darling-xnu/osfmk/kern/sched_traditional.c

784 lines
24 KiB
C
Raw Normal View History

2023-05-17 04:41:14 +00:00
/*
* Copyright (c) 2000-2015 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_FREE_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/mach_types.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
static boolean_t
sched_traditional_use_pset_runqueue = FALSE;
static void
sched_traditional_init(void);
static bool
sched_traditional_steal_thread_enabled(processor_set_t pset);
static thread_t
sched_traditional_steal_thread(processor_set_t pset);
static thread_t
sched_traditional_steal_processor_thread(processor_t processor);
static void
sched_traditional_thread_update_scan(sched_update_scan_context_t scan_context);
static void
sched_traditional_processor_queue_shutdown(processor_t processor);
static boolean_t
sched_traditional_processor_enqueue(processor_t processor, thread_t thread,
sched_options_t options);
static boolean_t
sched_traditional_processor_queue_remove(processor_t processor, thread_t thread);
static boolean_t
sched_traditional_processor_queue_empty(processor_t processor);
static ast_t
sched_traditional_processor_csw_check(processor_t processor);
static boolean_t
sched_traditional_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte);
static int
sched_traditional_processor_runq_count(processor_t processor);
static boolean_t
sched_traditional_with_pset_runqueue_processor_queue_empty(processor_t processor);
static uint64_t
sched_traditional_processor_runq_stats_count_sum(processor_t processor);
static uint64_t
sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum(processor_t processor);
static int
sched_traditional_processor_bound_count(processor_t processor);
extern void
sched_traditional_quantum_expire(thread_t thread);
static void
sched_traditional_processor_init(processor_t processor);
static void
sched_traditional_pset_init(processor_set_t pset);
static void
sched_traditional_with_pset_runqueue_init(void);
static sched_mode_t
sched_traditional_initial_thread_sched_mode(task_t parent_task);
static thread_t
sched_traditional_choose_thread(processor_t processor, int priority, ast_t reason);
/* Choose a thread from a processor's priority-based runq */
static thread_t sched_traditional_choose_thread_from_runq(processor_t processor, run_queue_t runq, int priority);
const struct sched_dispatch_table sched_traditional_dispatch = {
.sched_name = "traditional",
.init = sched_traditional_init,
.timebase_init = sched_timeshare_timebase_init,
.processor_init = sched_traditional_processor_init,
.pset_init = sched_traditional_pset_init,
.maintenance_continuation = sched_timeshare_maintenance_continue,
.choose_thread = sched_traditional_choose_thread,
.steal_thread_enabled = sched_traditional_steal_thread_enabled,
.steal_thread = sched_traditional_steal_thread,
.compute_timeshare_priority = sched_compute_timeshare_priority,
.choose_node = sched_choose_node,
.choose_processor = choose_processor,
.processor_enqueue = sched_traditional_processor_enqueue,
.processor_queue_shutdown = sched_traditional_processor_queue_shutdown,
.processor_queue_remove = sched_traditional_processor_queue_remove,
.processor_queue_empty = sched_traditional_processor_queue_empty,
.priority_is_urgent = priority_is_urgent,
.processor_csw_check = sched_traditional_processor_csw_check,
.processor_queue_has_priority = sched_traditional_processor_queue_has_priority,
.initial_quantum_size = sched_timeshare_initial_quantum_size,
.initial_thread_sched_mode = sched_traditional_initial_thread_sched_mode,
.can_update_priority = can_update_priority,
.update_priority = update_priority,
.lightweight_update_priority = lightweight_update_priority,
.quantum_expire = sched_default_quantum_expire,
.processor_runq_count = sched_traditional_processor_runq_count,
.processor_runq_stats_count_sum = sched_traditional_processor_runq_stats_count_sum,
.processor_bound_count = sched_traditional_processor_bound_count,
.thread_update_scan = sched_traditional_thread_update_scan,
.multiple_psets_enabled = TRUE,
.sched_groups_enabled = FALSE,
.avoid_processor_enabled = FALSE,
.thread_avoid_processor = NULL,
.processor_balance = sched_SMT_balance,
.rt_runq = sched_rtlocal_runq,
.rt_init = sched_rtlocal_init,
.rt_queue_shutdown = sched_rtlocal_queue_shutdown,
.rt_runq_scan = sched_rtlocal_runq_scan,
.rt_runq_count_sum = sched_rtlocal_runq_count_sum,
.qos_max_parallelism = sched_qos_max_parallelism,
.check_spill = sched_check_spill,
.ipi_policy = sched_ipi_policy,
.thread_should_yield = sched_thread_should_yield,
.run_count_incr = sched_run_incr,
.run_count_decr = sched_run_decr,
.update_thread_bucket = sched_update_thread_bucket,
.pset_made_schedulable = sched_pset_made_schedulable,
};
const struct sched_dispatch_table sched_traditional_with_pset_runqueue_dispatch = {
.sched_name = "traditional_with_pset_runqueue",
.init = sched_traditional_with_pset_runqueue_init,
.timebase_init = sched_timeshare_timebase_init,
.processor_init = sched_traditional_processor_init,
.pset_init = sched_traditional_pset_init,
.maintenance_continuation = sched_timeshare_maintenance_continue,
.choose_thread = sched_traditional_choose_thread,
.steal_thread_enabled = sched_steal_thread_enabled,
.steal_thread = sched_traditional_steal_thread,
.compute_timeshare_priority = sched_compute_timeshare_priority,
.choose_node = sched_choose_node,
.choose_processor = choose_processor,
.processor_enqueue = sched_traditional_processor_enqueue,
.processor_queue_shutdown = sched_traditional_processor_queue_shutdown,
.processor_queue_remove = sched_traditional_processor_queue_remove,
.processor_queue_empty = sched_traditional_with_pset_runqueue_processor_queue_empty,
.priority_is_urgent = priority_is_urgent,
.processor_csw_check = sched_traditional_processor_csw_check,
.processor_queue_has_priority = sched_traditional_processor_queue_has_priority,
.initial_quantum_size = sched_timeshare_initial_quantum_size,
.initial_thread_sched_mode = sched_traditional_initial_thread_sched_mode,
.can_update_priority = can_update_priority,
.update_priority = update_priority,
.lightweight_update_priority = lightweight_update_priority,
.quantum_expire = sched_default_quantum_expire,
.processor_runq_count = sched_traditional_processor_runq_count,
.processor_runq_stats_count_sum = sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum,
.processor_bound_count = sched_traditional_processor_bound_count,
.thread_update_scan = sched_traditional_thread_update_scan,
.multiple_psets_enabled = TRUE,
.sched_groups_enabled = FALSE,
.avoid_processor_enabled = FALSE,
.thread_avoid_processor = NULL,
.processor_balance = sched_SMT_balance,
.rt_runq = sched_rtlocal_runq,
.rt_init = sched_rtlocal_init,
.rt_queue_shutdown = sched_rtlocal_queue_shutdown,
.rt_runq_scan = sched_rtlocal_runq_scan,
.rt_runq_count_sum = sched_rtlocal_runq_count_sum,
.qos_max_parallelism = sched_qos_max_parallelism,
.check_spill = sched_check_spill,
.ipi_policy = sched_ipi_policy,
.thread_should_yield = sched_thread_should_yield,
.run_count_incr = sched_run_incr,
.run_count_decr = sched_run_decr,
.update_thread_bucket = sched_update_thread_bucket,
.pset_made_schedulable = sched_pset_made_schedulable,
};
static void
sched_traditional_init(void)
{
sched_timeshare_init();
}
static void
sched_traditional_with_pset_runqueue_init(void)
{
sched_timeshare_init();
sched_traditional_use_pset_runqueue = TRUE;
}
static void
sched_traditional_processor_init(processor_t processor)
{
if (!sched_traditional_use_pset_runqueue) {
run_queue_init(&processor->runq);
}
processor->runq_bound_count = 0;
}
static void
sched_traditional_pset_init(processor_set_t pset)
{
if (sched_traditional_use_pset_runqueue) {
run_queue_init(&pset->pset_runq);
}
pset->pset_runq_bound_count = 0;
}
__attribute__((always_inline))
static inline run_queue_t
runq_for_processor(processor_t processor)
{
if (sched_traditional_use_pset_runqueue) {
return &processor->processor_set->pset_runq;
} else {
return &processor->runq;
}
}
__attribute__((always_inline))
static inline void
runq_consider_incr_bound_count(processor_t processor,
thread_t thread)
{
if (thread->bound_processor == PROCESSOR_NULL) {
return;
}
assert(thread->bound_processor == processor);
if (sched_traditional_use_pset_runqueue) {
processor->processor_set->pset_runq_bound_count++;
}
processor->runq_bound_count++;
}
__attribute__((always_inline))
static inline void
runq_consider_decr_bound_count(processor_t processor,
thread_t thread)
{
if (thread->bound_processor == PROCESSOR_NULL) {
return;
}
assert(thread->bound_processor == processor);
if (sched_traditional_use_pset_runqueue) {
processor->processor_set->pset_runq_bound_count--;
}
processor->runq_bound_count--;
}
static thread_t
sched_traditional_choose_thread(
processor_t processor,
int priority,
__unused ast_t reason)
{
thread_t thread;
thread = sched_traditional_choose_thread_from_runq(processor, runq_for_processor(processor), priority);
if (thread != THREAD_NULL) {
runq_consider_decr_bound_count(processor, thread);
}
return thread;
}
/*
* sched_traditional_choose_thread_from_runq:
*
* Locate a thread to execute from the processor run queue
* and return it. Only choose a thread with greater or equal
* priority.
*
* Associated pset must be locked. Returns THREAD_NULL
* on failure.
*/
static thread_t
sched_traditional_choose_thread_from_runq(
processor_t processor,
run_queue_t rq,
int priority)
{
circle_queue_t queue = rq->queues + rq->highq;
int pri = rq->highq;
int count = rq->count;
thread_t thread;
while (count > 0 && pri >= priority) {
cqe_foreach_element_safe(thread, queue, runq_links) {
if (thread->bound_processor == PROCESSOR_NULL ||
thread->bound_processor == processor) {
circle_dequeue(queue, &thread->runq_links);
thread->runq = PROCESSOR_NULL;
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
if (SCHED(priority_is_urgent)(pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
bitmap_clear(rq->bitmap, pri);
rq->highq = bitmap_first(rq->bitmap, NRQS);
}
return thread;
}
count--;
}
queue--; pri--;
}
return THREAD_NULL;
}
static sched_mode_t
sched_traditional_initial_thread_sched_mode(task_t parent_task)
{
if (parent_task == kernel_task) {
return TH_MODE_FIXED;
} else {
return TH_MODE_TIMESHARE;
}
}
/*
* sched_traditional_processor_enqueue:
*
* Enqueue thread on a processor run queue. Thread must be locked,
* and not already be on a run queue.
*
* Returns TRUE if a preemption is indicated based on the state
* of the run queue.
*
* The run queue must be locked (see thread_run_queue_remove()
* for more info).
*/
static boolean_t
sched_traditional_processor_enqueue(processor_t processor,
thread_t thread,
sched_options_t options)
{
run_queue_t rq = runq_for_processor(processor);
boolean_t result;
result = run_queue_enqueue(rq, thread, options);
thread->runq = processor;
runq_consider_incr_bound_count(processor, thread);
return result;
}
static boolean_t
sched_traditional_processor_queue_empty(processor_t processor)
{
return runq_for_processor(processor)->count == 0;
}
static boolean_t
sched_traditional_with_pset_runqueue_processor_queue_empty(processor_t processor)
{
processor_set_t pset = processor->processor_set;
int count = runq_for_processor(processor)->count;
/*
* The pset runq contains the count of all runnable threads
* for all processors in the pset. However, for threads that
* are bound to another processor, the current "processor"
* is not eligible to execute the thread. So we only
* include bound threads that our bound to the current
* "processor". This allows the processor to idle when the
* count of eligible threads drops to 0, even if there's
* a runnable thread bound to a different processor in the
* shared runq.
*/
count -= pset->pset_runq_bound_count;
count += processor->runq_bound_count;
return count == 0;
}
static ast_t
sched_traditional_processor_csw_check(processor_t processor)
{
run_queue_t runq;
boolean_t has_higher;
assert(processor->active_thread != NULL);
runq = runq_for_processor(processor);
if (processor->first_timeslice) {
has_higher = (runq->highq > processor->current_pri);
} else {
has_higher = (runq->highq >= processor->current_pri);
}
if (has_higher) {
if (runq->urgency > 0) {
return AST_PREEMPT | AST_URGENT;
}
return AST_PREEMPT;
}
return AST_NONE;
}
static boolean_t
sched_traditional_processor_queue_has_priority(processor_t processor,
int priority,
boolean_t gte)
{
if (gte) {
return runq_for_processor(processor)->highq >= priority;
} else {
return runq_for_processor(processor)->highq > priority;
}
}
static int
sched_traditional_processor_runq_count(processor_t processor)
{
return runq_for_processor(processor)->count;
}
static uint64_t
sched_traditional_processor_runq_stats_count_sum(processor_t processor)
{
return runq_for_processor(processor)->runq_stats.count_sum;
}
static uint64_t
sched_traditional_with_pset_runqueue_processor_runq_stats_count_sum(processor_t processor)
{
if (processor->cpu_id == processor->processor_set->cpu_set_low) {
return runq_for_processor(processor)->runq_stats.count_sum;
} else {
return 0ULL;
}
}
static int
sched_traditional_processor_bound_count(processor_t processor)
{
return processor->runq_bound_count;
}
/*
* sched_traditional_processor_queue_shutdown:
*
* Shutdown a processor run queue by
* re-dispatching non-bound threads.
*
* Associated pset must be locked, and is
* returned unlocked.
*/
static void
sched_traditional_processor_queue_shutdown(processor_t processor)
{
processor_set_t pset = processor->processor_set;
run_queue_t rq = runq_for_processor(processor);
circle_queue_t queue = rq->queues + rq->highq;
int pri = rq->highq;
int count = rq->count;
thread_t thread;
circle_queue_head_t tqueue;
circle_queue_init(&tqueue);
while (count > 0) {
cqe_foreach_element_safe(thread, queue, runq_links) {
if (thread->bound_processor == PROCESSOR_NULL) {
circle_dequeue(queue, &thread->runq_links);
thread->runq = PROCESSOR_NULL;
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
runq_consider_decr_bound_count(processor, thread);
rq->count--;
if (SCHED(priority_is_urgent)(pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
bitmap_clear(rq->bitmap, pri);
rq->highq = bitmap_first(rq->bitmap, NRQS);
}
circle_enqueue_tail(&tqueue, &thread->runq_links);
}
count--;
}
queue--; pri--;
}
pset_unlock(pset);
while ((thread = cqe_dequeue_head(&tqueue, struct thread, runq_links)) != THREAD_NULL) {
thread_lock(thread);
thread_setrun(thread, SCHED_TAILQ);
thread_unlock(thread);
}
}
#if 0
static void
run_queue_check(
run_queue_t rq,
thread_t thread)
{
queue_t q;
queue_entry_t qe;
if (rq != thread->runq) {
panic("run_queue_check: thread runq");
}
if (thread->sched_pri > MAXPRI || thread->sched_pri < MINPRI) {
panic("run_queue_check: thread sched_pri");
}
q = &rq->queues[thread->sched_pri];
qe = queue_first(q);
while (!queue_end(q, qe)) {
if (qe == (queue_entry_t)thread) {
return;
}
qe = queue_next(qe);
}
panic("run_queue_check: end");
}
#endif /* 0 */
/*
* Locks the runqueue itself.
*
* Thread must be locked.
*/
static boolean_t
sched_traditional_processor_queue_remove(processor_t processor,
thread_t thread)
{
processor_set_t pset;
run_queue_t rq;
pset = processor->processor_set;
pset_lock(pset);
rq = runq_for_processor(processor);
if (processor == thread->runq) {
/*
* Thread is on a run queue and we have a lock on
* that run queue.
*/
runq_consider_decr_bound_count(processor, thread);
run_queue_remove(rq, thread);
} else {
/*
* The thread left the run queue before we could
* lock the run queue.
*/
assert(thread->runq == PROCESSOR_NULL);
processor = PROCESSOR_NULL;
}
pset_unlock(pset);
return processor != PROCESSOR_NULL;
}
/*
* sched_traditional_steal_processor_thread:
*
* Locate a thread to steal from the processor and
* return it.
*
* Associated pset must be locked. Returns THREAD_NULL
* on failure.
*/
static thread_t
sched_traditional_steal_processor_thread(processor_t processor)
{
run_queue_t rq = runq_for_processor(processor);
circle_queue_t queue = rq->queues + rq->highq;
int pri = rq->highq;
int count = rq->count;
thread_t thread;
while (count > 0) {
cqe_foreach_element_safe(thread, queue, runq_links) {
if (thread->bound_processor == PROCESSOR_NULL) {
circle_dequeue(queue, &thread->runq_links);
thread->runq = PROCESSOR_NULL;
SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
runq_consider_decr_bound_count(processor, thread);
rq->count--;
if (SCHED(priority_is_urgent)(pri)) {
rq->urgency--; assert(rq->urgency >= 0);
}
if (circle_queue_empty(queue)) {
bitmap_clear(rq->bitmap, pri);
rq->highq = bitmap_first(rq->bitmap, NRQS);
}
return thread;
}
count--;
}
queue--; pri--;
}
return THREAD_NULL;
}
static bool
sched_traditional_steal_thread_enabled(processor_set_t pset)
{
(void)pset;
return true;
}
/*
* Locate and steal a thread, beginning
* at the pset.
*
* The pset must be locked, and is returned
* unlocked.
*
* Returns the stolen thread, or THREAD_NULL on
* failure.
*/
static thread_t
sched_traditional_steal_thread(processor_set_t pset)
{
processor_set_t nset, cset = pset;
processor_t processor;
thread_t thread;
do {
uint64_t active_map = (pset->cpu_state_map[PROCESSOR_RUNNING] |
pset->cpu_state_map[PROCESSOR_DISPATCHING]);
for (int cpuid = lsb_first(active_map); cpuid >= 0; cpuid = lsb_next(active_map, cpuid)) {
processor = processor_array[cpuid];
if (runq_for_processor(processor)->count > 0) {
thread = sched_traditional_steal_processor_thread(processor);
if (thread != THREAD_NULL) {
pset_unlock(cset);
return thread;
}
}
}
nset = next_pset(cset);
if (nset != pset) {
pset_unlock(cset);
cset = nset;
pset_lock(cset);
}
} while (nset != pset);
pset_unlock(cset);
return THREAD_NULL;
}
static void
sched_traditional_thread_update_scan(sched_update_scan_context_t scan_context)
{
boolean_t restart_needed = FALSE;
processor_t processor = processor_list;
processor_set_t pset;
thread_t thread;
spl_t s;
do {
do {
/*
* TODO: in sched_traditional_use_pset_runqueue case,
* avoid scanning the same runq multiple times
*/
pset = processor->processor_set;
s = splsched();
pset_lock(pset);
restart_needed = runq_scan(runq_for_processor(processor), scan_context);
pset_unlock(pset);
splx(s);
if (restart_needed) {
break;
}
thread = processor->idle_thread;
if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
if (thread_update_add_thread(thread) == FALSE) {
restart_needed = TRUE;
break;
}
}
} while ((processor = processor->processor_list) != NULL);
/* Ok, we now have a collection of candidates -- fix them. */
thread_update_process_threads();
} while (restart_needed);
}