darling-xnu/bsd/dev/dtrace/dtrace_glue.c
2023-05-16 21:41:14 -07:00

1419 lines
33 KiB
C

/*
* Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <kern/thread.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <machine/atomic.h>
#include <libkern/OSKextLibPrivate.h>
#include <kern/kern_types.h>
#include <kern/timer_call.h>
#include <kern/thread_call.h>
#include <kern/task.h>
#include <kern/sched_prim.h>
#include <miscfs/devfs/devfs.h>
#include <kern/kalloc.h>
#include <mach/vm_param.h>
#include <mach/mach_vm.h>
#include <mach/task.h>
#include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
/*
* pid/proc
*/
/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
KALLOC_HEAP_DEFINE(KHEAP_DTRACE, "dtrace", KHEAP_ID_DEFAULT);
void
dtrace_sprlock(proc_t *p)
{
lck_mtx_lock(&p->p_dtrace_sprlock);
}
void
dtrace_sprunlock(proc_t *p)
{
lck_mtx_unlock(&p->p_dtrace_sprlock);
}
/* Not called from probe context */
proc_t *
sprlock(pid_t pid)
{
proc_t* p;
if ((p = proc_find(pid)) == PROC_NULL) {
return PROC_NULL;
}
task_suspend_internal(p->task);
dtrace_sprlock(p);
return p;
}
/* Not called from probe context */
void
sprunlock(proc_t *p)
{
if (p != PROC_NULL) {
dtrace_sprunlock(p);
task_resume_internal(p->task);
proc_rele(p);
}
}
/*
* uread/uwrite
*/
// These are not exported from vm_map.h.
extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size);
extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size);
/* Not called from probe context */
int
uread(proc_t *p, void *buf, user_size_t len, user_addr_t a)
{
kern_return_t ret;
ASSERT(p != PROC_NULL);
ASSERT(p->task != NULL);
task_t task = p->task;
/*
* Grab a reference to the task vm_map_t to make sure
* the map isn't pulled out from under us.
*
* Because the proc_lock is not held at all times on all code
* paths leading here, it is possible for the proc to have
* exited. If the map is null, fail.
*/
vm_map_t map = get_task_map_reference(task);
if (map) {
ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len);
vm_map_deallocate(map);
} else {
ret = KERN_TERMINATED;
}
return (int)ret;
}
/* Not called from probe context */
int
uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a)
{
kern_return_t ret;
ASSERT(p != NULL);
ASSERT(p->task != NULL);
task_t task = p->task;
/*
* Grab a reference to the task vm_map_t to make sure
* the map isn't pulled out from under us.
*
* Because the proc_lock is not held at all times on all code
* paths leading here, it is possible for the proc to have
* exited. If the map is null, fail.
*/
vm_map_t map = get_task_map_reference(task);
if (map) {
/* Find the memory permissions. */
uint32_t nestingDepth = 999999;
vm_region_submap_short_info_data_64_t info;
mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
mach_vm_address_t address = (mach_vm_address_t)a;
mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len;
ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count);
if (ret != KERN_SUCCESS) {
goto done;
}
vm_prot_t reprotect;
if (!(info.protection & VM_PROT_WRITE)) {
/* Save the original protection values for restoration later */
reprotect = info.protection;
if (info.max_protection & VM_PROT_WRITE) {
/* The memory is not currently writable, but can be made writable. */
ret = mach_vm_protect(map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, (reprotect & ~VM_PROT_EXECUTE) | VM_PROT_WRITE);
} else {
/*
* The memory is not currently writable, and cannot be made writable. We need to COW this memory.
*
* Strange, we can't just say "reprotect | VM_PROT_COPY", that fails.
*/
ret = mach_vm_protect(map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE);
}
if (ret != KERN_SUCCESS) {
goto done;
}
} else {
/* The memory was already writable. */
reprotect = VM_PROT_NONE;
}
ret = vm_map_write_user( map,
buf,
(vm_map_address_t)a,
(vm_size_t)len);
dtrace_flush_caches();
if (ret != KERN_SUCCESS) {
goto done;
}
if (reprotect != VM_PROT_NONE) {
ASSERT(reprotect & VM_PROT_EXECUTE);
ret = mach_vm_protect(map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect);
}
done:
vm_map_deallocate(map);
} else {
ret = KERN_TERMINATED;
}
return (int)ret;
}
/*
* cpuvar
*/
LCK_MTX_DECLARE_ATTR(cpu_lock, &dtrace_lck_grp, &dtrace_lck_attr);
LCK_MTX_DECLARE_ATTR(cyc_lock, &dtrace_lck_grp, &dtrace_lck_attr);
LCK_MTX_DECLARE_ATTR(mod_lock, &dtrace_lck_grp, &dtrace_lck_attr);
dtrace_cpu_t *cpu_list;
cpu_core_t *cpu_core; /* XXX TLB lockdown? */
/*
* cred_t
*/
/*
* dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since
* that function may try to resolve a lazy credential binding, which entails taking the proc_lock.
*/
cred_t *
dtrace_CRED(void)
{
struct uthread *uthread = get_bsdthread_info(current_thread());
if (uthread == NULL) {
return NULL;
} else {
return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */
}
}
int
PRIV_POLICY_CHOICE(void* cred, int priv, int all)
{
#pragma unused(priv, all)
return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */
}
int
PRIV_POLICY_ONLY(void *cr, int priv, int boolean)
{
#pragma unused(priv, boolean)
return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */
}
uid_t
crgetuid(const cred_t *cr)
{
cred_t copy_cr = *cr; return kauth_cred_getuid(&copy_cr);
}
/*
* "cyclic"
*/
typedef struct wrap_timer_call {
/* node attributes */
cyc_handler_t hdlr;
cyc_time_t when;
uint64_t deadline;
int cpuid;
boolean_t suspended;
struct timer_call call;
/* next item in the linked list */
LIST_ENTRY(wrap_timer_call) entries;
} wrap_timer_call_t;
#define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL
#define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL
typedef struct cyc_list {
cyc_omni_handler_t cyl_omni;
wrap_timer_call_t cyl_wrap_by_cpus[];
#if __arm__ && (__BIGGEST_ALIGNMENT__ > 4)
} __attribute__ ((aligned(8))) cyc_list_t;
#else
} cyc_list_t;
#endif
/* CPU going online/offline notifications */
void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL;
void dtrace_cpu_state_changed(int, boolean_t);
void
dtrace_install_cpu_hooks(void)
{
dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed;
}
void
dtrace_cpu_state_changed(int cpuid, boolean_t is_running)
{
#pragma unused(cpuid)
wrap_timer_call_t *wrapTC = NULL;
boolean_t suspend = (is_running ? FALSE : TRUE);
dtrace_icookie_t s;
/* Ensure that we're not going to leave the CPU */
s = dtrace_interrupt_disable();
assert(cpuid == cpu_number());
LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) {
assert(wrapTC->cpuid == cpu_number());
if (suspend) {
assert(!wrapTC->suspended);
/* If this fails, we'll panic anyway, so let's do this now. */
if (!timer_call_cancel(&wrapTC->call)) {
panic("timer_call_set_suspend() failed to cancel a timer call");
}
wrapTC->suspended = TRUE;
} else {
/* Rearm the timer, but ensure it was suspended first. */
assert(wrapTC->suspended);
clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(),
&wrapTC->deadline);
timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
wrapTC->suspended = FALSE;
}
}
/* Restore the previous interrupt state. */
dtrace_interrupt_enable(s);
}
static void
_timer_call_apply_cyclic( void *ignore, void *vTChdl )
{
#pragma unused(ignore)
wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl;
(*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline));
timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL );
}
static cyclic_id_t
timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when)
{
uint64_t now;
dtrace_icookie_t s;
timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL );
wrapTC->hdlr = *handler;
wrapTC->when = *when;
nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval );
now = mach_absolute_time();
wrapTC->deadline = now;
clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline));
/* Insert the timer to the list of the running timers on this CPU, and start it. */
s = dtrace_interrupt_disable();
wrapTC->cpuid = cpu_number();
LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries);
timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
wrapTC->suspended = FALSE;
dtrace_interrupt_enable(s);
return (cyclic_id_t)wrapTC;
}
/*
* Executed on the CPU the timer is running on.
*/
static void
timer_call_remove_cyclic(wrap_timer_call_t *wrapTC)
{
assert(wrapTC);
assert(cpu_number() == wrapTC->cpuid);
if (!timer_call_cancel(&wrapTC->call)) {
panic("timer_call_remove_cyclic() failed to cancel a timer call");
}
LIST_REMOVE(wrapTC, entries);
}
static void *
timer_call_get_cyclic_arg(wrap_timer_call_t *wrapTC)
{
return wrapTC ? wrapTC->hdlr.cyh_arg : NULL;
}
cyclic_id_t
cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when)
{
wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
if (NULL == wrapTC) {
return CYCLIC_NONE;
} else {
return timer_call_add_cyclic( wrapTC, handler, when );
}
}
void
cyclic_timer_remove(cyclic_id_t cyclic)
{
ASSERT( cyclic != CYCLIC_NONE );
/* Removing a timer call must be done on the CPU the timer is running on. */
wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic;
dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic);
_FREE((void *)cyclic, M_TEMP);
}
static void
_cyclic_add_omni(cyc_list_t *cyc_list)
{
cyc_time_t cT;
cyc_handler_t cH;
cyc_omni_handler_t *omni = &cyc_list->cyl_omni;
(omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT);
wrap_timer_call_t *wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()];
timer_call_add_cyclic(wrapTC, &cH, &cT);
}
cyclic_id_list_t
cyclic_add_omni(cyc_omni_handler_t *omni)
{
cyc_list_t *cyc_list =
_MALLOC(sizeof(cyc_list_t) + NCPU * sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
if (NULL == cyc_list) {
return NULL;
}
cyc_list->cyl_omni = *omni;
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list);
return (cyclic_id_list_t)cyc_list;
}
static void
_cyclic_remove_omni(cyc_list_t *cyc_list)
{
cyc_omni_handler_t *omni = &cyc_list->cyl_omni;
void *oarg;
wrap_timer_call_t *wrapTC;
/*
* If the processor was offline when dtrace started, we did not allocate
* a cyclic timer for this CPU.
*/
if ((wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()]) != NULL) {
oarg = timer_call_get_cyclic_arg(wrapTC);
timer_call_remove_cyclic(wrapTC);
(omni->cyo_offline)(omni->cyo_arg, CPU, oarg);
}
}
void
cyclic_remove_omni(cyclic_id_list_t cyc_list)
{
ASSERT(cyc_list != NULL);
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list);
_FREE(cyc_list, M_TEMP);
}
typedef struct wrap_thread_call {
thread_call_t TChdl;
cyc_handler_t hdlr;
cyc_time_t when;
uint64_t deadline;
} wrap_thread_call_t;
/*
* _cyclic_apply will run on some thread under kernel_task. That's OK for the
* cleaner and the deadman, but too distant in time and place for the profile provider.
*/
static void
_cyclic_apply( void *ignore, void *vTChdl )
{
#pragma unused(ignore)
wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl;
(*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline));
(void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
/* Did cyclic_remove request a wakeup call when this thread call was re-armed? */
if (wrapTC->when.cyt_interval == WAKEUP_REAPER) {
thread_wakeup((event_t)wrapTC);
}
}
cyclic_id_t
cyclic_add(cyc_handler_t *handler, cyc_time_t *when)
{
uint64_t now;
wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK);
if (NULL == wrapTC) {
return CYCLIC_NONE;
}
wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL );
wrapTC->hdlr = *handler;
wrapTC->when = *when;
ASSERT(when->cyt_when == 0);
ASSERT(when->cyt_interval < WAKEUP_REAPER);
nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval);
now = mach_absolute_time();
wrapTC->deadline = now;
clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline));
(void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
return (cyclic_id_t)wrapTC;
}
static void
noop_cyh_func(void * ignore)
{
#pragma unused(ignore)
}
void
cyclic_remove(cyclic_id_t cyclic)
{
wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic;
ASSERT(cyclic != CYCLIC_NONE);
while (!thread_call_cancel(wrapTC->TChdl)) {
int ret = assert_wait(wrapTC, THREAD_UNINT);
ASSERT(ret == THREAD_WAITING);
wrapTC->when.cyt_interval = WAKEUP_REAPER;
ret = thread_block(THREAD_CONTINUE_NULL);
ASSERT(ret == THREAD_AWAKENED);
}
if (thread_call_free(wrapTC->TChdl)) {
_FREE(wrapTC, M_TEMP);
} else {
/* Gut this cyclic and move on ... */
wrapTC->hdlr.cyh_func = noop_cyh_func;
wrapTC->when.cyt_interval = NEARLY_FOREVER;
}
}
int
ddi_driver_major(dev_info_t *devi)
{
return (int)major(CAST_DOWN_EXPLICIT(int, devi));
}
int
ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type,
minor_t minor_num, const char *node_type, int flag)
{
#pragma unused(spec_type,node_type,flag)
dev_t dev = makedev( ddi_driver_major(dip), minor_num );
if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 )) {
return DDI_FAILURE;
} else {
return DDI_SUCCESS;
}
}
void
ddi_remove_minor_node(dev_info_t *dip, char *name)
{
#pragma unused(dip,name)
/* XXX called from dtrace_detach, so NOTREACHED for now. */
}
major_t
getemajor( dev_t d )
{
return (major_t) major(d);
}
minor_t
getminor( dev_t d )
{
return (minor_t) minor(d);
}
extern void Debugger(const char*);
void
debug_enter(char *c)
{
Debugger(c);
}
/*
* kmem
*/
void *
dt_kmem_alloc_site(size_t size, int kmflag, vm_allocation_site_t *site)
{
#pragma unused(kmflag)
/*
* We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
* Requests larger than 8K with M_NOWAIT fail in kalloc_ext.
*/
return kalloc_ext(KHEAP_DTRACE, size, Z_WAITOK, site).addr;
}
void *
dt_kmem_zalloc_site(size_t size, int kmflag, vm_allocation_site_t *site)
{
#pragma unused(kmflag)
/*
* We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
* Requests larger than 8K with M_NOWAIT fail in kalloc_ext.
*/
return kalloc_ext(KHEAP_DTRACE, size, Z_WAITOK | Z_ZERO, site).addr;
}
void
dt_kmem_free(void *buf, size_t size)
{
kheap_free(KHEAP_DTRACE, buf, size);
}
/*
* aligned dt_kmem allocator
* align should be a power of two
*/
void*
dt_kmem_alloc_aligned_site(size_t size, size_t align, int kmflag, vm_allocation_site_t *site)
{
void *mem, **addr_to_free;
intptr_t mem_aligned;
size_t *size_to_free, hdr_size;
/* Must be a power of two. */
assert(align != 0);
assert((align & (align - 1)) == 0);
/*
* We are going to add a header to the allocation. It contains
* the address to free and the total size of the buffer.
*/
hdr_size = sizeof(size_t) + sizeof(void*);
mem = dt_kmem_alloc_site(size + align + hdr_size, kmflag, site);
if (mem == NULL) {
return NULL;
}
mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1));
/* Write the address to free in the header. */
addr_to_free = (void**) (mem_aligned - sizeof(void*));
*addr_to_free = mem;
/* Write the size to free in the header. */
size_to_free = (size_t*) (mem_aligned - hdr_size);
*size_to_free = size + align + hdr_size;
return (void*) mem_aligned;
}
void*
dt_kmem_zalloc_aligned_site(size_t size, size_t align, int kmflag, vm_allocation_site_t *s)
{
void* buf;
buf = dt_kmem_alloc_aligned_site(size, align, kmflag, s);
if (!buf) {
return NULL;
}
bzero(buf, size);
return buf;
}
void
dt_kmem_free_aligned(void* buf, size_t size)
{
#pragma unused(size)
intptr_t ptr = (intptr_t) buf;
void **addr_to_free = (void**) (ptr - sizeof(void*));
size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*)));
if (buf == NULL) {
return;
}
dt_kmem_free(*addr_to_free, *size_to_free);
}
/*
* dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and
* doesn't specify constructor, destructor, or reclaim methods.
* At present, it always zeroes the block it obtains from kmem_cache_alloc().
* We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE.
*/
kmem_cache_t *
kmem_cache_create(
const char *name, /* descriptive name for this cache */
size_t bufsize, /* size of the objects it manages */
size_t align, /* required object alignment */
int (*constructor)(void *, void *, int), /* object constructor */
void (*destructor)(void *, void *), /* object destructor */
void (*reclaim)(void *), /* memory reclaim callback */
void *private, /* pass-thru arg for constr/destr/reclaim */
vmem_t *vmp, /* vmem source for slab allocation */
int cflags) /* cache creation flags */
{
#pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags)
return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */
}
void *
kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
{
#pragma unused(kmflag)
size_t bufsize = (size_t)cp;
return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK);
}
void
kmem_cache_free(kmem_cache_t *cp, void *buf)
{
#pragma unused(cp)
_FREE(buf, M_TEMP);
}
void
kmem_cache_destroy(kmem_cache_t *cp)
{
#pragma unused(cp)
}
/*
* vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids
*/
typedef unsigned int u_daddr_t;
#include "blist.h"
/* By passing around blist *handles*, the underlying blist can be resized as needed. */
struct blist_hdl {
blist_t blist;
};
vmem_t *
vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5,
void *ignore6, vmem_t *source, size_t qcache_max, int vmflag)
{
#pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag)
blist_t bl;
struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK);
ASSERT(quantum == 1);
ASSERT(NULL == ignore5);
ASSERT(NULL == ignore6);
ASSERT(NULL == source);
ASSERT(0 == qcache_max);
ASSERT(size <= INT32_MAX);
ASSERT(vmflag & VMC_IDENTIFIER);
size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */
p->blist = bl = blist_create((daddr_t)size);
blist_free(bl, 0, (daddr_t)size);
if (base) {
blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */
}
return (vmem_t *)p;
}
void *
vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
{
#pragma unused(vmflag)
struct blist_hdl *q = (struct blist_hdl *)vmp;
blist_t bl = q->blist;
daddr_t p;
p = blist_alloc(bl, (daddr_t)size);
if (p == SWAPBLK_NONE) {
blist_resize(&bl, (bl->bl_blocks) << 1, 1);
q->blist = bl;
p = blist_alloc(bl, (daddr_t)size);
if (p == SWAPBLK_NONE) {
panic("vmem_alloc: failure after blist_resize!");
}
}
return (void *)(uintptr_t)p;
}
void
vmem_free(vmem_t *vmp, void *vaddr, size_t size)
{
struct blist_hdl *p = (struct blist_hdl *)vmp;
blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size );
}
void
vmem_destroy(vmem_t *vmp)
{
struct blist_hdl *p = (struct blist_hdl *)vmp;
blist_destroy( p->blist );
_FREE( p, sizeof(struct blist_hdl));
}
/*
* Timing
*/
/*
* dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at
* January 1, 1970. Because it can be called from probe context, it must take no locks.
*/
hrtime_t
dtrace_gethrestime(void)
{
clock_sec_t secs;
clock_nsec_t nanosecs;
uint64_t secs64, ns64;
clock_get_calendar_nanotime_nowait(&secs, &nanosecs);
secs64 = (uint64_t)secs;
ns64 = (uint64_t)nanosecs;
ns64 = ns64 + (secs64 * 1000000000LL);
return ns64;
}
/*
* dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin.
* Hence its primary use is to specify intervals.
*/
hrtime_t
dtrace_abs_to_nano(uint64_t elapsed)
{
static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
/*
* If this is the first time we've run, get the timebase.
* We can use denom == 0 to indicate that sTimebaseInfo is
* uninitialised because it makes no sense to have a zero
* denominator in a fraction.
*/
if (sTimebaseInfo.denom == 0) {
(void) clock_timebase_info(&sTimebaseInfo);
}
/*
* Convert to nanoseconds.
* return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom;
*
* Provided the final result is representable in 64 bits the following maneuver will
* deliver that result without intermediate overflow.
*/
if (sTimebaseInfo.denom == sTimebaseInfo.numer) {
return elapsed;
} else if (sTimebaseInfo.denom == 1) {
return elapsed * (uint64_t)sTimebaseInfo.numer;
} else {
/* Decompose elapsed = eta32 * 2^32 + eps32: */
uint64_t eta32 = elapsed >> 32;
uint64_t eps32 = elapsed & 0x00000000ffffffffLL;
uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom;
/* Form product of elapsed64 (decomposed) and numer: */
uint64_t mu64 = numer * eta32;
uint64_t lambda64 = numer * eps32;
/* Divide the constituents by denom: */
uint64_t q32 = mu64 / denom;
uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */
return (q32 << 32) + ((r32 << 32) + lambda64) / denom;
}
}
hrtime_t
dtrace_gethrtime(void)
{
static uint64_t start = 0;
if (start == 0) {
start = mach_absolute_time();
}
return dtrace_abs_to_nano(mach_absolute_time() - start);
}
/*
* Atomicity and synchronization
*/
uint32_t
dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new)
{
if (OSCompareAndSwap((UInt32)cmp, (UInt32)new, (volatile UInt32 *)target )) {
return cmp;
} else {
return ~cmp; /* Must return something *other* than cmp */
}
}
void *
dtrace_casptr(void *target, void *cmp, void *new)
{
if (OSCompareAndSwapPtr( cmp, new, (void**)target )) {
return cmp;
} else {
return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */
}
}
/*
* Interrupt manipulation
*/
dtrace_icookie_t
dtrace_interrupt_disable(void)
{
return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE);
}
void
dtrace_interrupt_enable(dtrace_icookie_t reenable)
{
(void)ml_set_interrupts_enabled((boolean_t)reenable);
}
/*
* MP coordination
*/
static void
dtrace_sync_func(void)
{
}
/*
* dtrace_sync() is not called from probe context.
*/
void
dtrace_sync(void)
{
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
}
/*
* The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context.
*/
extern kern_return_t dtrace_copyio_preflight(addr64_t);
extern kern_return_t dtrace_copyio_postflight(addr64_t);
static int
dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size)
{
#pragma unused(kaddr)
vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */
dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */
ASSERT(kaddr + size >= kaddr);
if (uaddr + size < uaddr || /* Avoid address wrap. */
KERN_FAILURE == dtrace_copyio_preflight(uaddr)) { /* Machine specific setup/constraints. */
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
return 0;
}
return 1;
}
void
dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
{
#pragma unused(flags)
if (dtrace_copycheck( src, dst, len )) {
if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
}
dtrace_copyio_postflight(src);
}
}
void
dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
{
#pragma unused(flags)
size_t actual;
if (dtrace_copycheck( src, dst, len )) {
/* copyin as many as 'len' bytes. */
int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual);
/*
* ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was
* not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on.
* Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
* to the caller.
*/
if (error && error != ENAMETOOLONG) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
}
dtrace_copyio_postflight(src);
}
}
void
dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
{
#pragma unused(flags)
if (dtrace_copycheck( dst, src, len )) {
if (copyout((const void *)src, dst, (vm_size_t)len)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
}
dtrace_copyio_postflight(dst);
}
}
void
dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
{
#pragma unused(flags)
size_t actual;
if (dtrace_copycheck( dst, src, len )) {
/*
* ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was
* not encountered. We raise CPU_DTRACE_BADADDR in that case.
* Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
* to the caller.
*/
if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
}
dtrace_copyio_postflight(dst);
}
}
extern const int copysize_limit_panic;
int
dtrace_copy_maxsize(void)
{
return copysize_limit_panic;
}
int
dtrace_buffer_copyout(const void *kaddr, user_addr_t uaddr, vm_size_t nbytes)
{
int maxsize = dtrace_copy_maxsize();
/*
* Partition the copyout in copysize_limit_panic-sized chunks
*/
while (nbytes >= (vm_size_t)maxsize) {
if (copyout(kaddr, uaddr, maxsize) != 0) {
return EFAULT;
}
nbytes -= maxsize;
uaddr += maxsize;
kaddr += maxsize;
}
if (nbytes > 0) {
if (copyout(kaddr, uaddr, nbytes) != 0) {
return EFAULT;
}
}
return 0;
}
uint8_t
dtrace_fuword8(user_addr_t uaddr)
{
uint8_t ret = 0;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
}
dtrace_copyio_postflight(uaddr);
}
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return ret;
}
uint16_t
dtrace_fuword16(user_addr_t uaddr)
{
uint16_t ret = 0;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
}
dtrace_copyio_postflight(uaddr);
}
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return ret;
}
uint32_t
dtrace_fuword32(user_addr_t uaddr)
{
uint32_t ret = 0;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
}
dtrace_copyio_postflight(uaddr);
}
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return ret;
}
uint64_t
dtrace_fuword64(user_addr_t uaddr)
{
uint64_t ret = 0;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
}
dtrace_copyio_postflight(uaddr);
}
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return ret;
}
/*
* Emulation of Solaris fuword / suword
* Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds.
*/
int
fuword8(user_addr_t uaddr, uint8_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) {
return -1;
}
return 0;
}
int
fuword16(user_addr_t uaddr, uint16_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) {
return -1;
}
return 0;
}
int
fuword32(user_addr_t uaddr, uint32_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) {
return -1;
}
return 0;
}
int
fuword64(user_addr_t uaddr, uint64_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) {
return -1;
}
return 0;
}
void
fuword32_noerr(user_addr_t uaddr, uint32_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) {
*value = 0;
}
}
void
fuword64_noerr(user_addr_t uaddr, uint64_t *value)
{
if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) {
*value = 0;
}
}
int
suword64(user_addr_t addr, uint64_t value)
{
if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
return -1;
}
return 0;
}
int
suword32(user_addr_t addr, uint32_t value)
{
if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
return -1;
}
return 0;
}
/*
* Miscellaneous
*/
extern boolean_t dtrace_tally_fault(user_addr_t);
boolean_t
dtrace_tally_fault(user_addr_t uaddr)
{
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
return DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE;
}
#define TOTTY 0x02
extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */
int
vuprintf(const char *format, va_list ap)
{
return prf(format, ap, TOTTY, NULL);
}
/* Not called from probe context */
void
cmn_err( int level, const char *format, ... )
{
#pragma unused(level)
va_list alist;
va_start(alist, format);
vuprintf(format, alist);
va_end(alist);
uprintf("\n");
}
const void*
bsearch(const void *key, const void *base0, size_t nmemb, size_t size, int (*compar)(const void *, const void *))
{
const char *base = base0;
size_t lim;
int cmp;
const void *p;
for (lim = nmemb; lim != 0; lim >>= 1) {
p = base + (lim >> 1) * size;
cmp = (*compar)(key, p);
if (cmp == 0) {
return p;
}
if (cmp > 0) { /* key > p: move right */
base = (const char *)p + size;
lim--;
} /* else move left */
}
return NULL;
}
/*
* Runtime and ABI
*/
uintptr_t
dtrace_caller(int ignore)
{
#pragma unused(ignore)
return -1; /* Just as in Solaris dtrace_asm.s */
}
int
dtrace_getstackdepth(int aframes)
{
struct frame *fp = (struct frame *)__builtin_frame_address(0);
struct frame *nextfp, *minfp, *stacktop;
int depth = 0;
int on_intr;
if ((on_intr = CPU_ON_INTR(CPU)) != 0) {
stacktop = (struct frame *)dtrace_get_cpu_int_stack_top();
} else {
stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
}
minfp = fp;
aframes++;
for (;;) {
depth++;
nextfp = *(struct frame **)fp;
if (nextfp <= minfp || nextfp >= stacktop) {
if (on_intr) {
/*
* Hop from interrupt stack to thread stack.
*/
vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
minfp = (struct frame *)kstack_base;
stacktop = (struct frame *)(kstack_base + kernel_stack_size);
on_intr = 0;
continue;
}
break;
}
fp = nextfp;
minfp = fp;
}
if (depth <= aframes) {
return 0;
}
return depth - aframes;
}
int
dtrace_addr_in_module(void* addr, struct modctl *ctl)
{
return OSKextKextForAddress(addr) == (void*)ctl->mod_address;
}
/*
* Unconsidered
*/
void
dtrace_vtime_enable(void)
{
}
void
dtrace_vtime_disable(void)
{
}