mirror of
https://github.com/darlinghq/darling-xnu.git
synced 2024-11-26 22:10:24 +00:00
1269 lines
28 KiB
C
1269 lines
28 KiB
C
|
/*
|
||
|
* Copyright (c) 2000-2012 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
|
||
|
#include <i386/machine_routines.h>
|
||
|
#include <i386/io_map_entries.h>
|
||
|
#include <i386/cpuid.h>
|
||
|
#include <i386/fpu.h>
|
||
|
#include <mach/processor.h>
|
||
|
#include <kern/processor.h>
|
||
|
#include <kern/machine.h>
|
||
|
|
||
|
#include <kern/cpu_number.h>
|
||
|
#include <kern/thread.h>
|
||
|
#include <kern/thread_call.h>
|
||
|
#include <kern/policy_internal.h>
|
||
|
|
||
|
#include <prng/random.h>
|
||
|
#include <prng/entropy.h>
|
||
|
#include <i386/machine_cpu.h>
|
||
|
#include <i386/lapic.h>
|
||
|
#include <i386/bit_routines.h>
|
||
|
#include <i386/mp_events.h>
|
||
|
#include <i386/pmCPU.h>
|
||
|
#include <i386/trap.h>
|
||
|
#include <i386/tsc.h>
|
||
|
#include <i386/cpu_threads.h>
|
||
|
#include <i386/proc_reg.h>
|
||
|
#include <mach/vm_param.h>
|
||
|
#include <i386/pmap.h>
|
||
|
#include <i386/pmap_internal.h>
|
||
|
#include <i386/misc_protos.h>
|
||
|
#include <kern/timer_queue.h>
|
||
|
#include <vm/vm_map.h>
|
||
|
#if KPC
|
||
|
#include <kern/kpc.h>
|
||
|
#endif
|
||
|
#include <architecture/i386/pio.h>
|
||
|
#include <i386/cpu_data.h>
|
||
|
#if DEBUG
|
||
|
#define DBG(x...) kprintf("DBG: " x)
|
||
|
#else
|
||
|
#define DBG(x...)
|
||
|
#endif
|
||
|
|
||
|
#if MONOTONIC
|
||
|
#include <kern/monotonic.h>
|
||
|
#endif /* MONOTONIC */
|
||
|
|
||
|
extern void wakeup(void *);
|
||
|
|
||
|
uint64_t LockTimeOut;
|
||
|
uint64_t TLBTimeOut;
|
||
|
uint64_t LockTimeOutTSC;
|
||
|
uint32_t LockTimeOutUsec;
|
||
|
uint64_t MutexSpin;
|
||
|
uint64_t low_MutexSpin;
|
||
|
int64_t high_MutexSpin;
|
||
|
uint64_t LastDebuggerEntryAllowance;
|
||
|
uint64_t delay_spin_threshold;
|
||
|
|
||
|
extern uint64_t panic_restart_timeout;
|
||
|
|
||
|
boolean_t virtualized = FALSE;
|
||
|
|
||
|
decl_simple_lock_data(static, ml_timer_evaluation_slock);
|
||
|
uint32_t ml_timer_eager_evaluations;
|
||
|
uint64_t ml_timer_eager_evaluation_max;
|
||
|
static boolean_t ml_timer_evaluation_in_progress = FALSE;
|
||
|
|
||
|
LCK_GRP_DECLARE(max_cpus_grp, "max_cpus");
|
||
|
LCK_MTX_DECLARE(max_cpus_lock, &max_cpus_grp);
|
||
|
static int max_cpus_initialized = 0;
|
||
|
#define MAX_CPUS_SET 0x1
|
||
|
#define MAX_CPUS_WAIT 0x2
|
||
|
|
||
|
/* IO memory map services */
|
||
|
|
||
|
/* Map memory map IO space */
|
||
|
vm_offset_t
|
||
|
ml_io_map(
|
||
|
vm_offset_t phys_addr,
|
||
|
vm_size_t size)
|
||
|
{
|
||
|
return io_map(phys_addr, size, VM_WIMG_IO);
|
||
|
}
|
||
|
|
||
|
/* boot memory allocation */
|
||
|
vm_offset_t
|
||
|
ml_static_malloc(
|
||
|
__unused vm_size_t size)
|
||
|
{
|
||
|
return (vm_offset_t)NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
|
||
|
{
|
||
|
*phys_addr = 0;
|
||
|
*size = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
vm_offset_t
|
||
|
ml_static_ptovirt(
|
||
|
vm_offset_t paddr)
|
||
|
{
|
||
|
#if defined(__x86_64__)
|
||
|
return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
|
||
|
#else
|
||
|
return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
vm_offset_t
|
||
|
ml_static_slide(
|
||
|
vm_offset_t vaddr)
|
||
|
{
|
||
|
return VM_KERNEL_SLIDE(vaddr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* base must be page-aligned, and size must be a multiple of PAGE_SIZE
|
||
|
*/
|
||
|
kern_return_t
|
||
|
ml_static_verify_page_protections(
|
||
|
uint64_t base, uint64_t size, vm_prot_t prot)
|
||
|
{
|
||
|
vm_prot_t pageprot;
|
||
|
uint64_t offset;
|
||
|
|
||
|
DBG("ml_static_verify_page_protections: vaddr 0x%llx sz 0x%llx prot 0x%x\n", base, size, prot);
|
||
|
|
||
|
/*
|
||
|
* base must be within the static bounds, defined to be:
|
||
|
* (vm_kernel_stext, kc_highest_nonlinkedit_vmaddr)
|
||
|
*/
|
||
|
#if DEVELOPMENT || DEBUG || KASAN
|
||
|
assert(kc_highest_nonlinkedit_vmaddr > 0 && base > vm_kernel_stext && base < kc_highest_nonlinkedit_vmaddr);
|
||
|
#else /* On release kernels, assume this is a protection mismatch failure. */
|
||
|
if (kc_highest_nonlinkedit_vmaddr == 0 || base < vm_kernel_stext || base >= kc_highest_nonlinkedit_vmaddr) {
|
||
|
return KERN_FAILURE;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
for (offset = 0; offset < size; offset += PAGE_SIZE) {
|
||
|
if (pmap_get_prot(kernel_pmap, base + offset, &pageprot) == KERN_FAILURE) {
|
||
|
return KERN_FAILURE;
|
||
|
}
|
||
|
if ((pageprot & prot) != prot) {
|
||
|
return KERN_FAILURE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return KERN_SUCCESS;
|
||
|
}
|
||
|
|
||
|
vm_offset_t
|
||
|
ml_static_unslide(
|
||
|
vm_offset_t vaddr)
|
||
|
{
|
||
|
return VM_KERNEL_UNSLIDE(vaddr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reclaim memory, by virtual address, that was used in early boot that is no longer needed
|
||
|
* by the kernel.
|
||
|
*/
|
||
|
void
|
||
|
ml_static_mfree(
|
||
|
vm_offset_t vaddr,
|
||
|
vm_size_t size)
|
||
|
{
|
||
|
addr64_t vaddr_cur;
|
||
|
ppnum_t ppn;
|
||
|
uint32_t freed_pages = 0;
|
||
|
vm_size_t map_size;
|
||
|
|
||
|
assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
|
||
|
|
||
|
assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
|
||
|
|
||
|
for (vaddr_cur = vaddr; vaddr_cur < round_page_64(vaddr + size);) {
|
||
|
map_size = pmap_query_pagesize(kernel_pmap, vaddr_cur);
|
||
|
|
||
|
/* just skip if nothing mapped here */
|
||
|
if (map_size == 0) {
|
||
|
vaddr_cur += PAGE_SIZE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Can't free from the middle of a large page.
|
||
|
*/
|
||
|
assert((vaddr_cur & (map_size - 1)) == 0);
|
||
|
|
||
|
ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
|
||
|
assert(ppn != (ppnum_t)NULL);
|
||
|
|
||
|
pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur + map_size);
|
||
|
while (map_size > 0) {
|
||
|
if (++kernel_pmap->stats.resident_count > kernel_pmap->stats.resident_max) {
|
||
|
kernel_pmap->stats.resident_max = kernel_pmap->stats.resident_count;
|
||
|
}
|
||
|
|
||
|
assert(pmap_valid_page(ppn));
|
||
|
if (IS_MANAGED_PAGE(ppn)) {
|
||
|
vm_page_create(ppn, (ppn + 1));
|
||
|
freed_pages++;
|
||
|
}
|
||
|
map_size -= PAGE_SIZE;
|
||
|
vaddr_cur += PAGE_SIZE;
|
||
|
ppn++;
|
||
|
}
|
||
|
}
|
||
|
vm_page_lockspin_queues();
|
||
|
vm_page_wire_count -= freed_pages;
|
||
|
vm_page_wire_count_initial -= freed_pages;
|
||
|
if (vm_page_wire_count_on_boot != 0) {
|
||
|
assert(vm_page_wire_count_on_boot >= freed_pages);
|
||
|
vm_page_wire_count_on_boot -= freed_pages;
|
||
|
}
|
||
|
vm_page_unlock_queues();
|
||
|
|
||
|
#if DEBUG
|
||
|
kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Change page protections for addresses previously loaded by efiboot */
|
||
|
kern_return_t
|
||
|
ml_static_protect(vm_offset_t vmaddr, vm_size_t size, vm_prot_t prot)
|
||
|
{
|
||
|
boolean_t NX = !!!(prot & VM_PROT_EXECUTE), ro = !!!(prot & VM_PROT_WRITE);
|
||
|
|
||
|
assert(prot & VM_PROT_READ);
|
||
|
|
||
|
pmap_mark_range(kernel_pmap, vmaddr, size, NX, ro);
|
||
|
|
||
|
return KERN_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/* virtual to physical on wired pages */
|
||
|
vm_offset_t
|
||
|
ml_vtophys(
|
||
|
vm_offset_t vaddr)
|
||
|
{
|
||
|
return (vm_offset_t)kvtophys(vaddr);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Routine: ml_nofault_copy
|
||
|
* Function: Perform a physical mode copy if the source and
|
||
|
* destination have valid translations in the kernel pmap.
|
||
|
* If translations are present, they are assumed to
|
||
|
* be wired; i.e. no attempt is made to guarantee that the
|
||
|
* translations obtained remained valid for
|
||
|
* the duration of the copy process.
|
||
|
*/
|
||
|
|
||
|
vm_size_t
|
||
|
ml_nofault_copy(
|
||
|
vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
|
||
|
{
|
||
|
addr64_t cur_phys_dst, cur_phys_src;
|
||
|
uint32_t count, nbytes = 0;
|
||
|
|
||
|
while (size > 0) {
|
||
|
if (!(cur_phys_src = kvtophys(virtsrc))) {
|
||
|
break;
|
||
|
}
|
||
|
if (!(cur_phys_dst = kvtophys(virtdst))) {
|
||
|
break;
|
||
|
}
|
||
|
if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) {
|
||
|
break;
|
||
|
}
|
||
|
count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
|
||
|
if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
|
||
|
count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
|
||
|
}
|
||
|
if (count > size) {
|
||
|
count = (uint32_t)size;
|
||
|
}
|
||
|
|
||
|
bcopy_phys(cur_phys_src, cur_phys_dst, count);
|
||
|
|
||
|
nbytes += count;
|
||
|
virtsrc += count;
|
||
|
virtdst += count;
|
||
|
size -= count;
|
||
|
}
|
||
|
|
||
|
return nbytes;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Routine: ml_validate_nofault
|
||
|
* Function: Validate that ths address range has a valid translations
|
||
|
* in the kernel pmap. If translations are present, they are
|
||
|
* assumed to be wired; i.e. no attempt is made to guarantee
|
||
|
* that the translation persist after the check.
|
||
|
* Returns: TRUE if the range is mapped and will not cause a fault,
|
||
|
* FALSE otherwise.
|
||
|
*/
|
||
|
|
||
|
boolean_t
|
||
|
ml_validate_nofault(
|
||
|
vm_offset_t virtsrc, vm_size_t size)
|
||
|
{
|
||
|
addr64_t cur_phys_src;
|
||
|
uint32_t count;
|
||
|
|
||
|
while (size > 0) {
|
||
|
if (!(cur_phys_src = kvtophys(virtsrc))) {
|
||
|
return FALSE;
|
||
|
}
|
||
|
if (!pmap_valid_page(i386_btop(cur_phys_src))) {
|
||
|
return FALSE;
|
||
|
}
|
||
|
count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
|
||
|
if (count > size) {
|
||
|
count = (uint32_t)size;
|
||
|
}
|
||
|
|
||
|
virtsrc += count;
|
||
|
size -= count;
|
||
|
}
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
/* Interrupt handling */
|
||
|
|
||
|
/* Initialize Interrupts */
|
||
|
void
|
||
|
ml_init_interrupt(void)
|
||
|
{
|
||
|
(void) ml_set_interrupts_enabled(TRUE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Get Interrupts Enabled */
|
||
|
boolean_t
|
||
|
ml_get_interrupts_enabled(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
__asm__ volatile ("pushf; pop %0": "=r" (flags));
|
||
|
return (flags & EFL_IF) != 0;
|
||
|
}
|
||
|
|
||
|
/* Set Interrupts Enabled */
|
||
|
boolean_t
|
||
|
ml_set_interrupts_enabled(boolean_t enable)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
boolean_t istate;
|
||
|
|
||
|
__asm__ volatile ("pushf; pop %0" : "=r" (flags));
|
||
|
|
||
|
assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
|
||
|
|
||
|
istate = ((flags & EFL_IF) != 0);
|
||
|
|
||
|
if (enable) {
|
||
|
__asm__ volatile ("sti;nop");
|
||
|
|
||
|
if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) {
|
||
|
__asm__ volatile ("int %0" :: "N" (T_PREEMPT));
|
||
|
}
|
||
|
} else {
|
||
|
if (istate) {
|
||
|
__asm__ volatile ("cli");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return istate;
|
||
|
}
|
||
|
|
||
|
/* Early Set Interrupts Enabled */
|
||
|
boolean_t
|
||
|
ml_early_set_interrupts_enabled(boolean_t enable)
|
||
|
{
|
||
|
if (enable == TRUE) {
|
||
|
kprintf("Caller attempted to enable interrupts too early in "
|
||
|
"kernel startup. Halting.\n");
|
||
|
hlt();
|
||
|
/*NOTREACHED*/
|
||
|
}
|
||
|
|
||
|
/* On x86, do not allow interrupts to be enabled very early */
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* Check if running at interrupt context */
|
||
|
boolean_t
|
||
|
ml_at_interrupt_context(void)
|
||
|
{
|
||
|
return get_interrupt_level() != 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
|
||
|
{
|
||
|
*icp = (get_interrupt_level() != 0);
|
||
|
/* These will be technically inaccurate for interrupts that occur
|
||
|
* successively within a single "idle exit" event, but shouldn't
|
||
|
* matter statistically.
|
||
|
*/
|
||
|
*pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
|
||
|
}
|
||
|
|
||
|
/* Generate a fake interrupt */
|
||
|
__dead2
|
||
|
void
|
||
|
ml_cause_interrupt(void)
|
||
|
{
|
||
|
panic("ml_cause_interrupt not defined yet on Intel");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* TODO: transition users of this to kernel_thread_start_priority
|
||
|
* ml_thread_policy is an unsupported KPI
|
||
|
*/
|
||
|
void
|
||
|
ml_thread_policy(
|
||
|
thread_t thread,
|
||
|
__unused unsigned policy_id,
|
||
|
unsigned policy_info)
|
||
|
{
|
||
|
if (policy_info & MACHINE_NETWORK_WORKLOOP) {
|
||
|
thread_precedence_policy_data_t info;
|
||
|
__assert_only kern_return_t kret;
|
||
|
|
||
|
info.importance = 1;
|
||
|
|
||
|
kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
|
||
|
(thread_policy_t)&info,
|
||
|
THREAD_PRECEDENCE_POLICY_COUNT);
|
||
|
assert(kret == KERN_SUCCESS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Initialize Interrupts */
|
||
|
void
|
||
|
ml_install_interrupt_handler(
|
||
|
void *nub,
|
||
|
int source,
|
||
|
void *target,
|
||
|
IOInterruptHandler handler,
|
||
|
void *refCon)
|
||
|
{
|
||
|
boolean_t current_state;
|
||
|
|
||
|
current_state = ml_set_interrupts_enabled(FALSE);
|
||
|
|
||
|
PE_install_interrupt_handler(nub, source, target,
|
||
|
(IOInterruptHandler) handler, refCon);
|
||
|
|
||
|
(void) ml_set_interrupts_enabled(current_state);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
machine_signal_idle(
|
||
|
processor_t processor)
|
||
|
{
|
||
|
cpu_interrupt(processor->cpu_id);
|
||
|
}
|
||
|
|
||
|
__dead2
|
||
|
void
|
||
|
machine_signal_idle_deferred(
|
||
|
__unused processor_t processor)
|
||
|
{
|
||
|
panic("Unimplemented");
|
||
|
}
|
||
|
|
||
|
__dead2
|
||
|
void
|
||
|
machine_signal_idle_cancel(
|
||
|
__unused processor_t processor)
|
||
|
{
|
||
|
panic("Unimplemented");
|
||
|
}
|
||
|
|
||
|
static kern_return_t
|
||
|
register_cpu(
|
||
|
uint32_t lapic_id,
|
||
|
processor_t *processor_out,
|
||
|
boolean_t boot_cpu )
|
||
|
{
|
||
|
int target_cpu;
|
||
|
cpu_data_t *this_cpu_datap;
|
||
|
|
||
|
this_cpu_datap = cpu_data_alloc(boot_cpu);
|
||
|
if (this_cpu_datap == NULL) {
|
||
|
return KERN_FAILURE;
|
||
|
}
|
||
|
target_cpu = this_cpu_datap->cpu_number;
|
||
|
assert((boot_cpu && (target_cpu == 0)) ||
|
||
|
(!boot_cpu && (target_cpu != 0)));
|
||
|
|
||
|
lapic_cpu_map(lapic_id, target_cpu);
|
||
|
|
||
|
/* The cpu_id is not known at registration phase. Just do
|
||
|
* lapic_id for now
|
||
|
*/
|
||
|
this_cpu_datap->cpu_phys_number = lapic_id;
|
||
|
|
||
|
this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
|
||
|
if (this_cpu_datap->cpu_console_buf == NULL) {
|
||
|
goto failed;
|
||
|
}
|
||
|
|
||
|
#if KPC
|
||
|
if (kpc_register_cpu(this_cpu_datap) != TRUE) {
|
||
|
goto failed;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (!boot_cpu) {
|
||
|
cpu_thread_alloc(this_cpu_datap->cpu_number);
|
||
|
if (this_cpu_datap->lcpu.core == NULL) {
|
||
|
goto failed;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* processor_init() deferred to topology start
|
||
|
* because "slot numbers" a.k.a. logical processor numbers
|
||
|
* are not yet finalized.
|
||
|
*/
|
||
|
*processor_out = this_cpu_datap->cpu_processor;
|
||
|
|
||
|
return KERN_SUCCESS;
|
||
|
|
||
|
failed:
|
||
|
console_cpu_free(this_cpu_datap->cpu_console_buf);
|
||
|
#if KPC
|
||
|
kpc_unregister_cpu(this_cpu_datap);
|
||
|
#endif /* KPC */
|
||
|
|
||
|
return KERN_FAILURE;
|
||
|
}
|
||
|
|
||
|
|
||
|
kern_return_t
|
||
|
ml_processor_register(
|
||
|
cpu_id_t cpu_id,
|
||
|
uint32_t lapic_id,
|
||
|
processor_t *processor_out,
|
||
|
boolean_t boot_cpu,
|
||
|
boolean_t start )
|
||
|
{
|
||
|
static boolean_t done_topo_sort = FALSE;
|
||
|
static uint32_t num_registered = 0;
|
||
|
|
||
|
/* Register all CPUs first, and track max */
|
||
|
if (start == FALSE) {
|
||
|
num_registered++;
|
||
|
|
||
|
DBG( "registering CPU lapic id %d\n", lapic_id );
|
||
|
|
||
|
return register_cpu( lapic_id, processor_out, boot_cpu );
|
||
|
}
|
||
|
|
||
|
/* Sort by topology before we start anything */
|
||
|
if (!done_topo_sort) {
|
||
|
DBG( "about to start CPUs. %d registered\n", num_registered );
|
||
|
|
||
|
cpu_topology_sort( num_registered );
|
||
|
done_topo_sort = TRUE;
|
||
|
}
|
||
|
|
||
|
/* Assign the cpu ID */
|
||
|
uint32_t cpunum = -1;
|
||
|
cpu_data_t *this_cpu_datap = NULL;
|
||
|
|
||
|
/* find cpu num and pointer */
|
||
|
cpunum = ml_get_cpuid( lapic_id );
|
||
|
|
||
|
if (cpunum == 0xFFFFFFFF) { /* never heard of it? */
|
||
|
panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
|
||
|
}
|
||
|
|
||
|
this_cpu_datap = cpu_datap(cpunum);
|
||
|
|
||
|
/* fix the CPU id */
|
||
|
this_cpu_datap->cpu_id = cpu_id;
|
||
|
|
||
|
/* allocate and initialize other per-cpu structures */
|
||
|
if (!boot_cpu) {
|
||
|
mp_cpus_call_cpu_init(cpunum);
|
||
|
random_cpu_init(cpunum);
|
||
|
}
|
||
|
|
||
|
/* output arg */
|
||
|
*processor_out = this_cpu_datap->cpu_processor;
|
||
|
|
||
|
/* OK, try and start this CPU */
|
||
|
return cpu_topology_start_cpu( cpunum );
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
|
||
|
{
|
||
|
boolean_t os_supports_sse;
|
||
|
i386_cpu_info_t *cpuid_infop;
|
||
|
|
||
|
if (cpu_infop == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Are we supporting MMX/SSE/SSE2/SSE3?
|
||
|
* As distinct from whether the cpu has these capabilities.
|
||
|
*/
|
||
|
os_supports_sse = !!(get_cr4() & CR4_OSXMM);
|
||
|
|
||
|
if (ml_fpu_avx_enabled()) {
|
||
|
cpu_infop->vector_unit = 9;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 8;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 7;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 6;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 5;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 4;
|
||
|
} else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse) {
|
||
|
cpu_infop->vector_unit = 3;
|
||
|
} else if (cpuid_features() & CPUID_FEATURE_MMX) {
|
||
|
cpu_infop->vector_unit = 2;
|
||
|
} else {
|
||
|
cpu_infop->vector_unit = 0;
|
||
|
}
|
||
|
|
||
|
cpuid_infop = cpuid_info();
|
||
|
|
||
|
cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
|
||
|
|
||
|
cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
|
||
|
cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
|
||
|
|
||
|
if (cpuid_infop->cache_size[L2U] > 0) {
|
||
|
cpu_infop->l2_settings = 1;
|
||
|
cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
|
||
|
} else {
|
||
|
cpu_infop->l2_settings = 0;
|
||
|
cpu_infop->l2_cache_size = 0xFFFFFFFF;
|
||
|
}
|
||
|
|
||
|
if (cpuid_infop->cache_size[L3U] > 0) {
|
||
|
cpu_infop->l3_settings = 1;
|
||
|
cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
|
||
|
} else {
|
||
|
cpu_infop->l3_settings = 0;
|
||
|
cpu_infop->l3_cache_size = 0xFFFFFFFF;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int
|
||
|
ml_early_cpu_max_number(void)
|
||
|
{
|
||
|
int n = max_ncpus;
|
||
|
|
||
|
assert(startup_phase >= STARTUP_SUB_TUNABLES);
|
||
|
if (max_cpus_from_firmware) {
|
||
|
n = MIN(n, max_cpus_from_firmware);
|
||
|
}
|
||
|
return n - 1;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_set_max_cpus(unsigned int max_cpus)
|
||
|
{
|
||
|
lck_mtx_lock(&max_cpus_lock);
|
||
|
if (max_cpus_initialized != MAX_CPUS_SET) {
|
||
|
if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
|
||
|
/*
|
||
|
* Note: max_cpus is the number of enabled processors
|
||
|
* that ACPI found; max_ncpus is the maximum number
|
||
|
* that the kernel supports or that the "cpus="
|
||
|
* boot-arg has set. Here we take int minimum.
|
||
|
*/
|
||
|
machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
|
||
|
}
|
||
|
if (max_cpus_initialized == MAX_CPUS_WAIT) {
|
||
|
thread_wakeup((event_t) &max_cpus_initialized);
|
||
|
}
|
||
|
max_cpus_initialized = MAX_CPUS_SET;
|
||
|
}
|
||
|
lck_mtx_unlock(&max_cpus_lock);
|
||
|
}
|
||
|
|
||
|
unsigned int
|
||
|
ml_wait_max_cpus(void)
|
||
|
{
|
||
|
lck_mtx_lock(&max_cpus_lock);
|
||
|
while (max_cpus_initialized != MAX_CPUS_SET) {
|
||
|
max_cpus_initialized = MAX_CPUS_WAIT;
|
||
|
lck_mtx_sleep(&max_cpus_lock, LCK_SLEEP_DEFAULT, &max_cpus_initialized, THREAD_UNINT);
|
||
|
}
|
||
|
lck_mtx_unlock(&max_cpus_lock);
|
||
|
return machine_info.max_cpus;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_panic_trap_to_debugger(__unused const char *panic_format_str,
|
||
|
__unused va_list *panic_args,
|
||
|
__unused unsigned int reason,
|
||
|
__unused void *ctx,
|
||
|
__unused uint64_t panic_options_mask,
|
||
|
__unused unsigned long panic_caller)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static uint64_t
|
||
|
virtual_timeout_inflate64(unsigned int vti, uint64_t timeout, uint64_t max_timeout)
|
||
|
{
|
||
|
if (vti >= 64) {
|
||
|
return max_timeout;
|
||
|
}
|
||
|
|
||
|
if ((timeout << vti) >> vti != timeout) {
|
||
|
return max_timeout;
|
||
|
}
|
||
|
|
||
|
if ((timeout << vti) > max_timeout) {
|
||
|
return max_timeout;
|
||
|
}
|
||
|
|
||
|
return timeout << vti;
|
||
|
}
|
||
|
|
||
|
static uint32_t
|
||
|
virtual_timeout_inflate32(unsigned int vti, uint32_t timeout, uint32_t max_timeout)
|
||
|
{
|
||
|
if (vti >= 32) {
|
||
|
return max_timeout;
|
||
|
}
|
||
|
|
||
|
if ((timeout << vti) >> vti != timeout) {
|
||
|
return max_timeout;
|
||
|
}
|
||
|
|
||
|
return timeout << vti;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some timeouts are later adjusted or used in calculations setting
|
||
|
* other values. In order to avoid overflow, cap the max timeout as
|
||
|
* 2^47ns (~39 hours).
|
||
|
*/
|
||
|
static const uint64_t max_timeout_ns = 1ULL << 47;
|
||
|
|
||
|
/*
|
||
|
* Inflate a timeout in absolutetime.
|
||
|
*/
|
||
|
static uint64_t
|
||
|
virtual_timeout_inflate_abs(unsigned int vti, uint64_t timeout)
|
||
|
{
|
||
|
uint64_t max_timeout;
|
||
|
nanoseconds_to_absolutetime(max_timeout_ns, &max_timeout);
|
||
|
return virtual_timeout_inflate64(vti, timeout, max_timeout);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Inflate a value in TSC ticks.
|
||
|
*/
|
||
|
static uint64_t
|
||
|
virtual_timeout_inflate_tsc(unsigned int vti, uint64_t timeout)
|
||
|
{
|
||
|
const uint64_t max_timeout = tmrCvt(max_timeout_ns, tscFCvtn2t);
|
||
|
return virtual_timeout_inflate64(vti, timeout, max_timeout);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Inflate a timeout in microseconds.
|
||
|
*/
|
||
|
static uint32_t
|
||
|
virtual_timeout_inflate_us(unsigned int vti, uint64_t timeout)
|
||
|
{
|
||
|
const uint32_t max_timeout = ~0;
|
||
|
return virtual_timeout_inflate32(vti, timeout, max_timeout);
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
ml_get_timebase_entropy(void)
|
||
|
{
|
||
|
return __builtin_ia32_rdtsc();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Routine: ml_init_lock_timeout
|
||
|
* Function:
|
||
|
*/
|
||
|
void
|
||
|
ml_init_lock_timeout(void)
|
||
|
{
|
||
|
uint64_t abstime;
|
||
|
uint32_t mtxspin;
|
||
|
#if DEVELOPMENT || DEBUG
|
||
|
uint64_t default_timeout_ns = NSEC_PER_SEC >> 2;
|
||
|
#else
|
||
|
uint64_t default_timeout_ns = NSEC_PER_SEC >> 1;
|
||
|
#endif
|
||
|
uint32_t slto;
|
||
|
uint32_t prt;
|
||
|
|
||
|
if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
|
||
|
default_timeout_ns = slto * NSEC_PER_USEC;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
|
||
|
* and LockTimeOutUsec is in microseconds and it's 32-bits.
|
||
|
*/
|
||
|
LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC);
|
||
|
nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
|
||
|
LockTimeOut = abstime;
|
||
|
LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t);
|
||
|
|
||
|
/*
|
||
|
* TLBTimeOut dictates the TLB flush timeout period. It defaults to
|
||
|
* LockTimeOut but can be overriden separately. In particular, a
|
||
|
* zero value inhibits the timeout-panic and cuts a trace evnt instead
|
||
|
* - see pmap_flush_tlbs().
|
||
|
*/
|
||
|
if (PE_parse_boot_argn("tlbto_us", &slto, sizeof(slto))) {
|
||
|
default_timeout_ns = slto * NSEC_PER_USEC;
|
||
|
nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
|
||
|
TLBTimeOut = (uint32_t) abstime;
|
||
|
} else {
|
||
|
TLBTimeOut = LockTimeOut;
|
||
|
}
|
||
|
|
||
|
#if DEVELOPMENT || DEBUG
|
||
|
reportphyreaddelayabs = LockTimeOut >> 1;
|
||
|
#endif
|
||
|
if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof(slto))) {
|
||
|
default_timeout_ns = slto * NSEC_PER_USEC;
|
||
|
nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
|
||
|
reportphyreaddelayabs = abstime;
|
||
|
}
|
||
|
|
||
|
if (PE_parse_boot_argn("phywritemaxus", &slto, sizeof(slto))) {
|
||
|
nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
|
||
|
reportphywritedelayabs = abstime;
|
||
|
}
|
||
|
|
||
|
if (PE_parse_boot_argn("tracephyreadus", &slto, sizeof(slto))) {
|
||
|
nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
|
||
|
tracephyreaddelayabs = abstime;
|
||
|
}
|
||
|
|
||
|
if (PE_parse_boot_argn("tracephywriteus", &slto, sizeof(slto))) {
|
||
|
nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
|
||
|
tracephywritedelayabs = abstime;
|
||
|
}
|
||
|
|
||
|
if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
|
||
|
if (mtxspin > USEC_PER_SEC >> 4) {
|
||
|
mtxspin = USEC_PER_SEC >> 4;
|
||
|
}
|
||
|
nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
|
||
|
} else {
|
||
|
nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
|
||
|
}
|
||
|
MutexSpin = (unsigned int)abstime;
|
||
|
low_MutexSpin = MutexSpin;
|
||
|
/*
|
||
|
* high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but
|
||
|
* real_ncpus is not set at this time
|
||
|
*/
|
||
|
high_MutexSpin = -1;
|
||
|
|
||
|
nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
|
||
|
if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof(prt))) {
|
||
|
nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
|
||
|
}
|
||
|
|
||
|
virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
|
||
|
if (virtualized) {
|
||
|
unsigned int vti;
|
||
|
|
||
|
if (!PE_parse_boot_argn("vti", &vti, sizeof(vti))) {
|
||
|
vti = 6;
|
||
|
}
|
||
|
printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
|
||
|
kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
|
||
|
#define VIRTUAL_TIMEOUT_INFLATE_ABS(_timeout) \
|
||
|
MACRO_BEGIN \
|
||
|
kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
|
||
|
_timeout = virtual_timeout_inflate_abs(vti, _timeout); \
|
||
|
kprintf("-> 0x%016llx\n", _timeout); \
|
||
|
MACRO_END
|
||
|
|
||
|
#define VIRTUAL_TIMEOUT_INFLATE_TSC(_timeout) \
|
||
|
MACRO_BEGIN \
|
||
|
kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
|
||
|
_timeout = virtual_timeout_inflate_tsc(vti, _timeout); \
|
||
|
kprintf("-> 0x%016llx\n", _timeout); \
|
||
|
MACRO_END
|
||
|
#define VIRTUAL_TIMEOUT_INFLATE_US(_timeout) \
|
||
|
MACRO_BEGIN \
|
||
|
kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
|
||
|
_timeout = virtual_timeout_inflate_us(vti, _timeout); \
|
||
|
kprintf("-> 0x%08x\n", _timeout); \
|
||
|
MACRO_END
|
||
|
VIRTUAL_TIMEOUT_INFLATE_US(LockTimeOutUsec);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_ABS(LockTimeOut);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_TSC(LockTimeOutTSC);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_ABS(TLBTimeOut);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_ABS(MutexSpin);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_ABS(low_MutexSpin);
|
||
|
VIRTUAL_TIMEOUT_INFLATE_ABS(reportphyreaddelayabs);
|
||
|
}
|
||
|
|
||
|
interrupt_latency_tracker_setup();
|
||
|
simple_lock_init(&ml_timer_evaluation_slock, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Threshold above which we should attempt to block
|
||
|
* instead of spinning for clock_delay_until().
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
ml_init_delay_spin_threshold(int threshold_us)
|
||
|
{
|
||
|
nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
|
||
|
}
|
||
|
|
||
|
boolean_t
|
||
|
ml_delay_should_spin(uint64_t interval)
|
||
|
{
|
||
|
return (interval < delay_spin_threshold) ? TRUE : FALSE;
|
||
|
}
|
||
|
|
||
|
TUNABLE(uint32_t, yield_delay_us, "yield_delay_us", 0);
|
||
|
|
||
|
void
|
||
|
ml_delay_on_yield(void)
|
||
|
{
|
||
|
#if DEVELOPMENT || DEBUG
|
||
|
if (yield_delay_us) {
|
||
|
delay(yield_delay_us);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is called from the machine-independent layer
|
||
|
* to perform machine-dependent info updates. Defer to cpu_thread_init().
|
||
|
*/
|
||
|
void
|
||
|
ml_cpu_up(void)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is called from the machine-independent layer
|
||
|
* to perform machine-dependent info updates.
|
||
|
*/
|
||
|
void
|
||
|
ml_cpu_down(void)
|
||
|
{
|
||
|
i386_deactivate_cpu();
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The following are required for parts of the kernel
|
||
|
* that cannot resolve these functions as inlines:
|
||
|
*/
|
||
|
extern thread_t current_act(void) __attribute__((const));
|
||
|
thread_t
|
||
|
current_act(void)
|
||
|
{
|
||
|
return current_thread_fast();
|
||
|
}
|
||
|
|
||
|
#undef current_thread
|
||
|
extern thread_t current_thread(void) __attribute__((const));
|
||
|
thread_t
|
||
|
current_thread(void)
|
||
|
{
|
||
|
return current_thread_fast();
|
||
|
}
|
||
|
|
||
|
|
||
|
boolean_t
|
||
|
ml_is64bit(void)
|
||
|
{
|
||
|
return cpu_mode_is64bit();
|
||
|
}
|
||
|
|
||
|
|
||
|
boolean_t
|
||
|
ml_thread_is64bit(thread_t thread)
|
||
|
{
|
||
|
return thread_is_64bit_addr(thread);
|
||
|
}
|
||
|
|
||
|
|
||
|
boolean_t
|
||
|
ml_state_is64bit(void *saved_state)
|
||
|
{
|
||
|
return is_saved_state64(saved_state);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_cpu_set_ldt(int selector)
|
||
|
{
|
||
|
/*
|
||
|
* Avoid loading the LDT
|
||
|
* if we're setting the KERNEL LDT and it's already set.
|
||
|
*/
|
||
|
if (selector == KERNEL_LDT &&
|
||
|
current_cpu_datap()->cpu_ldt == KERNEL_LDT) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
lldt(selector);
|
||
|
current_cpu_datap()->cpu_ldt = selector;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_fp_setvalid(boolean_t value)
|
||
|
{
|
||
|
fp_setvalid(value);
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
ml_cpu_int_event_time(void)
|
||
|
{
|
||
|
return current_cpu_datap()->cpu_int_event_time;
|
||
|
}
|
||
|
|
||
|
vm_offset_t
|
||
|
ml_stack_remaining(void)
|
||
|
{
|
||
|
uintptr_t local = (uintptr_t) &local;
|
||
|
|
||
|
if (ml_at_interrupt_context() != 0) {
|
||
|
return local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE);
|
||
|
} else {
|
||
|
return local - current_thread()->kernel_stack;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if KASAN
|
||
|
vm_offset_t ml_stack_base(void);
|
||
|
vm_size_t ml_stack_size(void);
|
||
|
|
||
|
vm_offset_t
|
||
|
ml_stack_base(void)
|
||
|
{
|
||
|
if (ml_at_interrupt_context()) {
|
||
|
return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
|
||
|
} else {
|
||
|
return current_thread()->kernel_stack;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vm_size_t
|
||
|
ml_stack_size(void)
|
||
|
{
|
||
|
if (ml_at_interrupt_context()) {
|
||
|
return INTSTACK_SIZE;
|
||
|
} else {
|
||
|
return kernel_stack_size;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void
|
||
|
kernel_preempt_check(void)
|
||
|
{
|
||
|
boolean_t intr;
|
||
|
unsigned long flags;
|
||
|
|
||
|
assert(get_preemption_level() == 0);
|
||
|
|
||
|
if (__improbable(*ast_pending() & AST_URGENT)) {
|
||
|
/*
|
||
|
* can handle interrupts and preemptions
|
||
|
* at this point
|
||
|
*/
|
||
|
__asm__ volatile ("pushf; pop %0" : "=r" (flags));
|
||
|
|
||
|
intr = ((flags & EFL_IF) != 0);
|
||
|
|
||
|
/*
|
||
|
* now cause the PRE-EMPTION trap
|
||
|
*/
|
||
|
if (intr == TRUE) {
|
||
|
__asm__ volatile ("int %0" :: "N" (T_PREEMPT));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
boolean_t
|
||
|
machine_timeout_suspended(void)
|
||
|
{
|
||
|
return pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake();
|
||
|
}
|
||
|
|
||
|
/* Eagerly evaluate all pending timer and thread callouts
|
||
|
*/
|
||
|
void
|
||
|
ml_timer_evaluate(void)
|
||
|
{
|
||
|
KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_START, 0, 0, 0, 0, 0);
|
||
|
|
||
|
uint64_t te_end, te_start = mach_absolute_time();
|
||
|
simple_lock(&ml_timer_evaluation_slock, LCK_GRP_NULL);
|
||
|
ml_timer_evaluation_in_progress = TRUE;
|
||
|
thread_call_delayed_timer_rescan_all();
|
||
|
mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
|
||
|
ml_timer_evaluation_in_progress = FALSE;
|
||
|
ml_timer_eager_evaluations++;
|
||
|
te_end = mach_absolute_time();
|
||
|
ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
|
||
|
simple_unlock(&ml_timer_evaluation_slock);
|
||
|
|
||
|
KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_END, 0, 0, 0, 0, 0);
|
||
|
}
|
||
|
|
||
|
boolean_t
|
||
|
ml_timer_forced_evaluation(void)
|
||
|
{
|
||
|
return ml_timer_evaluation_in_progress;
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
ml_energy_stat(__unused thread_t t)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_gpu_stat_update(uint64_t gpu_ns_delta)
|
||
|
{
|
||
|
current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
ml_gpu_stat(thread_t t)
|
||
|
{
|
||
|
return t->machine.thread_gpu_ns;
|
||
|
}
|
||
|
|
||
|
int plctrace_enabled = 0;
|
||
|
|
||
|
void
|
||
|
_disable_preemption(void)
|
||
|
{
|
||
|
disable_preemption_internal();
|
||
|
}
|
||
|
|
||
|
void
|
||
|
_enable_preemption(void)
|
||
|
{
|
||
|
enable_preemption_internal();
|
||
|
}
|
||
|
|
||
|
void
|
||
|
plctrace_disable(void)
|
||
|
{
|
||
|
plctrace_enabled = 0;
|
||
|
}
|
||
|
|
||
|
static boolean_t ml_quiescing;
|
||
|
|
||
|
void
|
||
|
ml_set_is_quiescing(boolean_t quiescing)
|
||
|
{
|
||
|
ml_quiescing = quiescing;
|
||
|
}
|
||
|
|
||
|
boolean_t
|
||
|
ml_is_quiescing(void)
|
||
|
{
|
||
|
return ml_quiescing;
|
||
|
}
|
||
|
|
||
|
uint64_t
|
||
|
ml_get_booter_memory_size(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
machine_lockdown(void)
|
||
|
{
|
||
|
x86_64_protect_data_const();
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
ml_cpu_can_exit(__unused int cpu_id)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_cpu_begin_state_transition(__unused int cpu_id)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_cpu_end_state_transition(__unused int cpu_id)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_cpu_begin_loop(void)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ml_cpu_end_loop(void)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
size_t
|
||
|
ml_get_vm_reserved_regions(bool vm_is64bit, struct vm_reserved_region **regions)
|
||
|
{
|
||
|
#pragma unused(vm_is64bit)
|
||
|
assert(regions != NULL);
|
||
|
|
||
|
*regions = NULL;
|
||
|
return 0;
|
||
|
}
|