWithCheckSum(length, new MyRandom(seed)); - testAndCheckWithScrambling(length, new MyRandom(seed)); - testAndCheckFloat(length, new MyRandom(seed)); - testAndCheckDouble(length, new MyRandom(seed)); - testStable(length, new MyRandom(seed)); - } - } - } - - private static void testEmptyAndNullIntArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new int[]{}); - Arrays.parallelSort(new int[]{}, 0, 0); - - try { - Arrays.parallelSort((int[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((int[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(int[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(int[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullLongArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new long[]{}); - Arrays.parallelSort(new long[]{}, 0, 0); - - try { - Arrays.parallelSort((long[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((long[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(long[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(long[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullShortArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new short[]{}); - Arrays.parallelSort(new short[]{}, 0, 0); - - try { - Arrays.parallelSort((short[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((short[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(short[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(short[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullCharArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new char[]{}); - Arrays.parallelSort(new char[]{}, 0, 0); - - try { - Arrays.parallelSort((char[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((char[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(char[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(char[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullByteArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new byte[]{}); - Arrays.parallelSort(new byte[]{}, 0, 0); - - try { - Arrays.parallelSort((byte[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((byte[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(byte[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(byte[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullFloatArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new float[]{}); - Arrays.parallelSort(new float[]{}, 0, 0); - - try { - Arrays.parallelSort((float[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((float[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(float[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(float[]) shouldn't catch null array"); - } - - private static void testEmptyAndNullDoubleArray() { - ourDescription = "Check empty and null array"; - Arrays.parallelSort(new double[]{}); - Arrays.parallelSort(new double[]{}, 0, 0); - - try { - Arrays.parallelSort((double[]) null); - } catch (NullPointerException expected) { - try { - Arrays.parallelSort((double[]) null, 0, 0); - } catch (NullPointerException expected2) { - return; - } - failed("Arrays.parallelSort(double[],fromIndex,toIndex) shouldn't " + - "catch null array"); - } - failed("Arrays.parallelSort(double[]) shouldn't catch null array"); - } - - private static void testAndCheckSubArray(int length) { - ourDescription = "Check sorting of subarray"; - int[] golden = new int[length]; - boolean newLine = false; - - for (int m = 1; m < length / 2; m *= 2) { - newLine = true; - int fromIndex = m; - int toIndex = length - m; - - prepareSubArray(golden, fromIndex, toIndex, m); - int[] test = golden.clone(); - - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'subarray': " + converter + - " length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sortSubArray(convertedTest, fromIndex, toIndex); - checkSubArray(convertedTest, fromIndex, toIndex, m); - } - } - if (newLine) { - out.println(); - } - } - - private static void testAndCheckRange(int length) { - ourDescription = "Check range check"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { - for (int i = 1; i <= length; i++) { - golden[i - 1] = i % m + m % i; - } - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'range': " + converter + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - checkRange(convertedGolden, m); - } - } - out.println(); - } - - private static void testStable(int length, MyRandom random) { - ourDescription = "Check if sorting is stable"; - Pair[] a = build(length, random); - - out.println("Test 'stable': " + "random = " + random.getSeed() + - ", length = " + length); - Arrays.parallelSort(a); - checkSorted(a); - checkStable(a); - out.println(); - - a = build(length, random); - - out.println("Test 'stable' comparator: " + "random = " + random.getSeed() + - ", length = " + length); - Arrays.parallelSort(a, pairCmp); - checkSorted(a); - checkStable(a); - out.println(); - - } - - private static void checkSorted(Pair[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i].getKey() > a[i + 1].getKey()) { - failedSort(i, "" + a[i].getKey(), "" + a[i + 1].getKey()); - } - } - } - - private static void checkStable(Pair[] a) { - for (int i = 0; i < a.length / 4; ) { - int key1 = a[i].getKey(); - int value1 = a[i++].getValue(); - int key2 = a[i].getKey(); - int value2 = a[i++].getValue(); - int key3 = a[i].getKey(); - int value3 = a[i++].getValue(); - int key4 = a[i].getKey(); - int value4 = a[i++].getValue(); - - if (!(key1 == key2 && key2 == key3 && key3 == key4)) { - failed("On position " + i + " keys are different " + - key1 + ", " + key2 + ", " + key3 + ", " + key4); - } - if (!(value1 < value2 && value2 < value3 && value3 < value4)) { - failed("Sorting is not stable at position " + i + - ". Second values have been changed: " + value1 + ", " + - value2 + ", " + value3 + ", " + value4); - } - } - } - - private static Pair[] build(int length, Random random) { - Pair[] a = new Pair[length * 4]; - - for (int i = 0; i < a.length; ) { - int key = random.nextInt(); - a[i++] = new Pair(key, 1); - a[i++] = new Pair(key, 2); - a[i++] = new Pair(key, 3); - a[i++] = new Pair(key, 4); - } - return a; - } - - private static Comparator pairCmp = new Comparator() { - public int compare(Pair p1, Pair p2) { - return p1.compareTo(p2); - } - }; - - private static final class Pair implements Comparable { - Pair(int key, int value) { - myKey = key; - myValue = value; - } - - int getKey() { - return myKey; - } - - int getValue() { - return myValue; - } - - public int compareTo(Pair pair) { - if (myKey < pair.myKey) { - return -1; - } - if (myKey > pair.myKey) { - return 1; - } - return 0; - } - - @Override - public String toString() { - return "(" + myKey + ", " + myValue + ")"; - } - - private int myKey; - private int myValue; - } - - - private static void testAndCheckWithInsertionSort(int length, MyRandom random) { - if (length > 1000) { - return; - } - ourDescription = "Check sorting with insertion sort"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { - for (UnsortedBuilder builder : UnsortedBuilder.values()) { - builder.build(golden, m, random); - int[] test = golden.clone(); - - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'insertion sort': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest1 = converter.convert(test); - Object convertedTest2 = converter.convert(test); - sort(convertedTest1); - sortByInsertionSort(convertedTest2); - compare(convertedTest1, convertedTest2); - } - } - } - out.println(); - } - - private static void testMergeSort(int length) { - if (length < 1000) { - return; - } - ourDescription = "Check merge sorting"; - int[] golden = new int[length]; - int period = 67; // java.util.DualPivotQuicksort.MAX_RUN_COUNT - - for (int m = period - 2; m <= period + 2; m++) { - for (MergeBuilder builder : MergeBuilder.values()) { - builder.build(golden, m); - int[] test = golden.clone(); - - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'merge sort': " + converter + " " + - builder + "length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - sort(convertedGolden); - checkSorted(convertedGolden); - } - } - } - out.println(); - } - - private static void testAndCheckWithCheckSum(int length, MyRandom random) { - ourDescription = "Check sorting with check sum"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { - for (UnsortedBuilder builder : UnsortedBuilder.values()) { - builder.build(golden, m, random); - int[] test = golden.clone(); - - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'check sum': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sort(convertedTest); - checkWithCheckSum(convertedTest, convertedGolden); - } - } - } - out.println(); - } - - private static void testAndCheckWithScrambling(int length, MyRandom random) { - ourDescription = "Check sorting with scrambling"; - int[] golden = new int[length]; - - for (int m = 1; m <= 7; m++) { - if (m > length) { - break; - } - for (SortedBuilder builder : SortedBuilder.values()) { - builder.build(golden, m); - int[] test = golden.clone(); - scramble(test, random); - - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'scrambling': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sort(convertedTest); - compare(convertedTest, convertedGolden); - } - } - } - out.println(); - } - - private static void testAndCheckFloat(int length, MyRandom random) { - ourDescription = "Check float sorting"; - float[] golden = new float[length]; - final int MAX = 10; - boolean newLine = false; - - for (int a = 0; a <= MAX; a++) { - for (int g = 0; g <= MAX; g++) { - for (int z = 0; z <= MAX; z++) { - for (int n = 0; n <= MAX; n++) { - for (int p = 0; p <= MAX; p++) { - if (a + g + z + n + p > length) { - continue; - } - if (a + g + z + n + p < length) { - continue; - } - for (FloatBuilder builder : FloatBuilder.values()) { - out.println("Test 'float': random = " + random.getSeed() + - ", length = " + length + ", a = " + a + ", g = " + - g + ", z = " + z + ", n = " + n + ", p = " + p); - builder.build(golden, a, g, z, n, p, random); - float[] test = golden.clone(); - scramble(test, random); - sort(test); - compare(test, golden, a, n, g); - } - newLine = true; - } - } - } - } - } - if (newLine) { - out.println(); - } - } - - private static void testAndCheckDouble(int length, MyRandom random) { - ourDescription = "Check double sorting"; - double[] golden = new double[length]; - final int MAX = 10; - boolean newLine = false; - - for (int a = 0; a <= MAX; a++) { - for (int g = 0; g <= MAX; g++) { - for (int z = 0; z <= MAX; z++) { - for (int n = 0; n <= MAX; n++) { - for (int p = 0; p <= MAX; p++) { - if (a + g + z + n + p > length) { - continue; - } - if (a + g + z + n + p < length) { - continue; - } - for (DoubleBuilder builder : DoubleBuilder.values()) { - out.println("Test 'double': random = " + random.getSeed() + - ", length = " + length + ", a = " + a + ", g = " + - g + ", z = " + z + ", n = " + n + ", p = " + p); - builder.build(golden, a, g, z, n, p, random); - double[] test = golden.clone(); - scramble(test, random); - sort(test); - compare(test, golden, a, n, g); - } - newLine = true; - } - } - } - } - } - if (newLine) { - out.println(); - } - } - - private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - a[i] = 0xDEDA; - } - int middle = (fromIndex + toIndex) >>> 1; - int k = 0; - - for (int i = fromIndex; i < middle; i++) { - a[i] = k++; - } - for (int i = middle; i < toIndex; i++) { - a[i] = k--; - } - for (int i = toIndex; i < a.length; i++) { - a[i] = 0xBABA; - } - } - - private static void scramble(int[] a, Random random) { - for (int i = 0; i < a.length * 7; i++) { - swap(a, random.nextInt(a.length), random.nextInt(a.length)); - } - } - - private static void scramble(float[] a, Random random) { - for (int i = 0; i < a.length * 7; i++) { - swap(a, random.nextInt(a.length), random.nextInt(a.length)); - } - } - - private static void scramble(double[] a, Random random) { - for (int i = 0; i < a.length * 7; i++) { - swap(a, random.nextInt(a.length), random.nextInt(a.length)); - } - } - - private static void swap(int[] a, int i, int j) { - int t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static void swap(float[] a, int i, int j) { - float t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static void swap(double[] a, int i, int j) { - double t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static enum TypeConverter { - INT { - Object convert(int[] a) { - return a.clone(); - } - }, - LONG { - Object convert(int[] a) { - long[] b = new long[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (long) a[i]; - } - return b; - } - }, - BYTE { - Object convert(int[] a) { - byte[] b = new byte[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (byte) a[i]; - } - return b; - } - }, - SHORT { - Object convert(int[] a) { - short[] b = new short[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (short) a[i]; - } - return b; - } - }, - CHAR { - Object convert(int[] a) { - char[] b = new char[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (char) a[i]; - } - return b; - } - }, - FLOAT { - Object convert(int[] a) { - float[] b = new float[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (float) a[i]; - } - return b; - } - }, - DOUBLE { - Object convert(int[] a) { - double[] b = new double[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (double) a[i]; - } - return b; - } - }, - INTEGER { - Object convert(int[] a) { - Integer[] b = new Integer[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = new Integer(a[i]); - } - return b; - } - }; - - abstract Object convert(int[] a); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 9; i++) { - name += " "; - } - return name; - } - } - - private static enum FloatBuilder { - SIMPLE { - void build(float[] x, int a, int g, int z, int n, int p, Random random) { - int fromIndex = 0; - float negativeValue = -random.nextFloat(); - float positiveValue = random.nextFloat(); - - writeValue(x, negativeValue, fromIndex, n); - fromIndex += n; - - writeValue(x, -0.0f, fromIndex, g); - fromIndex += g; - - writeValue(x, 0.0f, fromIndex, z); - fromIndex += z; - - writeValue(x, positiveValue, fromIndex, p); - fromIndex += p; - - writeValue(x, Float.NaN, fromIndex, a); - } - }; - - abstract void build(float[] x, int a, int g, int z, int n, int p, Random random); - } - - private static enum DoubleBuilder { - SIMPLE { - void build(double[] x, int a, int g, int z, int n, int p, Random random) { - int fromIndex = 0; - double negativeValue = -random.nextFloat(); - double positiveValue = random.nextFloat(); - - writeValue(x, negativeValue, fromIndex, n); - fromIndex += n; - - writeValue(x, -0.0d, fromIndex, g); - fromIndex += g; - - writeValue(x, 0.0d, fromIndex, z); - fromIndex += z; - - writeValue(x, positiveValue, fromIndex, p); - fromIndex += p; - - writeValue(x, Double.NaN, fromIndex, a); - } - }; - - abstract void build(double[] x, int a, int g, int z, int n, int p, Random random); - } - - private static void writeValue(float[] a, float value, int fromIndex, int count) { - for (int i = fromIndex; i < fromIndex + count; i++) { - a[i] = value; - } - } - - private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) { - for (int i = a.length - numNaN; i < a.length; i++) { - if (a[i] == a[i]) { - failed("On position " + i + " must be NaN instead of " + a[i]); - } - } - final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f); - - for (int i = numNeg; i < numNeg + numNegZero; i++) { - if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) { - failed("On position " + i + " must be -0.0 instead of " + a[i]); - } - } - for (int i = 0; i < a.length - numNaN; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void writeValue(double[] a, double value, int fromIndex, int count) { - for (int i = fromIndex; i < fromIndex + count; i++) { - a[i] = value; - } - } - - private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) { - for (int i = a.length - numNaN; i < a.length; i++) { - if (a[i] == a[i]) { - failed("On position " + i + " must be NaN instead of " + a[i]); - } - } - final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d); - - for (int i = numNeg; i < numNeg + numNegZero; i++) { - if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) { - failed("On position " + i + " must be -0.0 instead of " + a[i]); - } - } - for (int i = 0; i < a.length - numNaN; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static enum SortedBuilder { - REPEATED { - void build(int[] a, int m) { - int period = a.length / m; - int i = 0; - int k = 0; - - while (true) { - for (int t = 1; t <= period; t++) { - if (i >= a.length) { - return; - } - a[i++] = k; - } - if (i >= a.length) { - return; - } - k++; - } - } - }, - ORGAN_PIPES { - void build(int[] a, int m) { - int i = 0; - int k = m; - - while (true) { - for (int t = 1; t <= m; t++) { - if (i >= a.length) { - return; - } - a[i++] = k; - } - } - } - }; - - abstract void build(int[] a, int m); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } - } - - private static enum MergeBuilder { - ASCENDING { - void build(int[] a, int m) { - int period = a.length / m; - int v = 1, i = 0; - - for (int k = 0; k < m; k++) { - v = 1; - for (int p = 0; p < period; p++) { - a[i++] = v++; - } - } - for (int j = i; j < a.length - 1; j++) { - a[j] = v++; - } - a[a.length - 1] = 0; - } - }, - DESCENDING { - void build(int[] a, int m) { - int period = a.length / m; - int v = -1, i = 0; - - for (int k = 0; k < m; k++) { - v = -1; - for (int p = 0; p < period; p++) { - a[i++] = v--; - } - } - for (int j = i; j < a.length - 1; j++) { - a[j] = v--; - } - a[a.length - 1] = 0; - } - }; - - abstract void build(int[] a, int m); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } - } - - private static enum UnsortedBuilder { - RANDOM { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = random.nextInt(); - } - } - }, - ASCENDING { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = m + i; - } - } - }, - DESCENDING { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = a.length - m - i; - } - } - }, - ALL_EQUAL { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = m; - } - } - }, - SAW { - void build(int[] a, int m, Random random) { - int incCount = 1; - int decCount = a.length; - int i = 0; - int period = m--; - - while (true) { - for (int k = 1; k <= period; k++) { - if (i >= a.length) { - return; - } - a[i++] = incCount++; - } - period += m; - - for (int k = 1; k <= period; k++) { - if (i >= a.length) { - return; - } - a[i++] = decCount--; - } - period += m; - } - } - }, - REPEATED { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = i % m; - } - } - }, - DUPLICATED { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = random.nextInt(m); - } - } - }, - ORGAN_PIPES { - void build(int[] a, int m, Random random) { - int middle = a.length / (m + 1); - - for (int i = 0; i < middle; i++) { - a[i] = i; - } - for (int i = middle; i < a.length; i++) { - a[i] = a.length - i - 1; - } - } - }, - STAGGER { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = (i * m + i) % a.length; - } - } - }, - PLATEAU { - void build(int[] a, int m, Random random) { - for (int i = 0; i < a.length; i++) { - a[i] = Math.min(i, m); - } - } - }, - SHUFFLE { - void build(int[] a, int m, Random random) { - int x = 0, y = 0; - for (int i = 0; i < a.length; i++) { - a[i] = random.nextBoolean() ? (x += 2) : (y += 2); - } - } - }; - - abstract void build(int[] a, int m, Random random); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } - } - - private static void checkWithCheckSum(Object test, Object golden) { - checkSorted(test); - checkCheckSum(test, golden); - } - - private static void failed(String message) { - err.format("\n*** TEST FAILED - %s.\n\n%s.\n\n", ourDescription, message); - throw new RuntimeException("Test failed - see log file for details"); - } - - private static void failedSort(int index, String value1, String value2) { - failed("Array is not sorted at " + index + "-th position: " + - value1 + " and " + value2); - } - - private static void failedCompare(int index, String value1, String value2) { - failed("On position " + index + " must be " + value2 + " instead of " + value1); - } - - private static void compare(Object test, Object golden) { - if (test instanceof int[]) { - compare((int[]) test, (int[]) golden); - } else if (test instanceof long[]) { - compare((long[]) test, (long[]) golden); - } else if (test instanceof short[]) { - compare((short[]) test, (short[]) golden); - } else if (test instanceof byte[]) { - compare((byte[]) test, (byte[]) golden); - } else if (test instanceof char[]) { - compare((char[]) test, (char[]) golden); - } else if (test instanceof float[]) { - compare((float[]) test, (float[]) golden); - } else if (test instanceof double[]) { - compare((double[]) test, (double[]) golden); - } else if (test instanceof Integer[]) { - compare((Integer[]) test, (Integer[]) golden); - } else { - failed("Unknow type of array: " + test + " of class " + - test.getClass().getName()); - } - } - - private static void compare(int[] a, int[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(long[] a, long[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(short[] a, short[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(byte[] a, byte[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(char[] a, char[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(float[] a, float[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(double[] a, double[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(Integer[] a, Integer[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i].compareTo(b[i]) != 0) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void checkSorted(Object object) { - if (object instanceof int[]) { - checkSorted((int[]) object); - } else if (object instanceof long[]) { - checkSorted((long[]) object); - } else if (object instanceof short[]) { - checkSorted((short[]) object); - } else if (object instanceof byte[]) { - checkSorted((byte[]) object); - } else if (object instanceof char[]) { - checkSorted((char[]) object); - } else if (object instanceof float[]) { - checkSorted((float[]) object); - } else if (object instanceof double[]) { - checkSorted((double[]) object); - } else if (object instanceof Integer[]) { - checkSorted((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSorted(int[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(long[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(short[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(byte[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(char[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(float[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(double[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(Integer[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i].intValue() > a[i + 1].intValue()) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkCheckSum(Object test, Object golden) { - if (checkSumXor(test) != checkSumXor(golden)) { - failed("Original and sorted arrays are not identical [xor]"); - } - if (checkSumPlus(test) != checkSumPlus(golden)) { - failed("Original and sorted arrays are not identical [plus]"); - } - } - - private static int checkSumXor(Object object) { - if (object instanceof int[]) { - return checkSumXor((int[]) object); - } else if (object instanceof long[]) { - return checkSumXor((long[]) object); - } else if (object instanceof short[]) { - return checkSumXor((short[]) object); - } else if (object instanceof byte[]) { - return checkSumXor((byte[]) object); - } else if (object instanceof char[]) { - return checkSumXor((char[]) object); - } else if (object instanceof float[]) { - return checkSumXor((float[]) object); - } else if (object instanceof double[]) { - return checkSumXor((double[]) object); - } else if (object instanceof Integer[]) { - return checkSumXor((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - return -1; - } - } - - private static int checkSumXor(Integer[] a) { - int checkSum = 0; - - for (Integer e : a) { - checkSum ^= e.intValue(); - } - return checkSum; - } - - private static int checkSumXor(int[] a) { - int checkSum = 0; - - for (int e : a) { - checkSum ^= e; - } - return checkSum; - } - - private static int checkSumXor(long[] a) { - long checkSum = 0; - - for (long e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(short[] a) { - short checkSum = 0; - - for (short e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(byte[] a) { - byte checkSum = 0; - - for (byte e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(char[] a) { - char checkSum = 0; - - for (char e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(float[] a) { - int checkSum = 0; - - for (float e : a) { - checkSum ^= (int) e; - } - return checkSum; - } - - private static int checkSumXor(double[] a) { - int checkSum = 0; - - for (double e : a) { - checkSum ^= (int) e; - } - return checkSum; - } - - private static int checkSumPlus(Object object) { - if (object instanceof int[]) { - return checkSumPlus((int[]) object); - } else if (object instanceof long[]) { - return checkSumPlus((long[]) object); - } else if (object instanceof short[]) { - return checkSumPlus((short[]) object); - } else if (object instanceof byte[]) { - return checkSumPlus((byte[]) object); - } else if (object instanceof char[]) { - return checkSumPlus((char[]) object); - } else if (object instanceof float[]) { - return checkSumPlus((float[]) object); - } else if (object instanceof double[]) { - return checkSumPlus((double[]) object); - } else if (object instanceof Integer[]) { - return checkSumPlus((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - return -1; - } - } - - private static int checkSumPlus(int[] a) { - int checkSum = 0; - - for (int e : a) { - checkSum += e; - } - return checkSum; - } - - private static int checkSumPlus(long[] a) { - long checkSum = 0; - - for (long e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(short[] a) { - short checkSum = 0; - - for (short e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(byte[] a) { - byte checkSum = 0; - - for (byte e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(char[] a) { - char checkSum = 0; - - for (char e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(float[] a) { - int checkSum = 0; - - for (float e : a) { - checkSum += (int) e; - } - return checkSum; - } - - private static int checkSumPlus(double[] a) { - int checkSum = 0; - - for (double e : a) { - checkSum += (int) e; - } - return checkSum; - } - - private static int checkSumPlus(Integer[] a) { - int checkSum = 0; - - for (Integer e : a) { - checkSum += e.intValue(); - } - return checkSum; - } - - private static void sortByInsertionSort(Object object) { - if (object instanceof int[]) { - sortByInsertionSort((int[]) object); - } else if (object instanceof long[]) { - sortByInsertionSort((long[]) object); - } else if (object instanceof short[]) { - sortByInsertionSort((short[]) object); - } else if (object instanceof byte[]) { - sortByInsertionSort((byte[]) object); - } else if (object instanceof char[]) { - sortByInsertionSort((char[]) object); - } else if (object instanceof float[]) { - sortByInsertionSort((float[]) object); - } else if (object instanceof double[]) { - sortByInsertionSort((double[]) object); - } else if (object instanceof Integer[]) { - sortByInsertionSort((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void sortByInsertionSort(int[] a) { - for (int j, i = 1; i < a.length; i++) { - int ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(long[] a) { - for (int j, i = 1; i < a.length; i++) { - long ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(short[] a) { - for (int j, i = 1; i < a.length; i++) { - short ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(byte[] a) { - for (int j, i = 1; i < a.length; i++) { - byte ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(char[] a) { - for (int j, i = 1; i < a.length; i++) { - char ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(float[] a) { - for (int j, i = 1; i < a.length; i++) { - float ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(double[] a) { - for (int j, i = 1; i < a.length; i++) { - double ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(Integer[] a) { - for (int j, i = 1; i < a.length; i++) { - Integer ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sort(Object object) { - if (object instanceof int[]) { - Arrays.parallelSort((int[]) object); - } else if (object instanceof long[]) { - Arrays.parallelSort((long[]) object); - } else if (object instanceof short[]) { - Arrays.parallelSort((short[]) object); - } else if (object instanceof byte[]) { - Arrays.parallelSort((byte[]) object); - } else if (object instanceof char[]) { - Arrays.parallelSort((char[]) object); - } else if (object instanceof float[]) { - Arrays.parallelSort((float[]) object); - } else if (object instanceof double[]) { - Arrays.parallelSort((double[]) object); - } else if (object instanceof Integer[]) { - Arrays.parallelSort((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void sortSubArray(Object object, int fromIndex, int toIndex) { - if (object instanceof int[]) { - Arrays.parallelSort((int[]) object, fromIndex, toIndex); - } else if (object instanceof long[]) { - Arrays.parallelSort((long[]) object, fromIndex, toIndex); - } else if (object instanceof short[]) { - Arrays.parallelSort((short[]) object, fromIndex, toIndex); - } else if (object instanceof byte[]) { - Arrays.parallelSort((byte[]) object, fromIndex, toIndex); - } else if (object instanceof char[]) { - Arrays.parallelSort((char[]) object, fromIndex, toIndex); - } else if (object instanceof float[]) { - Arrays.parallelSort((float[]) object, fromIndex, toIndex); - } else if (object instanceof double[]) { - Arrays.parallelSort((double[]) object, fromIndex, toIndex); - } else if (object instanceof Integer[]) { - Arrays.parallelSort((Integer[]) object, fromIndex, toIndex); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) { - if (object instanceof int[]) { - checkSubArray((int[]) object, fromIndex, toIndex, m); - } else if (object instanceof long[]) { - checkSubArray((long[]) object, fromIndex, toIndex, m); - } else if (object instanceof short[]) { - checkSubArray((short[]) object, fromIndex, toIndex, m); - } else if (object instanceof byte[]) { - checkSubArray((byte[]) object, fromIndex, toIndex, m); - } else if (object instanceof char[]) { - checkSubArray((char[]) object, fromIndex, toIndex, m); - } else if (object instanceof float[]) { - checkSubArray((float[]) object, fromIndex, toIndex, m); - } else if (object instanceof double[]) { - checkSubArray((double[]) object, fromIndex, toIndex, m); - } else if (object instanceof Integer[]) { - checkSubArray((Integer[]) object, fromIndex, toIndex, m); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSubArray(Integer[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i].intValue() != 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i].intValue() > a[i + 1].intValue()) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i].intValue() != 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (byte) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (byte) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (long) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (long) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (char) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (char) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (short) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (short) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (float) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (float) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (double) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (double) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkRange(Object object, int m) { - if (object instanceof int[]) { - checkRange((int[]) object, m); - } else if (object instanceof long[]) { - checkRange((long[]) object, m); - } else if (object instanceof short[]) { - checkRange((short[]) object, m); - } else if (object instanceof byte[]) { - checkRange((byte[]) object, m); - } else if (object instanceof char[]) { - checkRange((char[]) object, m); - } else if (object instanceof float[]) { - checkRange((float[]) object, m); - } else if (object instanceof double[]) { - checkRange((double[]) object, m); - } else if (object instanceof Integer[]) { - checkRange((Integer[]) object, m); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkRange(Integer[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(int[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(long[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(byte[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(short[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(char[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(float[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(double[] a, int m) { - try { - Arrays.parallelSort(a, m + 1, m); - - failed("ParallelSort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.parallelSort(a, -m, a.length); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.parallelSort(a, 0, a.length + m); - - failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void outArray(Object[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(int[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(float[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(double[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static class MyRandom extends Random { - MyRandom(long seed) { - super(seed); - mySeed = seed; - } - - long getSeed() { - return mySeed; - } - - private long mySeed; - } - - private static String ourDescription; -} diff --git a/test/jdk/java/util/Arrays/Sorting.java b/test/jdk/java/util/Arrays/Sorting.java index 9d56b20d1c..e89496bb2e 100644 --- a/test/jdk/java/util/Arrays/Sorting.java +++ b/test/jdk/java/util/Arrays/Sorting.java @@ -1,5 +1,5 @@ /* - * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -23,277 +23,329 @@ /* * @test - * @bug 6880672 6896573 6899694 6976036 7013585 7018258 - * @summary Exercise Arrays.sort + * @compile/module=java.base java/util/SortingHelper.java + * @bug 6880672 6896573 6899694 6976036 7013585 7018258 8003981 8226297 * @build Sorting * @run main Sorting -shortrun + * @summary Exercise Arrays.sort, Arrays.parallelSort * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch */ -import java.util.Arrays; -import java.util.Random; import java.io.PrintStream; +import java.util.Comparator; +import java.util.Random; +import java.util.SortingHelper; public class Sorting { + private static final PrintStream out = System.out; private static final PrintStream err = System.err; // Array lengths used in a long run (default) private static final int[] LONG_RUN_LENGTHS = { - 1, 2, 3, 5, 8, 13, 21, 34, 55, 100, 1000, 10000, 100000, 1000000 }; + 1, 3, 8, 21, 55, 100, 1_000, 10_000, 100_000 }; // Array lengths used in a short run private static final int[] SHORT_RUN_LENGTHS = { - 1, 2, 3, 21, 55, 1000, 10000 }; + 1, 8, 55, 100, 10_000 }; // Random initial values used in a long run (default) - private static final long[] LONG_RUN_RANDOMS = { 666, 0xC0FFEE, 999 }; + private static final TestRandom[] LONG_RUN_RANDOMS = { + TestRandom.BABA, TestRandom.DEDA, TestRandom.C0FFEE }; // Random initial values used in a short run - private static final long[] SHORT_RUN_RANDOMS = { 666 }; + private static final TestRandom[] SHORT_RUN_RANDOMS = { + TestRandom.C0FFEE }; + + // Constants used in subarray sorting + private static final int A380 = 0xA380; + private static final int B747 = 0xB747; + + private final SortingHelper sortingHelper; + private final TestRandom[] randoms; + private final int[] lengths; + private Object[] gold; + private Object[] test; public static void main(String[] args) { - boolean shortRun = args.length > 0 && args[0].equals("-shortrun"); long start = System.currentTimeMillis(); + boolean shortRun = args.length > 0 && args[0].equals("-shortrun"); + + int[] lengths = shortRun ? SHORT_RUN_LENGTHS : LONG_RUN_LENGTHS; + TestRandom[] randoms = shortRun ? SHORT_RUN_RANDOMS : LONG_RUN_RANDOMS; + + new Sorting(SortingHelper.DUAL_PIVOT_QUICKSORT, randoms, lengths).testCore(); + new Sorting(SortingHelper.PARALLEL_SORT, randoms, lengths).testCore(); + new Sorting(SortingHelper.HEAP_SORT, randoms, lengths).testBasic(); + new Sorting(SortingHelper.ARRAYS_SORT, randoms, lengths).testAll(); + new Sorting(SortingHelper.ARRAYS_PARALLEL_SORT, randoms, lengths).testAll(); - if (shortRun) { - testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS); - } else { - testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS); - } long end = System.currentTimeMillis(); - - out.format("PASSED in %d sec.\n", Math.round((end - start) / 1E3)); + out.format("PASSED in %d sec.\n", (end - start) / 1000); } - private static void testAndCheck(int[] lengths, long[] randoms) { - testEmptyAndNullIntArray(); - testEmptyAndNullLongArray(); - testEmptyAndNullShortArray(); - testEmptyAndNullCharArray(); - testEmptyAndNullByteArray(); - testEmptyAndNullFloatArray(); - testEmptyAndNullDoubleArray(); + private Sorting(SortingHelper sortingHelper, TestRandom[] randoms, int[] lengths) { + this.sortingHelper = sortingHelper; + this.randoms = randoms; + this.lengths = lengths; + } + + private void testBasic() { + testEmptyArray(); for (int length : lengths) { - testMergeSort(length); - testAndCheckRange(length); - testAndCheckSubArray(length); - } - for (long seed : randoms) { - for (int length : lengths) { - testAndCheckWithInsertionSort(length, new MyRandom(seed)); - testAndCheckWithCheckSum(length, new MyRandom(seed)); - testAndCheckWithScrambling(length, new MyRandom(seed)); - testAndCheckFloat(length, new MyRandom(seed)); - testAndCheckDouble(length, new MyRandom(seed)); - testStable(length, new MyRandom(seed)); - } + createData(length); + testBasic(length); } } - private static void testEmptyAndNullIntArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new int[] {}); - Arrays.sort(new int[] {}, 0, 0); + private void testBasic(int length) { + for (TestRandom random : randoms) { + testWithInsertionSort(length, random); + testWithCheckSum(length, random); + testWithScrambling(length, random); + } + } + + private void testCore() { + for (int length : lengths) { + createData(length); + testCore(length); + } + } + + private void testCore(int length) { + testBasic(length); + + for (TestRandom random : randoms) { + testMergingSort(length, random); + testSubArray(length, random); + testNegativeZero(length, random); + testFloatingPointSorting(length, random); + } + } + + private void testAll() { + for (int length : lengths) { + createData(length); + testAll(length); + } + } + + private void testAll(int length) { + testCore(length); + + for (TestRandom random : randoms) { + testRange(length, random); + testStability(length, random); + } + } + + private void testEmptyArray() { + testEmptyAndNullIntArray(); + testEmptyAndNullLongArray(); + testEmptyAndNullByteArray(); + testEmptyAndNullCharArray(); + testEmptyAndNullShortArray(); + testEmptyAndNullFloatArray(); + testEmptyAndNullDoubleArray(); + } + + private void testStability(int length, TestRandom random) { + printTestName("Test stability", random, length); + + Pair[] a = build(length, random); + sortingHelper.sort(a); + checkSorted(a); + checkStable(a); + + a = build(length, random); + sortingHelper.sort(a, pairComparator); + checkSorted(a); + checkStable(a); + + out.println(); + } + + private void testEmptyAndNullIntArray() { + sortingHelper.sort(new int[] {}); + sortingHelper.sort(new int[] {}, 0, 0); try { - Arrays.sort((int[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((int[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(int[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(int[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(int[]) shouldn't catch null array"); + fail(sortingHelper + "(int[]) shouldn't catch null array"); } - private static void testEmptyAndNullLongArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new long[] {}); - Arrays.sort(new long[] {}, 0, 0); + private void testEmptyAndNullLongArray() { + sortingHelper.sort(new long[] {}); + sortingHelper.sort(new long[] {}, 0, 0); try { - Arrays.sort((long[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((long[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(long[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(long[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(long[]) shouldn't catch null array"); + fail(sortingHelper + "(long[]) shouldn't catch null array"); } - private static void testEmptyAndNullShortArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new short[] {}); - Arrays.sort(new short[] {}, 0, 0); + private void testEmptyAndNullByteArray() { + sortingHelper.sort(new byte[] {}); + sortingHelper.sort(new byte[] {}, 0, 0); try { - Arrays.sort((short[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((short[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(short[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(byte[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(short[]) shouldn't catch null array"); + fail(sortingHelper + "(byte[]) shouldn't catch null array"); } - private static void testEmptyAndNullCharArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new char[] {}); - Arrays.sort(new char[] {}, 0, 0); + private void testEmptyAndNullCharArray() { + sortingHelper.sort(new char[] {}); + sortingHelper.sort(new char[] {}, 0, 0); try { - Arrays.sort((char[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((char[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(char[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(char[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(char[]) shouldn't catch null array"); + fail(sortingHelper + "(char[]) shouldn't catch null array"); } - private static void testEmptyAndNullByteArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new byte[] {}); - Arrays.sort(new byte[] {}, 0, 0); + private void testEmptyAndNullShortArray() { + sortingHelper.sort(new short[] {}); + sortingHelper.sort(new short[] {}, 0, 0); try { - Arrays.sort((byte[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((byte[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(byte[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(short[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(byte[]) shouldn't catch null array"); + fail(sortingHelper + "(short[]) shouldn't catch null array"); } - private static void testEmptyAndNullFloatArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new float[] {}); - Arrays.sort(new float[] {}, 0, 0); + private void testEmptyAndNullFloatArray() { + sortingHelper.sort(new float[] {}); + sortingHelper.sort(new float[] {}, 0, 0); try { - Arrays.sort((float[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((float[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(float[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(float[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(float[]) shouldn't catch null array"); + fail(sortingHelper + "(float[]) shouldn't catch null array"); } - private static void testEmptyAndNullDoubleArray() { - ourDescription = "Check empty and null array"; - Arrays.sort(new double[] {}); - Arrays.sort(new double[] {}, 0, 0); + private void testEmptyAndNullDoubleArray() { + sortingHelper.sort(new double[] {}); + sortingHelper.sort(new double[] {}, 0, 0); try { - Arrays.sort((double[]) null); + sortingHelper.sort(null); } catch (NullPointerException expected) { try { - Arrays.sort((double[]) null, 0, 0); + sortingHelper.sort(null, 0, 0); } catch (NullPointerException expected2) { return; } - failed("Arrays.sort(double[],fromIndex,toIndex) shouldn't " + + fail(sortingHelper + "(double[],fromIndex,toIndex) shouldn't " + "catch null array"); } - failed("Arrays.sort(double[]) shouldn't catch null array"); + fail(sortingHelper + "(double[]) shouldn't catch null array"); } - private static void testAndCheckSubArray(int length) { - ourDescription = "Check sorting of subarray"; - int[] golden = new int[length]; - boolean newLine = false; - - for (int m = 1; m < length / 2; m *= 2) { - newLine = true; + private void testSubArray(int length, TestRandom random) { + if (length < 4) { + return; + } + for (int m = 1; m < length / 2; m <<= 1) { int fromIndex = m; int toIndex = length - m; - prepareSubArray(golden, fromIndex, toIndex, m); - int[] test = golden.clone(); + prepareSubArray((int[]) gold[0], fromIndex, toIndex); + convertData(length); - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'subarray': " + converter + - " length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sortSubArray(convertedTest, fromIndex, toIndex); - checkSubArray(convertedTest, fromIndex, toIndex, m); + for (int i = 0; i < test.length; i++) { + printTestName("Test subarray", random, length, + ", m = " + m + ", " + getType(i)); + sortingHelper.sort(test[i], fromIndex, toIndex); + checkSubArray(test[i], fromIndex, toIndex); } } - if (newLine) { - out.println(); - } + out.println(); } - private static void testAndCheckRange(int length) { - ourDescription = "Check range check"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { + private void testRange(int length, TestRandom random) { + if (length < 2) { + return; + } + for (int m = 1; m < length; m <<= 1) { for (int i = 1; i <= length; i++) { - golden[i - 1] = i % m + m % i; + ((int[]) gold[0]) [i - 1] = i % m + m % i; } - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'range': " + converter + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - checkRange(convertedGolden, m); + convertData(length); + + for (int i = 0; i < test.length; i++) { + printTestName("Test range check", random, length, + ", m = " + m + ", " + getType(i)); + checkRange(test[i], m); } } out.println(); } - private static void testStable(int length, MyRandom random) { - ourDescription = "Check if sorting is stable"; - Pair[] a = build(length, random); - - out.println("Test 'stable': " + "random = " + random.getSeed() + - ", length = " + length); - Arrays.sort(a); - checkSorted(a); - checkStable(a); - out.println(); - } - - private static void checkSorted(Pair[] a) { + private void checkSorted(Pair[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i].getKey() > a[i + 1].getKey()) { - failedSort(i, "" + a[i].getKey(), "" + a[i + 1].getKey()); + fail("Array is not sorted at " + i + "-th position: " + + a[i].getKey() + " and " + a[i + 1].getKey()); } } } - private static void checkStable(Pair[] a) { + private void checkStable(Pair[] a) { for (int i = 0; i < a.length / 4; ) { int key1 = a[i].getKey(); int value1 = a[i++].getValue(); @@ -305,18 +357,18 @@ public class Sorting { int value4 = a[i++].getValue(); if (!(key1 == key2 && key2 == key3 && key3 == key4)) { - failed("On position " + i + " keys are different " + - key1 + ", " + key2 + ", " + key3 + ", " + key4); + fail("Keys are different " + key1 + ", " + key2 + ", " + + key3 + ", " + key4 + " at position " + i); } if (!(value1 < value2 && value2 < value3 && value3 < value4)) { - failed("Sorting is not stable at position " + i + - ". Second values have been changed: " + value1 + ", " + + fail("Sorting is not stable at position " + i + + ". Second values have been changed: " + value1 + ", " + value2 + ", " + value3 + ", " + value4); } } } - private static Pair[] build(int length, Random random) { + private Pair[] build(int length, Random random) { Pair[] a = new Pair[length * 4]; for (int i = 0; i < a.length; ) { @@ -329,222 +381,151 @@ public class Sorting { return a; } - private static final class Pair implements Comparable { - Pair(int key, int value) { - myKey = key; - myValue = value; - } - - int getKey() { - return myKey; - } - - int getValue() { - return myValue; - } - - public int compareTo(Pair pair) { - if (myKey < pair.myKey) { - return -1; - } - if (myKey > pair.myKey) { - return 1; - } - return 0; - } - - @Override - public String toString() { - return "(" + myKey + ", " + myValue + ")"; - } - - private int myKey; - private int myValue; - } - - - private static void testAndCheckWithInsertionSort(int length, MyRandom random) { + private void testWithInsertionSort(int length, TestRandom random) { if (length > 1000) { return; } - ourDescription = "Check sorting with insertion sort"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { + for (int m = 1; m <= length; m <<= 1) { for (UnsortedBuilder builder : UnsortedBuilder.values()) { - builder.build(golden, m, random); - int[] test = golden.clone(); + builder.build((int[]) gold[0], m, random); + convertData(length); - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'insertion sort': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest1 = converter.convert(test); - Object convertedTest2 = converter.convert(test); - sort(convertedTest1); - sortByInsertionSort(convertedTest2); - compare(convertedTest1, convertedTest2); + for (int i = 0; i < test.length; i++) { + printTestName("Test with insertion sort", random, length, + ", m = " + m + ", " + getType(i) + " " + builder); + sortingHelper.sort(test[i]); + sortByInsertionSort(gold[i]); + compare(test[i], gold[i]); } } } out.println(); } - private static void testMergeSort(int length) { - if (length < 1000) { + private void testMergingSort(int length, TestRandom random) { + if (length < (4 << 10)) { // DualPivotQuicksort.MIN_TRY_MERGE_SIZE return; } - ourDescription = "Check merge sorting"; - int[] golden = new int[length]; - int period = 67; // java.util.DualPivotQuicksort.MAX_RUN_COUNT + final int PERIOD = 50; - for (int m = period - 2; m <= period + 2; m++) { - for (MergeBuilder builder : MergeBuilder.values()) { - builder.build(golden, m); - int[] test = golden.clone(); + for (int m = PERIOD - 2; m <= PERIOD + 2; m++) { + for (MergingBuilder builder : MergingBuilder.values()) { + builder.build((int[]) gold[0], m); + convertData(length); - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'merge sort': " + converter + " " + - builder + "length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - sort(convertedGolden); - checkSorted(convertedGolden); + for (int i = 0; i < test.length; i++) { + printTestName("Test merging sort", random, length, + ", m = " + m + ", " + getType(i) + " " + builder); + sortingHelper.sort(test[i]); + checkSorted(test[i]); } } } out.println(); } - private static void testAndCheckWithCheckSum(int length, MyRandom random) { - ourDescription = "Check sorting with check sum"; - int[] golden = new int[length]; - - for (int m = 1; m < 2 * length; m *= 2) { + private void testWithCheckSum(int length, TestRandom random) { + for (int m = 1; m <= length; m <<= 1) { for (UnsortedBuilder builder : UnsortedBuilder.values()) { - builder.build(golden, m, random); - int[] test = golden.clone(); + builder.build((int[]) gold[0], m, random); + convertData(length); - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'check sum': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sort(convertedTest); - checkWithCheckSum(convertedTest, convertedGolden); + for (int i = 0; i < test.length; i++) { + printTestName("Test with check sum", random, length, + ", m = " + m + ", " + getType(i) + " " + builder); + sortingHelper.sort(test[i]); + checkWithCheckSum(test[i], gold[i]); } } } out.println(); } - private static void testAndCheckWithScrambling(int length, MyRandom random) { - ourDescription = "Check sorting with scrambling"; - int[] golden = new int[length]; - - for (int m = 1; m <= 7; m++) { - if (m > length) { - break; - } + private void testWithScrambling(int length, TestRandom random) { + for (int m = 1; m <= length; m <<= 1) { for (SortedBuilder builder : SortedBuilder.values()) { - builder.build(golden, m); - int[] test = golden.clone(); - scramble(test, random); + builder.build((int[]) gold[0], m); + convertData(length); - for (TypeConverter converter : TypeConverter.values()) { - out.println("Test 'scrambling': " + converter + - " " + builder + "random = " + random.getSeed() + - ", length = " + length + ", m = " + m); - Object convertedGolden = converter.convert(golden); - Object convertedTest = converter.convert(test); - sort(convertedTest); - compare(convertedTest, convertedGolden); + for (int i = 0; i < test.length; i++) { + printTestName("Test with scrambling", random, length, + ", m = " + m + ", " + getType(i) + " " + builder); + scramble(test[i], random); + sortingHelper.sort(test[i]); + compare(test[i], gold[i]); } } } out.println(); } - private static void testAndCheckFloat(int length, MyRandom random) { - ourDescription = "Check float sorting"; - float[] golden = new float[length]; - final int MAX = 10; - boolean newLine = false; + private void testNegativeZero(int length, TestRandom random) { + for (int i = 5; i < test.length; i++) { + printTestName("Test negative zero -0.0", random, length, " " + getType(i)); - for (int a = 0; a <= MAX; a++) { - for (int g = 0; g <= MAX; g++) { - for (int z = 0; z <= MAX; z++) { - for (int n = 0; n <= MAX; n++) { - for (int p = 0; p <= MAX; p++) { - if (a + g + z + n + p > length) { + NegativeZeroBuilder builder = NegativeZeroBuilder.values() [i - 5]; + builder.build(test[i], random); + + sortingHelper.sort(test[i]); + checkNegativeZero(test[i]); + } + out.println(); + } + + private void testFloatingPointSorting(int length, TestRandom random) { + if (length < 2) { + return; + } + final int MAX = 13; + + for (int a = 0; a < MAX; a++) { + for (int g = 0; g < MAX; g++) { + for (int z = 0; z < MAX; z++) { + for (int n = 0; n < MAX; n++) { + for (int p = 0; p < MAX; p++) { + if (a + g + z + n + p != length) { continue; } - if (a + g + z + n + p < length) { - continue; + for (int i = 5; i < test.length; i++) { + printTestName("Test float-pointing sorting", random, length, + ", a = " + a + ", g = " + g + ", z = " + z + + ", n = " + n + ", p = " + p + ", " + getType(i)); + FloatingPointBuilder builder = FloatingPointBuilder.values()[i - 5]; + builder.build(gold[i], a, g, z, n, p, random); + copy(test[i], gold[i]); + scramble(test[i], random); + sortingHelper.sort(test[i]); + compare(test[i], gold[i], a, n, g); } - for (FloatBuilder builder : FloatBuilder.values()) { - out.println("Test 'float': random = " + random.getSeed() + - ", length = " + length + ", a = " + a + ", g = " + - g + ", z = " + z + ", n = " + n + ", p = " + p); - builder.build(golden, a, g, z, n, p, random); - float[] test = golden.clone(); - scramble(test, random); - sort(test); - compare(test, golden, a, n, g); - } - newLine = true; } } } } } - if (newLine) { - out.println(); - } - } - private static void testAndCheckDouble(int length, MyRandom random) { - ourDescription = "Check double sorting"; - double[] golden = new double[length]; - final int MAX = 10; - boolean newLine = false; + for (int m = 13; m > 4; m--) { + int t = length / m; + int g = t, z = t, n = t, p = t; + int a = length - g - z - n - p; - for (int a = 0; a <= MAX; a++) { - for (int g = 0; g <= MAX; g++) { - for (int z = 0; z <= MAX; z++) { - for (int n = 0; n <= MAX; n++) { - for (int p = 0; p <= MAX; p++) { - if (a + g + z + n + p > length) { - continue; - } - if (a + g + z + n + p < length) { - continue; - } - for (DoubleBuilder builder : DoubleBuilder.values()) { - out.println("Test 'double': random = " + random.getSeed() + - ", length = " + length + ", a = " + a + ", g = " + - g + ", z = " + z + ", n = " + n + ", p = " + p); - builder.build(golden, a, g, z, n, p, random); - double[] test = golden.clone(); - scramble(test, random); - sort(test); - compare(test, golden, a, n, g); - } - newLine = true; - } - } - } + for (int i = 5; i < test.length; i++) { + printTestName("Test float-pointing sorting", random, length, + ", a = " + a + ", g = " + g + ", z = " + z + + ", n = " + n + ", p = " + p + ", " + getType(i)); + FloatingPointBuilder builder = FloatingPointBuilder.values() [i - 5]; + builder.build(gold[i], a, g, z, n, p, random); + copy(test[i], gold[i]); + scramble(test[i], random); + sortingHelper.sort(test[i]); + compare(test[i], gold[i], a, n, g); } } - if (newLine) { - out.println(); - } + out.println(); } - private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) { + private void prepareSubArray(int[] a, int fromIndex, int toIndex) { for (int i = 0; i < fromIndex; i++) { - a[i] = 0xDEDA; + a[i] = A380; } int middle = (fromIndex + toIndex) >>> 1; int k = 0; @@ -552,338 +533,1112 @@ public class Sorting { for (int i = fromIndex; i < middle; i++) { a[i] = k++; } + for (int i = middle; i < toIndex; i++) { a[i] = k--; } + for (int i = toIndex; i < a.length; i++) { - a[i] = 0xBABA; + a[i] = B747; } } - private static void scramble(int[] a, Random random) { + private void scramble(Object a, Random random) { + if (a instanceof int[]) { + scramble((int[]) a, random); + } else if (a instanceof long[]) { + scramble((long[]) a, random); + } else if (a instanceof byte[]) { + scramble((byte[]) a, random); + } else if (a instanceof char[]) { + scramble((char[]) a, random); + } else if (a instanceof short[]) { + scramble((short[]) a, random); + } else if (a instanceof float[]) { + scramble((float[]) a, random); + } else if (a instanceof double[]) { + scramble((double[]) a, random); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void scramble(int[] a, Random random) { for (int i = 0; i < a.length * 7; i++) { swap(a, random.nextInt(a.length), random.nextInt(a.length)); } } - private static void scramble(float[] a, Random random) { + private void scramble(long[] a, Random random) { for (int i = 0; i < a.length * 7; i++) { swap(a, random.nextInt(a.length), random.nextInt(a.length)); } } - private static void scramble(double[] a, Random random) { + private void scramble(byte[] a, Random random) { for (int i = 0; i < a.length * 7; i++) { swap(a, random.nextInt(a.length), random.nextInt(a.length)); } } - private static void swap(int[] a, int i, int j) { - int t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static void swap(float[] a, int i, int j) { - float t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static void swap(double[] a, int i, int j) { - double t = a[i]; - a[i] = a[j]; - a[j] = t; - } - - private static enum TypeConverter { - INT { - Object convert(int[] a) { - return a.clone(); - } - }, - LONG { - Object convert(int[] a) { - long[] b = new long[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (long) a[i]; - } - return b; - } - }, - BYTE { - Object convert(int[] a) { - byte[] b = new byte[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (byte) a[i]; - } - return b; - } - }, - SHORT { - Object convert(int[] a) { - short[] b = new short[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (short) a[i]; - } - return b; - } - }, - CHAR { - Object convert(int[] a) { - char[] b = new char[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (char) a[i]; - } - return b; - } - }, - FLOAT { - Object convert(int[] a) { - float[] b = new float[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (float) a[i]; - } - return b; - } - }, - DOUBLE { - Object convert(int[] a) { - double[] b = new double[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = (double) a[i]; - } - return b; - } - }, - INTEGER { - Object convert(int[] a) { - Integer[] b = new Integer[a.length]; - - for (int i = 0; i < a.length; i++) { - b[i] = new Integer(a[i]); - } - return b; - } - }; - - abstract Object convert(int[] a); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 9; i++) { - name += " "; - } - return name; + private void scramble(char[] a, Random random) { + for (int i = 0; i < a.length * 7; i++) { + swap(a, random.nextInt(a.length), random.nextInt(a.length)); } } - private static enum FloatBuilder { - SIMPLE { - void build(float[] x, int a, int g, int z, int n, int p, Random random) { - int fromIndex = 0; - float negativeValue = -random.nextFloat(); - float positiveValue = random.nextFloat(); - - writeValue(x, negativeValue, fromIndex, n); - fromIndex += n; - - writeValue(x, -0.0f, fromIndex, g); - fromIndex += g; - - writeValue(x, 0.0f, fromIndex, z); - fromIndex += z; - - writeValue(x, positiveValue, fromIndex, p); - fromIndex += p; - - writeValue(x, Float.NaN, fromIndex, a); - } - }; - - abstract void build(float[] x, int a, int g, int z, int n, int p, Random random); - } - - private static enum DoubleBuilder { - SIMPLE { - void build(double[] x, int a, int g, int z, int n, int p, Random random) { - int fromIndex = 0; - double negativeValue = -random.nextFloat(); - double positiveValue = random.nextFloat(); - - writeValue(x, negativeValue, fromIndex, n); - fromIndex += n; - - writeValue(x, -0.0d, fromIndex, g); - fromIndex += g; - - writeValue(x, 0.0d, fromIndex, z); - fromIndex += z; - - writeValue(x, positiveValue, fromIndex, p); - fromIndex += p; - - writeValue(x, Double.NaN, fromIndex, a); - } - }; - - abstract void build(double[] x, int a, int g, int z, int n, int p, Random random); - } - - private static void writeValue(float[] a, float value, int fromIndex, int count) { - for (int i = fromIndex; i < fromIndex + count; i++) { - a[i] = value; + private void scramble(short[] a, Random random) { + for (int i = 0; i < a.length * 7; i++) { + swap(a, random.nextInt(a.length), random.nextInt(a.length)); } } - private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) { + private void scramble(float[] a, Random random) { + for (int i = 0; i < a.length * 7; i++) { + swap(a, random.nextInt(a.length), random.nextInt(a.length)); + } + } + + private void scramble(double[] a, Random random) { + for (int i = 0; i < a.length * 7; i++) { + swap(a, random.nextInt(a.length), random.nextInt(a.length)); + } + } + + private void swap(int[] a, int i, int j) { + int t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(long[] a, int i, int j) { + long t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(byte[] a, int i, int j) { + byte t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(char[] a, int i, int j) { + char t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(short[] a, int i, int j) { + short t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(float[] a, int i, int j) { + float t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void swap(double[] a, int i, int j) { + double t = a[i]; a[i] = a[j]; a[j] = t; + } + + private void checkWithCheckSum(Object test, Object gold) { + checkSorted(test); + checkCheckSum(test, gold); + } + + private void fail(String message) { + err.format("\n*** TEST FAILED ***\n\n%s\n\n", message); + throw new RuntimeException("Test failed"); + } + + private void checkNegativeZero(Object a) { + if (a instanceof float[]) { + checkNegativeZero((float[]) a); + } else if (a instanceof double[]) { + checkNegativeZero((double[]) a); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void checkNegativeZero(float[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (Float.floatToRawIntBits(a[i]) == 0 && Float.floatToRawIntBits(a[i + 1]) < 0) { + fail(a[i] + " before " + a[i + 1] + " at position " + i); + } + } + } + + private void checkNegativeZero(double[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (Double.doubleToRawLongBits(a[i]) == 0 && Double.doubleToRawLongBits(a[i + 1]) < 0) { + fail(a[i] + " before " + a[i + 1] + " at position " + i); + } + } + } + + private void compare(Object a, Object b, int numNaN, int numNeg, int numNegZero) { + if (a instanceof float[]) { + compare((float[]) a, (float[]) b, numNaN, numNeg, numNegZero); + } else if (a instanceof double[]) { + compare((double[]) a, (double[]) b, numNaN, numNeg, numNegZero); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) { for (int i = a.length - numNaN; i < a.length; i++) { if (a[i] == a[i]) { - failed("On position " + i + " must be NaN instead of " + a[i]); + fail("There must be NaN instead of " + a[i] + " at position " + i); } } final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f); for (int i = numNeg; i < numNeg + numNegZero; i++) { if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) { - failed("On position " + i + " must be -0.0 instead of " + a[i]); + fail("There must be -0.0 instead of " + a[i] + " at position " + i); } } + for (int i = 0; i < a.length - numNaN; i++) { if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); } } } - private static void writeValue(double[] a, double value, int fromIndex, int count) { - for (int i = fromIndex; i < fromIndex + count; i++) { - a[i] = value; - } - } - - private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) { + private void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) { for (int i = a.length - numNaN; i < a.length; i++) { if (a[i] == a[i]) { - failed("On position " + i + " must be NaN instead of " + a[i]); + fail("There must be NaN instead of " + a[i] + " at position " + i); } } final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d); for (int i = numNeg; i < numNeg + numNegZero; i++) { if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) { - failed("On position " + i + " must be -0.0 instead of " + a[i]); + fail("There must be -0.0 instead of " + a[i] + " at position " + i); } } + for (int i = 0; i < a.length - numNaN; i++) { if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); } } } + private void compare(Object a, Object b) { + if (a instanceof int[]) { + compare((int[]) a, (int[]) b); + } else if (a instanceof long[]) { + compare((long[]) a, (long[]) b); + } else if (a instanceof byte[]) { + compare((byte[]) a, (byte[]) b); + } else if (a instanceof char[]) { + compare((char[]) a, (char[]) b); + } else if (a instanceof short[]) { + compare((short[]) a, (short[]) b); + } else if (a instanceof float[]) { + compare((float[]) a, (float[]) b); + } else if (a instanceof double[]) { + compare((double[]) a, (double[]) b); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void compare(int[] a, int[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(long[] a, long[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(byte[] a, byte[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(char[] a, char[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(short[] a, short[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(float[] a, float[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private void compare(double[] a, double[] b) { + for (int i = 0; i < a.length; i++) { + if (a[i] != b[i]) { + fail("There must be " + b[i] + " instead of " + a[i] + " at position " + i); + } + } + } + + private String getType(int i) { + Object a = test[i]; + + if (a instanceof int[]) { + return "INT "; + } + if (a instanceof long[]) { + return "LONG "; + } + if (a instanceof byte[]) { + return "BYTE "; + } + if (a instanceof char[]) { + return "CHAR "; + } + if (a instanceof short[]) { + return "SHORT "; + } + if (a instanceof float[]) { + return "FLOAT "; + } + if (a instanceof double[]) { + return "DOUBLE"; + } + fail("Unknown type of array: " + a.getClass().getName()); + return null; + } + + private void checkSorted(Object a) { + if (a instanceof int[]) { + checkSorted((int[]) a); + } else if (a instanceof long[]) { + checkSorted((long[]) a); + } else if (a instanceof byte[]) { + checkSorted((byte[]) a); + } else if (a instanceof char[]) { + checkSorted((char[]) a); + } else if (a instanceof short[]) { + checkSorted((short[]) a); + } else if (a instanceof float[]) { + checkSorted((float[]) a); + } else if (a instanceof double[]) { + checkSorted((double[]) a); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void checkSorted(int[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(long[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(byte[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(char[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(short[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(float[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkSorted(double[] a) { + for (int i = 0; i < a.length - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + } + + private void checkCheckSum(Object test, Object gold) { + if (checkSumXor(test) != checkSumXor(gold)) { + fail("Original and sorted arrays are not identical [^]"); + } + if (checkSumPlus(test) != checkSumPlus(gold)) { + fail("Original and sorted arrays are not identical [+]"); + } + } + + private int checkSumXor(Object a) { + if (a instanceof int[]) { + return checkSumXor((int[]) a); + } + if (a instanceof long[]) { + return checkSumXor((long[]) a); + } + if (a instanceof byte[]) { + return checkSumXor((byte[]) a); + } + if (a instanceof char[]) { + return checkSumXor((char[]) a); + } + if (a instanceof short[]) { + return checkSumXor((short[]) a); + } + if (a instanceof float[]) { + return checkSumXor((float[]) a); + } + if (a instanceof double[]) { + return checkSumXor((double[]) a); + } + fail("Unknown type of array: " + a.getClass().getName()); + return -1; + } + + private int checkSumXor(int[] a) { + int checkSum = 0; + + for (int e : a) { + checkSum ^= e; + } + return checkSum; + } + + private int checkSumXor(long[] a) { + long checkSum = 0; + + for (long e : a) { + checkSum ^= e; + } + return (int) checkSum; + } + + private int checkSumXor(byte[] a) { + byte checkSum = 0; + + for (byte e : a) { + checkSum ^= e; + } + return (int) checkSum; + } + + private int checkSumXor(char[] a) { + char checkSum = 0; + + for (char e : a) { + checkSum ^= e; + } + return (int) checkSum; + } + + private int checkSumXor(short[] a) { + short checkSum = 0; + + for (short e : a) { + checkSum ^= e; + } + return (int) checkSum; + } + + private int checkSumXor(float[] a) { + int checkSum = 0; + + for (float e : a) { + checkSum ^= (int) e; + } + return checkSum; + } + + private int checkSumXor(double[] a) { + int checkSum = 0; + + for (double e : a) { + checkSum ^= (int) e; + } + return checkSum; + } + + private int checkSumPlus(Object a) { + if (a instanceof int[]) { + return checkSumPlus((int[]) a); + } + if (a instanceof long[]) { + return checkSumPlus((long[]) a); + } + if (a instanceof byte[]) { + return checkSumPlus((byte[]) a); + } + if (a instanceof char[]) { + return checkSumPlus((char[]) a); + } + if (a instanceof short[]) { + return checkSumPlus((short[]) a); + } + if (a instanceof float[]) { + return checkSumPlus((float[]) a); + } + if (a instanceof double[]) { + return checkSumPlus((double[]) a); + } + fail("Unknown type of array: " + a.getClass().getName()); + return -1; + } + + private int checkSumPlus(int[] a) { + int checkSum = 0; + + for (int e : a) { + checkSum += e; + } + return checkSum; + } + + private int checkSumPlus(long[] a) { + long checkSum = 0; + + for (long e : a) { + checkSum += e; + } + return (int) checkSum; + } + + private int checkSumPlus(byte[] a) { + byte checkSum = 0; + + for (byte e : a) { + checkSum += e; + } + return (int) checkSum; + } + + private int checkSumPlus(char[] a) { + char checkSum = 0; + + for (char e : a) { + checkSum += e; + } + return (int) checkSum; + } + + private int checkSumPlus(short[] a) { + short checkSum = 0; + + for (short e : a) { + checkSum += e; + } + return (int) checkSum; + } + + private int checkSumPlus(float[] a) { + int checkSum = 0; + + for (float e : a) { + checkSum += (int) e; + } + return checkSum; + } + + private int checkSumPlus(double[] a) { + int checkSum = 0; + + for (double e : a) { + checkSum += (int) e; + } + return checkSum; + } + + private void sortByInsertionSort(Object a) { + if (a instanceof int[]) { + sortByInsertionSort((int[]) a); + } else if (a instanceof long[]) { + sortByInsertionSort((long[]) a); + } else if (a instanceof byte[]) { + sortByInsertionSort((byte[]) a); + } else if (a instanceof char[]) { + sortByInsertionSort((char[]) a); + } else if (a instanceof short[]) { + sortByInsertionSort((short[]) a); + } else if (a instanceof float[]) { + sortByInsertionSort((float[]) a); + } else if (a instanceof double[]) { + sortByInsertionSort((double[]) a); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void sortByInsertionSort(int[] a) { + for (int j, i = 1; i < a.length; i++) { + int ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(long[] a) { + for (int j, i = 1; i < a.length; i++) { + long ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(byte[] a) { + for (int j, i = 1; i < a.length; i++) { + byte ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(char[] a) { + for (int j, i = 1; i < a.length; i++) { + char ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(short[] a) { + for (int j, i = 1; i < a.length; i++) { + short ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(float[] a) { + for (int j, i = 1; i < a.length; i++) { + float ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void sortByInsertionSort(double[] a) { + for (int j, i = 1; i < a.length; i++) { + double ai = a[i]; + + for (j = i - 1; j >= 0 && ai < a[j]; j--) { + a[j + 1] = a[j]; + } + a[j + 1] = ai; + } + } + + private void checkSubArray(Object a, int fromIndex, int toIndex) { + if (a instanceof int[]) { + checkSubArray((int[]) a, fromIndex, toIndex); + } else if (a instanceof long[]) { + checkSubArray((long[]) a, fromIndex, toIndex); + } else if (a instanceof byte[]) { + checkSubArray((byte[]) a, fromIndex, toIndex); + } else if (a instanceof char[]) { + checkSubArray((char[]) a, fromIndex, toIndex); + } else if (a instanceof short[]) { + checkSubArray((short[]) a, fromIndex, toIndex); + } else if (a instanceof float[]) { + checkSubArray((float[]) a, fromIndex, toIndex); + } else if (a instanceof double[]) { + checkSubArray((double[]) a, fromIndex, toIndex); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void checkSubArray(int[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != A380) { + fail("Range sort changes left element at position " + i + hex(a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != B747) { + fail("Range sort changes right element at position " + i + hex(a[i], B747)); + } + } + } + + private void checkSubArray(long[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (long) A380) { + fail("Range sort changes left element at position " + i + hex(a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (long) B747) { + fail("Range sort changes right element at position " + i + hex(a[i], B747)); + } + } + } + + private void checkSubArray(byte[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (byte) A380) { + fail("Range sort changes left element at position " + i + hex(a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (byte) B747) { + fail("Range sort changes right element at position " + i + hex(a[i], B747)); + } + } + } + + private void checkSubArray(char[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (char) A380) { + fail("Range sort changes left element at position " + i + hex(a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (char) B747) { + fail("Range sort changes right element at position " + i + hex(a[i], B747)); + } + } + } + + private void checkSubArray(short[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (short) A380) { + fail("Range sort changes left element at position " + i + hex(a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (short) B747) { + fail("Range sort changes right element at position " + i + hex(a[i], B747)); + } + } + } + + private void checkSubArray(float[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (float) A380) { + fail("Range sort changes left element at position " + i + hex((long) a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (float) B747) { + fail("Range sort changes right element at position " + i + hex((long) a[i], B747)); + } + } + } + + private void checkSubArray(double[] a, int fromIndex, int toIndex) { + for (int i = 0; i < fromIndex; i++) { + if (a[i] != (double) A380) { + fail("Range sort changes left element at position " + i + hex((long) a[i], A380)); + } + } + + for (int i = fromIndex; i < toIndex - 1; i++) { + if (a[i] > a[i + 1]) { + fail("Array is not sorted at " + i + "-th position: " + a[i] + " and " + a[i + 1]); + } + } + + for (int i = toIndex; i < a.length; i++) { + if (a[i] != (double) B747) { + fail("Range sort changes right element at position " + i + hex((long) a[i], B747)); + } + } + } + + private void checkRange(Object a, int m) { + if (a instanceof int[]) { + checkRange((int[]) a, m); + } else if (a instanceof long[]) { + checkRange((long[]) a, m); + } else if (a instanceof byte[]) { + checkRange((byte[]) a, m); + } else if (a instanceof char[]) { + checkRange((char[]) a, m); + } else if (a instanceof short[]) { + checkRange((short[]) a, m); + } else if (a instanceof float[]) { + checkRange((float[]) a, m); + } else if (a instanceof double[]) { + checkRange((double[]) a, m); + } else { + fail("Unknown type of array: " + a.getClass().getName()); + } + } + + private void checkRange(int[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(long[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(byte[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(char[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(short[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(float[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void checkRange(double[] a, int m) { + try { + sortingHelper.sort(a, m + 1, m); + fail(sortingHelper + " does not throw IllegalArgumentException " + + "as expected: fromIndex = " + (m + 1) + " toIndex = " + m); + } catch (IllegalArgumentException iae) { + try { + sortingHelper.sort(a, -m, a.length); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: fromIndex = " + (-m)); + } catch (ArrayIndexOutOfBoundsException aoe) { + try { + sortingHelper.sort(a, 0, a.length + m); + fail(sortingHelper + " does not throw ArrayIndexOutOfBoundsException " + + "as expected: toIndex = " + (a.length + m)); + } catch (ArrayIndexOutOfBoundsException expected) {} + } + } + } + + private void copy(Object dst, Object src) { + if (src instanceof float[]) { + copy((float[]) dst, (float[]) src); + } else if (src instanceof double[]) { + copy((double[]) dst, (double[]) src); + } else { + fail("Unknown type of array: " + src.getClass().getName()); + } + } + + private void copy(float[] dst, float[] src) { + System.arraycopy(src, 0, dst, 0, src.length); + } + + private void copy(double[] dst, double[] src) { + System.arraycopy(src, 0, dst, 0, src.length); + } + + private void printTestName(String test, TestRandom random, int length) { + printTestName(test, random, length, ""); + } + + private void createData(int length) { + gold = new Object[] { + new int[length], new long[length], + new byte[length], new char[length], new short[length], + new float[length], new double[length] + }; + + test = new Object[] { + new int[length], new long[length], + new byte[length], new char[length], new short[length], + new float[length], new double[length] + }; + } + + private void convertData(int length) { + for (int i = 1; i < gold.length; i++) { + TypeConverter converter = TypeConverter.values()[i - 1]; + converter.convert((int[])gold[0], gold[i]); + } + + for (int i = 0; i < gold.length; i++) { + System.arraycopy(gold[i], 0, test[i], 0, length); + } + } + + private String hex(long a, int b) { + return ": " + Long.toHexString(a) + ", must be " + Integer.toHexString(b); + } + + private void printTestName(String test, TestRandom random, int length, String message) { + out.println( "[" + sortingHelper + "] '" + test + + "' length = " + length + ", random = " + random + message); + } + + private static enum TypeConverter { + LONG { + void convert(int[] src, Object dst) { + long[] b = (long[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (long) src[i]; + } + } + }, + + BYTE { + void convert(int[] src, Object dst) { + byte[] b = (byte[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (byte) src[i]; + } + } + }, + + CHAR { + void convert(int[] src, Object dst) { + char[] b = (char[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (char) src[i]; + } + } + }, + + SHORT { + void convert(int[] src, Object dst) { + short[] b = (short[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (short) src[i]; + } + } + }, + + FLOAT { + void convert(int[] src, Object dst) { + float[] b = (float[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (float) src[i]; + } + } + }, + + DOUBLE { + void convert(int[] src, Object dst) { + double[] b = (double[]) dst; + + for (int i = 0; i < src.length; i++) { + b[i] = (double) src[i]; + } + } + }; + + abstract void convert(int[] src, Object dst); + } + private static enum SortedBuilder { - REPEATED { + STEPS { void build(int[] a, int m) { - int period = a.length / m; - int i = 0; - int k = 0; - - while (true) { - for (int t = 1; t <= period; t++) { - if (i >= a.length) { - return; - } - a[i++] = k; - } - if (i >= a.length) { - return; - } - k++; + for (int i = 0; i < m; i++) { + a[i] = 0; } - } - }, - ORGAN_PIPES { - void build(int[] a, int m) { - int i = 0; - int k = m; - while (true) { - for (int t = 1; t <= m; t++) { - if (i >= a.length) { - return; - } - a[i++] = k; - } + for (int i = m; i < a.length; i++) { + a[i] = 1; } } }; abstract void build(int[] a, int m); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } - } - - private static enum MergeBuilder { - ASCENDING { - void build(int[] a, int m) { - int period = a.length / m; - int v = 1, i = 0; - - for (int k = 0; k < m; k++) { - v = 1; - for (int p = 0; p < period; p++) { - a[i++] = v++; - } - } - for (int j = i; j < a.length - 1; j++) { - a[j] = v++; - } - a[a.length - 1] = 0; - } - }, - DESCENDING { - void build(int[] a, int m) { - int period = a.length / m; - int v = -1, i = 0; - - for (int k = 0; k < m; k++) { - v = -1; - for (int p = 0; p < period; p++) { - a[i++] = v--; - } - } - for (int j = i; j < a.length - 1; j++) { - a[j] = v--; - } - a[a.length - 1] = 0; - } - }; - - abstract void build(int[] a, int m); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } } private static enum UnsortedBuilder { @@ -894,6 +1649,7 @@ public class Sorting { } } }, + ASCENDING { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -901,6 +1657,7 @@ public class Sorting { } } }, + DESCENDING { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -908,13 +1665,15 @@ public class Sorting { } } }, - ALL_EQUAL { + + EQUAL { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { a[i] = m; } } }, + SAW { void build(int[] a, int m, Random random) { int incCount = 1; @@ -941,6 +1700,7 @@ public class Sorting { } } }, + REPEATED { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -948,6 +1708,7 @@ public class Sorting { } } }, + DUPLICATED { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -955,6 +1716,7 @@ public class Sorting { } } }, + ORGAN_PIPES { void build(int[] a, int m, Random random) { int middle = a.length / (m + 1); @@ -962,11 +1724,13 @@ public class Sorting { for (int i = 0; i < middle; i++) { a[i] = i; } + for (int i = middle; i < a.length; i++) { a[i] = a.length - i - 1; } } }, + STAGGER { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -974,6 +1738,7 @@ public class Sorting { } } }, + PLATEAU { void build(int[] a, int m, Random random) { for (int i = 0; i < a.length; i++) { @@ -981,1064 +1746,271 @@ public class Sorting { } } }, + SHUFFLE { void build(int[] a, int m, Random random) { int x = 0, y = 0; + for (int i = 0; i < a.length; i++) { a[i] = random.nextBoolean() ? (x += 2) : (y += 2); } } + }, + + LATCH { + void build(int[] a, int m, Random random) { + int max = a.length / m; + max = max < 2 ? 2 : max; + + for (int i = 0; i < a.length; i++) { + a[i] = i % max; + } + } }; abstract void build(int[] a, int m, Random random); - - @Override public String toString() { - String name = name(); - - for (int i = name.length(); i < 12; i++) { - name += " "; - } - return name; - } } - private static void checkWithCheckSum(Object test, Object golden) { - checkSorted(test); - checkCheckSum(test, golden); - } - - private static void failed(String message) { - err.format("\n*** TEST FAILED - %s.\n\n%s.\n\n", ourDescription, message); - throw new RuntimeException("Test failed - see log file for details"); - } - - private static void failedSort(int index, String value1, String value2) { - failed("Array is not sorted at " + index + "-th position: " + - value1 + " and " + value2); - } - - private static void failedCompare(int index, String value1, String value2) { - failed("On position " + index + " must be " + value2 + " instead of " + value1); - } - - private static void compare(Object test, Object golden) { - if (test instanceof int[]) { - compare((int[]) test, (int[]) golden); - } else if (test instanceof long[]) { - compare((long[]) test, (long[]) golden); - } else if (test instanceof short[]) { - compare((short[]) test, (short[]) golden); - } else if (test instanceof byte[]) { - compare((byte[]) test, (byte[]) golden); - } else if (test instanceof char[]) { - compare((char[]) test, (char[]) golden); - } else if (test instanceof float[]) { - compare((float[]) test, (float[]) golden); - } else if (test instanceof double[]) { - compare((double[]) test, (double[]) golden); - } else if (test instanceof Integer[]) { - compare((Integer[]) test, (Integer[]) golden); - } else { - failed("Unknow type of array: " + test + " of class " + - test.getClass().getName()); - } - } - - private static void compare(int[] a, int[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(long[] a, long[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(short[] a, short[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(byte[] a, byte[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(char[] a, char[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(float[] a, float[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(double[] a, double[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i] != b[i]) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void compare(Integer[] a, Integer[] b) { - for (int i = 0; i < a.length; i++) { - if (a[i].compareTo(b[i]) != 0) { - failedCompare(i, "" + a[i], "" + b[i]); - } - } - } - - private static void checkSorted(Object object) { - if (object instanceof int[]) { - checkSorted((int[]) object); - } else if (object instanceof long[]) { - checkSorted((long[]) object); - } else if (object instanceof short[]) { - checkSorted((short[]) object); - } else if (object instanceof byte[]) { - checkSorted((byte[]) object); - } else if (object instanceof char[]) { - checkSorted((char[]) object); - } else if (object instanceof float[]) { - checkSorted((float[]) object); - } else if (object instanceof double[]) { - checkSorted((double[]) object); - } else if (object instanceof Integer[]) { - checkSorted((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSorted(int[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(long[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(short[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(byte[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(char[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(float[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(double[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkSorted(Integer[] a) { - for (int i = 0; i < a.length - 1; i++) { - if (a[i].intValue() > a[i + 1].intValue()) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - } - - private static void checkCheckSum(Object test, Object golden) { - if (checkSumXor(test) != checkSumXor(golden)) { - failed("Original and sorted arrays are not identical [xor]"); - } - if (checkSumPlus(test) != checkSumPlus(golden)) { - failed("Original and sorted arrays are not identical [plus]"); - } - } - - private static int checkSumXor(Object object) { - if (object instanceof int[]) { - return checkSumXor((int[]) object); - } else if (object instanceof long[]) { - return checkSumXor((long[]) object); - } else if (object instanceof short[]) { - return checkSumXor((short[]) object); - } else if (object instanceof byte[]) { - return checkSumXor((byte[]) object); - } else if (object instanceof char[]) { - return checkSumXor((char[]) object); - } else if (object instanceof float[]) { - return checkSumXor((float[]) object); - } else if (object instanceof double[]) { - return checkSumXor((double[]) object); - } else if (object instanceof Integer[]) { - return checkSumXor((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - return -1; - } - } - - private static int checkSumXor(Integer[] a) { - int checkSum = 0; - - for (Integer e : a) { - checkSum ^= e.intValue(); - } - return checkSum; - } - - private static int checkSumXor(int[] a) { - int checkSum = 0; - - for (int e : a) { - checkSum ^= e; - } - return checkSum; - } - - private static int checkSumXor(long[] a) { - long checkSum = 0; - - for (long e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(short[] a) { - short checkSum = 0; - - for (short e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(byte[] a) { - byte checkSum = 0; - - for (byte e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(char[] a) { - char checkSum = 0; - - for (char e : a) { - checkSum ^= e; - } - return (int) checkSum; - } - - private static int checkSumXor(float[] a) { - int checkSum = 0; - - for (float e : a) { - checkSum ^= (int) e; - } - return checkSum; - } - - private static int checkSumXor(double[] a) { - int checkSum = 0; - - for (double e : a) { - checkSum ^= (int) e; - } - return checkSum; - } - - private static int checkSumPlus(Object object) { - if (object instanceof int[]) { - return checkSumPlus((int[]) object); - } else if (object instanceof long[]) { - return checkSumPlus((long[]) object); - } else if (object instanceof short[]) { - return checkSumPlus((short[]) object); - } else if (object instanceof byte[]) { - return checkSumPlus((byte[]) object); - } else if (object instanceof char[]) { - return checkSumPlus((char[]) object); - } else if (object instanceof float[]) { - return checkSumPlus((float[]) object); - } else if (object instanceof double[]) { - return checkSumPlus((double[]) object); - } else if (object instanceof Integer[]) { - return checkSumPlus((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - return -1; - } - } - - private static int checkSumPlus(int[] a) { - int checkSum = 0; - - for (int e : a) { - checkSum += e; - } - return checkSum; - } - - private static int checkSumPlus(long[] a) { - long checkSum = 0; - - for (long e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(short[] a) { - short checkSum = 0; - - for (short e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(byte[] a) { - byte checkSum = 0; - - for (byte e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(char[] a) { - char checkSum = 0; - - for (char e : a) { - checkSum += e; - } - return (int) checkSum; - } - - private static int checkSumPlus(float[] a) { - int checkSum = 0; - - for (float e : a) { - checkSum += (int) e; - } - return checkSum; - } - - private static int checkSumPlus(double[] a) { - int checkSum = 0; - - for (double e : a) { - checkSum += (int) e; - } - return checkSum; - } - - private static int checkSumPlus(Integer[] a) { - int checkSum = 0; - - for (Integer e : a) { - checkSum += e.intValue(); - } - return checkSum; - } - - private static void sortByInsertionSort(Object object) { - if (object instanceof int[]) { - sortByInsertionSort((int[]) object); - } else if (object instanceof long[]) { - sortByInsertionSort((long[]) object); - } else if (object instanceof short[]) { - sortByInsertionSort((short[]) object); - } else if (object instanceof byte[]) { - sortByInsertionSort((byte[]) object); - } else if (object instanceof char[]) { - sortByInsertionSort((char[]) object); - } else if (object instanceof float[]) { - sortByInsertionSort((float[]) object); - } else if (object instanceof double[]) { - sortByInsertionSort((double[]) object); - } else if (object instanceof Integer[]) { - sortByInsertionSort((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void sortByInsertionSort(int[] a) { - for (int j, i = 1; i < a.length; i++) { - int ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(long[] a) { - for (int j, i = 1; i < a.length; i++) { - long ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(short[] a) { - for (int j, i = 1; i < a.length; i++) { - short ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(byte[] a) { - for (int j, i = 1; i < a.length; i++) { - byte ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(char[] a) { - for (int j, i = 1; i < a.length; i++) { - char ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(float[] a) { - for (int j, i = 1; i < a.length; i++) { - float ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(double[] a) { - for (int j, i = 1; i < a.length; i++) { - double ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sortByInsertionSort(Integer[] a) { - for (int j, i = 1; i < a.length; i++) { - Integer ai = a[i]; - for (j = i - 1; j >= 0 && ai < a[j]; j--) { - a[j + 1] = a[j]; - } - a[j + 1] = ai; - } - } - - private static void sort(Object object) { - if (object instanceof int[]) { - Arrays.sort((int[]) object); - } else if (object instanceof long[]) { - Arrays.sort((long[]) object); - } else if (object instanceof short[]) { - Arrays.sort((short[]) object); - } else if (object instanceof byte[]) { - Arrays.sort((byte[]) object); - } else if (object instanceof char[]) { - Arrays.sort((char[]) object); - } else if (object instanceof float[]) { - Arrays.sort((float[]) object); - } else if (object instanceof double[]) { - Arrays.sort((double[]) object); - } else if (object instanceof Integer[]) { - Arrays.sort((Integer[]) object); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void sortSubArray(Object object, int fromIndex, int toIndex) { - if (object instanceof int[]) { - Arrays.sort((int[]) object, fromIndex, toIndex); - } else if (object instanceof long[]) { - Arrays.sort((long[]) object, fromIndex, toIndex); - } else if (object instanceof short[]) { - Arrays.sort((short[]) object, fromIndex, toIndex); - } else if (object instanceof byte[]) { - Arrays.sort((byte[]) object, fromIndex, toIndex); - } else if (object instanceof char[]) { - Arrays.sort((char[]) object, fromIndex, toIndex); - } else if (object instanceof float[]) { - Arrays.sort((float[]) object, fromIndex, toIndex); - } else if (object instanceof double[]) { - Arrays.sort((double[]) object, fromIndex, toIndex); - } else if (object instanceof Integer[]) { - Arrays.sort((Integer[]) object, fromIndex, toIndex); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) { - if (object instanceof int[]) { - checkSubArray((int[]) object, fromIndex, toIndex, m); - } else if (object instanceof long[]) { - checkSubArray((long[]) object, fromIndex, toIndex, m); - } else if (object instanceof short[]) { - checkSubArray((short[]) object, fromIndex, toIndex, m); - } else if (object instanceof byte[]) { - checkSubArray((byte[]) object, fromIndex, toIndex, m); - } else if (object instanceof char[]) { - checkSubArray((char[]) object, fromIndex, toIndex, m); - } else if (object instanceof float[]) { - checkSubArray((float[]) object, fromIndex, toIndex, m); - } else if (object instanceof double[]) { - checkSubArray((double[]) object, fromIndex, toIndex, m); - } else if (object instanceof Integer[]) { - checkSubArray((Integer[]) object, fromIndex, toIndex, m); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkSubArray(Integer[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i].intValue() != 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i].intValue() > a[i + 1].intValue()) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i].intValue() != 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (byte) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (byte) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (long) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (long) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (char) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (char) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (short) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (short) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (float) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (float) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) { - for (int i = 0; i < fromIndex; i++) { - if (a[i] != (double) 0xDEDA) { - failed("Range sort changes left element on position " + i + - ": " + a[i] + ", must be " + 0xDEDA); - } - } - - for (int i = fromIndex; i < toIndex - 1; i++) { - if (a[i] > a[i + 1]) { - failedSort(i, "" + a[i], "" + a[i + 1]); - } - } - - for (int i = toIndex; i < a.length; i++) { - if (a[i] != (double) 0xBABA) { - failed("Range sort changes right element on position " + i + - ": " + a[i] + ", must be " + 0xBABA); - } - } - } - - private static void checkRange(Object object, int m) { - if (object instanceof int[]) { - checkRange((int[]) object, m); - } else if (object instanceof long[]) { - checkRange((long[]) object, m); - } else if (object instanceof short[]) { - checkRange((short[]) object, m); - } else if (object instanceof byte[]) { - checkRange((byte[]) object, m); - } else if (object instanceof char[]) { - checkRange((char[]) object, m); - } else if (object instanceof float[]) { - checkRange((float[]) object, m); - } else if (object instanceof double[]) { - checkRange((double[]) object, m); - } else if (object instanceof Integer[]) { - checkRange((Integer[]) object, m); - } else { - failed("Unknow type of array: " + object + " of class " + - object.getClass().getName()); - } - } - - private static void checkRange(Integer[] a, int m) { - try { - Arrays.sort(a, m + 1, m); - - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); + private static enum MergingBuilder { + ASCENDING { + void build(int[] a, int m) { + int period = a.length / m; + int v = 1, i = 0; + + for (int k = 0; k < m; k++) { + v = 1; + + for (int p = 0; p < period; p++) { + a[i++] = v++; + } } - catch (ArrayIndexOutOfBoundsException aie) { - return; + + for (int j = i; j < a.length - 1; j++) { + a[j] = v++; + } + + a[a.length - 1] = 0; + } + }, + + DESCENDING { + void build(int[] a, int m) { + int period = a.length / m; + int v = -1, i = 0; + + for (int k = 0; k < m; k++) { + v = -1; + + for (int p = 0; p < period; p++) { + a[i++] = v--; + } + } + + for (int j = i; j < a.length - 1; j++) { + a[j] = v--; + } + + a[a.length - 1] = 0; + } + }, + + POINT { + void build(int[] a, int m) { + for (int i = 0; i < a.length; i++) { + a[i] = 0; + } + a[a.length / 2] = m; + } + }, + + LINE { + void build(int[] a, int m) { + for (int i = 0; i < a.length; i++) { + a[i] = i; + } + reverse(a, 0, a.length - 1); + } + }, + + PEARL { + void build(int[] a, int m) { + for (int i = 0; i < a.length; i++) { + a[i] = i; + } + reverse(a, 0, 2); + } + }, + + RING { + void build(int[] a, int m) { + int k1 = a.length / 3; + int k2 = a.length / 3 * 2; + int level = a.length / 3; + + for (int i = 0, k = level; i < k1; i++) { + a[i] = k--; + } + + for (int i = k1; i < k2; i++) { + a[i] = 0; + } + + for (int i = k2, k = level; i < a.length; i++) { + a[i] = k--; } } - } - } + }; - private static void checkRange(int[] a, int m) { - try { - Arrays.sort(a, m + 1, m); + abstract void build(int[] a, int m); - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } + private static void reverse(int[] a, int lo, int hi) { + for (--hi; lo < hi; ) { + int tmp = a[lo]; + a[lo++] = a[hi]; + a[hi--] = tmp; } } } - private static void checkRange(long[] a, int m) { - try { - Arrays.sort(a, m + 1, m); + private static enum NegativeZeroBuilder { + FLOAT { + void build(Object o, Random random) { + float[] a = (float[]) o; - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); + for (int i = 0; i < a.length; i++) { + a[i] = random.nextBoolean() ? -0.0f : 0.0f; + } } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); + }, - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; + DOUBLE { + void build(Object o, Random random) { + double[] a = (double[]) o; + + for (int i = 0; i < a.length; i++) { + a[i] = random.nextBoolean() ? -0.0d : 0.0d; } } + }; + + abstract void build(Object o, Random random); + } + + private static enum FloatingPointBuilder { + FLOAT { + void build(Object o, int a, int g, int z, int n, int p, Random random) { + float negativeValue = -random.nextFloat(); + float positiveValue = random.nextFloat(); + float[] x = (float[]) o; + int fromIndex = 0; + + writeValue(x, negativeValue, fromIndex, n); + fromIndex += n; + + writeValue(x, -0.0f, fromIndex, g); + fromIndex += g; + + writeValue(x, 0.0f, fromIndex, z); + fromIndex += z; + + writeValue(x, positiveValue, fromIndex, p); + fromIndex += p; + + writeValue(x, Float.NaN, fromIndex, a); + } + }, + + DOUBLE { + void build(Object o, int a, int g, int z, int n, int p, Random random) { + double negativeValue = -random.nextFloat(); + double positiveValue = random.nextFloat(); + double[] x = (double[]) o; + int fromIndex = 0; + + writeValue(x, negativeValue, fromIndex, n); + fromIndex += n; + + writeValue(x, -0.0d, fromIndex, g); + fromIndex += g; + + writeValue(x, 0.0d, fromIndex, z); + fromIndex += z; + + writeValue(x, positiveValue, fromIndex, p); + fromIndex += p; + + writeValue(x, Double.NaN, fromIndex, a); + } + }; + + abstract void build(Object o, int a, int g, int z, int n, int p, Random random); + + private static void writeValue(float[] a, float value, int fromIndex, int count) { + for (int i = fromIndex; i < fromIndex + count; i++) { + a[i] = value; + } + } + + private static void writeValue(double[] a, double value, int fromIndex, int count) { + for (int i = fromIndex; i < fromIndex + count; i++) { + a[i] = value; + } } } - private static void checkRange(byte[] a, int m) { - try { - Arrays.sort(a, m + 1, m); + private static Comparator pairComparator = new Comparator() { - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); + @Override + public int compare(Pair p1, Pair p2) { + return p1.compareTo(p2); } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); + }; - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); + private static class Pair implements Comparable { - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } + private Pair(int key, int value) { + this.key = key; + this.value = value; } + + int getKey() { + return key; + } + + int getValue() { + return value; + } + + @Override + public int compareTo(Pair pair) { + return Integer.compare(key, pair.key); + } + + @Override + public String toString() { + return "(" + key + ", " + value + ")"; + } + + private int key; + private int value; } - private static void checkRange(short[] a, int m) { - try { - Arrays.sort(a, m + 1, m); + private static class TestRandom extends Random { - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); + private static final TestRandom BABA = new TestRandom(0xBABA); + private static final TestRandom DEDA = new TestRandom(0xDEDA); + private static final TestRandom C0FFEE = new TestRandom(0xC0FFEE); - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(char[] a, int m) { - try { - Arrays.sort(a, m + 1, m); - - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(float[] a, int m) { - try { - Arrays.sort(a, m + 1, m); - - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void checkRange(double[] a, int m) { - try { - Arrays.sort(a, m + 1, m); - - failed("Sort does not throw IllegalArgumentException " + - " as expected: fromIndex = " + (m + 1) + - " toIndex = " + m); - } - catch (IllegalArgumentException iae) { - try { - Arrays.sort(a, -m, a.length); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: fromIndex = " + (-m)); - } - catch (ArrayIndexOutOfBoundsException aoe) { - try { - Arrays.sort(a, 0, a.length + m); - - failed("Sort does not throw ArrayIndexOutOfBoundsException " + - " as expected: toIndex = " + (a.length + m)); - } - catch (ArrayIndexOutOfBoundsException aie) { - return; - } - } - } - } - - private static void outArray(Object[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(int[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(float[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static void outArray(double[] a) { - for (int i = 0; i < a.length; i++) { - out.print(a[i] + " "); - } - out.println(); - } - - private static class MyRandom extends Random { - MyRandom(long seed) { + private TestRandom(long seed) { super(seed); - mySeed = seed; + this.seed = Long.toHexString(seed).toUpperCase(); } - long getSeed() { - return mySeed; + @Override + public String toString() { + return seed; } - private long mySeed; + private String seed; } - - private static String ourDescription; } diff --git a/test/jdk/java/util/Arrays/java.base/java/util/SortingHelper.java b/test/jdk/java/util/Arrays/java.base/java/util/SortingHelper.java new file mode 100644 index 0000000000..3357aa959e --- /dev/null +++ b/test/jdk/java/util/Arrays/java.base/java/util/SortingHelper.java @@ -0,0 +1,352 @@ +/* + * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.util; + +/** + * This class provides access to package-private + * methods of DualPivotQuicksort class. + * + * @author Vladimir Yaroslavskiy + * + * @version 2019.09.19 + * + * @since 14 + */ +public enum SortingHelper { + + DUAL_PIVOT_QUICKSORT("Dual-Pivot Quicksort") { + + @Override + public void sort(Object a) { + if (a instanceof int[]) { + DualPivotQuicksort.sort((int[]) a, SEQUENTIAL, 0, ((int[]) a).length); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort((long[]) a, SEQUENTIAL, 0, ((long[]) a).length); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, SEQUENTIAL, 0, ((char[]) a).length); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, SEQUENTIAL, 0, ((short[]) a).length); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort((float[]) a, SEQUENTIAL, 0, ((float[]) a).length); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort((double[]) a, SEQUENTIAL, 0, ((double[]) a).length); + } else { + fail(a); + } + } + + @Override + public void sort(Object a, int low, int high) { + if (a instanceof int[]) { + DualPivotQuicksort.sort((int[]) a, SEQUENTIAL, low, high); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort((long[]) a, SEQUENTIAL, low, high); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, low, high); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, SEQUENTIAL, low, high); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, SEQUENTIAL, low, high); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort((float[]) a, SEQUENTIAL, low, high); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort((double[]) a, SEQUENTIAL, low, high); + } else { + fail(a); + } + } + + @Override + public void sort(Object[] a) { + fail(a); + } + + @Override + public void sort(Object[] a, Comparator comparator) { + fail(a); + } + }, + + PARALLEL_SORT("Parallel sort") { + + @Override + public void sort(Object a) { + if (a instanceof int[]) { + DualPivotQuicksort.sort((int[]) a, PARALLEL, 0, ((int[]) a).length); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort((long[]) a, PARALLEL, 0, ((long[]) a).length); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, PARALLEL, 0, ((char[]) a).length); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, PARALLEL, 0, ((short[]) a).length); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort((float[]) a, PARALLEL, 0, ((float[]) a).length); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort((double[]) a, PARALLEL, 0, ((double[]) a).length); + } else { + fail(a); + } + } + + @Override + public void sort(Object a, int low, int high) { + if (a instanceof int[]) { + DualPivotQuicksort.sort((int[]) a, PARALLEL, low, high); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort((long[]) a, PARALLEL, low, high); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, low, high); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, PARALLEL, low, high); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, PARALLEL, low, high); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort((float[]) a, PARALLEL, low, high); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort((double[]) a, PARALLEL, low, high); + } else { + fail(a); + } + } + + @Override + public void sort(Object[] a) { + fail(a); + } + + @Override + public void sort(Object[] a, Comparator comparator) { + fail(a); + } + }, + + HEAP_SORT("Heap sort") { + + @Override + public void sort(Object a) { + if (a instanceof int[]) { + DualPivotQuicksort.sort(null, (int[]) a, BIG_DEPTH, 0, ((int[]) a).length); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort(null, (long[]) a, BIG_DEPTH, 0, ((long[]) a).length); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, 0, ((byte[]) a).length); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, BIG_DEPTH, 0, ((char[]) a).length); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, BIG_DEPTH, 0, ((short[]) a).length); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort(null, (float[]) a, BIG_DEPTH, 0, ((float[]) a).length); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort(null, (double[]) a, BIG_DEPTH, 0, ((double[]) a).length); + } else { + fail(a); + } + } + + @Override + public void sort(Object a, int low, int high) { + if (a instanceof int[]) { + DualPivotQuicksort.sort(null, (int[]) a, BIG_DEPTH, low, high); + } else if (a instanceof long[]) { + DualPivotQuicksort.sort(null, (long[]) a, BIG_DEPTH, low, high); + } else if (a instanceof byte[]) { + DualPivotQuicksort.sort((byte[]) a, low, high); + } else if (a instanceof char[]) { + DualPivotQuicksort.sort((char[]) a, BIG_DEPTH, low, high); + } else if (a instanceof short[]) { + DualPivotQuicksort.sort((short[]) a, BIG_DEPTH, low, high); + } else if (a instanceof float[]) { + DualPivotQuicksort.sort(null, (float[]) a, BIG_DEPTH, low, high); + } else if (a instanceof double[]) { + DualPivotQuicksort.sort(null, (double[]) a, BIG_DEPTH, low, high); + } else { + fail(a); + } + } + + @Override + public void sort(Object[] a) { + fail(a); + } + + @Override + public void sort(Object[] a, Comparator comparator) { + fail(a); + } + }, + + ARRAYS_SORT("Arrays.sort") { + + @Override + public void sort(Object a) { + if (a instanceof int[]) { + Arrays.sort((int[]) a); + } else if (a instanceof long[]) { + Arrays.sort((long[]) a); + } else if (a instanceof byte[]) { + Arrays.sort((byte[]) a); + } else if (a instanceof char[]) { + Arrays.sort((char[]) a); + } else if (a instanceof short[]) { + Arrays.sort((short[]) a); + } else if (a instanceof float[]) { + Arrays.sort((float[]) a); + } else if (a instanceof double[]) { + Arrays.sort((double[]) a); + } else { + fail(a); + } + } + + @Override + public void sort(Object a, int low, int high) { + if (a instanceof int[]) { + Arrays.sort((int[]) a, low, high); + } else if (a instanceof long[]) { + Arrays.sort((long[]) a, low, high); + } else if (a instanceof byte[]) { + Arrays.sort((byte[]) a, low, high); + } else if (a instanceof char[]) { + Arrays.sort((char[]) a, low, high); + } else if (a instanceof short[]) { + Arrays.sort((short[]) a, low, high); + } else if (a instanceof float[]) { + Arrays.sort((float[]) a, low, high); + } else if (a instanceof double[]) { + Arrays.sort((double[]) a, low, high); + } else { + fail(a); + } + } + + @Override + public void sort(Object[] a) { + Arrays.sort(a); + } + + @Override + @SuppressWarnings("unchecked") + public void sort(Object[] a, Comparator comparator) { + Arrays.sort(a, comparator); + } + }, + + ARRAYS_PARALLEL_SORT("Arrays.parallelSort") { + + @Override + public void sort(Object a) { + if (a instanceof int[]) { + Arrays.parallelSort((int[]) a); + } else if (a instanceof long[]) { + Arrays.parallelSort((long[]) a); + } else if (a instanceof byte[]) { + Arrays.parallelSort((byte[]) a); + } else if (a instanceof char[]) { + Arrays.parallelSort((char[]) a); + } else if (a instanceof short[]) { + Arrays.parallelSort((short[]) a); + } else if (a instanceof float[]) { + Arrays.parallelSort((float[]) a); + } else if (a instanceof double[]) { + Arrays.parallelSort((double[]) a); + } else { + fail(a); + } + } + + @Override + public void sort(Object a, int low, int high) { + if (a instanceof int[]) { + Arrays.parallelSort((int[]) a, low, high); + } else if (a instanceof long[]) { + Arrays.parallelSort((long[]) a, low, high); + } else if (a instanceof byte[]) { + Arrays.parallelSort((byte[]) a, low, high); + } else if (a instanceof char[]) { + Arrays.parallelSort((char[]) a, low, high); + } else if (a instanceof short[]) { + Arrays.parallelSort((short[]) a, low, high); + } else if (a instanceof float[]) { + Arrays.parallelSort((float[]) a, low, high); + } else if (a instanceof double[]) { + Arrays.parallelSort((double[]) a, low, high); + } else { + fail(a); + } + } + + @Override + @SuppressWarnings("unchecked") + public void sort(Object[] a) { + Arrays.parallelSort((Comparable[]) a); + } + + @Override + @SuppressWarnings("unchecked") + public void sort(Object[] a, Comparator comparator) { + Arrays.parallelSort(a, comparator); + } + }; + + abstract public void sort(Object a); + + abstract public void sort(Object a, int low, int high); + + abstract public void sort(Object[] a); + + abstract public void sort(Object[] a, Comparator comparator); + + private SortingHelper(String name) { + this.name = name; + } + + @Override + public String toString() { + return name; + } + + private static void fail(Object a) { + throw new RuntimeException("Unexpected type of array: " + a.getClass().getName()); + } + + private String name; + + /** + * Parallelism level for sequential and parallel sorting. + */ + private static final int SEQUENTIAL = 0; + private static final int PARALLEL = 87; + + /** + * Heap sort will be invoked, if recursion depth is too big. + * Value is taken from DualPivotQuicksort.MAX_RECURSION_DEPTH. + */ + private static final int BIG_DEPTH = 64 * (3 << 1); +}