darling-system_cmds/gcore.tproj/corefile.c
2020-08-20 16:13:48 -04:00

853 lines
28 KiB
C

/*
* Copyright (c) 2016-2018 Apple Inc. All rights reserved.
*/
#include "options.h"
#include "corefile.h"
#include "sparse.h"
#include "utils.h"
#include "vm.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include <compression.h>
#include <sys/param.h>
#include <libgen.h>
#include <sys/stat.h>
native_mach_header_t *
make_corefile_mach_header(void *data)
{
native_mach_header_t *mh = data;
mh->magic = NATIVE_MH_MAGIC;
mh->filetype = MH_CORE;
#if defined(__LP64__)
const int is64 = 1;
#else
const int is64 = 0;
#endif
#if defined(__i386__) || defined(__x86_64__)
mh->cputype = is64 ? CPU_TYPE_X86_64 : CPU_TYPE_I386;
mh->cpusubtype = is64 ? CPU_SUBTYPE_X86_64_ALL : CPU_SUBTYPE_I386_ALL;
#elif defined(__arm__) || defined(__arm64__)
mh->cputype = is64 ? CPU_TYPE_ARM64 : CPU_TYPE_ARM;
mh->cpusubtype = is64 ? CPU_SUBTYPE_ARM64_ALL : CPU_SUBTYPE_ARM_ALL;
#else
#error undefined
#endif
return mh;
}
struct proto_coreinfo_command *
make_coreinfo_command(native_mach_header_t *mh, void *data, const uuid_t aoutid, uint64_t address, uint64_t dyninfo)
{
struct proto_coreinfo_command *cc = data;
cc->cmd = proto_LC_COREINFO;
cc->cmdsize = sizeof (*cc);
cc->version = 1;
cc->type = proto_CORETYPE_USER;
cc->pageshift = (uint16_t)pageshift_host;
cc->address = address;
uuid_copy(cc->uuid, aoutid);
cc->dyninfo = dyninfo;
mach_header_inc_ncmds(mh, 1);
mach_header_inc_sizeofcmds(mh, cc->cmdsize);
return cc;
}
native_segment_command_t *
make_native_segment_command(void *data, const struct vm_range *vr, const struct file_range *fr, vm_prot_t maxprot, vm_prot_t initprot)
{
native_segment_command_t *sc = data;
sc->cmd = NATIVE_LC_SEGMENT;
sc->cmdsize = sizeof (*sc);
assert(V_SIZE(vr));
sc->vmaddr = (unsigned long)V_ADDR(vr);
sc->vmsize = (unsigned long)V_SIZE(vr);
sc->fileoff = (unsigned long)F_OFF(fr);
sc->filesize = (unsigned long)F_SIZE(fr);
sc->maxprot = maxprot;
sc->initprot = initprot;
sc->nsects = 0;
sc->flags = 0;
return sc;
}
static struct proto_coredata_command *
make_coredata_command(void *data, const struct vm_range *vr, const struct file_range *fr, const vm_region_submap_info_data_64_t *info, unsigned comptype, unsigned purgable)
{
struct proto_coredata_command *cc = data;
cc->cmd = proto_LC_COREDATA;
cc->cmdsize = sizeof (*cc);
assert(V_SIZE(vr));
cc->vmaddr = V_ADDR(vr);
cc->vmsize = V_SIZE(vr);
cc->fileoff = F_OFF(fr);
cc->filesize = F_SIZE(fr);
cc->maxprot = info->max_protection;
cc->prot = info->protection;
cc->flags = COMP_MAKE_FLAGS(comptype);
cc->share_mode = info->share_mode;
assert(purgable <= UINT8_MAX);
cc->purgable = (uint8_t)purgable;
assert(info->user_tag <= UINT8_MAX);
cc->tag = (uint8_t)info->user_tag;
cc->extp = info->external_pager;
return cc;
}
static size_t
sizeof_segment_command(void) {
return opt->extended ?
sizeof (struct proto_coredata_command) : sizeof (native_segment_command_t);
}
static struct load_command *
make_segment_command(void *data, const struct vm_range *vr, const struct file_range *fr, const vm_region_submap_info_data_64_t *info, unsigned comptype, int purgable)
{
if (opt->extended)
make_coredata_command(data, vr, fr, info, comptype, purgable);
else
make_native_segment_command(data, vr, fr, info->max_protection, info->protection);
return data;
}
/*
* Increment the mach-o header data when we succeed
*/
static void
commit_load_command(struct write_segment_data *wsd, const struct load_command *lc)
{
wsd->wsd_lc = (caddr_t)lc + lc->cmdsize;
native_mach_header_t *mh = wsd->wsd_mh;
mach_header_inc_ncmds(mh, 1);
mach_header_inc_sizeofcmds(mh, lc->cmdsize);
}
#pragma mark -- Regions written as "file references" --
static size_t
cmdsize_fileref_command(const char *nm)
{
size_t cmdsize = sizeof (struct proto_fileref_command);
size_t len;
if (0 != (len = strlen(nm))) {
len++; // NUL-terminated for mmap sanity
cmdsize += roundup(len, sizeof (long));
}
return cmdsize;
}
static void
size_fileref_subregion(const struct subregion *s, struct size_core *sc)
{
assert(S_LIBENT(s));
size_t cmdsize = cmdsize_fileref_command(S_PATHNAME(s));
sc->headersize += cmdsize;
sc->count++;
sc->memsize += S_SIZE(s);
}
static void
size_fileref_region(const struct region *r, struct size_core *sc)
{
assert(0 == r->r_nsubregions);
assert(!r->r_inzfodregion);
size_t cmdsize = cmdsize_fileref_command(r->r_fileref->fr_pathname);
sc->headersize += cmdsize;
sc->count++;
sc->memsize += R_SIZE(r);
}
static struct proto_fileref_command *
make_fileref_command(void *data, const char *pathname, const uuid_t uuid,
const struct vm_range *vr, const struct file_range *fr,
const vm_region_submap_info_data_64_t *info, unsigned purgable)
{
struct proto_fileref_command *fc = data;
size_t len;
fc->cmd = proto_LC_FILEREF;
fc->cmdsize = sizeof (*fc);
if (0 != (len = strlen(pathname))) {
/*
* Strings live immediately after the
* command, and are included in the cmdsize
*/
fc->filename.offset = sizeof (*fc);
void *s = fc + 1;
strlcpy(s, pathname, ++len); // NUL-terminated for mmap sanity
fc->cmdsize += roundup(len, sizeof (long));
assert(cmdsize_fileref_command(pathname) == fc->cmdsize);
}
/*
* A file reference allows different kinds of identifiers for
* the reference to be reconstructed.
*/
assert(info->external_pager);
if (!uuid_is_null(uuid)) {
uuid_copy(fc->id, uuid);
fc->flags = FREF_MAKE_FLAGS(kFREF_ID_UUID);
} else {
struct stat st;
if (-1 != stat(pathname, &st) && 0 != st.st_mtimespec.tv_sec) {
/* "little-endian format timespec structure" */
struct timespec ts = st.st_mtimespec;
ts.tv_nsec = 0; // allow touch(1) to fix things
memset(fc->id, 0, sizeof(fc->id));
memcpy(fc->id, &ts, sizeof(ts));
fc->flags = FREF_MAKE_FLAGS(kFREF_ID_MTIMESPEC_LE);
} else
fc->flags = FREF_MAKE_FLAGS(kFREF_ID_NONE);
}
fc->vmaddr = V_ADDR(vr);
assert(V_SIZE(vr));
fc->vmsize = V_SIZE(vr);
assert(F_OFF(fr) >= 0);
fc->fileoff = F_OFF(fr);
fc->filesize = F_SIZE(fr);
assert(info->max_protection & VM_PROT_READ);
fc->maxprot = info->max_protection;
fc->prot = info->protection;
fc->share_mode = info->share_mode;
assert(purgable <= UINT8_MAX);
fc->purgable = (uint8_t)purgable;
assert(info->user_tag <= UINT8_MAX);
fc->tag = (uint8_t)info->user_tag;
fc->extp = info->external_pager;
return fc;
}
/*
* It's almost always more efficient to write out a reference to the
* data than write out the data itself.
*/
static walk_return_t
write_fileref_subregion(const struct region *r, const struct subregion *s, struct write_segment_data *wsd)
{
assert(S_LIBENT(s));
if (OPTIONS_DEBUG(opt, 1) && !issubregiontype(s, SEG_TEXT) && !issubregiontype(s, SEG_LINKEDIT))
printf("%s: unusual segment type %s from %s\n", __func__, S_MACHO_TYPE(s), S_FILENAME(s));
assert((r->r_info.max_protection & VM_PROT_READ) == VM_PROT_READ);
assert((r->r_info.protection & VM_PROT_WRITE) == 0);
const struct libent *le = S_LIBENT(s);
const struct file_range fr = {
.off = S_MACHO_FILEOFF(s),
.size = S_SIZE(s),
};
const struct proto_fileref_command *fc = make_fileref_command(wsd->wsd_lc, le->le_pathname, le->le_uuid, S_RANGE(s), &fr, &r->r_info, r->r_purgable);
commit_load_command(wsd, (const void *)fc);
if (OPTIONS_DEBUG(opt, 3)) {
hsize_str_t hstr;
printr(r, "ref '%s' %s (vm %llx-%llx, file offset %lld for %s)\n", S_FILENAME(s), S_MACHO_TYPE(s), (uint64_t)fc->vmaddr, (uint64_t)fc->vmaddr + fc->vmsize, (int64_t)fc->fileoff, str_hsize(hstr, fc->filesize));
}
return WALK_CONTINUE;
}
/*
* Note that we may be asked to write reference segments whose protections
* are rw- -- this -should- be ok as we don't convert the region to a file
* reference unless we know it hasn't been modified.
*/
static walk_return_t
write_fileref_region(const struct region *r, struct write_segment_data *wsd)
{
assert(0 == r->r_nsubregions);
assert(r->r_info.user_tag != VM_MEMORY_IOKIT);
assert((r->r_info.max_protection & VM_PROT_READ) == VM_PROT_READ);
assert(!r->r_inzfodregion);
const struct libent *le = r->r_fileref->fr_libent;
const char *pathname = r->r_fileref->fr_pathname;
const struct file_range fr = {
.off = r->r_fileref->fr_offset,
.size = R_SIZE(r),
};
const struct proto_fileref_command *fc = make_fileref_command(wsd->wsd_lc, pathname, le ? le->le_uuid : UUID_NULL, R_RANGE(r), &fr, &r->r_info, r->r_purgable);
commit_load_command(wsd, (const void *)fc);
if (OPTIONS_DEBUG(opt, 3)) {
hsize_str_t hstr;
printr(r, "ref '%s' %s (vm %llx-%llx, file offset %lld for %s)\n", pathname, "(type?)", (uint64_t)fc->vmaddr, (uint64_t)fc->vmaddr + fc->vmsize, (int64_t)fc->fileoff, str_hsize(hstr, fc->filesize));
}
return WALK_CONTINUE;
}
const struct regionop fileref_ops = {
print_memory_region,
write_fileref_region,
del_fileref_region,
};
#pragma mark -- ZFOD segments written only to the header --
static void
size_zfod_region(const struct region *r, struct size_core *sc)
{
assert(0 == r->r_nsubregions);
assert(r->r_inzfodregion);
sc->headersize += sizeof_segment_command();
sc->count++;
sc->memsize += R_SIZE(r);
}
static walk_return_t
write_zfod_region(const struct region *r, struct write_segment_data *wsd)
{
assert(r->r_info.user_tag != VM_MEMORY_IOKIT);
assert((r->r_info.max_protection & VM_PROT_READ) == VM_PROT_READ);
const struct file_range fr = {
.off = wsd->wsd_foffset,
.size = 0,
};
make_segment_command(wsd->wsd_lc, R_RANGE(r), &fr, &r->r_info, 0, VM_PURGABLE_EMPTY);
commit_load_command(wsd, wsd->wsd_lc);
return WALK_CONTINUE;
}
const struct regionop zfod_ops = {
print_memory_region,
write_zfod_region,
del_zfod_region,
};
#pragma mark -- Regions containing data --
static walk_return_t
pwrite_memory(struct write_segment_data *wsd, const void *addr, size_t size, const struct vm_range *vr)
{
assert(size);
ssize_t nwritten;
const int error = bounded_pwrite(wsd->wsd_fd, addr, size, wsd->wsd_foffset, &wsd->wsd_nocache, &nwritten);
if (error || OPTIONS_DEBUG(opt, 3)) {
hsize_str_t hsz;
printvr(vr, "writing %ld bytes at offset %lld -> ", size, wsd->wsd_foffset);
if (error)
printf("err #%d - %s ", error, strerror(error));
else {
printf("%s ", str_hsize(hsz, nwritten));
if (size != (size_t)nwritten)
printf("[%zd - incomplete write!] ", nwritten);
else if (size != V_SIZE(vr))
printf("(%s in memory) ",
str_hsize(hsz, V_SIZE(vr)));
}
printf("\n");
}
walk_return_t step = WALK_CONTINUE;
switch (error) {
case 0:
if (size != (size_t)nwritten)
step = WALK_ERROR;
else {
wsd->wsd_foffset += nwritten;
wsd->wsd_nwritten += nwritten;
}
break;
case EFAULT: // transient mapping failure?
break;
default: // EROFS, ENOSPC, EFBIG etc. */
step = WALK_ERROR;
break;
}
return step;
}
/*
* Write a contiguous range of memory into the core file.
* Apply compression, and chunk if necessary.
*/
static int
segment_compflags(compression_algorithm ca, unsigned *algnum)
{
switch (ca) {
case COMPRESSION_LZ4:
*algnum = kCOMP_LZ4;
break;
case COMPRESSION_ZLIB:
*algnum = kCOMP_ZLIB;
break;
case COMPRESSION_LZMA:
*algnum = kCOMP_LZMA;
break;
case COMPRESSION_LZFSE:
*algnum = kCOMP_LZFSE;
break;
default:
err(EX_SOFTWARE, "unsupported compression algorithm %x", ca);
}
return 0;
}
static bool
is_file_mapped_shared(const struct region *r)
{
if (r->r_info.external_pager)
switch (r->r_info.share_mode) {
case SM_TRUESHARED: // sm=shm
case SM_SHARED: // sm=ali
case SM_SHARED_ALIASED: // sm=s/a
return true;
default:
break;
}
return false;
}
static walk_return_t
map_memory_range(struct write_segment_data *wsd, const struct region *r, const struct vm_range *vr, struct vm_range *dp)
{
if (r->r_incommregion) {
/*
* Special case: for commpage access, copy from our own address space.
*/
V_SETADDR(dp, 0);
V_SETSIZE(dp, V_SIZE(vr));
kern_return_t kr = mach_vm_allocate(mach_task_self(), &dp->addr, dp->size, VM_FLAGS_ANYWHERE);
if (KERN_SUCCESS != kr || 0 == dp->addr) {
err_mach(kr, r, "mach_vm_allocate c %llx-%llx", V_ADDR(vr), V_ENDADDR(vr));
print_one_memory_region(r);
return WALK_ERROR;
}
if (OPTIONS_DEBUG(opt, 3))
printr(r, "copying from self %llx-%llx\n", V_ADDR(vr), V_ENDADDR(vr));
memcpy((void *)dp->addr, (const void *)V_ADDR(vr), V_SIZE(vr));
return WALK_CONTINUE;
}
if (!r->r_insharedregion && 0 == (r->r_info.protection & VM_PROT_READ)) {
assert(0 != (r->r_info.max_protection & VM_PROT_READ)); // simple_region_optimization()
/*
* Special case: region that doesn't currently have read permission.
* (e.g. --x/r-x permissions with tag 64 - JS JIT generated code
* from com.apple.WebKit.WebContent)
*/
const mach_vm_offset_t pagesize_host = 1u << pageshift_host;
if (OPTIONS_DEBUG(opt, 3))
printr(r, "unreadable (%s/%s), remap with read permission\n",
str_prot(r->r_info.protection), str_prot(r->r_info.max_protection));
V_SETADDR(dp, 0);
V_SETSIZE(dp, V_SIZE(vr));
vm_prot_t cprot, mprot;
kern_return_t kr = mach_vm_remap(mach_task_self(), &dp->addr, V_SIZE(dp), pagesize_host - 1, true, wsd->wsd_task, V_ADDR(vr), true, &cprot, &mprot, VM_INHERIT_NONE);
if (KERN_SUCCESS != kr) {
err_mach(kr, r, "mach_vm_remap() %llx-%llx", V_ADDR(vr), V_ENDADDR(vr));
return WALK_ERROR;
}
assert(r->r_info.protection == cprot && r->r_info.max_protection == mprot);
kr = mach_vm_protect(mach_task_self(), V_ADDR(dp), V_SIZE(dp), false, VM_PROT_READ);
if (KERN_SUCCESS != kr) {
err_mach(kr, r, "mach_vm_protect() %llx-%llx", V_ADDR(vr), V_ENDADDR(vr));
mach_vm_deallocate(mach_task_self(), V_ADDR(dp), V_SIZE(dp));
return WALK_ERROR;
}
return WALK_CONTINUE;
}
/*
* Most segments with data are read here
*/
vm_offset_t data32 = 0;
mach_msg_type_number_t data32_count;
kern_return_t kr = mach_vm_read(wsd->wsd_task, V_ADDR(vr), V_SIZE(vr), &data32, &data32_count);
switch (kr) {
case KERN_SUCCESS:
V_SETADDR(dp, data32);
V_SETSIZE(dp, data32_count);
break;
case KERN_INVALID_ADDRESS:
if (!r->r_insharedregion &&
(VM_MEMORY_SKYWALK == r->r_info.user_tag || is_file_mapped_shared(r))) {
if (OPTIONS_DEBUG(opt, 1)) {
/* not necessarily an error: mitigation below */
tag_str_t tstr;
printr(r, "mach_vm_read() failed (%s) -- substituting zeroed region\n", str_tagr(tstr, r));
if (OPTIONS_DEBUG(opt, 2))
print_one_memory_region(r);
}
V_SETSIZE(dp, V_SIZE(vr));
kr = mach_vm_allocate(mach_task_self(), &dp->addr, V_SIZE(dp), VM_FLAGS_ANYWHERE);
if (KERN_SUCCESS != kr || 0 == V_ADDR(dp))
err_mach(kr, r, "mach_vm_allocate() z %llx-%llx", V_ADDR(vr), V_ENDADDR(vr));
break;
}
/*FALLTHROUGH*/
default:
err_mach(kr, r, "mach_vm_read() %llx-%llx", V_ADDR(vr), V_SIZE(vr));
if (OPTIONS_DEBUG(opt, 1))
print_one_memory_region(r);
break;
}
if (kr != KERN_SUCCESS) {
V_SETADDR(dp, 0);
return WALK_ERROR;
}
/*
* Sometimes (e.g. searchd) we may not be able to fetch all the pages
* from the underlying mapped file, in which case replace those pages
* with zfod pages (at least they compress efficiently) rather than
* taking a SIGBUS when compressing them.
*
* XXX Perhaps we should just catch the SIGBUS, and if the faulting address
* is in the right range, substitute zfod pages and rerun region compression?
* Complex though, because the compression code may be multithreaded.
*/
if (!r->r_insharedregion && is_file_mapped_shared(r)) {
const mach_vm_offset_t pagesize_host = 1u << pageshift_host;
if (r->r_info.pages_resident * pagesize_host == V_SIZE(dp))
return WALK_CONTINUE; // all pages resident, so skip ..
if (OPTIONS_DEBUG(opt, 2))
printr(r, "probing %llu pages in mapped-shared file\n", V_SIZE(dp) / pagesize_host);
kr = KERN_SUCCESS;
for (mach_vm_offset_t a = V_ADDR(dp); a < V_ENDADDR(dp); a += pagesize_host) {
mach_msg_type_number_t pCount = VM_PAGE_INFO_BASIC_COUNT;
vm_page_info_basic_data_t pInfo;
kr = mach_vm_page_info(mach_task_self(), a, VM_PAGE_INFO_BASIC, (vm_page_info_t)&pInfo, &pCount);
if (KERN_SUCCESS != kr) {
err_mach(kr, NULL, "mach_vm_page_info() at %llx", a);
break;
}
/* If the VM has the page somewhere, assume we can bring it back */
if (pInfo.disposition & (VM_PAGE_QUERY_PAGE_PRESENT | VM_PAGE_QUERY_PAGE_REF | VM_PAGE_QUERY_PAGE_DIRTY))
continue;
/* Force the page to be fetched to see if it faults */
mach_vm_size_t tsize = pagesize_host;
void *tmp = valloc((size_t)tsize);
const mach_vm_address_t vtmp = (mach_vm_address_t)tmp;
switch (kr = mach_vm_read_overwrite(mach_task_self(), a, tsize, vtmp, &tsize)) {
case KERN_SUCCESS:
break;
case KERN_INVALID_ADDRESS: {
/* Content can't be found: replace it and the rest of the region with zero-fill pages */
if (OPTIONS_DEBUG(opt, 2)) {
printr(r, "mach_vm_read_overwrite() failed after %llu pages -- substituting zfod\n", (a - V_ADDR(dp)) / pagesize_host);
print_one_memory_region(r);
}
mach_vm_address_t va = a;
kr = mach_vm_allocate(mach_task_self(), &va, V_ENDADDR(dp) - va, VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE);
if (KERN_SUCCESS != kr) {
err_mach(kr, r, "mach_vm_allocate() %llx", a);
} else {
assert(a == va);
a = V_ENDADDR(dp); // no need to look any further
}
break;
}
default:
err_mach(kr, r, "mach_vm_overwrite() %llx", a);
break;
}
free(tmp);
if (KERN_SUCCESS != kr)
break;
}
if (KERN_SUCCESS != kr) {
kr = mach_vm_deallocate(mach_task_self(), V_ADDR(dp), V_SIZE(dp));
if (KERN_SUCCESS != kr && OPTIONS_DEBUG(opt, 1))
err_mach(kr, r, "mach_vm_deallocate() pre %llx-%llx", V_ADDR(dp), V_ENDADDR(dp));
V_SETADDR(dp, 0);
return WALK_ERROR;
}
}
return WALK_CONTINUE;
}
static walk_return_t
write_memory_range(struct write_segment_data *wsd, const struct region *r, mach_vm_offset_t vmaddr, mach_vm_offset_t vmsize)
{
assert(R_ADDR(r) <= vmaddr && R_ENDADDR(r) >= vmaddr + vmsize);
mach_vm_offset_t resid = vmsize;
walk_return_t step = WALK_CONTINUE;
do {
vmsize = resid;
/*
* Since some regions can be inconveniently large,
* chop them into multiple chunks as we compress them.
* (mach_vm_read has 32-bit limitations too).
*/
vmsize = vmsize > INT32_MAX ? INT32_MAX : vmsize;
if (opt->chunksize > 0 && vmsize > opt->chunksize)
vmsize = opt->chunksize;
assert(vmsize <= INT32_MAX);
const struct vm_range vr = {
.addr = vmaddr,
.size = vmsize,
};
struct vm_range d, *dp = &d;
step = map_memory_range(wsd, r, &vr, dp);
if (WALK_CONTINUE != step)
break;
assert(0 != V_ADDR(dp) && 0 != V_SIZE(dp));
const void *srcaddr = (const void *)V_ADDR(dp);
mach_vm_behavior_set(mach_task_self(), V_ADDR(dp), V_SIZE(dp), VM_BEHAVIOR_SEQUENTIAL);
void *dstbuf = NULL;
unsigned algorithm = 0;
size_t filesize;
if (opt->extended) {
dstbuf = malloc(V_SIZEOF(dp));
if (dstbuf) {
filesize = compression_encode_buffer(dstbuf, V_SIZEOF(dp), srcaddr, V_SIZEOF(dp), NULL, opt->calgorithm);
if (filesize > 0 && filesize < V_SIZEOF(dp)) {
srcaddr = dstbuf; /* the data source is now heap, compressed */
mach_vm_deallocate(mach_task_self(), V_ADDR(dp), V_SIZE(dp));
V_SETADDR(dp, 0);
if (segment_compflags(opt->calgorithm, &algorithm) != 0) {
free(dstbuf);
mach_vm_deallocate(mach_task_self(), V_ADDR(dp), V_SIZE(dp));
V_SETADDR(dp, 0);
step = WALK_ERROR;
break;
}
} else {
free(dstbuf);
dstbuf = NULL;
filesize = V_SIZEOF(dp);
}
} else
filesize = V_SIZEOF(dp);
assert(filesize <= V_SIZEOF(dp));
} else
filesize = V_SIZEOF(dp);
assert(filesize);
const struct file_range fr = {
.off = wsd->wsd_foffset,
.size = filesize,
};
make_segment_command(wsd->wsd_lc, &vr, &fr, &r->r_info, algorithm, r->r_purgable);
step = pwrite_memory(wsd, srcaddr, filesize, &vr);
if (dstbuf)
free(dstbuf);
if (V_ADDR(dp)) {
kern_return_t kr = mach_vm_deallocate(mach_task_self(), V_ADDR(dp), V_SIZE(dp));
if (KERN_SUCCESS != kr && OPTIONS_DEBUG(opt, 1))
err_mach(kr, r, "mach_vm_deallocate() post %llx-%llx", V_ADDR(dp), V_SIZE(dp));
}
if (WALK_ERROR == step)
break;
commit_load_command(wsd, wsd->wsd_lc);
resid -= vmsize;
vmaddr += vmsize;
} while (resid);
return step;
}
#ifdef RDAR_23744374
/*
* Sigh. This is a workaround.
* Find the vmsize as if the VM system manages ranges in host pagesize units
* rather than application pagesize units.
*/
static mach_vm_size_t
getvmsize_host(const task_t task, const struct region *r)
{
mach_vm_size_t vmsize_host = R_SIZE(r);
if (pageshift_host != pageshift_app) {
is_actual_size(task, r, &vmsize_host);
if (OPTIONS_DEBUG(opt, 1) && R_SIZE(r) != vmsize_host)
printr(r, "(region size tweak: was %llx, is %llx)\n", R_SIZE(r), vmsize_host);
}
return vmsize_host;
}
#else
static __inline mach_vm_size_t
getvmsize_host(__unused const task_t task, const struct region *r)
{
return R_SIZE(r);
}
#endif
static walk_return_t
write_sparse_region(const struct region *r, struct write_segment_data *wsd)
{
assert(r->r_nsubregions);
assert(!r->r_inzfodregion);
assert(NULL == r->r_fileref);
const mach_vm_size_t vmsize_host = getvmsize_host(wsd->wsd_task, r);
walk_return_t step = WALK_CONTINUE;
for (unsigned i = 0; i < r->r_nsubregions; i++) {
const struct subregion *s = r->r_subregions[i];
if (s->s_isuuidref)
step = write_fileref_subregion(r, s, wsd);
else {
/* Write this one out as real data */
mach_vm_size_t vmsize = S_SIZE(s);
if (R_SIZE(r) != vmsize_host) {
if (S_ADDR(s) + vmsize > R_ADDR(r) + vmsize_host) {
vmsize = R_ADDR(r) + vmsize_host - S_ADDR(s);
if (OPTIONS_DEBUG(opt, 3))
printr(r, "(subregion size tweak: was %llx, is %llx)\n",
S_SIZE(s), vmsize);
}
}
step = write_memory_range(wsd, r, S_ADDR(s), vmsize);
}
if (WALK_ERROR == step)
break;
}
return step;
}
static walk_return_t
write_vanilla_region(const struct region *r, struct write_segment_data *wsd)
{
assert(0 == r->r_nsubregions);
assert(!r->r_inzfodregion);
assert(NULL == r->r_fileref);
const mach_vm_size_t vmsize_host = getvmsize_host(wsd->wsd_task, r);
return write_memory_range(wsd, r, R_ADDR(r), vmsize_host);
}
walk_return_t
region_write_memory(struct region *r, void *arg)
{
assert(r->r_info.user_tag != VM_MEMORY_IOKIT); // elided in walk_regions()
assert((r->r_info.max_protection & VM_PROT_READ) == VM_PROT_READ);
return ROP_WRITE(r, arg);
}
/*
* Handles the cases where segments are broken into chunks i.e. when
* writing compressed segments.
*/
static unsigned long
count_memory_range(mach_vm_offset_t vmsize)
{
unsigned long count;
if (opt->chunksize) {
count = (size_t)vmsize / opt->chunksize;
if (vmsize != (mach_vm_offset_t)count * opt->chunksize)
count++;
} else
count = 1;
return count;
}
/*
* A sparse region is likely a writable data segment described by
* native_segment_command_t somewhere in the address space.
*/
static void
size_sparse_subregion(const struct subregion *s, struct size_core *sc)
{
const unsigned long count = count_memory_range(S_SIZE(s));
sc->headersize += sizeof_segment_command() * count;
sc->count += count;
sc->memsize += S_SIZE(s);
}
static void
size_sparse_region(const struct region *r, struct size_core *sc_sparse, struct size_core *sc_fileref)
{
assert(0 != r->r_nsubregions);
unsigned long entry_total = sc_sparse->count + sc_fileref->count;
for (unsigned i = 0; i < r->r_nsubregions; i++) {
const struct subregion *s = r->r_subregions[i];
if (s->s_isuuidref)
size_fileref_subregion(s, sc_fileref);
else
size_sparse_subregion(s, sc_sparse);
}
if (OPTIONS_DEBUG(opt, 3)) {
/* caused by compression breaking a large region into chunks */
entry_total = (sc_fileref->count + sc_sparse->count) - entry_total;
if (entry_total > r->r_nsubregions)
printr(r, "range contains %u subregions requires %lu segment commands\n",
r->r_nsubregions, entry_total);
}
}
const struct regionop sparse_ops = {
print_memory_region,
write_sparse_region,
del_sparse_region,
};
static void
size_vanilla_region(const struct region *r, struct size_core *sc)
{
assert(0 == r->r_nsubregions);
const unsigned long count = count_memory_range(R_SIZE(r));
sc->headersize += sizeof_segment_command() * count;
sc->count += count;
sc->memsize += R_SIZE(r);
if (OPTIONS_DEBUG(opt, 3) && count != 1)
printr(r, "range with 1 region, but requires %lu segment commands\n", count);
}
const struct regionop vanilla_ops = {
print_memory_region,
write_vanilla_region,
del_vanilla_region,
};
walk_return_t
region_size_memory(struct region *r, void *arg)
{
struct size_segment_data *ssd = arg;
if (&zfod_ops == r->r_op)
size_zfod_region(r, &ssd->ssd_zfod);
else if (&fileref_ops == r->r_op)
size_fileref_region(r, &ssd->ssd_fileref);
else if (&sparse_ops == r->r_op)
size_sparse_region(r, &ssd->ssd_sparse, &ssd->ssd_fileref);
else if (&vanilla_ops == r->r_op)
size_vanilla_region(r, &ssd->ssd_vanilla);
else
errx(EX_SOFTWARE, "%s: bad op", __func__);
return WALK_CONTINUE;
}