darling-xnu/bsd/kern/kern_exec.c
2023-05-16 21:41:14 -07:00

7292 lines
209 KiB
C

/*
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Mach Operating System
* Copyright (c) 1987 Carnegie-Mellon University
* All rights reserved. The CMU software License Agreement specifies
* the terms and conditions for use and redistribution.
*/
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)kern_exec.c 8.1 (Berkeley) 6/10/93
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <machine/reg.h>
#include <machine/cpu_capabilities.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/user.h>
#include <sys/socketvar.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/mount_internal.h>
#include <sys/vnode_internal.h>
#include <sys/file_internal.h>
#include <sys/stat.h>
#include <sys/uio_internal.h>
#include <sys/acct.h>
#include <sys/exec.h>
#include <sys/kdebug.h>
#include <sys/signal.h>
#include <sys/aio_kern.h>
#include <sys/sysproto.h>
#include <sys/sysctl.h>
#include <sys/persona.h>
#include <sys/reason.h>
#if SYSV_SHM
#include <sys/shm_internal.h> /* shmexec() */
#endif
#include <sys/ubc_internal.h> /* ubc_map() */
#include <sys/spawn.h>
#include <sys/spawn_internal.h>
#include <sys/process_policy.h>
#include <sys/codesign.h>
#include <sys/random.h>
#include <crypto/sha1.h>
#include <libkern/libkern.h>
#include <libkern/crypto/sha2.h>
#include <security/audit/audit.h>
#include <ipc/ipc_types.h>
#include <mach/mach_param.h>
#include <mach/mach_types.h>
#include <mach/port.h>
#include <mach/task.h>
#include <mach/task_access.h>
#include <mach/thread_act.h>
#include <mach/vm_map.h>
#include <mach/mach_vm.h>
#include <mach/vm_param.h>
#include <kern/sched_prim.h> /* thread_wakeup() */
#include <kern/affinity.h>
#include <kern/assert.h>
#include <kern/task.h>
#include <kern/coalition.h>
#include <kern/policy_internal.h>
#include <kern/kalloc.h>
#include <os/log.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#include <security/mac_mach_internal.h>
#endif
#if CONFIG_AUDIT
#include <bsm/audit_kevents.h>
#endif
#if CONFIG_ARCADE
#include <kern/arcade.h>
#endif
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_protos.h>
#include <vm/vm_kern.h>
#include <vm/vm_fault.h>
#include <vm/vm_pageout.h>
#include <vm/pmap.h>
#include <kdp/kdp_dyld.h>
#include <machine/machine_routines.h>
#include <machine/pal_routines.h>
#include <pexpert/pexpert.h>
#if CONFIG_MEMORYSTATUS
#include <sys/kern_memorystatus.h>
#endif
#include <IOKit/IOBSD.h>
#include <IOKit/IOPlatformExpert.h>
extern boolean_t vm_darkwake_mode;
extern int bootarg_execfailurereports; /* bsd_init.c */
boolean_t unentitled_ios_sim_launch = FALSE;
#if __has_feature(ptrauth_calls) && defined(XNU_TARGET_OS_OSX)
static TUNABLE(bool, bootarg_arm64e_preview_abi, "-arm64e_preview_abi", false);
#endif /* __has_feature(ptrauth_calls) && defined(XNU_TARGET_OS_OSX) */
#if CONFIG_DTRACE
/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
extern void dtrace_proc_exec(proc_t);
extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t);
/*
* Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
* we will store its value before actually calling it.
*/
static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL;
#include <sys/dtrace_ptss.h>
#endif
#if __has_feature(ptrauth_calls)
static int vm_shared_region_per_team_id = 1;
static int vm_shared_region_by_entitlement = 1;
/* Flag to control whether shared cache randomized resliding is enabled */
#if DEVELOPMENT || DEBUG || XNU_TARGET_OS_IOS
static int vm_shared_region_reslide_aslr = 1;
#else /* DEVELOPMENT || DEBUG || XNU_TARGET_OS_IOS */
static int vm_shared_region_reslide_aslr = 0;
#endif /* DEVELOPMENT || DEBUG || XNU_TARGET_OS_IOS */
/*
* Flag to control what processes should get shared cache randomize resliding
* after a fault in the shared cache region:
*
* 0 - all processes get a new randomized slide
* 1 - only platform processes get a new randomized slide
*/
int vm_shared_region_reslide_restrict = 1;
#if DEVELOPMENT || DEBUG
SYSCTL_INT(_vm, OID_AUTO, vm_shared_region_per_team_id, CTLFLAG_RW, &vm_shared_region_per_team_id, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_shared_region_by_entitlement, CTLFLAG_RW, &vm_shared_region_by_entitlement, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_shared_region_reslide_restrict, CTLFLAG_RW, &vm_shared_region_reslide_restrict, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_shared_region_reslide_aslr, CTLFLAG_RW, &vm_shared_region_reslide_aslr, 0, "");
#endif
#endif /* __has_feature(ptrauth_calls) */
/* support for child creation in exec after vfork */
thread_t fork_create_child(task_t parent_task,
coalition_t *parent_coalition,
proc_t child_proc,
int inherit_memory,
int is_64bit_addr,
int is_64bit_data,
int in_exec);
void vfork_exit(proc_t p, int rv);
extern void proc_apply_task_networkbg_internal(proc_t, thread_t);
extern void task_set_did_exec_flag(task_t task);
extern void task_clear_exec_copy_flag(task_t task);
proc_t proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread, void **inherit);
boolean_t task_is_active(task_t);
boolean_t thread_is_active(thread_t thread);
void thread_copy_resource_info(thread_t dst_thread, thread_t src_thread);
void *ipc_importance_exec_switch_task(task_t old_task, task_t new_task);
extern void ipc_importance_release(void *elem);
extern boolean_t task_has_watchports(task_t task);
extern void task_set_no_smt(task_t task);
#if defined(HAS_APPLE_PAC)
char *task_get_vm_shared_region_id_and_jop_pid(task_t task, uint64_t *jop_pid);
#endif
task_t convert_port_to_task(ipc_port_t port);
/*
* Mach things for which prototypes are unavailable from Mach headers
*/
#define IPC_OBJECT_COPYIN_FLAGS_ALLOW_IMMOVABLE_SEND 0x1
void ipc_task_reset(
task_t task);
void ipc_thread_reset(
thread_t thread);
kern_return_t ipc_object_copyin(
ipc_space_t space,
mach_port_name_t name,
mach_msg_type_name_t msgt_name,
ipc_object_t *objectp,
mach_port_context_t context,
mach_msg_guard_flags_t *guard_flags,
uint32_t kmsg_flags);
void ipc_port_release_send(ipc_port_t);
#if DEVELOPMENT || DEBUG
void task_importance_update_owner_info(task_t);
#endif
extern struct savearea *get_user_regs(thread_t);
__attribute__((noinline)) int __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid);
#include <kern/thread.h>
#include <kern/task.h>
#include <kern/ast.h>
#include <kern/mach_loader.h>
#include <kern/mach_fat.h>
#include <mach-o/fat.h>
#include <mach-o/loader.h>
#include <machine/vmparam.h>
#include <sys/imgact.h>
#include <sys/sdt.h>
/*
* EAI_ITERLIMIT The maximum number of times to iterate an image
* activator in exec_activate_image() before treating
* it as malformed/corrupt.
*/
#define EAI_ITERLIMIT 3
/*
* For #! interpreter parsing
*/
#define IS_WHITESPACE(ch) ((ch == ' ') || (ch == '\t'))
#define IS_EOL(ch) ((ch == '#') || (ch == '\n'))
extern vm_map_t bsd_pageable_map;
extern const struct fileops vnops;
extern int nextpidversion;
#define USER_ADDR_ALIGN(addr, val) \
( ( (user_addr_t)(addr) + (val) - 1) \
& ~((val) - 1) )
/*
* For subsystem root support
*/
#define SPAWN_SUBSYSTEM_ROOT_ENTITLEMENT "com.apple.private.spawn-subsystem-root"
/* Platform Code Exec Logging */
static int platform_exec_logging = 0;
SYSCTL_DECL(_security_mac);
SYSCTL_INT(_security_mac, OID_AUTO, platform_exec_logging, CTLFLAG_RW, &platform_exec_logging, 0,
"log cdhashes for all platform binary executions");
static os_log_t peLog = OS_LOG_DEFAULT;
struct exec_port_actions {
uint32_t portwatch_count;
uint32_t registered_count;
ipc_port_t *portwatch_array;
ipc_port_t *registered_array;
};
struct image_params; /* Forward */
static int exec_activate_image(struct image_params *imgp);
static int exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp);
static int load_return_to_errno(load_return_t lrtn);
static int execargs_alloc(struct image_params *imgp);
static int execargs_free(struct image_params *imgp);
static int exec_check_permissions(struct image_params *imgp);
static int exec_extract_strings(struct image_params *imgp);
static int exec_add_apple_strings(struct image_params *imgp, const load_result_t *load_result);
static int exec_handle_sugid(struct image_params *imgp);
static int sugid_scripts = 0;
SYSCTL_INT(_kern, OID_AUTO, sugid_scripts, CTLFLAG_RW | CTLFLAG_LOCKED, &sugid_scripts, 0, "");
static kern_return_t create_unix_stack(vm_map_t map, load_result_t* load_result, proc_t p);
static int copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size);
static void exec_resettextvp(proc_t, struct image_params *);
static int check_for_signature(proc_t, struct image_params *);
static void exec_prefault_data(proc_t, struct image_params *, load_result_t *);
static errno_t exec_handle_port_actions(struct image_params *imgp,
struct exec_port_actions *port_actions);
static errno_t exec_handle_spawnattr_policy(proc_t p, thread_t thread, int psa_apptype, uint64_t psa_qos_clamp,
task_role_t psa_darwin_role, struct exec_port_actions *port_actions);
static void exec_port_actions_destroy(struct exec_port_actions *port_actions);
/*
* exec_add_user_string
*
* Add the requested string to the string space area.
*
* Parameters; struct image_params * image parameter block
* user_addr_t string to add to strings area
* int segment from which string comes
* boolean_t TRUE if string contributes to NCARGS
*
* Returns: 0 Success
* !0 Failure errno from copyinstr()
*
* Implicit returns:
* (imgp->ip_strendp) updated location of next add, if any
* (imgp->ip_strspace) updated byte count of space remaining
* (imgp->ip_argspace) updated byte count of space in NCARGS
*/
__attribute__((noinline))
static int
exec_add_user_string(struct image_params *imgp, user_addr_t str, int seg, boolean_t is_ncargs)
{
int error = 0;
do {
size_t len = 0;
int space;
if (is_ncargs) {
space = imgp->ip_argspace; /* by definition smaller than ip_strspace */
} else {
space = imgp->ip_strspace;
}
if (space <= 0) {
error = E2BIG;
break;
}
if (!UIO_SEG_IS_USER_SPACE(seg)) {
char *kstr = CAST_DOWN(char *, str); /* SAFE */
error = copystr(kstr, imgp->ip_strendp, space, &len);
} else {
error = copyinstr(str, imgp->ip_strendp, space, &len);
}
imgp->ip_strendp += len;
imgp->ip_strspace -= len;
if (is_ncargs) {
imgp->ip_argspace -= len;
}
} while (error == ENAMETOOLONG);
return error;
}
/*
* dyld is now passed the executable path as a getenv-like variable
* in the same fashion as the stack_guard and malloc_entropy keys.
*/
#define EXECUTABLE_KEY "executable_path="
/*
* exec_save_path
*
* To support new app package launching for Mac OS X, the dyld needs the
* first argument to execve() stored on the user stack.
*
* Save the executable path name at the bottom of the strings area and set
* the argument vector pointer to the location following that to indicate
* the start of the argument and environment tuples, setting the remaining
* string space count to the size of the string area minus the path length.
*
* Parameters; struct image_params * image parameter block
* char * path used to invoke program
* int segment from which path comes
*
* Returns: int 0 Success
* EFAULT Bad address
* copy[in]str:EFAULT Bad address
* copy[in]str:ENAMETOOLONG Filename too long
*
* Implicit returns:
* (imgp->ip_strings) saved path
* (imgp->ip_strspace) space remaining in ip_strings
* (imgp->ip_strendp) start of remaining copy area
* (imgp->ip_argspace) space remaining of NCARGS
* (imgp->ip_applec) Initial applev[0]
*
* Note: We have to do this before the initial namei() since in the
* path contains symbolic links, namei() will overwrite the
* original path buffer contents. If the last symbolic link
* resolved was a relative pathname, we would lose the original
* "path", which could be an absolute pathname. This might be
* unacceptable for dyld.
*/
static int
exec_save_path(struct image_params *imgp, user_addr_t path, int seg, const char **excpath)
{
int error;
size_t len;
char *kpath;
// imgp->ip_strings can come out of a cache, so we need to obliterate the
// old path.
memset(imgp->ip_strings, '\0', strlen(EXECUTABLE_KEY) + MAXPATHLEN);
len = MIN(MAXPATHLEN, imgp->ip_strspace);
switch (seg) {
case UIO_USERSPACE32:
case UIO_USERSPACE64: /* Same for copyin()... */
error = copyinstr(path, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
break;
case UIO_SYSSPACE:
kpath = CAST_DOWN(char *, path); /* SAFE */
error = copystr(kpath, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
break;
default:
error = EFAULT;
break;
}
if (!error) {
bcopy(EXECUTABLE_KEY, imgp->ip_strings, strlen(EXECUTABLE_KEY));
len += strlen(EXECUTABLE_KEY);
imgp->ip_strendp += len;
imgp->ip_strspace -= len;
if (excpath) {
*excpath = imgp->ip_strings + strlen(EXECUTABLE_KEY);
}
}
return error;
}
/*
* exec_reset_save_path
*
* If we detect a shell script, we need to reset the string area
* state so that the interpreter can be saved onto the stack.
*
* Parameters; struct image_params * image parameter block
*
* Returns: int 0 Success
*
* Implicit returns:
* (imgp->ip_strings) saved path
* (imgp->ip_strspace) space remaining in ip_strings
* (imgp->ip_strendp) start of remaining copy area
* (imgp->ip_argspace) space remaining of NCARGS
*
*/
static int
exec_reset_save_path(struct image_params *imgp)
{
imgp->ip_strendp = imgp->ip_strings;
imgp->ip_argspace = NCARGS;
imgp->ip_strspace = (NCARGS + PAGE_SIZE);
return 0;
}
/*
* exec_shell_imgact
*
* Image activator for interpreter scripts. If the image begins with
* the characters "#!", then it is an interpreter script. Verify the
* length of the script line indicating the interpreter is not in
* excess of the maximum allowed size. If this is the case, then
* break out the arguments, if any, which are separated by white
* space, and copy them into the argument save area as if they were
* provided on the command line before all other arguments. The line
* ends when we encounter a comment character ('#') or newline.
*
* Parameters; struct image_params * image parameter block
*
* Returns: -1 not an interpreter (keep looking)
* -3 Success: interpreter: relookup
* >0 Failure: interpreter: error number
*
* A return value other than -1 indicates subsequent image activators should
* not be given the opportunity to attempt to activate the image.
*/
static int
exec_shell_imgact(struct image_params *imgp)
{
char *vdata = imgp->ip_vdata;
char *ihp;
char *line_startp, *line_endp;
char *interp;
/*
* Make sure it's a shell script. If we've already redirected
* from an interpreted file once, don't do it again.
*/
if (vdata[0] != '#' ||
vdata[1] != '!' ||
(imgp->ip_flags & IMGPF_INTERPRET) != 0) {
return -1;
}
if (imgp->ip_origcputype != 0) {
/* Fat header previously matched, don't allow shell script inside */
return -1;
}
imgp->ip_flags |= IMGPF_INTERPRET;
imgp->ip_interp_sugid_fd = -1;
imgp->ip_interp_buffer[0] = '\0';
/* Check to see if SUGID scripts are permitted. If they aren't then
* clear the SUGID bits.
* imgp->ip_vattr is known to be valid.
*/
if (sugid_scripts == 0) {
imgp->ip_origvattr->va_mode &= ~(VSUID | VSGID);
}
/* Try to find the first non-whitespace character */
for (ihp = &vdata[2]; ihp < &vdata[IMG_SHSIZE]; ihp++) {
if (IS_EOL(*ihp)) {
/* Did not find interpreter, "#!\n" */
return ENOEXEC;
} else if (IS_WHITESPACE(*ihp)) {
/* Whitespace, like "#! /bin/sh\n", keep going. */
} else {
/* Found start of interpreter */
break;
}
}
if (ihp == &vdata[IMG_SHSIZE]) {
/* All whitespace, like "#! " */
return ENOEXEC;
}
line_startp = ihp;
/* Try to find the end of the interpreter+args string */
for (; ihp < &vdata[IMG_SHSIZE]; ihp++) {
if (IS_EOL(*ihp)) {
/* Got it */
break;
} else {
/* Still part of interpreter or args */
}
}
if (ihp == &vdata[IMG_SHSIZE]) {
/* A long line, like "#! blah blah blah" without end */
return ENOEXEC;
}
/* Backtrack until we find the last non-whitespace */
while (IS_EOL(*ihp) || IS_WHITESPACE(*ihp)) {
ihp--;
}
/* The character after the last non-whitespace is our logical end of line */
line_endp = ihp + 1;
/*
* Now we have pointers to the usable part of:
*
* "#! /usr/bin/int first second third \n"
* ^ line_startp ^ line_endp
*/
/* copy the interpreter name */
interp = imgp->ip_interp_buffer;
for (ihp = line_startp; (ihp < line_endp) && !IS_WHITESPACE(*ihp); ihp++) {
*interp++ = *ihp;
}
*interp = '\0';
exec_reset_save_path(imgp);
exec_save_path(imgp, CAST_USER_ADDR_T(imgp->ip_interp_buffer),
UIO_SYSSPACE, NULL);
/* Copy the entire interpreter + args for later processing into argv[] */
interp = imgp->ip_interp_buffer;
for (ihp = line_startp; (ihp < line_endp); ihp++) {
*interp++ = *ihp;
}
*interp = '\0';
#if CONFIG_SETUID
/*
* If we have an SUID or SGID script, create a file descriptor
* from the vnode and pass /dev/fd/%d instead of the actual
* path name so that the script does not get opened twice
*/
if (imgp->ip_origvattr->va_mode & (VSUID | VSGID)) {
proc_t p;
struct fileproc *fp;
int fd;
int error;
p = vfs_context_proc(imgp->ip_vfs_context);
error = falloc(p, &fp, &fd, imgp->ip_vfs_context);
if (error) {
return error;
}
fp->fp_glob->fg_flag = FREAD;
fp->fp_glob->fg_ops = &vnops;
fp->fp_glob->fg_data = (caddr_t)imgp->ip_vp;
proc_fdlock(p);
procfdtbl_releasefd(p, fd, NULL);
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
vnode_ref(imgp->ip_vp);
imgp->ip_interp_sugid_fd = fd;
}
#endif /* CONFIG_SETUID */
return -3;
}
/*
* exec_fat_imgact
*
* Image activator for fat 1.0 binaries. If the binary is fat, then we
* need to select an image from it internally, and make that the image
* we are going to attempt to execute. At present, this consists of
* reloading the first page for the image with a first page from the
* offset location indicated by the fat header.
*
* Parameters; struct image_params * image parameter block
*
* Returns: -1 not a fat binary (keep looking)
* -2 Success: encapsulated binary: reread
* >0 Failure: error number
*
* Important: This image activator is byte order neutral.
*
* Note: A return value other than -1 indicates subsequent image
* activators should not be given the opportunity to attempt
* to activate the image.
*
* If we find an encapsulated binary, we make no assertions
* about its validity; instead, we leave that up to a rescan
* for an activator to claim it, and, if it is claimed by one,
* that activator is responsible for determining validity.
*/
static int
exec_fat_imgact(struct image_params *imgp)
{
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
kauth_cred_t cred = kauth_cred_proc_ref(p);
struct fat_header *fat_header = (struct fat_header *)imgp->ip_vdata;
struct _posix_spawnattr *psa = NULL;
struct fat_arch fat_arch;
int resid, error;
load_return_t lret;
if (imgp->ip_origcputype != 0) {
/* Fat header previously matched, don't allow another fat file inside */
error = -1; /* not claimed */
goto bad;
}
/* Make sure it's a fat binary */
if (OSSwapBigToHostInt32(fat_header->magic) != FAT_MAGIC) {
error = -1; /* not claimed */
goto bad;
}
/* imgp->ip_vdata has PAGE_SIZE, zerofilled if the file is smaller */
lret = fatfile_validate_fatarches((vm_offset_t)fat_header, PAGE_SIZE);
if (lret != LOAD_SUCCESS) {
error = load_return_to_errno(lret);
goto bad;
}
/* If posix_spawn binprefs exist, respect those prefs. */
psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa != NULL && psa->psa_binprefs[0] != 0) {
uint32_t pr = 0;
/* Check each preference listed against all arches in header */
for (pr = 0; pr < NBINPREFS; pr++) {
cpu_type_t pref = psa->psa_binprefs[pr];
cpu_type_t subpref = psa->psa_subcpuprefs[pr];
if (pref == 0) {
/* No suitable arch in the pref list */
error = EBADARCH;
goto bad;
}
if (pref == CPU_TYPE_ANY) {
/* Fall through to regular grading */
goto regular_grading;
}
lret = fatfile_getbestarch_for_cputype(pref,
subpref,
(vm_offset_t)fat_header,
PAGE_SIZE,
imgp,
&fat_arch);
if (lret == LOAD_SUCCESS) {
goto use_arch;
}
}
/* Requested binary preference was not honored */
error = EBADEXEC;
goto bad;
}
regular_grading:
/* Look up our preferred architecture in the fat file. */
lret = fatfile_getbestarch((vm_offset_t)fat_header,
PAGE_SIZE,
imgp,
&fat_arch,
(p->p_flag & P_AFFINITY) != 0);
if (lret != LOAD_SUCCESS) {
error = load_return_to_errno(lret);
goto bad;
}
use_arch:
/* Read the Mach-O header out of fat_arch */
error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata,
PAGE_SIZE, fat_arch.offset,
UIO_SYSSPACE, (IO_UNIT | IO_NODELOCKED),
cred, &resid, p);
if (error) {
goto bad;
}
if (resid) {
memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
}
/* Success. Indicate we have identified an encapsulated binary */
error = -2;
imgp->ip_arch_offset = (user_size_t)fat_arch.offset;
imgp->ip_arch_size = (user_size_t)fat_arch.size;
imgp->ip_origcputype = fat_arch.cputype;
imgp->ip_origcpusubtype = fat_arch.cpusubtype;
bad:
kauth_cred_unref(&cred);
return error;
}
static int
activate_exec_state(task_t task, proc_t p, thread_t thread, load_result_t *result)
{
int ret;
task_set_dyld_info(task, MACH_VM_MIN_ADDRESS, 0);
task_set_64bit(task, result->is_64bit_addr, result->is_64bit_data);
if (result->is_64bit_addr) {
OSBitOrAtomic(P_LP64, &p->p_flag);
} else {
OSBitAndAtomic(~((uint32_t)P_LP64), &p->p_flag);
}
task_set_mach_header_address(task, result->mach_header);
ret = thread_state_initialize(thread);
if (ret != KERN_SUCCESS) {
return ret;
}
if (result->threadstate) {
uint32_t *ts = result->threadstate;
uint32_t total_size = (uint32_t)result->threadstate_sz;
while (total_size > 0) {
uint32_t flavor = *ts++;
uint32_t size = *ts++;
ret = thread_setstatus(thread, flavor, (thread_state_t)ts, size);
if (ret) {
return ret;
}
ts += size;
total_size -= (size + 2) * sizeof(uint32_t);
}
}
thread_setentrypoint(thread, result->entry_point);
return KERN_SUCCESS;
}
/*
* Set p->p_comm and p->p_name to the name passed to exec
*/
static void
set_proc_name(struct image_params *imgp, proc_t p)
{
int p_name_len = sizeof(p->p_name) - 1;
if (imgp->ip_ndp->ni_cnd.cn_namelen > p_name_len) {
imgp->ip_ndp->ni_cnd.cn_namelen = p_name_len;
}
bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_name,
(unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
p->p_name[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
if (imgp->ip_ndp->ni_cnd.cn_namelen > MAXCOMLEN) {
imgp->ip_ndp->ni_cnd.cn_namelen = MAXCOMLEN;
}
bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_comm,
(unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
p->p_comm[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
}
#if __has_feature(ptrauth_calls)
/**
* Returns a team ID string that may be used to assign a shared region.
*
* Platform binaries do not have team IDs and will return NULL. Non-platform
* binaries without a team ID will be assigned an artificial team ID of ""
* (empty string) so that they will not be assigned to the default shared
* region.
*
* @param imgp image parameter block
* @return NULL if this is a platform binary, or an appropriate team ID string
* otherwise
*/
static inline const char *
get_teamid_for_shared_region(struct image_params *imgp)
{
assert(imgp->ip_vp != NULL);
const char *ret = csvnode_get_teamid(imgp->ip_vp, imgp->ip_arch_offset);
if (ret) {
return ret;
}
struct cs_blob *blob = csvnode_get_blob(imgp->ip_vp, imgp->ip_arch_offset);
if (csblob_get_platform_binary(blob)) {
return NULL;
} else {
static const char *NO_TEAM_ID = "";
return NO_TEAM_ID;
}
}
/**
* Determines whether ptrauth should be enabled for the provided arm64 CPU subtype.
*
* @param cpusubtype Mach-O style CPU subtype
* @return whether the CPU subtype matches arm64e with the current ptrauth ABI
*/
static inline bool
arm64_cpusubtype_uses_ptrauth(cpu_subtype_t cpusubtype)
{
return (cpusubtype & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_ARM64E &&
CPU_SUBTYPE_ARM64_PTR_AUTH_VERSION(cpusubtype) == CPU_SUBTYPE_ARM64_PTR_AUTH_CURRENT_VERSION;
}
#endif /* __has_feature(ptrauth_calls) */
/**
* Returns whether a type/subtype slice matches the requested
* type/subtype.
*
* @param mask Bits to mask from the requested/tested cpu type
* @param req_cpu Requested cpu type
* @param req_subcpu Requested cpu subtype
* @param test_cpu Tested slice cpu type
* @param test_subcpu Tested slice cpu subtype
*/
boolean_t
binary_match(cpu_type_t mask, cpu_type_t req_cpu,
cpu_subtype_t req_subcpu, cpu_type_t test_cpu,
cpu_subtype_t test_subcpu)
{
if ((test_cpu & ~mask) != (req_cpu & ~mask)) {
return FALSE;
}
test_subcpu &= ~CPU_SUBTYPE_MASK;
req_subcpu &= ~CPU_SUBTYPE_MASK;
if (test_subcpu != req_subcpu && req_subcpu != (CPU_SUBTYPE_ANY & ~CPU_SUBTYPE_MASK)) {
return FALSE;
}
return TRUE;
}
/*
* exec_mach_imgact
*
* Image activator for mach-o 1.0 binaries.
*
* Parameters; struct image_params * image parameter block
*
* Returns: -1 not a fat binary (keep looking)
* -2 Success: encapsulated binary: reread
* >0 Failure: error number
* EBADARCH Mach-o binary, but with an unrecognized
* architecture
* ENOMEM No memory for child process after -
* can only happen after vfork()
*
* Important: This image activator is NOT byte order neutral.
*
* Note: A return value other than -1 indicates subsequent image
* activators should not be given the opportunity to attempt
* to activate the image.
*
* TODO: More gracefully handle failures after vfork
*/
static int
exec_mach_imgact(struct image_params *imgp)
{
struct mach_header *mach_header = (struct mach_header *)imgp->ip_vdata;
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
int error = 0;
task_t task;
task_t new_task = NULL; /* protected by vfexec */
thread_t thread;
struct uthread *uthread;
vm_map_t old_map = VM_MAP_NULL;
vm_map_t map = VM_MAP_NULL;
load_return_t lret;
load_result_t load_result = {};
struct _posix_spawnattr *psa = NULL;
int spawn = (imgp->ip_flags & IMGPF_SPAWN);
int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
int exec = (imgp->ip_flags & IMGPF_EXEC);
os_reason_t exec_failure_reason = OS_REASON_NULL;
boolean_t reslide = FALSE;
/*
* make sure it's a Mach-O 1.0 or Mach-O 2.0 binary; the difference
* is a reserved field on the end, so for the most part, we can
* treat them as if they were identical. Reverse-endian Mach-O
* binaries are recognized but not compatible.
*/
if ((mach_header->magic == MH_CIGAM) ||
(mach_header->magic == MH_CIGAM_64)) {
error = EBADARCH;
goto bad;
}
if ((mach_header->magic != MH_MAGIC) &&
(mach_header->magic != MH_MAGIC_64)) {
error = -1;
goto bad;
}
if (mach_header->filetype != MH_EXECUTE) {
error = -1;
goto bad;
}
if (imgp->ip_origcputype != 0) {
/* Fat header previously had an idea about this thin file */
if (imgp->ip_origcputype != mach_header->cputype ||
imgp->ip_origcpusubtype != mach_header->cpusubtype) {
error = EBADARCH;
goto bad;
}
} else {
imgp->ip_origcputype = mach_header->cputype;
imgp->ip_origcpusubtype = mach_header->cpusubtype;
}
task = current_task();
thread = current_thread();
uthread = get_bsdthread_info(thread);
if ((mach_header->cputype & CPU_ARCH_ABI64) == CPU_ARCH_ABI64) {
imgp->ip_flags |= IMGPF_IS_64BIT_ADDR | IMGPF_IS_64BIT_DATA;
}
/* If posix_spawn binprefs exist, respect those prefs. */
psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa != NULL && psa->psa_binprefs[0] != 0) {
int pr = 0;
for (pr = 0; pr < NBINPREFS; pr++) {
cpu_type_t pref = psa->psa_binprefs[pr];
cpu_subtype_t subpref = psa->psa_subcpuprefs[pr];
if (pref == 0) {
/* No suitable arch in the pref list */
error = EBADARCH;
goto bad;
}
if (pref == CPU_TYPE_ANY) {
/* Jump to regular grading */
goto grade;
}
if (binary_match(CPU_ARCH_MASK, pref, subpref,
imgp->ip_origcputype, imgp->ip_origcpusubtype)) {
goto grade;
}
}
error = EBADARCH;
goto bad;
}
grade:
if (!grade_binary(imgp->ip_origcputype, imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK,
imgp->ip_origcpusubtype & CPU_SUBTYPE_MASK, TRUE)) {
error = EBADARCH;
goto bad;
}
if (validate_potential_simulator_binary(imgp->ip_origcputype, imgp,
imgp->ip_arch_offset, imgp->ip_arch_size) != LOAD_SUCCESS) {
#if __x86_64__
const char *excpath;
error = exec_save_path(imgp, imgp->ip_user_fname, imgp->ip_seg, &excpath);
os_log_error(OS_LOG_DEFAULT, "Unsupported 32-bit executable: \"%s\"", (error) ? imgp->ip_vp->v_name : excpath);
#endif
error = EBADARCH;
goto bad;
}
#if defined(HAS_APPLE_PAC)
assert(mach_header->cputype == CPU_TYPE_ARM64
);
if ((mach_header->cputype == CPU_TYPE_ARM64 &&
arm64_cpusubtype_uses_ptrauth(mach_header->cpusubtype))
) {
imgp->ip_flags &= ~IMGPF_NOJOP;
} else {
imgp->ip_flags |= IMGPF_NOJOP;
}
#endif
/* Copy in arguments/environment from the old process */
error = exec_extract_strings(imgp);
if (error) {
goto bad;
}
AUDIT_ARG(argv, imgp->ip_startargv, imgp->ip_argc,
imgp->ip_endargv - imgp->ip_startargv);
AUDIT_ARG(envv, imgp->ip_endargv, imgp->ip_envc,
imgp->ip_endenvv - imgp->ip_endargv);
/*
* We are being called to activate an image subsequent to a vfork()
* operation; in this case, we know that our task, thread, and
* uthread are actually those of our parent, and our proc, which we
* obtained indirectly from the image_params vfs_context_t, is the
* new child process.
*/
if (vfexec) {
imgp->ip_new_thread = fork_create_child(task,
NULL,
p,
FALSE,
(imgp->ip_flags & IMGPF_IS_64BIT_ADDR),
(imgp->ip_flags & IMGPF_IS_64BIT_DATA),
FALSE);
/* task and thread ref returned, will be released in __mac_execve */
if (imgp->ip_new_thread == NULL) {
error = ENOMEM;
goto bad;
}
}
/* reset local idea of thread, uthread, task */
thread = imgp->ip_new_thread;
uthread = get_bsdthread_info(thread);
task = new_task = get_threadtask(thread);
/*
* Load the Mach-O file.
*
* NOTE: An error after this point indicates we have potentially
* destroyed or overwritten some process state while attempting an
* execve() following a vfork(), which is an unrecoverable condition.
* We send the new process an immediate SIGKILL to avoid it executing
* any instructions in the mutated address space. For true spawns,
* this is not the case, and "too late" is still not too late to
* return an error code to the parent process.
*/
/*
* Actually load the image file we previously decided to load.
*/
lret = load_machfile(imgp, mach_header, thread, &map, &load_result);
if (lret != LOAD_SUCCESS) {
error = load_return_to_errno(lret);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO, 0, 0);
if (lret == LOAD_BADMACHO_UPX) {
set_proc_name(imgp, p);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_UPX);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
} else {
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
}
exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
goto badtoolate;
}
proc_lock(p);
{
p->p_cputype = imgp->ip_origcputype;
p->p_cpusubtype = imgp->ip_origcpusubtype;
}
p->p_platform = load_result.ip_platform;
p->p_min_sdk = load_result.lr_min_sdk;
p->p_sdk = load_result.lr_sdk;
vm_map_set_user_wire_limit(map, (vm_size_t)proc_limitgetcur(p, RLIMIT_MEMLOCK, FALSE));
#if XNU_TARGET_OS_OSX
if (p->p_platform == PLATFORM_IOS) {
assert(vm_map_is_alien(map));
} else {
assert(!vm_map_is_alien(map));
}
#endif /* XNU_TARGET_OS_OSX */
proc_unlock(p);
/*
* Set code-signing flags if this binary is signed, or if parent has
* requested them on exec.
*/
if (load_result.csflags & CS_VALID) {
imgp->ip_csflags |= load_result.csflags &
(CS_VALID | CS_SIGNED | CS_DEV_CODE | CS_LINKER_SIGNED |
CS_HARD | CS_KILL | CS_RESTRICT | CS_ENFORCEMENT | CS_REQUIRE_LV |
CS_FORCED_LV | CS_ENTITLEMENTS_VALIDATED | CS_DYLD_PLATFORM | CS_RUNTIME |
CS_ENTITLEMENT_FLAGS |
CS_EXEC_SET_HARD | CS_EXEC_SET_KILL | CS_EXEC_SET_ENFORCEMENT);
} else {
imgp->ip_csflags &= ~CS_VALID;
}
if (p->p_csflags & CS_EXEC_SET_HARD) {
imgp->ip_csflags |= CS_HARD;
}
if (p->p_csflags & CS_EXEC_SET_KILL) {
imgp->ip_csflags |= CS_KILL;
}
if (p->p_csflags & CS_EXEC_SET_ENFORCEMENT) {
imgp->ip_csflags |= CS_ENFORCEMENT;
}
if (p->p_csflags & CS_EXEC_INHERIT_SIP) {
if (p->p_csflags & CS_INSTALLER) {
imgp->ip_csflags |= CS_INSTALLER;
}
if (p->p_csflags & CS_DATAVAULT_CONTROLLER) {
imgp->ip_csflags |= CS_DATAVAULT_CONTROLLER;
}
if (p->p_csflags & CS_NVRAM_UNRESTRICTED) {
imgp->ip_csflags |= CS_NVRAM_UNRESTRICTED;
}
}
#if __has_feature(ptrauth_calls) && defined(XNU_TARGET_OS_OSX)
/*
* ptrauth version 0 is a preview ABI. Developers can opt into running
* their own arm64e binaries for local testing, with the understanding
* that future OSes may break ABI.
*/
if ((imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_ARM64E &&
CPU_SUBTYPE_ARM64_PTR_AUTH_VERSION(imgp->ip_origcpusubtype) == 0 &&
!load_result.platform_binary &&
!bootarg_arm64e_preview_abi) {
static bool logged_once = false;
set_proc_name(imgp, p);
printf("%s: not running binary \"%s\" built against preview arm64e ABI\n", __func__, p->p_name);
if (!os_atomic_xchg(&logged_once, true, relaxed)) {
printf("%s: (to allow this, add \"-arm64e_preview_abi\" to boot-args)\n", __func__);
}
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO);
if (bootarg_execfailurereports) {
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
}
goto badtoolate;
}
if ((imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK) != CPU_SUBTYPE_ARM64E &&
imgp->ip_origcputype == CPU_TYPE_ARM64 &&
load_result.platform_binary &&
(imgp->ip_flags & IMGPF_DRIVER) != 0) {
set_proc_name(imgp, p);
printf("%s: disallowing arm64 platform driverkit binary \"%s\", should be arm64e\n", __func__, p->p_name);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO);
if (bootarg_execfailurereports) {
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
}
goto badtoolate;
}
#endif /* __has_feature(ptrauth_calls) && defined(XNU_TARGET_OS_OSX) */
/*
* Set up the shared cache region in the new process.
*
* Normally there is a single shared region per architecture.
* However on systems with Pointer Authentication, we can create
* multiple shared caches with the amount of sharing determined
* by team-id or entitlement. Inherited shared region IDs are used
* for system processes that need to match and be able to inspect
* a pre-existing task.
*/
int cpu_subtype = 0; /* all cpu_subtypes use the same shared region */
#if __has_feature(ptrauth_calls)
char *shared_region_id = NULL;
size_t len;
char *base;
const char *cbase;
#define TEAM_ID_PREFIX "T-"
#define ENTITLE_PREFIX "E-"
#define SR_PREFIX_LEN 2
#define SR_ENTITLEMENT "com.apple.pac.shared_region_id"
if (cpu_type() == CPU_TYPE_ARM64 &&
arm64_cpusubtype_uses_ptrauth(p->p_cpusubtype) &&
(imgp->ip_flags & IMGPF_NOJOP) == 0) {
assertf(p->p_cputype == CPU_TYPE_ARM64,
"p %p cpu_type() 0x%x p->p_cputype 0x%x p->p_cpusubtype 0x%x",
p, cpu_type(), p->p_cputype, p->p_cpusubtype);
/*
* arm64e uses pointer authentication, so request a separate
* shared region for this CPU subtype.
*/
cpu_subtype = p->p_cpusubtype & ~CPU_SUBTYPE_MASK;
/*
* Determine which shared cache to select based on being told,
* matching a team-id or matching an entitlement.
*/
if (imgp->ip_inherited_shared_region_id) {
len = strlen(imgp->ip_inherited_shared_region_id);
shared_region_id = kheap_alloc(KHEAP_DATA_BUFFERS,
len + 1, Z_WAITOK);
memcpy(shared_region_id, imgp->ip_inherited_shared_region_id, len + 1);
} else if ((cbase = get_teamid_for_shared_region(imgp)) != NULL) {
len = strlen(cbase);
if (vm_shared_region_per_team_id) {
shared_region_id = kheap_alloc(KHEAP_DATA_BUFFERS,
len + SR_PREFIX_LEN + 1, Z_WAITOK);
memcpy(shared_region_id, TEAM_ID_PREFIX, SR_PREFIX_LEN);
memcpy(shared_region_id + SR_PREFIX_LEN, cbase, len + 1);
}
} else if ((base = IOVnodeGetEntitlement(imgp->ip_vp,
(int64_t)imgp->ip_arch_offset, SR_ENTITLEMENT)) != NULL) {
len = strlen(base);
if (vm_shared_region_by_entitlement) {
shared_region_id = kheap_alloc(KHEAP_DATA_BUFFERS,
len + SR_PREFIX_LEN + 1, Z_WAITOK);
memcpy(shared_region_id, ENTITLE_PREFIX, SR_PREFIX_LEN);
memcpy(shared_region_id + SR_PREFIX_LEN, base, len + 1);
}
/* Discard the copy of the entitlement */
kheap_free(KHEAP_DATA_BUFFERS, base, len + 1);
}
}
if (imgp->ip_flags & IMGPF_RESLIDE) {
reslide = TRUE;
}
/* use "" as the default shared_region_id */
if (shared_region_id == NULL) {
shared_region_id = kheap_alloc(KHEAP_DATA_BUFFERS, 1, Z_WAITOK);
*shared_region_id = 0;
}
/* ensure there's a unique pointer signing key for this shared_region_id */
shared_region_key_alloc(shared_region_id,
imgp->ip_inherited_shared_region_id != NULL, imgp->ip_inherited_jop_pid);
task_set_shared_region_id(task, shared_region_id);
shared_region_id = NULL;
#endif /* __has_feature(ptrauth_calls) */
int cputype = cpu_type();
vm_map_exec(map, task, load_result.is_64bit_addr, (void *)p->p_fd->fd_rdir, cputype, cpu_subtype, reslide);
#if XNU_TARGET_OS_OSX
#define SINGLE_JIT_ENTITLEMENT "com.apple.security.cs.single-jit"
if (IOTaskHasEntitlement(task, SINGLE_JIT_ENTITLEMENT)) {
vm_map_single_jit(map);
}
#endif /* XNU_TARGET_OS_OSX */
/*
* Close file descriptors which specify close-on-exec.
*/
fdexec(p, psa != NULL ? psa->psa_flags : 0, exec);
/*
* deal with set[ug]id.
*/
error = exec_handle_sugid(imgp);
if (error) {
vm_map_deallocate(map);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
/*
* Commit to new map.
*
* Swap the new map for the old for target task, which consumes
* our new map reference but each leaves us responsible for the
* old_map reference. That lets us get off the pmap associated
* with it, and then we can release it.
*
* The map needs to be set on the target task which is different
* than current task, thus swap_task_map is used instead of
* vm_map_switch.
*/
old_map = swap_task_map(task, thread, map);
vm_map_deallocate(old_map);
old_map = NULL;
lret = activate_exec_state(task, p, thread, &load_result);
if (lret != KERN_SUCCESS) {
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
/*
* deal with voucher on exec-calling thread.
*/
if (imgp->ip_new_thread == NULL) {
thread_set_mach_voucher(current_thread(), IPC_VOUCHER_NULL);
}
/* Make sure we won't interrupt ourself signalling a partial process */
if (!vfexec && !spawn && (p->p_lflag & P_LTRACED)) {
psignal(p, SIGTRAP);
}
if (load_result.unixproc &&
create_unix_stack(get_task_map(task),
&load_result,
p) != KERN_SUCCESS) {
error = load_return_to_errno(LOAD_NOSPACE);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
error = exec_add_apple_strings(imgp, &load_result);
if (error) {
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
/* Switch to target task's map to copy out strings */
old_map = vm_map_switch(get_task_map(task));
if (load_result.unixproc) {
user_addr_t ap;
/*
* Copy the strings area out into the new process address
* space.
*/
ap = p->user_stack;
error = exec_copyout_strings(imgp, &ap);
if (error) {
vm_map_switch(old_map);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
/* Set the stack */
thread_setuserstack(thread, ap);
}
if (load_result.dynlinker || load_result.is_cambria) {
user_addr_t ap;
int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
/* Adjust the stack */
ap = thread_adjuserstack(thread, -new_ptr_size);
error = copyoutptr(load_result.mach_header, ap, new_ptr_size);
if (error) {
vm_map_switch(old_map);
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER, 0, 0);
exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER);
if (bootarg_execfailurereports) {
set_proc_name(imgp, p);
exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
}
goto badtoolate;
}
task_set_dyld_info(task, load_result.all_image_info_addr,
load_result.all_image_info_size);
}
/* Avoid immediate VM faults back into kernel */
exec_prefault_data(p, imgp, &load_result);
vm_map_switch(old_map);
/*
* Reset signal state.
*/
execsigs(p, thread);
/*
* need to cancel async IO requests that can be cancelled and wait for those
* already active. MAY BLOCK!
*/
_aio_exec( p );
#if SYSV_SHM
/* FIXME: Till vmspace inherit is fixed: */
if (!vfexec && p->vm_shm) {
shmexec(p);
}
#endif
#if SYSV_SEM
/* Clean up the semaphores */
semexit(p);
#endif
/*
* Remember file name for accounting.
*/
p->p_acflag &= ~AFORK;
set_proc_name(imgp, p);
#if CONFIG_SECLUDED_MEMORY
if (secluded_for_apps &&
load_result.platform_binary) {
if (strncmp(p->p_name,
"Camera",
sizeof(p->p_name)) == 0) {
task_set_could_use_secluded_mem(task, TRUE);
} else {
task_set_could_use_secluded_mem(task, FALSE);
}
if (strncmp(p->p_name,
"mediaserverd",
sizeof(p->p_name)) == 0) {
task_set_could_also_use_secluded_mem(task, TRUE);
}
}
#endif /* CONFIG_SECLUDED_MEMORY */
#if __arm64__
if (load_result.legacy_footprint) {
task_set_legacy_footprint(task);
}
#endif /* __arm64__ */
pal_dbg_set_task_name(task);
/*
* The load result will have already been munged by AMFI to include the
* platform binary flag if boot-args dictated it (AMFI will mark anything
* that doesn't go through the upcall path as a platform binary if its
* enforcement is disabled).
*/
if (load_result.platform_binary) {
if (cs_debug) {
printf("setting platform binary on task: pid = %d\n", p->p_pid);
}
/*
* We must use 'task' here because the proc's task has not yet been
* switched to the new one.
*/
task_set_platform_binary(task, TRUE);
} else {
if (cs_debug) {
printf("clearing platform binary on task: pid = %d\n", p->p_pid);
}
task_set_platform_binary(task, FALSE);
}
#if DEVELOPMENT || DEBUG
/*
* Update the pid an proc name for importance base if any
*/
task_importance_update_owner_info(task);
#endif
memcpy(&p->p_uuid[0], &load_result.uuid[0], sizeof(p->p_uuid));
#if CONFIG_DTRACE
dtrace_proc_exec(p);
#endif
if (kdebug_enable) {
long args[4] = {};
uintptr_t fsid = 0, fileid = 0;
if (imgp->ip_vattr) {
uint64_t fsid64 = vnode_get_va_fsid(imgp->ip_vattr);
fsid = (uintptr_t)fsid64;
fileid = (uintptr_t)imgp->ip_vattr->va_fileid;
// check for (unexpected) overflow and trace zero in that case
if (fsid != fsid64 || fileid != imgp->ip_vattr->va_fileid) {
fsid = fileid = 0;
}
}
KERNEL_DEBUG_CONSTANT_IST1(TRACE_DATA_EXEC, p->p_pid, fsid, fileid, 0,
(uintptr_t)thread_tid(thread));
/*
* Collect the pathname for tracing
*/
kdbg_trace_string(p, &args[0], &args[1], &args[2], &args[3]);
KERNEL_DEBUG_CONSTANT_IST1(TRACE_STRING_EXEC, args[0], args[1],
args[2], args[3], (uintptr_t)thread_tid(thread));
}
/*
* If posix_spawned with the START_SUSPENDED flag, stop the
* process before it runs.
*/
if (imgp->ip_px_sa != NULL) {
psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa->psa_flags & POSIX_SPAWN_START_SUSPENDED) {
proc_lock(p);
p->p_stat = SSTOP;
proc_unlock(p);
(void) task_suspend_internal(task);
}
}
/*
* mark as execed, wakeup the process that vforked (if any) and tell
* it that it now has its own resources back
*/
OSBitOrAtomic(P_EXEC, &p->p_flag);
proc_resetregister(p);
if (p->p_pptr && (p->p_lflag & P_LPPWAIT)) {
proc_lock(p);
p->p_lflag &= ~P_LPPWAIT;
proc_unlock(p);
wakeup((caddr_t)p->p_pptr);
}
/*
* Pay for our earlier safety; deliver the delayed signals from
* the incomplete vfexec process now that it's complete.
*/
if (vfexec && (p->p_lflag & P_LTRACED)) {
psignal_vfork(p, new_task, thread, SIGTRAP);
}
goto done;
badtoolate:
/* Don't allow child process to execute any instructions */
if (!spawn) {
if (vfexec) {
assert(exec_failure_reason != OS_REASON_NULL);
psignal_vfork_with_reason(p, new_task, thread, SIGKILL, exec_failure_reason);
exec_failure_reason = OS_REASON_NULL;
} else {
assert(exec_failure_reason != OS_REASON_NULL);
psignal_with_reason(p, SIGKILL, exec_failure_reason);
exec_failure_reason = OS_REASON_NULL;
if (exec) {
/* Terminate the exec copy task */
task_terminate_internal(task);
}
}
/* We can't stop this system call at this point, so just pretend we succeeded */
error = 0;
} else {
os_reason_free(exec_failure_reason);
exec_failure_reason = OS_REASON_NULL;
}
done:
if (load_result.threadstate) {
kfree(load_result.threadstate, load_result.threadstate_sz);
load_result.threadstate = NULL;
}
bad:
/* If we hit this, we likely would have leaked an exit reason */
assert(exec_failure_reason == OS_REASON_NULL);
return error;
}
/*
* Our image activator table; this is the table of the image types we are
* capable of loading. We list them in order of preference to ensure the
* fastest image load speed.
*
* XXX hardcoded, for now; should use linker sets
*/
struct execsw {
int(*const ex_imgact)(struct image_params *);
const char *ex_name;
}const execsw[] = {
{ exec_mach_imgact, "Mach-o Binary" },
{ exec_fat_imgact, "Fat Binary" },
{ exec_shell_imgact, "Interpreter Script" },
{ NULL, NULL}
};
/*
* exec_activate_image
*
* Description: Iterate through the available image activators, and activate
* the image associated with the imgp structure. We start with
* the activator for Mach-o binaries followed by that for Fat binaries
* for Interpreter scripts.
*
* Parameters: struct image_params * Image parameter block
*
* Returns: 0 Success
* EBADEXEC The executable is corrupt/unknown
* execargs_alloc:EINVAL Invalid argument
* execargs_alloc:EACCES Permission denied
* execargs_alloc:EINTR Interrupted function
* execargs_alloc:ENOMEM Not enough space
* exec_save_path:EFAULT Bad address
* exec_save_path:ENAMETOOLONG Filename too long
* exec_check_permissions:EACCES Permission denied
* exec_check_permissions:ENOEXEC Executable file format error
* exec_check_permissions:ETXTBSY Text file busy [misuse of error code]
* exec_check_permissions:???
* namei:???
* vn_rdwr:??? [anything vn_rdwr can return]
* <ex_imgact>:??? [anything an imgact can return]
* EDEADLK Process is being terminated
*/
static int
exec_activate_image(struct image_params *imgp)
{
struct nameidata *ndp = NULL;
const char *excpath;
int error;
int resid;
int once = 1; /* save SGUID-ness for interpreted files */
int i;
int itercount = 0;
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
error = execargs_alloc(imgp);
if (error) {
goto bad_notrans;
}
error = exec_save_path(imgp, imgp->ip_user_fname, imgp->ip_seg, &excpath);
if (error) {
goto bad_notrans;
}
/* Use excpath, which contains the copyin-ed exec path */
DTRACE_PROC1(exec, uintptr_t, excpath);
ndp = kheap_alloc(KHEAP_TEMP, sizeof(*ndp), Z_WAITOK | Z_ZERO);
if (ndp == NULL) {
error = ENOMEM;
goto bad_notrans;
}
NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1,
UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
again:
error = namei(ndp);
if (error) {
goto bad_notrans;
}
imgp->ip_ndp = ndp; /* successful namei(); call nameidone() later */
imgp->ip_vp = ndp->ni_vp; /* if set, need to vnode_put() at some point */
/*
* Before we start the transition from binary A to binary B, make
* sure another thread hasn't started exiting the process. We grab
* the proc lock to check p_lflag initially, and the transition
* mechanism ensures that the value doesn't change after we release
* the lock.
*/
proc_lock(p);
if (p->p_lflag & P_LEXIT) {
error = EDEADLK;
proc_unlock(p);
goto bad_notrans;
}
error = proc_transstart(p, 1, 0);
proc_unlock(p);
if (error) {
goto bad_notrans;
}
error = exec_check_permissions(imgp);
if (error) {
goto bad;
}
/* Copy; avoid invocation of an interpreter overwriting the original */
if (once) {
once = 0;
*imgp->ip_origvattr = *imgp->ip_vattr;
}
error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata, PAGE_SIZE, 0,
UIO_SYSSPACE, IO_NODELOCKED,
vfs_context_ucred(imgp->ip_vfs_context),
&resid, vfs_context_proc(imgp->ip_vfs_context));
if (error) {
goto bad;
}
if (resid) {
memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
}
encapsulated_binary:
/* Limit the number of iterations we will attempt on each binary */
if (++itercount > EAI_ITERLIMIT) {
error = EBADEXEC;
goto bad;
}
error = -1;
for (i = 0; error == -1 && execsw[i].ex_imgact != NULL; i++) {
error = (*execsw[i].ex_imgact)(imgp);
switch (error) {
/* case -1: not claimed: continue */
case -2: /* Encapsulated binary, imgp->ip_XXX set for next iteration */
goto encapsulated_binary;
case -3: /* Interpreter */
#if CONFIG_MACF
/*
* Copy the script label for later use. Note that
* the label can be different when the script is
* actually read by the interpreter.
*/
if (imgp->ip_scriptlabelp) {
mac_vnode_label_free(imgp->ip_scriptlabelp);
}
imgp->ip_scriptlabelp = mac_vnode_label_alloc();
if (imgp->ip_scriptlabelp == NULL) {
error = ENOMEM;
break;
}
mac_vnode_label_copy(imgp->ip_vp->v_label,
imgp->ip_scriptlabelp);
/*
* Take a ref of the script vnode for later use.
*/
if (imgp->ip_scriptvp) {
vnode_put(imgp->ip_scriptvp);
imgp->ip_scriptvp = NULLVP;
}
if (vnode_getwithref(imgp->ip_vp) == 0) {
imgp->ip_scriptvp = imgp->ip_vp;
}
#endif
nameidone(ndp);
vnode_put(imgp->ip_vp);
imgp->ip_vp = NULL; /* already put */
imgp->ip_ndp = NULL; /* already nameidone */
/* Use excpath, which exec_shell_imgact reset to the interpreter */
NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF,
UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
proc_transend(p, 0);
goto again;
default:
break;
}
}
if (error == 0) {
if (imgp->ip_flags & IMGPF_INTERPRET && ndp->ni_vp) {
AUDIT_ARG(vnpath, ndp->ni_vp, ARG_VNODE2);
}
/*
* Call out to allow 3rd party notification of exec.
* Ignore result of kauth_authorize_fileop call.
*/
if (kauth_authorize_fileop_has_listeners()) {
kauth_authorize_fileop(vfs_context_ucred(imgp->ip_vfs_context),
KAUTH_FILEOP_EXEC,
(uintptr_t)ndp->ni_vp, 0);
}
}
bad:
proc_transend(p, 0);
bad_notrans:
if (imgp->ip_strings) {
execargs_free(imgp);
}
if (imgp->ip_ndp) {
nameidone(imgp->ip_ndp);
}
kheap_free(KHEAP_TEMP, ndp, sizeof(*ndp));
return error;
}
/*
* exec_validate_spawnattr_policy
*
* Description: Validates the entitlements required to set the apptype.
*
* Parameters: int psa_apptype posix spawn attribute apptype
*
* Returns: 0 Success
* EPERM Failure
*/
static errno_t
exec_validate_spawnattr_policy(int psa_apptype)
{
if ((psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) != 0) {
int proctype = psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK;
if (proctype == POSIX_SPAWN_PROC_TYPE_DRIVER) {
if (!IOTaskHasEntitlement(current_task(), POSIX_SPAWN_ENTITLEMENT_DRIVER)) {
return EPERM;
}
}
}
return 0;
}
/*
* exec_handle_spawnattr_policy
*
* Description: Decode and apply the posix_spawn apptype, qos clamp, and watchport ports to the task.
*
* Parameters: proc_t p process to apply attributes to
* int psa_apptype posix spawn attribute apptype
*
* Returns: 0 Success
*/
static errno_t
exec_handle_spawnattr_policy(proc_t p, thread_t thread, int psa_apptype, uint64_t psa_qos_clamp,
task_role_t psa_darwin_role, struct exec_port_actions *port_actions)
{
int apptype = TASK_APPTYPE_NONE;
int qos_clamp = THREAD_QOS_UNSPECIFIED;
task_role_t role = TASK_UNSPECIFIED;
if ((psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) != 0) {
int proctype = psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK;
switch (proctype) {
case POSIX_SPAWN_PROC_TYPE_DAEMON_INTERACTIVE:
apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
break;
case POSIX_SPAWN_PROC_TYPE_DAEMON_STANDARD:
apptype = TASK_APPTYPE_DAEMON_STANDARD;
break;
case POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE:
apptype = TASK_APPTYPE_DAEMON_ADAPTIVE;
break;
case POSIX_SPAWN_PROC_TYPE_DAEMON_BACKGROUND:
apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
break;
case POSIX_SPAWN_PROC_TYPE_APP_DEFAULT:
apptype = TASK_APPTYPE_APP_DEFAULT;
break;
case POSIX_SPAWN_PROC_TYPE_DRIVER:
apptype = TASK_APPTYPE_DRIVER;
break;
default:
apptype = TASK_APPTYPE_NONE;
/* TODO: Should an invalid value here fail the spawn? */
break;
}
}
if (psa_qos_clamp != POSIX_SPAWN_PROC_CLAMP_NONE) {
switch (psa_qos_clamp) {
case POSIX_SPAWN_PROC_CLAMP_UTILITY:
qos_clamp = THREAD_QOS_UTILITY;
break;
case POSIX_SPAWN_PROC_CLAMP_BACKGROUND:
qos_clamp = THREAD_QOS_BACKGROUND;
break;
case POSIX_SPAWN_PROC_CLAMP_MAINTENANCE:
qos_clamp = THREAD_QOS_MAINTENANCE;
break;
default:
qos_clamp = THREAD_QOS_UNSPECIFIED;
/* TODO: Should an invalid value here fail the spawn? */
break;
}
}
if (psa_darwin_role != PRIO_DARWIN_ROLE_DEFAULT) {
proc_darwin_role_to_task_role(psa_darwin_role, &role);
}
if (apptype != TASK_APPTYPE_NONE ||
qos_clamp != THREAD_QOS_UNSPECIFIED ||
role != TASK_UNSPECIFIED ||
port_actions->portwatch_count) {
proc_set_task_spawnpolicy(p->task, thread, apptype, qos_clamp, role,
port_actions->portwatch_array, port_actions->portwatch_count);
}
if (port_actions->registered_count) {
if (mach_ports_register(p->task, port_actions->registered_array,
port_actions->registered_count)) {
return EINVAL;
}
/* mach_ports_register() consumed the array */
port_actions->registered_array = NULL;
port_actions->registered_count = 0;
}
return 0;
}
static void
exec_port_actions_destroy(struct exec_port_actions *port_actions)
{
if (port_actions->portwatch_array) {
for (uint32_t i = 0; i < port_actions->portwatch_count; i++) {
ipc_port_t port = NULL;
if ((port = port_actions->portwatch_array[i]) != NULL) {
ipc_port_release_send(port);
}
}
kfree(port_actions->portwatch_array,
port_actions->portwatch_count * sizeof(ipc_port_t *));
}
if (port_actions->registered_array) {
for (uint32_t i = 0; i < port_actions->registered_count; i++) {
ipc_port_t port = NULL;
if ((port = port_actions->registered_array[i]) != NULL) {
ipc_port_release_send(port);
}
}
kfree(port_actions->registered_array,
port_actions->registered_count * sizeof(ipc_port_t *));
}
}
/*
* exec_handle_port_actions
*
* Description: Go through the _posix_port_actions_t contents,
* calling task_set_special_port, task_set_exception_ports
* and/or audit_session_spawnjoin for the current task.
*
* Parameters: struct image_params * Image parameter block
*
* Returns: 0 Success
* EINVAL Failure
* ENOTSUP Illegal posix_spawn attr flag was set
*/
static errno_t
exec_handle_port_actions(struct image_params *imgp,
struct exec_port_actions *actions)
{
_posix_spawn_port_actions_t pacts = imgp->ip_px_spa;
#if CONFIG_AUDIT
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
#endif
_ps_port_action_t *act = NULL;
task_t task = get_threadtask(imgp->ip_new_thread);
ipc_port_t port = NULL;
errno_t ret = 0;
int i, portwatch_i = 0, registered_i = 0;
kern_return_t kr;
boolean_t task_has_watchport_boost = task_has_watchports(current_task());
boolean_t in_exec = (imgp->ip_flags & IMGPF_EXEC);
int ptrauth_task_port_count = 0;
boolean_t suid_cred_specified = FALSE;
for (i = 0; i < pacts->pspa_count; i++) {
act = &pacts->pspa_actions[i];
switch (act->port_type) {
case PSPA_SPECIAL:
case PSPA_EXCEPTION:
#if CONFIG_AUDIT
case PSPA_AU_SESSION:
#endif
break;
case PSPA_IMP_WATCHPORTS:
if (++actions->portwatch_count > TASK_MAX_WATCHPORT_COUNT) {
ret = EINVAL;
goto done;
}
break;
case PSPA_REGISTERED_PORTS:
if (++actions->registered_count > TASK_PORT_REGISTER_MAX) {
ret = EINVAL;
goto done;
}
break;
case PSPA_PTRAUTH_TASK_PORT:
if (++ptrauth_task_port_count > 1) {
ret = EINVAL;
goto done;
}
break;
case PSPA_SUID_CRED:
/* Only a single suid credential can be specified. */
if (suid_cred_specified) {
ret = EINVAL;
goto done;
}
suid_cred_specified = TRUE;
break;
default:
ret = EINVAL;
goto done;
}
}
if (actions->portwatch_count) {
if (in_exec && task_has_watchport_boost) {
ret = EINVAL;
goto done;
}
actions->portwatch_array =
kalloc(sizeof(ipc_port_t *) * actions->portwatch_count);
if (actions->portwatch_array == NULL) {
ret = ENOMEM;
goto done;
}
bzero(actions->portwatch_array,
sizeof(ipc_port_t *) * actions->portwatch_count);
}
if (actions->registered_count) {
actions->registered_array =
kalloc(sizeof(ipc_port_t *) * actions->registered_count);
if (actions->registered_array == NULL) {
ret = ENOMEM;
goto done;
}
bzero(actions->registered_array,
sizeof(ipc_port_t *) * actions->registered_count);
}
for (i = 0; i < pacts->pspa_count; i++) {
act = &pacts->pspa_actions[i];
if (MACH_PORT_VALID(act->new_port)) {
kr = ipc_object_copyin(get_task_ipcspace(current_task()),
act->new_port, MACH_MSG_TYPE_COPY_SEND,
(ipc_object_t *) &port, 0, NULL, IPC_OBJECT_COPYIN_FLAGS_ALLOW_IMMOVABLE_SEND);
if (kr != KERN_SUCCESS) {
ret = EINVAL;
goto done;
}
} else {
/* it's NULL or DEAD */
port = CAST_MACH_NAME_TO_PORT(act->new_port);
}
switch (act->port_type) {
case PSPA_SPECIAL:
kr = task_set_special_port(task, act->which, port);
if (kr != KERN_SUCCESS) {
ret = EINVAL;
}
break;
case PSPA_EXCEPTION:
kr = task_set_exception_ports(task, act->mask, port,
act->behavior, act->flavor);
if (kr != KERN_SUCCESS) {
ret = EINVAL;
}
break;
#if CONFIG_AUDIT
case PSPA_AU_SESSION:
ret = audit_session_spawnjoin(p, task, port);
if (ret) {
/* audit_session_spawnjoin() has already dropped the reference in case of error. */
goto done;
}
break;
#endif
case PSPA_IMP_WATCHPORTS:
if (actions->portwatch_array) {
/* hold on to this till end of spawn */
actions->portwatch_array[portwatch_i++] = port;
} else {
ipc_port_release_send(port);
}
break;
case PSPA_REGISTERED_PORTS:
/* hold on to this till end of spawn */
actions->registered_array[registered_i++] = port;
break;
case PSPA_PTRAUTH_TASK_PORT:
#if defined(HAS_APPLE_PAC)
{
task_t ptr_auth_task = convert_port_to_task(port);
if (ptr_auth_task == TASK_NULL) {
ret = EINVAL;
break;
}
imgp->ip_inherited_shared_region_id =
task_get_vm_shared_region_id_and_jop_pid(ptr_auth_task,
&imgp->ip_inherited_jop_pid);
/* Deallocate task ref returned by convert_port_to_task */
task_deallocate(ptr_auth_task);
}
#endif /* HAS_APPLE_PAC */
/* consume the port right in case of success */
ipc_port_release_send(port);
break;
case PSPA_SUID_CRED:
imgp->ip_sc_port = port;
break;
default:
ret = EINVAL;
break;
}
if (ret) {
/* action failed, so release port resources */
ipc_port_release_send(port);
break;
}
}
done:
if (0 != ret) {
DTRACE_PROC1(spawn__port__failure, mach_port_name_t, act->new_port);
}
return ret;
}
/*
* exec_handle_file_actions
*
* Description: Go through the _posix_file_actions_t contents applying the
* open, close, and dup2 operations to the open file table for
* the current process.
*
* Parameters: struct image_params * Image parameter block
*
* Returns: 0 Success
* ???
*
* Note: Actions are applied in the order specified, with the credential
* of the parent process. This is done to permit the parent
* process to utilize POSIX_SPAWN_RESETIDS to drop privilege in
* the child following operations the child may in fact not be
* normally permitted to perform.
*/
static int
exec_handle_file_actions(struct image_params *imgp, short psa_flags)
{
int error = 0;
int action;
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
_posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;
int ival[2]; /* dummy retval for system calls) */
#if CONFIG_AUDIT
struct uthread *uthread = get_bsdthread_info(current_thread());
#endif
for (action = 0; action < px_sfap->psfa_act_count; action++) {
_psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
switch (psfa->psfaa_type) {
case PSFA_OPEN: {
/*
* Open is different, in that it requires the use of
* a path argument, which is normally copied in from
* user space; because of this, we have to support an
* open from kernel space that passes an address space
* context of UIO_SYSSPACE, and casts the address
* argument to a user_addr_t.
*/
char *bufp = NULL;
struct vnode_attr *vap;
struct nameidata *ndp;
int mode = psfa->psfaa_openargs.psfao_mode;
int origfd;
bufp = kheap_alloc(KHEAP_TEMP,
sizeof(*vap) + sizeof(*ndp), Z_WAITOK | Z_ZERO);
if (bufp == NULL) {
error = ENOMEM;
break;
}
vap = (struct vnode_attr *) bufp;
ndp = (struct nameidata *) (bufp + sizeof(*vap));
VATTR_INIT(vap);
/* Mask off all but regular access permissions */
mode = ((mode & ~p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;
VATTR_SET(vap, va_mode, mode & ACCESSPERMS);
AUDIT_SUBCALL_ENTER(OPEN, p, uthread);
NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),
imgp->ip_vfs_context);
error = open1(imgp->ip_vfs_context,
ndp,
psfa->psfaa_openargs.psfao_oflag,
vap,
fileproc_alloc_init, NULL,
&origfd);
kheap_free(KHEAP_TEMP, bufp, sizeof(*vap) + sizeof(*ndp));
AUDIT_SUBCALL_EXIT(uthread, error);
/*
* If there's an error, or we get the right fd by
* accident, then drop out here. This is easier than
* reworking all the open code to preallocate fd
* slots, and internally taking one as an argument.
*/
if (error || origfd == psfa->psfaa_filedes) {
break;
}
/*
* If we didn't fall out from an error, we ended up
* with the wrong fd; so now we've got to try to dup2
* it to the right one.
*/
AUDIT_SUBCALL_ENTER(DUP2, p, uthread);
error = dup2(p, origfd, psfa->psfaa_filedes, ival);
AUDIT_SUBCALL_EXIT(uthread, error);
if (error) {
break;
}
/*
* Finally, close the original fd.
*/
AUDIT_SUBCALL_ENTER(CLOSE, p, uthread);
error = close_nocancel(p, origfd);
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
case PSFA_DUP2: {
AUDIT_SUBCALL_ENTER(DUP2, p, uthread);
error = dup2(p, psfa->psfaa_filedes,
psfa->psfaa_dup2args.psfad_newfiledes, ival);
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
case PSFA_FILEPORT_DUP2: {
ipc_port_t port;
kern_return_t kr;
int origfd;
if (!MACH_PORT_VALID(psfa->psfaa_fileport)) {
error = EINVAL;
break;
}
kr = ipc_object_copyin(get_task_ipcspace(current_task()),
psfa->psfaa_fileport, MACH_MSG_TYPE_COPY_SEND,
(ipc_object_t *) &port, 0, NULL, IPC_OBJECT_COPYIN_FLAGS_ALLOW_IMMOVABLE_SEND);
if (kr != KERN_SUCCESS) {
error = EINVAL;
break;
}
error = fileport_makefd(p, port, 0, &origfd);
if (IPC_PORT_NULL != port) {
ipc_port_release_send(port);
}
if (error || origfd == psfa->psfaa_dup2args.psfad_newfiledes) {
break;
}
AUDIT_SUBCALL_ENTER(DUP2, p, uthread);
error = dup2(p, origfd,
psfa->psfaa_dup2args.psfad_newfiledes, ival);
AUDIT_SUBCALL_EXIT(uthread, error);
if (error) {
break;
}
AUDIT_SUBCALL_ENTER(CLOSE, p, uthread);
error = close_nocancel(p, origfd);
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
case PSFA_CLOSE: {
AUDIT_SUBCALL_ENTER(CLOSE, p, uthread);
error = close_nocancel(p, psfa->psfaa_filedes);
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
case PSFA_INHERIT: {
struct fileproc *fp;
/*
* Check to see if the descriptor exists, and
* ensure it's -not- marked as close-on-exec.
*
* Attempting to "inherit" a guarded fd will
* result in a error.
*/
proc_fdlock(p);
if ((fp = fp_get_noref_locked(p, psfa->psfaa_filedes)) == NULL) {
error = EBADF;
} else if (fp_isguarded(fp, 0)) {
error = fp_guard_exception(p, psfa->psfaa_filedes,
fp, kGUARD_EXC_NOCLOEXEC);
} else {
p->p_fd->fd_ofileflags[psfa->psfaa_filedes] &= ~UF_EXCLOSE;
error = 0;
}
proc_fdunlock(p);
}
break;
case PSFA_CHDIR: {
/*
* Chdir is different, in that it requires the use of
* a path argument, which is normally copied in from
* user space; because of this, we have to support a
* chdir from kernel space that passes an address space
* context of UIO_SYSSPACE, and casts the address
* argument to a user_addr_t.
*/
struct nameidata *nd;
nd = kheap_alloc(KHEAP_TEMP, sizeof(*nd), Z_WAITOK | Z_ZERO);
if (nd == NULL) {
error = ENOMEM;
break;
}
AUDIT_SUBCALL_ENTER(CHDIR, p, uthread);
NDINIT(nd, LOOKUP, OP_CHDIR, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
CAST_USER_ADDR_T(psfa->psfaa_chdirargs.psfac_path),
imgp->ip_vfs_context);
error = chdir_internal(p, imgp->ip_vfs_context, nd, 0);
kheap_free(KHEAP_TEMP, nd, sizeof(*nd));
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
case PSFA_FCHDIR: {
struct fchdir_args fchdira;
fchdira.fd = psfa->psfaa_filedes;
AUDIT_SUBCALL_ENTER(FCHDIR, p, uthread);
error = fchdir(p, &fchdira, ival);
AUDIT_SUBCALL_EXIT(uthread, error);
}
break;
default:
error = EINVAL;
break;
}
/* All file actions failures are considered fatal, per POSIX */
if (error) {
if (PSFA_OPEN == psfa->psfaa_type) {
DTRACE_PROC1(spawn__open__failure, uintptr_t,
psfa->psfaa_openargs.psfao_path);
} else {
DTRACE_PROC1(spawn__fd__failure, int, psfa->psfaa_filedes);
}
break;
}
}
if (error != 0 || (psa_flags & POSIX_SPAWN_CLOEXEC_DEFAULT) == 0) {
return error;
}
/*
* If POSIX_SPAWN_CLOEXEC_DEFAULT is set, behave (during
* this spawn only) as if "close on exec" is the default
* disposition of all pre-existing file descriptors. In this case,
* the list of file descriptors mentioned in the file actions
* are the only ones that can be inherited, so mark them now.
*
* The actual closing part comes later, in fdexec().
*/
proc_fdlock(p);
for (action = 0; action < px_sfap->psfa_act_count; action++) {
_psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
int fd = psfa->psfaa_filedes;
switch (psfa->psfaa_type) {
case PSFA_DUP2:
case PSFA_FILEPORT_DUP2:
fd = psfa->psfaa_dup2args.psfad_newfiledes;
OS_FALLTHROUGH;
case PSFA_OPEN:
case PSFA_INHERIT:
*fdflags(p, fd) |= UF_INHERIT;
break;
case PSFA_CLOSE:
case PSFA_CHDIR:
case PSFA_FCHDIR:
/*
* Although PSFA_FCHDIR does have a file descriptor, it is not
* *creating* one, thus we do not automatically mark it for
* inheritance under POSIX_SPAWN_CLOEXEC_DEFAULT. A client that
* wishes it to be inherited should use the PSFA_INHERIT action
* explicitly.
*/
break;
}
}
proc_fdunlock(p);
return 0;
}
#if CONFIG_MACF
/*
* exec_spawnattr_getmacpolicyinfo
*/
void *
exec_spawnattr_getmacpolicyinfo(const void *macextensions, const char *policyname, size_t *lenp)
{
const struct _posix_spawn_mac_policy_extensions *psmx = macextensions;
int i;
if (psmx == NULL) {
return NULL;
}
for (i = 0; i < psmx->psmx_count; i++) {
const _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
if (strncmp(extension->policyname, policyname, sizeof(extension->policyname)) == 0) {
if (lenp != NULL) {
*lenp = (size_t)extension->datalen;
}
return extension->datap;
}
}
if (lenp != NULL) {
*lenp = 0;
}
return NULL;
}
static void
spawn_free_macpolicyinfo(const struct user__posix_spawn_args_desc *px_args,
_posix_spawn_mac_policy_extensions_t psmx, int count)
{
if (psmx == NULL) {
return;
}
for (int i = 0; i < count; i++) {
_ps_mac_policy_extension_t *ext = &psmx->psmx_extensions[i];
kheap_free(KHEAP_TEMP, ext->datap, (vm_size_t) ext->datalen);
}
kheap_free(KHEAP_TEMP, psmx, px_args->mac_extensions_size);
}
static int
spawn_copyin_macpolicyinfo(const struct user__posix_spawn_args_desc *px_args,
_posix_spawn_mac_policy_extensions_t *psmxp)
{
_posix_spawn_mac_policy_extensions_t psmx = NULL;
int error = 0;
int copycnt = 0;
*psmxp = NULL;
if (px_args->mac_extensions_size < PS_MAC_EXTENSIONS_SIZE(1) ||
px_args->mac_extensions_size > PAGE_SIZE) {
error = EINVAL;
goto bad;
}
psmx = kheap_alloc(KHEAP_TEMP, px_args->mac_extensions_size, Z_WAITOK);
if (psmx == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin(px_args->mac_extensions, psmx, px_args->mac_extensions_size);
if (error) {
goto bad;
}
size_t extsize = PS_MAC_EXTENSIONS_SIZE(psmx->psmx_count);
if (extsize == 0 || extsize > px_args->mac_extensions_size) {
error = EINVAL;
goto bad;
}
for (int i = 0; i < psmx->psmx_count; i++) {
_ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
if (extension->datalen == 0 || extension->datalen > PAGE_SIZE) {
error = EINVAL;
goto bad;
}
}
for (copycnt = 0; copycnt < psmx->psmx_count; copycnt++) {
_ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[copycnt];
void *data = NULL;
#if !__LP64__
if (extension->data > UINT32_MAX) {
goto bad;
}
#endif
data = kheap_alloc(KHEAP_TEMP, (vm_size_t) extension->datalen, Z_WAITOK);
if (data == NULL) {
error = ENOMEM;
goto bad;
}
error = copyin((user_addr_t)extension->data, data, (size_t)extension->datalen);
if (error) {
kheap_free(KHEAP_TEMP, data, (vm_size_t) extension->datalen);
error = ENOMEM;
goto bad;
}
extension->datap = data;
}
*psmxp = psmx;
return 0;
bad:
spawn_free_macpolicyinfo(px_args, psmx, copycnt);
return error;
}
#endif /* CONFIG_MACF */
#if CONFIG_COALITIONS
static inline void
spawn_coalitions_release_all(coalition_t coal[COALITION_NUM_TYPES])
{
for (int c = 0; c < COALITION_NUM_TYPES; c++) {
if (coal[c]) {
coalition_remove_active(coal[c]);
coalition_release(coal[c]);
}
}
}
#endif
#if CONFIG_PERSONAS
static int
spawn_validate_persona(struct _posix_spawn_persona_info *px_persona)
{
int error = 0;
struct persona *persona = NULL;
int verify = px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_VERIFY;
if (!IOTaskHasEntitlement(current_task(), PERSONA_MGMT_ENTITLEMENT)) {
return EPERM;
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
if (px_persona->pspi_ngroups > NGROUPS_MAX) {
return EINVAL;
}
}
persona = persona_lookup(px_persona->pspi_id);
if (!persona) {
error = ESRCH;
goto out;
}
if (verify) {
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
if (px_persona->pspi_uid != persona_get_uid(persona)) {
error = EINVAL;
goto out;
}
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
if (px_persona->pspi_gid != persona_get_gid(persona)) {
error = EINVAL;
goto out;
}
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
size_t ngroups = 0;
gid_t groups[NGROUPS_MAX];
if (persona_get_groups(persona, &ngroups, groups,
px_persona->pspi_ngroups) != 0) {
error = EINVAL;
goto out;
}
if (ngroups != px_persona->pspi_ngroups) {
error = EINVAL;
goto out;
}
while (ngroups--) {
if (px_persona->pspi_groups[ngroups] != groups[ngroups]) {
error = EINVAL;
goto out;
}
}
if (px_persona->pspi_gmuid != persona_get_gmuid(persona)) {
error = EINVAL;
goto out;
}
}
}
out:
if (persona) {
persona_put(persona);
}
return error;
}
static int
spawn_persona_adopt(proc_t p, struct _posix_spawn_persona_info *px_persona)
{
int ret;
kauth_cred_t cred;
struct persona *persona = NULL;
int override = !!(px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_OVERRIDE);
if (!override) {
return persona_proc_adopt_id(p, px_persona->pspi_id, NULL);
}
/*
* we want to spawn into the given persona, but we want to override
* the kauth with a different UID/GID combo
*/
persona = persona_lookup(px_persona->pspi_id);
if (!persona) {
return ESRCH;
}
cred = persona_get_cred(persona);
if (!cred) {
ret = EINVAL;
goto out;
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
cred = kauth_cred_setresuid(cred,
px_persona->pspi_uid,
px_persona->pspi_uid,
px_persona->pspi_uid,
KAUTH_UID_NONE);
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
cred = kauth_cred_setresgid(cred,
px_persona->pspi_gid,
px_persona->pspi_gid,
px_persona->pspi_gid);
}
if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
cred = kauth_cred_setgroups(cred,
px_persona->pspi_groups,
px_persona->pspi_ngroups,
px_persona->pspi_gmuid);
}
ret = persona_proc_adopt(p, persona, cred);
out:
persona_put(persona);
return ret;
}
#endif
#if __arm64__
extern int legacy_footprint_entitlement_mode;
static inline void
proc_legacy_footprint_entitled(proc_t p, task_t task)
{
#pragma unused(p)
boolean_t legacy_footprint_entitled;
switch (legacy_footprint_entitlement_mode) {
case LEGACY_FOOTPRINT_ENTITLEMENT_IGNORE:
/* the entitlement is ignored */
break;
case LEGACY_FOOTPRINT_ENTITLEMENT_IOS11_ACCT:
/* the entitlement grants iOS11 legacy accounting */
legacy_footprint_entitled = IOTaskHasEntitlement(task,
"com.apple.private.memory.legacy_footprint");
if (legacy_footprint_entitled) {
task_set_legacy_footprint(task);
}
break;
case LEGACY_FOOTPRINT_ENTITLEMENT_LIMIT_INCREASE:
/* the entitlement grants a footprint limit increase */
legacy_footprint_entitled = IOTaskHasEntitlement(task,
"com.apple.private.memory.legacy_footprint");
if (legacy_footprint_entitled) {
task_set_extra_footprint_limit(task);
}
break;
default:
break;
}
}
static inline void
proc_ios13extended_footprint_entitled(proc_t p, task_t task)
{
#pragma unused(p)
boolean_t ios13extended_footprint_entitled;
/* the entitlement grants a footprint limit increase */
ios13extended_footprint_entitled = IOTaskHasEntitlement(task,
"com.apple.developer.memory.ios13extended_footprint");
if (ios13extended_footprint_entitled) {
task_set_ios13extended_footprint_limit(task);
}
}
static inline void
proc_increased_memory_limit_entitled(proc_t p, task_t task)
{
static const char kIncreasedMemoryLimitEntitlement[] = "com.apple.developer.kernel.increased-memory-limit";
bool entitled = false;
entitled = IOTaskHasEntitlement(task, kIncreasedMemoryLimitEntitlement);
if (entitled) {
memorystatus_act_on_entitled_task_limit(p);
}
}
/*
* Check for any of the various entitlements that permit a higher
* task footprint limit or alternate accounting and apply them.
*/
static inline void
proc_footprint_entitlement_hacks(proc_t p, task_t task)
{
proc_legacy_footprint_entitled(p, task);
proc_ios13extended_footprint_entitled(p, task);
proc_increased_memory_limit_entitled(p, task);
}
#endif /* __arm64__ */
#if CONFIG_MACF
/*
* Processes with certain entitlements are granted a jumbo-size VM map.
*/
static inline void
proc_apply_jit_and_jumbo_va_policies(proc_t p, task_t task)
{
bool jit_entitled;
jit_entitled = (mac_proc_check_map_anon(p, 0, 0, 0, MAP_JIT, NULL) == 0);
if (jit_entitled || (IOTaskHasEntitlement(task,
"com.apple.developer.kernel.extended-virtual-addressing"))) {
vm_map_set_jumbo(get_task_map(task));
if (jit_entitled) {
vm_map_set_jit_entitled(get_task_map(task));
}
}
}
#endif /* CONFIG_MACF */
/*
* Apply a modification on the proc's kauth cred until it converges.
*
* `update` consumes its argument to return a new kauth cred.
*/
static void
apply_kauth_cred_update(proc_t p,
kauth_cred_t (^update)(kauth_cred_t orig_cred))
{
kauth_cred_t my_cred, my_new_cred;
my_cred = kauth_cred_proc_ref(p);
for (;;) {
my_new_cred = update(my_cred);
if (my_cred == my_new_cred) {
kauth_cred_unref(&my_new_cred);
break;
}
/* try update cred on proc */
proc_ucred_lock(p);
if (p->p_ucred == my_cred) {
/* base pointer didn't change, donate our ref */
p->p_ucred = my_new_cred;
PROC_UPDATE_CREDS_ONPROC(p);
proc_ucred_unlock(p);
/* drop p->p_ucred reference */
kauth_cred_unref(&my_cred);
break;
}
/* base pointer changed, retry */
my_cred = p->p_ucred;
kauth_cred_ref(my_cred);
proc_ucred_unlock(p);
kauth_cred_unref(&my_new_cred);
}
}
static int
spawn_posix_cred_adopt(proc_t p,
struct _posix_spawn_posix_cred_info *px_pcred_info)
{
int error = 0;
if (px_pcred_info->pspci_flags & POSIX_SPAWN_POSIX_CRED_GID) {
struct setgid_args args = {
.gid = px_pcred_info->pspci_gid,
};
error = setgid(p, &args, NULL);
if (error) {
return error;
}
}
if (px_pcred_info->pspci_flags & POSIX_SPAWN_POSIX_CRED_GROUPS) {
error = setgroups_internal(p,
px_pcred_info->pspci_ngroups,
px_pcred_info->pspci_groups,
px_pcred_info->pspci_gmuid);
if (error) {
return error;
}
}
if (px_pcred_info->pspci_flags & POSIX_SPAWN_POSIX_CRED_UID) {
struct setuid_args args = {
.uid = px_pcred_info->pspci_uid,
};
error = setuid(p, &args, NULL);
if (error) {
return error;
}
}
return 0;
}
/*
* posix_spawn
*
* Parameters: uap->pid Pointer to pid return area
* uap->fname File name to exec
* uap->argp Argument list
* uap->envp Environment list
*
* Returns: 0 Success
* EINVAL Invalid argument
* ENOTSUP Not supported
* ENOEXEC Executable file format error
* exec_activate_image:EINVAL Invalid argument
* exec_activate_image:EACCES Permission denied
* exec_activate_image:EINTR Interrupted function
* exec_activate_image:ENOMEM Not enough space
* exec_activate_image:EFAULT Bad address
* exec_activate_image:ENAMETOOLONG Filename too long
* exec_activate_image:ENOEXEC Executable file format error
* exec_activate_image:ETXTBSY Text file busy [misuse of error code]
* exec_activate_image:EAUTH Image decryption failed
* exec_activate_image:EBADEXEC The executable is corrupt/unknown
* exec_activate_image:???
* mac_execve_enter:???
*
* TODO: Expect to need __mac_posix_spawn() at some point...
* Handle posix_spawnattr_t
* Handle posix_spawn_file_actions_t
*/
int
posix_spawn(proc_t ap, struct posix_spawn_args *uap, int32_t *retval)
{
proc_t p = ap; /* quiet bogus GCC vfork() warning */
user_addr_t pid = uap->pid;
int ival[2]; /* dummy retval for setpgid() */
char *bufp = NULL;
char *subsystem_root_path = NULL;
struct image_params *imgp;
struct vnode_attr *vap;
struct vnode_attr *origvap;
struct uthread *uthread = 0; /* compiler complains if not set to 0*/
int error, sig;
int is_64 = IS_64BIT_PROCESS(p);
struct vfs_context context;
struct user__posix_spawn_args_desc px_args;
struct _posix_spawnattr px_sa;
_posix_spawn_file_actions_t px_sfap = NULL;
_posix_spawn_port_actions_t px_spap = NULL;
struct __kern_sigaction vec;
boolean_t spawn_no_exec = FALSE;
boolean_t proc_transit_set = TRUE;
boolean_t exec_done = FALSE;
struct exec_port_actions port_actions = { };
vm_size_t px_sa_offset = offsetof(struct _posix_spawnattr, psa_ports);
task_t old_task = current_task();
task_t new_task = NULL;
boolean_t should_release_proc_ref = FALSE;
void *inherit = NULL;
#if CONFIG_PERSONAS
struct _posix_spawn_persona_info *px_persona = NULL;
#endif
struct _posix_spawn_posix_cred_info *px_pcred_info = NULL;
/*
* Allocate a big chunk for locals instead of using stack since these
* structures are pretty big.
*/
bufp = kheap_alloc(KHEAP_TEMP,
sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap), Z_WAITOK | Z_ZERO);
imgp = (struct image_params *) bufp;
if (bufp == NULL) {
error = ENOMEM;
goto bad;
}
vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
/* Initialize the common data in the image_params structure */
imgp->ip_user_fname = uap->path;
imgp->ip_user_argv = uap->argv;
imgp->ip_user_envv = uap->envp;
imgp->ip_vattr = vap;
imgp->ip_origvattr = origvap;
imgp->ip_vfs_context = &context;
imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT_ADDR : IMGPF_NONE);
imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
imgp->ip_mac_return = 0;
imgp->ip_px_persona = NULL;
imgp->ip_px_pcred_info = NULL;
imgp->ip_cs_error = OS_REASON_NULL;
imgp->ip_simulator_binary = IMGPF_SB_DEFAULT;
imgp->ip_subsystem_root_path = NULL;
imgp->ip_inherited_shared_region_id = NULL;
imgp->ip_inherited_jop_pid = 0;
if (uap->adesc != USER_ADDR_NULL) {
if (is_64) {
error = copyin(uap->adesc, &px_args, sizeof(px_args));
} else {
struct user32__posix_spawn_args_desc px_args32;
error = copyin(uap->adesc, &px_args32, sizeof(px_args32));
/*
* Convert arguments descriptor from external 32 bit
* representation to internal 64 bit representation
*/
px_args.attr_size = px_args32.attr_size;
px_args.attrp = CAST_USER_ADDR_T(px_args32.attrp);
px_args.file_actions_size = px_args32.file_actions_size;
px_args.file_actions = CAST_USER_ADDR_T(px_args32.file_actions);
px_args.port_actions_size = px_args32.port_actions_size;
px_args.port_actions = CAST_USER_ADDR_T(px_args32.port_actions);
px_args.mac_extensions_size = px_args32.mac_extensions_size;
px_args.mac_extensions = CAST_USER_ADDR_T(px_args32.mac_extensions);
px_args.coal_info_size = px_args32.coal_info_size;
px_args.coal_info = CAST_USER_ADDR_T(px_args32.coal_info);
px_args.persona_info_size = px_args32.persona_info_size;
px_args.persona_info = CAST_USER_ADDR_T(px_args32.persona_info);
px_args.posix_cred_info_size = px_args32.posix_cred_info_size;
px_args.posix_cred_info = CAST_USER_ADDR_T(px_args32.posix_cred_info);
px_args.subsystem_root_path_size = px_args32.subsystem_root_path_size;
px_args.subsystem_root_path = CAST_USER_ADDR_T(px_args32.subsystem_root_path);
}
if (error) {
goto bad;
}
if (px_args.attr_size != 0) {
/*
* We are not copying the port_actions pointer,
* because we already have it from px_args.
* This is a bit fragile: <rdar://problem/16427422>
*/
if ((error = copyin(px_args.attrp, &px_sa, px_sa_offset)) != 0) {
goto bad;
}
bzero((void *)((unsigned long) &px_sa + px_sa_offset), sizeof(px_sa) - px_sa_offset );
imgp->ip_px_sa = &px_sa;
}
if (px_args.file_actions_size != 0) {
/* Limit file_actions to allowed number of open files */
rlim_t maxfa = (p->p_limit ? MIN(proc_limitgetcur(p, RLIMIT_NOFILE, TRUE), maxfilesperproc) : NOFILE);
size_t maxfa_size = PSF_ACTIONS_SIZE(maxfa);
if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
maxfa_size == 0 || px_args.file_actions_size > maxfa_size) {
error = EINVAL;
goto bad;
}
px_sfap = kheap_alloc(KHEAP_TEMP,
px_args.file_actions_size, Z_WAITOK);
if (px_sfap == NULL) {
error = ENOMEM;
goto bad;
}
imgp->ip_px_sfa = px_sfap;
if ((error = copyin(px_args.file_actions, px_sfap,
px_args.file_actions_size)) != 0) {
goto bad;
}
/* Verify that the action count matches the struct size */
size_t psfsize = PSF_ACTIONS_SIZE(px_sfap->psfa_act_count);
if (psfsize == 0 || psfsize != px_args.file_actions_size) {
error = EINVAL;
goto bad;
}
}
if (px_args.port_actions_size != 0) {
/* Limit port_actions to one page of data */
if (px_args.port_actions_size < PS_PORT_ACTIONS_SIZE(1) ||
px_args.port_actions_size > PAGE_SIZE) {
error = EINVAL;
goto bad;
}
px_spap = kheap_alloc(KHEAP_TEMP,
px_args.port_actions_size, Z_WAITOK);
if (px_spap == NULL) {
error = ENOMEM;
goto bad;
}
imgp->ip_px_spa = px_spap;
if ((error = copyin(px_args.port_actions, px_spap,
px_args.port_actions_size)) != 0) {
goto bad;
}
/* Verify that the action count matches the struct size */
size_t pasize = PS_PORT_ACTIONS_SIZE(px_spap->pspa_count);
if (pasize == 0 || pasize != px_args.port_actions_size) {
error = EINVAL;
goto bad;
}
}
#if CONFIG_PERSONAS
/* copy in the persona info */
if (px_args.persona_info_size != 0 && px_args.persona_info != 0) {
/* for now, we need the exact same struct in user space */
if (px_args.persona_info_size != sizeof(*px_persona)) {
error = ERANGE;
goto bad;
}
px_persona = kheap_alloc(KHEAP_TEMP,
px_args.persona_info_size, Z_WAITOK);
if (px_persona == NULL) {
error = ENOMEM;
goto bad;
}
imgp->ip_px_persona = px_persona;
if ((error = copyin(px_args.persona_info, px_persona,
px_args.persona_info_size)) != 0) {
goto bad;
}
if ((error = spawn_validate_persona(px_persona)) != 0) {
goto bad;
}
}
#endif
/* copy in the posix cred info */
if (px_args.posix_cred_info_size != 0 && px_args.posix_cred_info != 0) {
/* for now, we need the exact same struct in user space */
if (px_args.posix_cred_info_size != sizeof(*px_pcred_info)) {
error = ERANGE;
goto bad;
}
if (!kauth_cred_issuser(kauth_cred_get())) {
error = EPERM;
goto bad;
}
px_pcred_info = kheap_alloc(KHEAP_TEMP,
px_args.posix_cred_info_size, Z_WAITOK);
if (px_pcred_info == NULL) {
error = ENOMEM;
goto bad;
}
imgp->ip_px_pcred_info = px_pcred_info;
if ((error = copyin(px_args.posix_cred_info, px_pcred_info,
px_args.posix_cred_info_size)) != 0) {
goto bad;
}
if (px_pcred_info->pspci_flags & POSIX_SPAWN_POSIX_CRED_GROUPS) {
if (px_pcred_info->pspci_ngroups > NGROUPS_MAX) {
error = EINVAL;
goto bad;
}
}
}
#if CONFIG_MACF
if (px_args.mac_extensions_size != 0) {
if ((error = spawn_copyin_macpolicyinfo(&px_args, (_posix_spawn_mac_policy_extensions_t *)&imgp->ip_px_smpx)) != 0) {
goto bad;
}
}
#endif /* CONFIG_MACF */
if ((px_args.subsystem_root_path_size > 0) && (px_args.subsystem_root_path_size <= MAXPATHLEN)) {
/*
* If a valid-looking subsystem root has been
* specified...
*/
if (IOTaskHasEntitlement(old_task, SPAWN_SUBSYSTEM_ROOT_ENTITLEMENT)) {
/*
* ...AND the parent has the entitlement, copy
* the subsystem root path in.
*/
subsystem_root_path = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO);
if (subsystem_root_path == NULL) {
error = ENOMEM;
goto bad;
}
if ((error = copyin(px_args.subsystem_root_path, subsystem_root_path, px_args.subsystem_root_path_size))) {
goto bad;
}
/* Paranoia */
subsystem_root_path[px_args.subsystem_root_path_size - 1] = 0;
}
}
}
/* set uthread to parent */
uthread = get_bsdthread_info(current_thread());
/*
* <rdar://6640530>; this does not result in a behaviour change
* relative to Leopard, so there should not be any existing code
* which depends on it.
*/
if (uthread->uu_flag & UT_VFORK) {
error = EINVAL;
goto bad;
}
if (imgp->ip_px_sa != NULL) {
struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if ((psa->psa_options & PSA_OPTION_PLUGIN_HOST_DISABLE_A_KEYS) == PSA_OPTION_PLUGIN_HOST_DISABLE_A_KEYS) {
imgp->ip_flags |= IMGPF_PLUGIN_HOST_DISABLE_A_KEYS;
}
if ((error = exec_validate_spawnattr_policy(psa->psa_apptype)) != 0) {
goto bad;
}
}
/*
* If we don't have the extension flag that turns "posix_spawn()"
* into "execve() with options", then we will be creating a new
* process which does not inherit memory from the parent process,
* which is one of the most expensive things about using fork()
* and execve().
*/
if (imgp->ip_px_sa == NULL || !(px_sa.psa_flags & POSIX_SPAWN_SETEXEC)) {
/* Set the new task's coalition, if it is requested. */
coalition_t coal[COALITION_NUM_TYPES] = { COALITION_NULL };
#if CONFIG_COALITIONS
int i, ncoals;
kern_return_t kr = KERN_SUCCESS;
struct _posix_spawn_coalition_info coal_info;
int coal_role[COALITION_NUM_TYPES];
if (imgp->ip_px_sa == NULL || !px_args.coal_info) {
goto do_fork1;
}
memset(&coal_info, 0, sizeof(coal_info));
if (px_args.coal_info_size > sizeof(coal_info)) {
px_args.coal_info_size = sizeof(coal_info);
}
error = copyin(px_args.coal_info,
&coal_info, px_args.coal_info_size);
if (error != 0) {
goto bad;
}
ncoals = 0;
for (i = 0; i < COALITION_NUM_TYPES; i++) {
uint64_t cid = coal_info.psci_info[i].psci_id;
if (cid != 0) {
/*
* don't allow tasks which are not in a
* privileged coalition to spawn processes
* into coalitions other than their own
*/
if (!task_is_in_privileged_coalition(p->task, i) &&
!IOTaskHasEntitlement(p->task, COALITION_SPAWN_ENTITLEMENT)) {
coal_dbg("ERROR: %d not in privilegd "
"coalition of type %d",
p->p_pid, i);
spawn_coalitions_release_all(coal);
error = EPERM;
goto bad;
}
coal_dbg("searching for coalition id:%llu", cid);
/*
* take a reference and activation on the
* coalition to guard against free-while-spawn
* races
*/
coal[i] = coalition_find_and_activate_by_id(cid);
if (coal[i] == COALITION_NULL) {
coal_dbg("could not find coalition id:%llu "
"(perhaps it has been terminated or reaped)", cid);
/*
* release any other coalition's we
* may have a reference to
*/
spawn_coalitions_release_all(coal);
error = ESRCH;
goto bad;
}
if (coalition_type(coal[i]) != i) {
coal_dbg("coalition with id:%lld is not of type:%d"
" (it's type:%d)", cid, i, coalition_type(coal[i]));
error = ESRCH;
goto bad;
}
coal_role[i] = coal_info.psci_info[i].psci_role;
ncoals++;
}
}
if (ncoals < COALITION_NUM_TYPES) {
/*
* If the user is attempting to spawn into a subset of
* the known coalition types, then make sure they have
* _at_least_ specified a resource coalition. If not,
* the following fork1() call will implicitly force an
* inheritance from 'p' and won't actually spawn the
* new task into the coalitions the user specified.
* (also the call to coalitions_set_roles will panic)
*/
if (coal[COALITION_TYPE_RESOURCE] == COALITION_NULL) {
spawn_coalitions_release_all(coal);
error = EINVAL;
goto bad;
}
}
do_fork1:
#endif /* CONFIG_COALITIONS */
/*
* note that this will implicitly inherit the
* caller's persona (if it exists)
*/
error = fork1(p, &imgp->ip_new_thread, PROC_CREATE_SPAWN, coal);
/* returns a thread and task reference */
if (error == 0) {
new_task = get_threadtask(imgp->ip_new_thread);
}
#if CONFIG_COALITIONS
/* set the roles of this task within each given coalition */
if (error == 0) {
kr = coalitions_set_roles(coal, new_task, coal_role);
if (kr != KERN_SUCCESS) {
error = EINVAL;
}
if (kdebug_debugid_enabled(MACHDBG_CODE(DBG_MACH_COALITION,
MACH_COALITION_ADOPT))) {
for (i = 0; i < COALITION_NUM_TYPES; i++) {
if (coal[i] != COALITION_NULL) {
/*
* On 32-bit targets, uniqueid
* will get truncated to 32 bits
*/
KDBG_RELEASE(MACHDBG_CODE(
DBG_MACH_COALITION,
MACH_COALITION_ADOPT),
coalition_id(coal[i]),
get_task_uniqueid(new_task));
}
}
}
}
/* drop our references and activations - fork1() now holds them */
spawn_coalitions_release_all(coal);
#endif /* CONFIG_COALITIONS */
if (error != 0) {
goto bad;
}
imgp->ip_flags |= IMGPF_SPAWN; /* spawn w/o exec */
spawn_no_exec = TRUE; /* used in later tests */
} else {
/*
* For execve case, create a new task and thread
* which points to current_proc. The current_proc will point
* to the new task after image activation and proc ref drain.
*
* proc (current_proc) <----- old_task (current_task)
* ^ | ^
* | | |
* | ----------------------------------
* |
* --------- new_task (task marked as TF_EXEC_COPY)
*
* After image activation, the proc will point to the new task
* and would look like following.
*
* proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
* ^ |
* | |
* | ----------> new_task
* | |
* -----------------
*
* During exec any transition from new_task -> proc is fine, but don't allow
* transition from proc->task, since it will modify old_task.
*/
imgp->ip_new_thread = fork_create_child(old_task,
NULL,
p,
FALSE,
p->p_flag & P_LP64,
task_get_64bit_data(old_task),
TRUE);
/* task and thread ref returned by fork_create_child */
if (imgp->ip_new_thread == NULL) {
error = ENOMEM;
goto bad;
}
new_task = get_threadtask(imgp->ip_new_thread);
imgp->ip_flags |= IMGPF_EXEC;
}
if (spawn_no_exec) {
p = (proc_t)get_bsdthreadtask_info(imgp->ip_new_thread);
/*
* We had to wait until this point before firing the
* proc:::create probe, otherwise p would not point to the
* child process.
*/
DTRACE_PROC1(create, proc_t, p);
}
assert(p != NULL);
if (subsystem_root_path) {
/* If a subsystem root was specified, swap it in */
char * old_subsystem_root_path = p->p_subsystem_root_path;
p->p_subsystem_root_path = subsystem_root_path;
subsystem_root_path = old_subsystem_root_path;
}
/* We'll need the subsystem root for setting up Apple strings */
imgp->ip_subsystem_root_path = p->p_subsystem_root_path;
context.vc_thread = imgp->ip_new_thread;
context.vc_ucred = p->p_ucred; /* XXX must NOT be kauth_cred_get() */
/*
* Post fdcopy(), pre exec_handle_sugid() - this is where we want
* to handle the file_actions. Since vfork() also ends up setting
* us into the parent process group, and saved off the signal flags,
* this is also where we want to handle the spawn flags.
*/
/* Has spawn file actions? */
if (imgp->ip_px_sfa != NULL) {
/*
* The POSIX_SPAWN_CLOEXEC_DEFAULT flag
* is handled in exec_handle_file_actions().
*/
#if CONFIG_AUDIT
/*
* The file actions auditing can overwrite the upath of
* AUE_POSIX_SPAWN audit record. Save the audit record.
*/
struct kaudit_record *save_uu_ar = uthread->uu_ar;
uthread->uu_ar = NULL;
#endif
error = exec_handle_file_actions(imgp,
imgp->ip_px_sa != NULL ? px_sa.psa_flags : 0);
#if CONFIG_AUDIT
/* Restore the AUE_POSIX_SPAWN audit record. */
uthread->uu_ar = save_uu_ar;
#endif
if (error != 0) {
goto bad;
}
}
/* Has spawn port actions? */
if (imgp->ip_px_spa != NULL) {
#if CONFIG_AUDIT
/*
* Do the same for the port actions as we did for the file
* actions. Save the AUE_POSIX_SPAWN audit record.
*/
struct kaudit_record *save_uu_ar = uthread->uu_ar;
uthread->uu_ar = NULL;
#endif
error = exec_handle_port_actions(imgp, &port_actions);
#if CONFIG_AUDIT
/* Restore the AUE_POSIX_SPAWN audit record. */
uthread->uu_ar = save_uu_ar;
#endif
if (error != 0) {
goto bad;
}
}
/* Has spawn attr? */
if (imgp->ip_px_sa != NULL) {
/*
* Reset UID/GID to parent's RUID/RGID; This works only
* because the operation occurs *after* the vfork() and
* before the call to exec_handle_sugid() by the image
* activator called from exec_activate_image(). POSIX
* requires that any setuid/setgid bits on the process
* image will take precedence over the spawn attributes
* (re)setting them.
*
* Modifications to p_ucred must be guarded using the
* proc's ucred lock. This prevents others from accessing
* a garbage credential.
*/
if (px_sa.psa_flags & POSIX_SPAWN_RESETIDS) {
apply_kauth_cred_update(p, ^kauth_cred_t (kauth_cred_t my_cred){
return kauth_cred_setuidgid(my_cred,
kauth_cred_getruid(my_cred),
kauth_cred_getrgid(my_cred));
});
}
if (imgp->ip_px_pcred_info) {
if (!spawn_no_exec) {
error = ENOTSUP;
goto bad;
}
error = spawn_posix_cred_adopt(p, imgp->ip_px_pcred_info);
if (error != 0) {
goto bad;
}
}
#if CONFIG_PERSONAS
if (imgp->ip_px_persona != NULL) {
if (!spawn_no_exec) {
error = ENOTSUP;
goto bad;
}
/*
* If we were asked to spawn a process into a new persona,
* do the credential switch now (which may override the UID/GID
* inherit done just above). It's important to do this switch
* before image activation both for reasons stated above, and
* to ensure that the new persona has access to the image/file
* being executed.
*/
error = spawn_persona_adopt(p, imgp->ip_px_persona);
if (error != 0) {
goto bad;
}
}
#endif /* CONFIG_PERSONAS */
#if !SECURE_KERNEL
/*
* Disable ASLR for the spawned process.
*
* But only do so if we are not embedded + RELEASE.
* While embedded allows for a boot-arg (-disable_aslr)
* to deal with this (which itself is only honored on
* DEVELOPMENT or DEBUG builds of xnu), it is often
* useful or necessary to disable ASLR on a per-process
* basis for unit testing and debugging.
*/
if (px_sa.psa_flags & _POSIX_SPAWN_DISABLE_ASLR) {
OSBitOrAtomic(P_DISABLE_ASLR, &p->p_flag);
}
#endif /* !SECURE_KERNEL */
/* Randomize high bits of ASLR slide */
if (px_sa.psa_flags & _POSIX_SPAWN_HIGH_BITS_ASLR) {
imgp->ip_flags |= IMGPF_HIGH_BITS_ASLR;
}
#if !SECURE_KERNEL
/*
* Forcibly disallow execution from data pages for the spawned process
* even if it would otherwise be permitted by the architecture default.
*/
if (px_sa.psa_flags & _POSIX_SPAWN_ALLOW_DATA_EXEC) {
imgp->ip_flags |= IMGPF_ALLOW_DATA_EXEC;
}
#endif /* !SECURE_KERNEL */
#if __has_feature(ptrauth_calls)
if (vm_shared_region_reslide_aslr && is_64 && (px_sa.psa_flags & _POSIX_SPAWN_RESLIDE)) {
imgp->ip_flags |= IMGPF_RESLIDE;
}
#endif /* __has_feature(ptrauth_calls) */
if ((px_sa.psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) ==
POSIX_SPAWN_PROC_TYPE_DRIVER) {
imgp->ip_flags |= IMGPF_DRIVER;
}
}
/*
* Disable ASLR during image activation. This occurs either if the
* _POSIX_SPAWN_DISABLE_ASLR attribute was found above or if
* P_DISABLE_ASLR was inherited from the parent process.
*/
if (p->p_flag & P_DISABLE_ASLR) {
imgp->ip_flags |= IMGPF_DISABLE_ASLR;
}
/*
* Clear transition flag so we won't hang if exec_activate_image() causes
* an automount (and launchd does a proc sysctl to service it).
*
* <rdar://problem/6848672>, <rdar://problem/5959568>.
*/
if (spawn_no_exec) {
proc_transend(p, 0);
proc_transit_set = 0;
}
#if MAC_SPAWN /* XXX */
if (uap->mac_p != USER_ADDR_NULL) {
error = mac_execve_enter(uap->mac_p, imgp);
if (error) {
goto bad;
}
}
#endif
/*
* Activate the image
*/
error = exec_activate_image(imgp);
#if defined(HAS_APPLE_PAC)
ml_task_set_jop_pid_from_shared_region(new_task);
ml_task_set_disable_user_jop(new_task, imgp->ip_flags & IMGPF_NOJOP ? TRUE : FALSE);
ml_thread_set_disable_user_jop(imgp->ip_new_thread, imgp->ip_flags & IMGPF_NOJOP ? TRUE : FALSE);
ml_thread_set_jop_pid(imgp->ip_new_thread, new_task);
#endif
if (error == 0 && !spawn_no_exec) {
p = proc_exec_switch_task(p, old_task, new_task, imgp->ip_new_thread, &inherit);
/* proc ref returned */
should_release_proc_ref = TRUE;
}
if (error == 0) {
/* process completed the exec */
exec_done = TRUE;
} else if (error == -1) {
/* Image not claimed by any activator? */
error = ENOEXEC;
}
if (!error && imgp->ip_px_sa != NULL) {
thread_t child_thread = imgp->ip_new_thread;
uthread_t child_uthread = get_bsdthread_info(child_thread);
/*
* Because of POSIX_SPAWN_SETEXEC, we need to handle this after image
* activation, else when image activation fails (before the point of no
* return) would leave the parent process in a modified state.
*/
if (px_sa.psa_flags & POSIX_SPAWN_SETPGROUP) {
struct setpgid_args spga;
spga.pid = p->p_pid;
spga.pgid = px_sa.psa_pgroup;
/*
* Effectively, call setpgid() system call; works
* because there are no pointer arguments.
*/
if ((error = setpgid(p, &spga, ival)) != 0) {
goto bad;
}
}
if (px_sa.psa_flags & POSIX_SPAWN_SETSID) {
error = setsid_internal(p);
if (error != 0) {
goto bad;
}
}
/*
* If we have a spawn attr, and it contains signal related flags,
* the we need to process them in the "context" of the new child
* process, so we have to process it following image activation,
* prior to making the thread runnable in user space. This is
* necessitated by some signal information being per-thread rather
* than per-process, and we don't have the new allocation in hand
* until after the image is activated.
*/
/*
* Mask a list of signals, instead of them being unmasked, if
* they were unmasked in the parent; note that some signals
* are not maskable.
*/
if (px_sa.psa_flags & POSIX_SPAWN_SETSIGMASK) {
child_uthread->uu_sigmask = (px_sa.psa_sigmask & ~sigcantmask);
}
/*
* Default a list of signals instead of ignoring them, if
* they were ignored in the parent. Note that we pass
* spawn_no_exec to setsigvec() to indicate that we called
* fork1() and therefore do not need to call proc_signalstart()
* internally.
*/
if (px_sa.psa_flags & POSIX_SPAWN_SETSIGDEF) {
vec.sa_handler = SIG_DFL;
vec.sa_tramp = 0;
vec.sa_mask = 0;
vec.sa_flags = 0;
for (sig = 1; sig < NSIG; sig++) {
if (px_sa.psa_sigdefault & (1 << (sig - 1))) {
error = setsigvec(p, child_thread, sig, &vec, spawn_no_exec);
}
}
}
/*
* Activate the CPU usage monitor, if requested. This is done via a task-wide, per-thread CPU
* usage limit, which will generate a resource exceeded exception if any one thread exceeds the
* limit.
*
* Userland gives us interval in seconds, and the kernel SPI expects nanoseconds.
*/
if ((px_sa.psa_cpumonitor_percent != 0) && (px_sa.psa_cpumonitor_percent < UINT8_MAX)) {
/*
* Always treat a CPU monitor activation coming from spawn as entitled. Requiring
* an entitlement to configure the monitor a certain way seems silly, since
* whomever is turning it on could just as easily choose not to do so.
*/
error = proc_set_task_ruse_cpu(p->task,
TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC,
(uint8_t)px_sa.psa_cpumonitor_percent,
px_sa.psa_cpumonitor_interval * NSEC_PER_SEC,
0, TRUE);
}
if (px_pcred_info &&
(px_pcred_info->pspci_flags & POSIX_SPAWN_POSIX_CRED_LOGIN)) {
/*
* setlogin() must happen after setsid()
*/
setlogin_internal(p, px_pcred_info->pspci_login);
}
}
bad:
if (error == 0) {
/* reset delay idle sleep status if set */
#if CONFIG_DELAY_IDLE_SLEEP
if ((p->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP) {
OSBitAndAtomic(~((uint32_t)P_DELAYIDLESLEEP), &p->p_flag);
}
#endif /* CONFIG_DELAY_IDLE_SLEEP */
/* upon successful spawn, re/set the proc control state */
if (imgp->ip_px_sa != NULL) {
switch (px_sa.psa_pcontrol) {
case POSIX_SPAWN_PCONTROL_THROTTLE:
p->p_pcaction = P_PCTHROTTLE;
break;
case POSIX_SPAWN_PCONTROL_SUSPEND:
p->p_pcaction = P_PCSUSP;
break;
case POSIX_SPAWN_PCONTROL_KILL:
p->p_pcaction = P_PCKILL;
break;
case POSIX_SPAWN_PCONTROL_NONE:
default:
p->p_pcaction = 0;
break;
}
;
}
exec_resettextvp(p, imgp);
#if CONFIG_MEMORYSTATUS
/* Set jetsam priority for DriverKit processes */
if (px_sa.psa_apptype == POSIX_SPAWN_PROC_TYPE_DRIVER) {
px_sa.psa_priority = JETSAM_PRIORITY_DRIVER_APPLE;
}
/* Has jetsam attributes? */
if (imgp->ip_px_sa != NULL && (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_SET)) {
/*
* With 2-level high-water-mark support, POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is no
* longer relevant, as background limits are described via the inactive limit slots.
*
* That said, however, if the POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is passed in,
* we attempt to mimic previous behavior by forcing the BG limit data into the
* inactive/non-fatal mode and force the active slots to hold system_wide/fatal mode.
*/
if (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND) {
memorystatus_update(p, px_sa.psa_priority, 0, FALSE, /* assertion priority */
(px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
TRUE,
-1, TRUE,
px_sa.psa_memlimit_inactive, FALSE);
} else {
memorystatus_update(p, px_sa.psa_priority, 0, FALSE, /* assertion priority */
(px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
TRUE,
px_sa.psa_memlimit_active,
(px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_ACTIVE_FATAL),
px_sa.psa_memlimit_inactive,
(px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_INACTIVE_FATAL));
}
}
/* Has jetsam relaunch behavior? */
if (imgp->ip_px_sa != NULL && (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_MASK)) {
/*
* Launchd has passed in data indicating the behavior of this process in response to jetsam.
* This data would be used by the jetsam subsystem to determine the position and protection
* offered to this process on dirty -> clean transitions.
*/
int relaunch_flags = P_MEMSTAT_RELAUNCH_UNKNOWN;
switch (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_MASK) {
case POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_LOW:
relaunch_flags = P_MEMSTAT_RELAUNCH_LOW;
break;
case POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_MED:
relaunch_flags = P_MEMSTAT_RELAUNCH_MED;
break;
case POSIX_SPAWN_JETSAM_RELAUNCH_BEHAVIOR_HIGH:
relaunch_flags = P_MEMSTAT_RELAUNCH_HIGH;
break;
default:
break;
}
memorystatus_relaunch_flags_update(p, relaunch_flags);
}
#endif /* CONFIG_MEMORYSTATUS */
if (imgp->ip_px_sa != NULL && px_sa.psa_thread_limit > 0) {
task_set_thread_limit(new_task, (uint16_t)px_sa.psa_thread_limit);
}
/* Disable wakeup monitoring for DriverKit processes */
if (px_sa.psa_apptype == POSIX_SPAWN_PROC_TYPE_DRIVER) {
uint32_t flags = WAKEMON_DISABLE;
task_wakeups_monitor_ctl(new_task, &flags, NULL);
}
}
/*
* If we successfully called fork1(), we always need to do this;
* we identify this case by noting the IMGPF_SPAWN flag. This is
* because we come back from that call with signals blocked in the
* child, and we have to unblock them, but we want to wait until
* after we've performed any spawn actions. This has to happen
* before check_for_signature(), which uses psignal.
*/
if (spawn_no_exec) {
if (proc_transit_set) {
proc_transend(p, 0);
}
/*
* Drop the signal lock on the child which was taken on our
* behalf by forkproc()/cloneproc() to prevent signals being
* received by the child in a partially constructed state.
*/
proc_signalend(p, 0);
}
if (error == 0) {
/*
* We need to initialize the bank context behind the protection of
* the proc_trans lock to prevent a race with exit. We can't do this during
* exec_activate_image because task_bank_init checks entitlements that
* aren't loaded until subsequent calls (including exec_resettextvp).
*/
error = proc_transstart(p, 0, 0);
if (error == 0) {
task_bank_init(new_task);
proc_transend(p, 0);
}
#if __arm64__
proc_footprint_entitlement_hacks(p, new_task);
#endif /* __arm64__ */
#if __has_feature(ptrauth_calls)
task_set_pac_exception_fatal_flag(new_task);
#endif /* __has_feature(ptrauth_calls) */
}
/* Inherit task role from old task to new task for exec */
if (error == 0 && !spawn_no_exec) {
proc_inherit_task_role(new_task, old_task);
}
#if CONFIG_ARCADE
if (error == 0) {
/*
* Check to see if we need to trigger an arcade upcall AST now
* that the vnode has been reset on the task.
*/
arcade_prepare(new_task, imgp->ip_new_thread);
}
#endif /* CONFIG_ARCADE */
/* Clear the initial wait on the thread before handling spawn policy */
if (imgp && imgp->ip_new_thread) {
task_clear_return_wait(get_threadtask(imgp->ip_new_thread), TCRW_CLEAR_INITIAL_WAIT);
}
/*
* Apply the spawnattr policy, apptype (which primes the task for importance donation),
* and bind any portwatch ports to the new task.
* This must be done after the exec so that the child's thread is ready,
* and after the in transit state has been released, because priority is
* dropped here so we need to be prepared for a potentially long preemption interval
*
* TODO: Consider splitting this up into separate phases
*/
if (error == 0 && imgp->ip_px_sa != NULL) {
struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
error = exec_handle_spawnattr_policy(p, imgp->ip_new_thread, psa->psa_apptype, psa->psa_qos_clamp,
psa->psa_darwin_role, &port_actions);
}
/* Transfer the turnstile watchport boost to new task if in exec */
if (error == 0 && !spawn_no_exec) {
task_transfer_turnstile_watchports(old_task, new_task, imgp->ip_new_thread);
}
/*
* Apply the requested maximum address.
*/
if (error == 0 && imgp->ip_px_sa != NULL) {
struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa->psa_max_addr) {
vm_map_set_max_addr(get_task_map(new_task), (vm_map_offset_t)psa->psa_max_addr);
}
}
if (error == 0 && imgp->ip_px_sa != NULL) {
struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa->psa_no_smt) {
task_set_no_smt(new_task);
}
if (psa->psa_tecs) {
task_set_tecs(new_task);
}
}
if (error == 0) {
/* Apply the main thread qos */
thread_t main_thread = imgp->ip_new_thread;
task_set_main_thread_qos(new_task, main_thread);
#if CONFIG_MACF
proc_apply_jit_and_jumbo_va_policies(p, new_task);
#endif /* CONFIG_MACF */
}
/*
* Release any ports we kept around for binding to the new task
* We need to release the rights even if the posix_spawn has failed.
*/
if (imgp->ip_px_spa != NULL) {
exec_port_actions_destroy(&port_actions);
}
/*
* We have to delay operations which might throw a signal until after
* the signals have been unblocked; however, we want that to happen
* after exec_resettextvp() so that the textvp is correct when they
* fire.
*/
if (error == 0) {
error = check_for_signature(p, imgp);
/*
* Pay for our earlier safety; deliver the delayed signals from
* the incomplete spawn process now that it's complete.
*/
if (imgp != NULL && spawn_no_exec && (p->p_lflag & P_LTRACED)) {
psignal_vfork(p, p->task, imgp->ip_new_thread, SIGTRAP);
}
if (error == 0 && !spawn_no_exec) {
KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXEC),
p->p_pid);
}
}
if (spawn_no_exec) {
/* flag the 'fork' has occurred */
proc_knote(p->p_pptr, NOTE_FORK | p->p_pid);
}
/* flag exec has occurred, notify only if it has not failed due to FP Key error */
if (!error && ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)) {
proc_knote(p, NOTE_EXEC);
}
if (imgp != NULL) {
if (imgp->ip_vp) {
vnode_put(imgp->ip_vp);
}
if (imgp->ip_scriptvp) {
vnode_put(imgp->ip_scriptvp);
}
if (imgp->ip_strings) {
execargs_free(imgp);
}
kheap_free(KHEAP_TEMP, imgp->ip_px_sfa,
px_args.file_actions_size);
kheap_free(KHEAP_TEMP, imgp->ip_px_spa,
px_args.port_actions_size);
#if CONFIG_PERSONAS
kheap_free(KHEAP_TEMP, imgp->ip_px_persona,
px_args.persona_info_size);
#endif
kheap_free(KHEAP_TEMP, imgp->ip_px_pcred_info,
px_args.posix_cred_info_size);
if (subsystem_root_path != NULL) {
zfree(ZV_NAMEI, subsystem_root_path);
}
#if CONFIG_MACF
_posix_spawn_mac_policy_extensions_t psmx = imgp->ip_px_smpx;
if (psmx) {
spawn_free_macpolicyinfo(&px_args,
psmx, psmx->psmx_count);
}
if (imgp->ip_execlabelp) {
mac_cred_label_free(imgp->ip_execlabelp);
}
if (imgp->ip_scriptlabelp) {
mac_vnode_label_free(imgp->ip_scriptlabelp);
}
if (imgp->ip_cs_error != OS_REASON_NULL) {
os_reason_free(imgp->ip_cs_error);
imgp->ip_cs_error = OS_REASON_NULL;
}
if (imgp->ip_inherited_shared_region_id != NULL) {
kheap_free(KHEAP_DATA_BUFFERS, imgp->ip_inherited_shared_region_id,
strlen(imgp->ip_inherited_shared_region_id) + 1);
imgp->ip_inherited_shared_region_id = NULL;
}
#endif
if (imgp->ip_sc_port != NULL) {
ipc_port_release_send(imgp->ip_sc_port);
imgp->ip_sc_port = NULL;
}
}
#if CONFIG_DTRACE
if (spawn_no_exec) {
/*
* In the original DTrace reference implementation,
* posix_spawn() was a libc routine that just
* did vfork(2) then exec(2). Thus the proc::: probes
* are very fork/exec oriented. The details of this
* in-kernel implementation of posix_spawn() is different
* (while producing the same process-observable effects)
* particularly w.r.t. errors, and which thread/process
* is constructing what on behalf of whom.
*/
if (error) {
DTRACE_PROC1(spawn__failure, int, error);
} else {
DTRACE_PROC(spawn__success);
/*
* Some DTrace scripts, e.g. newproc.d in
* /usr/bin, rely on the the 'exec-success'
* probe being fired in the child after the
* new process image has been constructed
* in order to determine the associated pid.
*
* So, even though the parent built the image
* here, for compatibility, mark the new thread
* so 'exec-success' fires on it as it leaves
* the kernel.
*/
dtrace_thread_didexec(imgp->ip_new_thread);
}
} else {
if (error) {
DTRACE_PROC1(exec__failure, int, error);
} else {
dtrace_thread_didexec(imgp->ip_new_thread);
}
}
if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) {
(*dtrace_proc_waitfor_hook)(p);
}
#endif
#if CONFIG_AUDIT
if (!error && AUDIT_ENABLED() && p) {
/* Add the CDHash of the new process to the audit record */
uint8_t *cdhash = cs_get_cdhash(p);
if (cdhash) {
AUDIT_ARG(data, cdhash, sizeof(uint8_t), CS_CDHASH_LEN);
}
}
#endif
/*
* clear bsd_info from old task if it did exec.
*/
if (task_did_exec(old_task)) {
set_bsdtask_info(old_task, NULL);
}
/* clear bsd_info from new task and terminate it if exec failed */
if (new_task != NULL && task_is_exec_copy(new_task)) {
set_bsdtask_info(new_task, NULL);
task_terminate_internal(new_task);
}
/* Return to both the parent and the child? */
if (imgp != NULL && spawn_no_exec) {
/*
* If the parent wants the pid, copy it out
*/
if (pid != USER_ADDR_NULL) {
_Static_assert(sizeof(p->p_pid) == 4, "posix_spawn() assumes a 32-bit pid_t");
bool aligned = (pid & 3) == 0;
if (aligned) {
(void)copyout_atomic32(p->p_pid, pid);
} else {
(void)suword(pid, p->p_pid);
}
}
retval[0] = error;
/*
* If we had an error, perform an internal reap ; this is
* entirely safe, as we have a real process backing us.
*/
if (error) {
proc_list_lock();
p->p_listflag |= P_LIST_DEADPARENT;
proc_list_unlock();
proc_lock(p);
/* make sure no one else has killed it off... */
if (p->p_stat != SZOMB && p->exit_thread == NULL) {
p->exit_thread = current_thread();
proc_unlock(p);
exit1(p, 1, (int *)NULL);
} else {
/* someone is doing it for us; just skip it */
proc_unlock(p);
}
}
}
/*
* Do not terminate the current task, if proc_exec_switch_task did not
* switch the tasks, terminating the current task without the switch would
* result in loosing the SIGKILL status.
*/
if (task_did_exec(old_task)) {
/* Terminate the current task, since exec will start in new task */
task_terminate_internal(old_task);
}
/* Release the thread ref returned by fork_create_child/fork1 */
if (imgp != NULL && imgp->ip_new_thread) {
/* wake up the new thread */
task_clear_return_wait(get_threadtask(imgp->ip_new_thread), TCRW_CLEAR_FINAL_WAIT);
thread_deallocate(imgp->ip_new_thread);
imgp->ip_new_thread = NULL;
}
/* Release the ref returned by fork_create_child/fork1 */
if (new_task) {
task_deallocate(new_task);
new_task = NULL;
}
if (should_release_proc_ref) {
proc_rele(p);
}
kheap_free(KHEAP_TEMP, bufp,
sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap));
if (inherit != NULL) {
ipc_importance_release(inherit);
}
return error;
}
/*
* proc_exec_switch_task
*
* Parameters: p proc
* old_task task before exec
* new_task task after exec
* new_thread thread in new task
* inherit resulting importance linkage
*
* Returns: proc.
*
* Note: The function will switch the task pointer of proc
* from old task to new task. The switch needs to happen
* after draining all proc refs and inside a proc translock.
* In the case of failure to switch the task, which might happen
* if the process received a SIGKILL or jetsam killed it, it will make
* sure that the new tasks terminates. User proc ref returned
* to caller.
*
* This function is called after point of no return, in the case
* failure to switch, it will terminate the new task and swallow the
* error and let the terminated process complete exec and die.
*/
proc_t
proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread,
void **inherit)
{
int error = 0;
boolean_t task_active;
boolean_t proc_active;
boolean_t thread_active;
thread_t old_thread = current_thread();
/*
* Switch the task pointer of proc to new task.
* Before switching the task, wait for proc_refdrain.
* After the switch happens, the proc can disappear,
* take a ref before it disappears. Waiting for
* proc_refdrain in exec will block all other threads
* trying to take a proc ref, boost the current thread
* to avoid priority inversion.
*/
thread_set_exec_promotion(old_thread);
p = proc_refdrain_with_refwait(p, TRUE);
/* extra proc ref returned to the caller */
assert(get_threadtask(new_thread) == new_task);
task_active = task_is_active(new_task);
/* Take the proc_translock to change the task ptr */
proc_lock(p);
proc_active = !(p->p_lflag & P_LEXIT);
/* Check if the current thread is not aborted due to SIGKILL */
thread_active = thread_is_active(old_thread);
/*
* Do not switch the task if the new task or proc is already terminated
* as a result of error in exec past point of no return
*/
if (proc_active && task_active && thread_active) {
error = proc_transstart(p, 1, 0);
if (error == 0) {
uthread_t new_uthread = get_bsdthread_info(new_thread);
uthread_t old_uthread = get_bsdthread_info(current_thread());
/*
* bsd_info of old_task will get cleared in execve and posix_spawn
* after firing exec-success/error dtrace probe.
*/
p->task = new_task;
/* Clear dispatchqueue and workloop ast offset */
p->p_dispatchqueue_offset = 0;
p->p_dispatchqueue_serialno_offset = 0;
p->p_dispatchqueue_label_offset = 0;
p->p_return_to_kernel_offset = 0;
/* Copy the signal state, dtrace state and set bsd ast on new thread */
act_set_astbsd(new_thread);
new_uthread->uu_siglist = old_uthread->uu_siglist;
new_uthread->uu_sigwait = old_uthread->uu_sigwait;
new_uthread->uu_sigmask = old_uthread->uu_sigmask;
new_uthread->uu_oldmask = old_uthread->uu_oldmask;
new_uthread->uu_vforkmask = old_uthread->uu_vforkmask;
new_uthread->uu_exit_reason = old_uthread->uu_exit_reason;
#if CONFIG_DTRACE
new_uthread->t_dtrace_sig = old_uthread->t_dtrace_sig;
new_uthread->t_dtrace_stop = old_uthread->t_dtrace_stop;
new_uthread->t_dtrace_resumepid = old_uthread->t_dtrace_resumepid;
assert(new_uthread->t_dtrace_scratch == NULL);
new_uthread->t_dtrace_scratch = old_uthread->t_dtrace_scratch;
old_uthread->t_dtrace_sig = 0;
old_uthread->t_dtrace_stop = 0;
old_uthread->t_dtrace_resumepid = 0;
old_uthread->t_dtrace_scratch = NULL;
#endif
/* Copy the resource accounting info */
thread_copy_resource_info(new_thread, current_thread());
/* Clear the exit reason and signal state on old thread */
old_uthread->uu_exit_reason = NULL;
old_uthread->uu_siglist = 0;
/* Add the new uthread to proc uthlist and remove the old one */
TAILQ_INSERT_TAIL(&p->p_uthlist, new_uthread, uu_list);
TAILQ_REMOVE(&p->p_uthlist, old_uthread, uu_list);
task_set_did_exec_flag(old_task);
task_clear_exec_copy_flag(new_task);
task_copy_fields_for_exec(new_task, old_task);
/* Transfer sandbox filter bits to new_task. */
task_transfer_mach_filter_bits(new_task, old_task);
/*
* Need to transfer pending watch port boosts to the new task
* while still making sure that the old task remains in the
* importance linkage. Create an importance linkage from old task
* to new task, then switch the task importance base of old task
* and new task. After the switch the port watch boost will be
* boosting the new task and new task will be donating importance
* to old task.
*/
*inherit = ipc_importance_exec_switch_task(old_task, new_task);
proc_transend(p, 1);
}
}
proc_unlock(p);
proc_refwake(p);
thread_clear_exec_promotion(old_thread);
if (error != 0 || !task_active || !proc_active || !thread_active) {
task_terminate_internal(new_task);
}
return p;
}
/*
* execve
*
* Parameters: uap->fname File name to exec
* uap->argp Argument list
* uap->envp Environment list
*
* Returns: 0 Success
* __mac_execve:EINVAL Invalid argument
* __mac_execve:ENOTSUP Invalid argument
* __mac_execve:EACCES Permission denied
* __mac_execve:EINTR Interrupted function
* __mac_execve:ENOMEM Not enough space
* __mac_execve:EFAULT Bad address
* __mac_execve:ENAMETOOLONG Filename too long
* __mac_execve:ENOEXEC Executable file format error
* __mac_execve:ETXTBSY Text file busy [misuse of error code]
* __mac_execve:???
*
* TODO: Dynamic linker header address on stack is copied via suword()
*/
/* ARGSUSED */
int
execve(proc_t p, struct execve_args *uap, int32_t *retval)
{
struct __mac_execve_args muap;
int err;
memoryshot(VM_EXECVE, DBG_FUNC_NONE);
muap.fname = uap->fname;
muap.argp = uap->argp;
muap.envp = uap->envp;
muap.mac_p = USER_ADDR_NULL;
err = __mac_execve(p, &muap, retval);
return err;
}
/*
* __mac_execve
*
* Parameters: uap->fname File name to exec
* uap->argp Argument list
* uap->envp Environment list
* uap->mac_p MAC label supplied by caller
*
* Returns: 0 Success
* EINVAL Invalid argument
* ENOTSUP Not supported
* ENOEXEC Executable file format error
* exec_activate_image:EINVAL Invalid argument
* exec_activate_image:EACCES Permission denied
* exec_activate_image:EINTR Interrupted function
* exec_activate_image:ENOMEM Not enough space
* exec_activate_image:EFAULT Bad address
* exec_activate_image:ENAMETOOLONG Filename too long
* exec_activate_image:ENOEXEC Executable file format error
* exec_activate_image:ETXTBSY Text file busy [misuse of error code]
* exec_activate_image:EBADEXEC The executable is corrupt/unknown
* exec_activate_image:???
* mac_execve_enter:???
*
* TODO: Dynamic linker header address on stack is copied via suword()
*/
int
__mac_execve(proc_t p, struct __mac_execve_args *uap, int32_t *retval)
{
char *bufp = NULL;
struct image_params *imgp;
struct vnode_attr *vap;
struct vnode_attr *origvap;
int error;
int is_64 = IS_64BIT_PROCESS(p);
struct vfs_context context;
struct uthread *uthread;
task_t old_task = current_task();
task_t new_task = NULL;
boolean_t should_release_proc_ref = FALSE;
boolean_t exec_done = FALSE;
boolean_t in_vfexec = FALSE;
void *inherit = NULL;
context.vc_thread = current_thread();
context.vc_ucred = kauth_cred_proc_ref(p); /* XXX must NOT be kauth_cred_get() */
/* Allocate a big chunk for locals instead of using stack since these
* structures a pretty big.
*/
bufp = kheap_alloc(KHEAP_TEMP,
sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap), Z_WAITOK | Z_ZERO);
imgp = (struct image_params *) bufp;
if (bufp == NULL) {
error = ENOMEM;
goto exit_with_error;
}
vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
/* Initialize the common data in the image_params structure */
imgp->ip_user_fname = uap->fname;
imgp->ip_user_argv = uap->argp;
imgp->ip_user_envv = uap->envp;
imgp->ip_vattr = vap;
imgp->ip_origvattr = origvap;
imgp->ip_vfs_context = &context;
imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT_ADDR : IMGPF_NONE) | ((p->p_flag & P_DISABLE_ASLR) ? IMGPF_DISABLE_ASLR : IMGPF_NONE);
imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
imgp->ip_mac_return = 0;
imgp->ip_cs_error = OS_REASON_NULL;
imgp->ip_simulator_binary = IMGPF_SB_DEFAULT;
imgp->ip_subsystem_root_path = NULL;
#if CONFIG_MACF
if (uap->mac_p != USER_ADDR_NULL) {
error = mac_execve_enter(uap->mac_p, imgp);
if (error) {
kauth_cred_unref(&context.vc_ucred);
goto exit_with_error;
}
}
#endif
uthread = get_bsdthread_info(current_thread());
if (uthread->uu_flag & UT_VFORK) {
imgp->ip_flags |= IMGPF_VFORK_EXEC;
in_vfexec = TRUE;
} else {
imgp->ip_flags |= IMGPF_EXEC;
/*
* For execve case, create a new task and thread
* which points to current_proc. The current_proc will point
* to the new task after image activation and proc ref drain.
*
* proc (current_proc) <----- old_task (current_task)
* ^ | ^
* | | |
* | ----------------------------------
* |
* --------- new_task (task marked as TF_EXEC_COPY)
*
* After image activation, the proc will point to the new task
* and would look like following.
*
* proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
* ^ |
* | |
* | ----------> new_task
* | |
* -----------------
*
* During exec any transition from new_task -> proc is fine, but don't allow
* transition from proc->task, since it will modify old_task.
*/
imgp->ip_new_thread = fork_create_child(old_task,
NULL,
p,
FALSE,
p->p_flag & P_LP64,
task_get_64bit_data(old_task),
TRUE);
/* task and thread ref returned by fork_create_child */
if (imgp->ip_new_thread == NULL) {
error = ENOMEM;
goto exit_with_error;
}
new_task = get_threadtask(imgp->ip_new_thread);
context.vc_thread = imgp->ip_new_thread;
}
imgp->ip_subsystem_root_path = p->p_subsystem_root_path;
error = exec_activate_image(imgp);
/* thread and task ref returned for vfexec case */
if (imgp->ip_new_thread != NULL) {
/*
* task reference might be returned by exec_activate_image
* for vfexec.
*/
new_task = get_threadtask(imgp->ip_new_thread);
#if defined(HAS_APPLE_PAC)
ml_task_set_disable_user_jop(new_task, imgp->ip_flags & IMGPF_NOJOP ? TRUE : FALSE);
ml_thread_set_disable_user_jop(imgp->ip_new_thread, imgp->ip_flags & IMGPF_NOJOP ? TRUE : FALSE);
#endif
}
if (!error && !in_vfexec) {
p = proc_exec_switch_task(p, old_task, new_task, imgp->ip_new_thread, &inherit);
/* proc ref returned */
should_release_proc_ref = TRUE;
}
kauth_cred_unref(&context.vc_ucred);
/* Image not claimed by any activator? */
if (error == -1) {
error = ENOEXEC;
}
if (!error) {
exec_done = TRUE;
assert(imgp->ip_new_thread != NULL);
exec_resettextvp(p, imgp);
error = check_for_signature(p, imgp);
}
#if defined(HAS_APPLE_PAC)
if (imgp->ip_new_thread && !error) {
ml_task_set_jop_pid_from_shared_region(new_task);
ml_thread_set_jop_pid(imgp->ip_new_thread, new_task);
}
#endif /* defined(HAS_APPLE_PAC) */
/* flag exec has occurred, notify only if it has not failed due to FP Key error */
if (exec_done && ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)) {
proc_knote(p, NOTE_EXEC);
}
if (imgp->ip_vp != NULLVP) {
vnode_put(imgp->ip_vp);
}
if (imgp->ip_scriptvp != NULLVP) {
vnode_put(imgp->ip_scriptvp);
}
if (imgp->ip_strings) {
execargs_free(imgp);
}
#if CONFIG_MACF
if (imgp->ip_execlabelp) {
mac_cred_label_free(imgp->ip_execlabelp);
}
if (imgp->ip_scriptlabelp) {
mac_vnode_label_free(imgp->ip_scriptlabelp);
}
#endif
if (imgp->ip_cs_error != OS_REASON_NULL) {
os_reason_free(imgp->ip_cs_error);
imgp->ip_cs_error = OS_REASON_NULL;
}
if (!error) {
/*
* We need to initialize the bank context behind the protection of
* the proc_trans lock to prevent a race with exit. We can't do this during
* exec_activate_image because task_bank_init checks entitlements that
* aren't loaded until subsequent calls (including exec_resettextvp).
*/
error = proc_transstart(p, 0, 0);
}
if (!error) {
task_bank_init(new_task);
proc_transend(p, 0);
#if __arm64__
proc_footprint_entitlement_hacks(p, new_task);
#endif /* __arm64__ */
/* Sever any extant thread affinity */
thread_affinity_exec(current_thread());
/* Inherit task role from old task to new task for exec */
if (!in_vfexec) {
proc_inherit_task_role(new_task, old_task);
}
thread_t main_thread = imgp->ip_new_thread;
task_set_main_thread_qos(new_task, main_thread);
#if __has_feature(ptrauth_calls)
task_set_pac_exception_fatal_flag(new_task);
#endif /* __has_feature(ptrauth_calls) */
#if CONFIG_ARCADE
/*
* Check to see if we need to trigger an arcade upcall AST now
* that the vnode has been reset on the task.
*/
arcade_prepare(new_task, imgp->ip_new_thread);
#endif /* CONFIG_ARCADE */
#if CONFIG_MACF
proc_apply_jit_and_jumbo_va_policies(p, new_task);
#endif /* CONFIG_MACF */
if (vm_darkwake_mode == TRUE) {
/*
* This process is being launched when the system
* is in darkwake. So mark it specially. This will
* cause all its pages to be entered in the background Q.
*/
task_set_darkwake_mode(new_task, vm_darkwake_mode);
}
#if CONFIG_DTRACE
dtrace_thread_didexec(imgp->ip_new_thread);
if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) {
(*dtrace_proc_waitfor_hook)(p);
}
#endif
#if CONFIG_AUDIT
if (!error && AUDIT_ENABLED() && p) {
/* Add the CDHash of the new process to the audit record */
uint8_t *cdhash = cs_get_cdhash(p);
if (cdhash) {
AUDIT_ARG(data, cdhash, sizeof(uint8_t), CS_CDHASH_LEN);
}
}
#endif
if (in_vfexec) {
vfork_return(p, retval, p->p_pid);
}
} else {
DTRACE_PROC1(exec__failure, int, error);
}
exit_with_error:
/*
* clear bsd_info from old task if it did exec.
*/
if (task_did_exec(old_task)) {
set_bsdtask_info(old_task, NULL);
}
/* clear bsd_info from new task and terminate it if exec failed */
if (new_task != NULL && task_is_exec_copy(new_task)) {
set_bsdtask_info(new_task, NULL);
task_terminate_internal(new_task);
}
if (imgp != NULL) {
/* Clear the initial wait on the thread transferring watchports */
if (imgp->ip_new_thread) {
task_clear_return_wait(get_threadtask(imgp->ip_new_thread), TCRW_CLEAR_INITIAL_WAIT);
}
/* Transfer the watchport boost to new task */
if (!error && !in_vfexec) {
task_transfer_turnstile_watchports(old_task,
new_task, imgp->ip_new_thread);
}
/*
* Do not terminate the current task, if proc_exec_switch_task did not
* switch the tasks, terminating the current task without the switch would
* result in loosing the SIGKILL status.
*/
if (task_did_exec(old_task)) {
/* Terminate the current task, since exec will start in new task */
task_terminate_internal(old_task);
}
/* Release the thread ref returned by fork_create_child */
if (imgp->ip_new_thread) {
/* wake up the new exec thread */
task_clear_return_wait(get_threadtask(imgp->ip_new_thread), TCRW_CLEAR_FINAL_WAIT);
thread_deallocate(imgp->ip_new_thread);
imgp->ip_new_thread = NULL;
}
}
/* Release the ref returned by fork_create_child */
if (new_task) {
task_deallocate(new_task);
new_task = NULL;
}
if (should_release_proc_ref) {
proc_rele(p);
}
kheap_free(KHEAP_TEMP, bufp,
sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap));
if (inherit != NULL) {
ipc_importance_release(inherit);
}
return error;
}
/*
* copyinptr
*
* Description: Copy a pointer in from user space to a user_addr_t in kernel
* space, based on 32/64 bitness of the user space
*
* Parameters: froma User space address
* toptr Address of kernel space user_addr_t
* ptr_size 4/8, based on 'froma' address space
*
* Returns: 0 Success
* EFAULT Bad 'froma'
*
* Implicit returns:
* *ptr_size Modified
*/
static int
copyinptr(user_addr_t froma, user_addr_t *toptr, int ptr_size)
{
int error;
if (ptr_size == 4) {
/* 64 bit value containing 32 bit address */
unsigned int i = 0;
error = copyin(froma, &i, 4);
*toptr = CAST_USER_ADDR_T(i); /* SAFE */
} else {
error = copyin(froma, toptr, 8);
}
return error;
}
/*
* copyoutptr
*
* Description: Copy a pointer out from a user_addr_t in kernel space to
* user space, based on 32/64 bitness of the user space
*
* Parameters: ua User space address to copy to
* ptr Address of kernel space user_addr_t
* ptr_size 4/8, based on 'ua' address space
*
* Returns: 0 Success
* EFAULT Bad 'ua'
*
*/
static int
copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size)
{
int error;
if (ptr_size == 4) {
/* 64 bit value containing 32 bit address */
unsigned int i = CAST_DOWN_EXPLICIT(unsigned int, ua); /* SAFE */
error = copyout(&i, ptr, 4);
} else {
error = copyout(&ua, ptr, 8);
}
return error;
}
/*
* exec_copyout_strings
*
* Copy out the strings segment to user space. The strings segment is put
* on a preinitialized stack frame.
*
* Parameters: struct image_params * the image parameter block
* int * a pointer to the stack offset variable
*
* Returns: 0 Success
* !0 Faiure: errno
*
* Implicit returns:
* (*stackp) The stack offset, modified
*
* Note: The strings segment layout is backward, from the beginning
* of the top of the stack to consume the minimal amount of
* space possible; the returned stack pointer points to the
* end of the area consumed (stacks grow downward).
*
* argc is an int; arg[i] are pointers; env[i] are pointers;
* the 0's are (void *)NULL's
*
* The stack frame layout is:
*
* +-------------+ <- p->user_stack
* | 16b |
* +-------------+
* | STRING AREA |
* | : |
* | : |
* | : |
* +- -- -- -- --+
* | PATH AREA |
* +-------------+
* | 0 |
* +-------------+
* | applev[n] |
* +-------------+
* :
* :
* +-------------+
* | applev[1] |
* +-------------+
* | exec_path / |
* | applev[0] |
* +-------------+
* | 0 |
* +-------------+
* | env[n] |
* +-------------+
* :
* :
* +-------------+
* | env[0] |
* +-------------+
* | 0 |
* +-------------+
* | arg[argc-1] |
* +-------------+
* :
* :
* +-------------+
* | arg[0] |
* +-------------+
* | argc |
* sp-> +-------------+
*
* Although technically a part of the STRING AREA, we treat the PATH AREA as
* a separate entity. This allows us to align the beginning of the PATH AREA
* to a pointer boundary so that the exec_path, env[i], and argv[i] pointers
* which preceed it on the stack are properly aligned.
*/
__attribute__((noinline))
static int
exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp)
{
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
int ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
int ptr_area_size;
void *ptr_buffer_start, *ptr_buffer;
size_t string_size;
user_addr_t string_area; /* *argv[], *env[] */
user_addr_t ptr_area; /* argv[], env[], applev[] */
user_addr_t argc_area; /* argc */
user_addr_t stack;
int error;
unsigned i;
struct copyout_desc {
char *start_string;
int count;
#if CONFIG_DTRACE
user_addr_t *dtrace_cookie;
#endif
boolean_t null_term;
} descriptors[] = {
{
.start_string = imgp->ip_startargv,
.count = imgp->ip_argc,
#if CONFIG_DTRACE
.dtrace_cookie = &p->p_dtrace_argv,
#endif
.null_term = TRUE
},
{
.start_string = imgp->ip_endargv,
.count = imgp->ip_envc,
#if CONFIG_DTRACE
.dtrace_cookie = &p->p_dtrace_envp,
#endif
.null_term = TRUE
},
{
.start_string = imgp->ip_strings,
.count = 1,
#if CONFIG_DTRACE
.dtrace_cookie = NULL,
#endif
.null_term = FALSE
},
{
.start_string = imgp->ip_endenvv,
.count = imgp->ip_applec - 1, /* exec_path handled above */
#if CONFIG_DTRACE
.dtrace_cookie = NULL,
#endif
.null_term = TRUE
}
};
stack = *stackp;
/*
* All previous contributors to the string area
* should have aligned their sub-area
*/
if (imgp->ip_strspace % ptr_size != 0) {
error = EINVAL;
goto bad;
}
/* Grow the stack down for the strings we've been building up */
string_size = imgp->ip_strendp - imgp->ip_strings;
stack -= string_size;
string_area = stack;
/*
* Need room for one pointer for each string, plus
* one for the NULLs terminating the argv, envv, and apple areas.
*/
ptr_area_size = (imgp->ip_argc + imgp->ip_envc + imgp->ip_applec + 3) * ptr_size;
stack -= ptr_area_size;
ptr_area = stack;
/* We'll construct all the pointer arrays in our string buffer,
* which we already know is aligned properly, and ip_argspace
* was used to verify we have enough space.
*/
ptr_buffer_start = ptr_buffer = (void *)imgp->ip_strendp;
/*
* Need room for pointer-aligned argc slot.
*/
stack -= ptr_size;
argc_area = stack;
/*
* Record the size of the arguments area so that sysctl_procargs()
* can return the argument area without having to parse the arguments.
*/
proc_lock(p);
p->p_argc = imgp->ip_argc;
p->p_argslen = (int)(*stackp - string_area);
proc_unlock(p);
/* Return the initial stack address: the location of argc */
*stackp = stack;
/*
* Copy out the entire strings area.
*/
error = copyout(imgp->ip_strings, string_area,
string_size);
if (error) {
goto bad;
}
for (i = 0; i < sizeof(descriptors) / sizeof(descriptors[0]); i++) {
char *cur_string = descriptors[i].start_string;
int j;
#if CONFIG_DTRACE
if (descriptors[i].dtrace_cookie) {
proc_lock(p);
*descriptors[i].dtrace_cookie = ptr_area + ((uintptr_t)ptr_buffer - (uintptr_t)ptr_buffer_start); /* dtrace convenience */
proc_unlock(p);
}
#endif /* CONFIG_DTRACE */
/*
* For each segment (argv, envv, applev), copy as many pointers as requested
* to our pointer buffer.
*/
for (j = 0; j < descriptors[i].count; j++) {
user_addr_t cur_address = string_area + (cur_string - imgp->ip_strings);
/* Copy out the pointer to the current string. Alignment has been verified */
if (ptr_size == 8) {
*(uint64_t *)ptr_buffer = (uint64_t)cur_address;
} else {
*(uint32_t *)ptr_buffer = (uint32_t)cur_address;
}
ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
cur_string += strlen(cur_string) + 1; /* Only a NUL between strings in the same area */
}
if (descriptors[i].null_term) {
if (ptr_size == 8) {
*(uint64_t *)ptr_buffer = 0ULL;
} else {
*(uint32_t *)ptr_buffer = 0;
}
ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
}
}
/*
* Copy out all our pointer arrays in bulk.
*/
error = copyout(ptr_buffer_start, ptr_area,
ptr_area_size);
if (error) {
goto bad;
}
/* argc (int32, stored in a ptr_size area) */
error = copyoutptr((user_addr_t)imgp->ip_argc, argc_area, ptr_size);
if (error) {
goto bad;
}
bad:
return error;
}
/*
* exec_extract_strings
*
* Copy arguments and environment from user space into work area; we may
* have already copied some early arguments into the work area, and if
* so, any arguments opied in are appended to those already there.
* This function is the primary manipulator of ip_argspace, since
* these are the arguments the client of execve(2) knows about. After
* each argv[]/envv[] string is copied, we charge the string length
* and argv[]/envv[] pointer slot to ip_argspace, so that we can
* full preflight the arg list size.
*
* Parameters: struct image_params * the image parameter block
*
* Returns: 0 Success
* !0 Failure: errno
*
* Implicit returns;
* (imgp->ip_argc) Count of arguments, updated
* (imgp->ip_envc) Count of environment strings, updated
* (imgp->ip_argspace) Count of remaining of NCARGS
* (imgp->ip_interp_buffer) Interpreter and args (mutated in place)
*
*
* Note: The argument and environment vectors are user space pointers
* to arrays of user space pointers.
*/
__attribute__((noinline))
static int
exec_extract_strings(struct image_params *imgp)
{
int error = 0;
int ptr_size = (imgp->ip_flags & IMGPF_WAS_64BIT_ADDR) ? 8 : 4;
int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
user_addr_t argv = imgp->ip_user_argv;
user_addr_t envv = imgp->ip_user_envv;
/*
* Adjust space reserved for the path name by however much padding it
* needs. Doing this here since we didn't know if this would be a 32-
* or 64-bit process back in exec_save_path.
*/
while (imgp->ip_strspace % new_ptr_size != 0) {
*imgp->ip_strendp++ = '\0';
imgp->ip_strspace--;
/* imgp->ip_argspace--; not counted towards exec args total */
}
/*
* From now on, we start attributing string space to ip_argspace
*/
imgp->ip_startargv = imgp->ip_strendp;
imgp->ip_argc = 0;
if ((imgp->ip_flags & IMGPF_INTERPRET) != 0) {
user_addr_t arg;
char *argstart, *ch;
/* First, the arguments in the "#!" string are tokenized and extracted. */
argstart = imgp->ip_interp_buffer;
while (argstart) {
ch = argstart;
while (*ch && !IS_WHITESPACE(*ch)) {
ch++;
}
if (*ch == '\0') {
/* last argument, no need to NUL-terminate */
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
argstart = NULL;
} else {
/* NUL-terminate */
*ch = '\0';
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
/*
* Find the next string. We know spaces at the end of the string have already
* been stripped.
*/
argstart = ch + 1;
while (IS_WHITESPACE(*argstart)) {
argstart++;
}
}
/* Error-check, regardless of whether this is the last interpreter arg or not */
if (error) {
goto bad;
}
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
imgp->ip_argc++;
}
if (argv != 0LL) {
/*
* If we are running an interpreter, replace the av[0] that was
* passed to execve() with the path name that was
* passed to execve() for interpreters which do not use the PATH
* to locate their script arguments.
*/
error = copyinptr(argv, &arg, ptr_size);
if (error) {
goto bad;
}
if (arg != 0LL) {
argv += ptr_size; /* consume without using */
}
}
if (imgp->ip_interp_sugid_fd != -1) {
char temp[19]; /* "/dev/fd/" + 10 digits + NUL */
snprintf(temp, sizeof(temp), "/dev/fd/%d", imgp->ip_interp_sugid_fd);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(temp), UIO_SYSSPACE, TRUE);
} else {
error = exec_add_user_string(imgp, imgp->ip_user_fname, imgp->ip_seg, TRUE);
}
if (error) {
goto bad;
}
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
imgp->ip_argc++;
}
while (argv != 0LL) {
user_addr_t arg;
error = copyinptr(argv, &arg, ptr_size);
if (error) {
goto bad;
}
if (arg == 0LL) {
break;
}
argv += ptr_size;
/*
* av[n...] = arg[n]
*/
error = exec_add_user_string(imgp, arg, imgp->ip_seg, TRUE);
if (error) {
goto bad;
}
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
imgp->ip_argc++;
}
/* Save space for argv[] NULL terminator */
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size;
/* Note where the args ends and env begins. */
imgp->ip_endargv = imgp->ip_strendp;
imgp->ip_envc = 0;
/* Now, get the environment */
while (envv != 0LL) {
user_addr_t env;
error = copyinptr(envv, &env, ptr_size);
if (error) {
goto bad;
}
envv += ptr_size;
if (env == 0LL) {
break;
}
/*
* av[n...] = env[n]
*/
error = exec_add_user_string(imgp, env, imgp->ip_seg, TRUE);
if (error) {
goto bad;
}
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size; /* to hold envv[] entry */
imgp->ip_envc++;
}
/* Save space for envv[] NULL terminator */
if (imgp->ip_argspace < new_ptr_size) {
error = E2BIG;
goto bad;
}
imgp->ip_argspace -= new_ptr_size;
/* Align the tail of the combined argv+envv area */
while (imgp->ip_strspace % new_ptr_size != 0) {
if (imgp->ip_argspace < 1) {
error = E2BIG;
goto bad;
}
*imgp->ip_strendp++ = '\0';
imgp->ip_strspace--;
imgp->ip_argspace--;
}
/* Note where the envv ends and applev begins. */
imgp->ip_endenvv = imgp->ip_strendp;
/*
* From now on, we are no longer charging argument
* space to ip_argspace.
*/
bad:
return error;
}
/*
* Libc has an 8-element array set up for stack guard values. It only fills
* in one of those entries, and both gcc and llvm seem to use only a single
* 8-byte guard. Until somebody needs more than an 8-byte guard value, don't
* do the work to construct them.
*/
#define GUARD_VALUES 1
#define GUARD_KEY "stack_guard="
/*
* System malloc needs some entropy when it is initialized.
*/
#define ENTROPY_VALUES 2
#define ENTROPY_KEY "malloc_entropy="
/*
* libplatform needs a random pointer-obfuscation value when it is initialized.
*/
#define PTR_MUNGE_VALUES 1
#define PTR_MUNGE_KEY "ptr_munge="
/*
* System malloc engages nanozone for UIAPP.
*/
#define NANO_ENGAGE_KEY "MallocNanoZone=1"
/*
* Used to pass experiment flags up to libmalloc.
*/
#define LIBMALLOC_EXPERIMENT_FACTORS_KEY "MallocExperiment="
#define PFZ_KEY "pfz="
extern user32_addr_t commpage_text32_location;
extern user64_addr_t commpage_text64_location;
extern uuid_string_t bootsessionuuid_string;
#define MAIN_STACK_VALUES 4
#define MAIN_STACK_KEY "main_stack="
#define FSID_KEY "executable_file="
#define DYLD_FSID_KEY "dyld_file="
#define CDHASH_KEY "executable_cdhash="
#define DYLD_FLAGS_KEY "dyld_flags="
#define SUBSYSTEM_ROOT_PATH_KEY "subsystem_root_path="
#define APP_BOOT_SESSION_KEY "executable_boothash="
#if __has_feature(ptrauth_calls)
#define PTRAUTH_DISABLED_FLAG "ptrauth_disabled=1"
#define DYLD_ARM64E_ABI_KEY "arm64e_abi="
#endif /* __has_feature(ptrauth_calls) */
#define MAIN_TH_PORT_KEY "th_port="
#define FSID_MAX_STRING "0x1234567890abcdef,0x1234567890abcdef"
#define HEX_STR_LEN 18 // 64-bit hex value "0x0123456701234567"
#define HEX_STR_LEN32 10 // 32-bit hex value "0x01234567"
#if XNU_TARGET_OS_OSX && _POSIX_SPAWN_FORCE_4K_PAGES && PMAP_CREATE_FORCE_4K_PAGES
#define VM_FORCE_4K_PAGES_KEY "vm_force_4k_pages=1"
#endif /* XNU_TARGET_OS_OSX && _POSIX_SPAWN_FORCE_4K_PAGES && PMAP_CREATE_FORCE_4K_PAGES */
static int
exec_add_entropy_key(struct image_params *imgp,
const char *key,
int values,
boolean_t embedNUL)
{
const int limit = 8;
uint64_t entropy[limit];
char str[strlen(key) + (HEX_STR_LEN + 1) * limit + 1];
if (values > limit) {
values = limit;
}
read_random(entropy, sizeof(entropy[0]) * values);
if (embedNUL) {
entropy[0] &= ~(0xffull << 8);
}
int len = scnprintf(str, sizeof(str), "%s0x%llx", key, entropy[0]);
size_t remaining = sizeof(str) - len;
for (int i = 1; i < values && remaining > 0; ++i) {
size_t start = sizeof(str) - remaining;
len = scnprintf(&str[start], remaining, ",0x%llx", entropy[i]);
remaining -= len;
}
return exec_add_user_string(imgp, CAST_USER_ADDR_T(str), UIO_SYSSPACE, FALSE);
}
/*
* Build up the contents of the apple[] string vector
*/
#if (DEVELOPMENT || DEBUG)
extern uint64_t dyld_flags;
#endif
#if __has_feature(ptrauth_calls)
static inline bool
is_arm64e_running_as_arm64(const struct image_params *imgp)
{
return (imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK) == CPU_SUBTYPE_ARM64E &&
(imgp->ip_flags & IMGPF_NOJOP);
}
#endif /* __has_feature(ptrauth_calls) */
_Atomic uint64_t libmalloc_experiment_factors = 0;
static int
exec_add_apple_strings(struct image_params *imgp,
const load_result_t *load_result)
{
int error;
int img_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
thread_t new_thread;
ipc_port_t sright;
uint64_t local_experiment_factors = 0;
/* exec_save_path stored the first string */
imgp->ip_applec = 1;
/* adding the pfz string */
{
char pfz_string[strlen(PFZ_KEY) + HEX_STR_LEN + 1];
if (img_ptr_size == 8) {
__assert_only size_t ret = snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%llx", commpage_text64_location);
assert(ret < sizeof(pfz_string));
} else {
snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%x", commpage_text32_location);
}
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(pfz_string), UIO_SYSSPACE, FALSE);
if (error) {
printf("Failed to add the pfz string with error %d\n", error);
goto bad;
}
imgp->ip_applec++;
}
/* adding the NANO_ENGAGE_KEY key */
if (imgp->ip_px_sa) {
int proc_flags = (((struct _posix_spawnattr *) imgp->ip_px_sa)->psa_flags);
if ((proc_flags & _POSIX_SPAWN_NANO_ALLOCATOR) == _POSIX_SPAWN_NANO_ALLOCATOR) {
const char *nano_string = NANO_ENGAGE_KEY;
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(nano_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
}
/*
* Supply libc with a collection of random values to use when
* implementing -fstack-protector.
*
* (The first random string always contains an embedded NUL so that
* __stack_chk_guard also protects against C string vulnerabilities)
*/
error = exec_add_entropy_key(imgp, GUARD_KEY, GUARD_VALUES, TRUE);
if (error) {
goto bad;
}
imgp->ip_applec++;
/*
* Supply libc with entropy for system malloc.
*/
error = exec_add_entropy_key(imgp, ENTROPY_KEY, ENTROPY_VALUES, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
/*
* Supply libpthread & libplatform with a random value to use for pointer
* obfuscation.
*/
error = exec_add_entropy_key(imgp, PTR_MUNGE_KEY, PTR_MUNGE_VALUES, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
/*
* Add MAIN_STACK_KEY: Supplies the address and size of the main thread's
* stack if it was allocated by the kernel.
*
* The guard page is not included in this stack size as libpthread
* expects to add it back in after receiving this value.
*/
if (load_result->unixproc) {
char stack_string[strlen(MAIN_STACK_KEY) + (HEX_STR_LEN + 1) * MAIN_STACK_VALUES + 1];
snprintf(stack_string, sizeof(stack_string),
MAIN_STACK_KEY "0x%llx,0x%llx,0x%llx,0x%llx",
(uint64_t)load_result->user_stack,
(uint64_t)load_result->user_stack_size,
(uint64_t)load_result->user_stack_alloc,
(uint64_t)load_result->user_stack_alloc_size);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(stack_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
if (imgp->ip_vattr) {
uint64_t fsid = vnode_get_va_fsid(imgp->ip_vattr);
uint64_t fsobjid = imgp->ip_vattr->va_fileid;
char fsid_string[strlen(FSID_KEY) + strlen(FSID_MAX_STRING) + 1];
snprintf(fsid_string, sizeof(fsid_string),
FSID_KEY "0x%llx,0x%llx", fsid, fsobjid);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(fsid_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
if (imgp->ip_dyld_fsid || imgp->ip_dyld_fsobjid) {
char fsid_string[strlen(DYLD_FSID_KEY) + strlen(FSID_MAX_STRING) + 1];
snprintf(fsid_string, sizeof(fsid_string),
DYLD_FSID_KEY "0x%llx,0x%llx", imgp->ip_dyld_fsid, imgp->ip_dyld_fsobjid);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(fsid_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
uint8_t cdhash[SHA1_RESULTLEN];
int cdhash_errror = ubc_cs_getcdhash(imgp->ip_vp, imgp->ip_arch_offset, cdhash);
if (cdhash_errror == 0) {
char hash_string[strlen(CDHASH_KEY) + 2 * SHA1_RESULTLEN + 1];
strncpy(hash_string, CDHASH_KEY, sizeof(hash_string));
char *p = hash_string + sizeof(CDHASH_KEY) - 1;
for (int i = 0; i < SHA1_RESULTLEN; i++) {
snprintf(p, 3, "%02x", (int) cdhash[i]);
p += 2;
}
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(hash_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
/* hash together cd-hash and boot-session-uuid */
uint8_t sha_digest[SHA256_DIGEST_LENGTH];
SHA256_CTX sha_ctx;
SHA256_Init(&sha_ctx);
SHA256_Update(&sha_ctx, bootsessionuuid_string, sizeof(bootsessionuuid_string));
SHA256_Update(&sha_ctx, cdhash, sizeof(cdhash));
SHA256_Final(sha_digest, &sha_ctx);
char app_boot_string[strlen(APP_BOOT_SESSION_KEY) + 2 * SHA1_RESULTLEN + 1];
strncpy(app_boot_string, APP_BOOT_SESSION_KEY, sizeof(app_boot_string));
char *s = app_boot_string + sizeof(APP_BOOT_SESSION_KEY) - 1;
for (int i = 0; i < SHA1_RESULTLEN; i++) {
snprintf(s, 3, "%02x", (int) sha_digest[i]);
s += 2;
}
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(app_boot_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#if (DEVELOPMENT || DEBUG)
if (dyld_flags) {
char dyld_flags_string[strlen(DYLD_FLAGS_KEY) + HEX_STR_LEN + 1];
snprintf(dyld_flags_string, sizeof(dyld_flags_string), DYLD_FLAGS_KEY "0x%llx", dyld_flags);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(dyld_flags_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#endif
if (imgp->ip_subsystem_root_path) {
size_t buffer_len = MAXPATHLEN + strlen(SUBSYSTEM_ROOT_PATH_KEY);
char subsystem_root_path_string[buffer_len];
int required_len = snprintf(subsystem_root_path_string, buffer_len, SUBSYSTEM_ROOT_PATH_KEY "%s", imgp->ip_subsystem_root_path);
if (((size_t)required_len >= buffer_len) || (required_len < 0)) {
error = ENAMETOOLONG;
goto bad;
}
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(subsystem_root_path_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#if __has_feature(ptrauth_calls)
if (is_arm64e_running_as_arm64(imgp)) {
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(PTRAUTH_DISABLED_FLAG), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#endif /* __has_feature(ptrauth_calls) */
#if __has_feature(ptrauth_calls) && defined(XNU_TARGET_OS_OSX)
{
char dyld_abi_string[strlen(DYLD_ARM64E_ABI_KEY) + 8];
strlcpy(dyld_abi_string, DYLD_ARM64E_ABI_KEY, sizeof(dyld_abi_string));
bool allowAll = bootarg_arm64e_preview_abi;
strlcat(dyld_abi_string, (allowAll ? "all" : "os"), sizeof(dyld_abi_string));
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(dyld_abi_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#endif
/*
* Add main thread mach port name
* +1 uref on main thread port, this ref will be extracted by libpthread in __pthread_init
* and consumed in _bsdthread_terminate. Leaking the main thread port name if not linked
* against libpthread.
*/
if ((new_thread = imgp->ip_new_thread) != THREAD_NULL) {
thread_reference(new_thread);
sright = convert_thread_to_port_pinned(new_thread);
task_t new_task = get_threadtask(new_thread);
mach_port_name_t name = ipc_port_copyout_send(sright, get_task_ipcspace(new_task));
char port_name_hex_str[strlen(MAIN_TH_PORT_KEY) + HEX_STR_LEN32 + 1];
snprintf(port_name_hex_str, sizeof(port_name_hex_str), MAIN_TH_PORT_KEY "0x%x", name);
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(port_name_hex_str), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
#if XNU_TARGET_OS_OSX && _POSIX_SPAWN_FORCE_4K_PAGES && PMAP_CREATE_FORCE_4K_PAGES
if (imgp->ip_px_sa != NULL) {
struct _posix_spawnattr* psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa->psa_flags & _POSIX_SPAWN_FORCE_4K_PAGES) {
const char *vm_force_4k_string = VM_FORCE_4K_PAGES_KEY;
error = exec_add_user_string(imgp, CAST_USER_ADDR_T(vm_force_4k_string), UIO_SYSSPACE, FALSE);
if (error) {
goto bad;
}
imgp->ip_applec++;
}
}
#endif /* XNU_TARGET_OS_OSX && _POSIX_SPAWN_FORCE_4K_PAGES && PMAP_CREATE_FORCE_4K_PAGES */
/* adding the libmalloc experiment string */
local_experiment_factors = os_atomic_load_wide(&libmalloc_experiment_factors, relaxed);
if (__improbable(local_experiment_factors != 0)) {
char libmalloc_experiment_factors_string[strlen(LIBMALLOC_EXPERIMENT_FACTORS_KEY) + HEX_STR_LEN + 1];
snprintf(
libmalloc_experiment_factors_string,
sizeof(libmalloc_experiment_factors_string),
LIBMALLOC_EXPERIMENT_FACTORS_KEY "0x%llx",
local_experiment_factors);
error = exec_add_user_string(
imgp,
CAST_USER_ADDR_T(libmalloc_experiment_factors_string),
UIO_SYSSPACE,
FALSE);
if (error) {
printf("Failed to add the libmalloc experiment factors string with error %d\n", error);
goto bad;
}
imgp->ip_applec++;
}
/* Align the tail of the combined applev area */
while (imgp->ip_strspace % img_ptr_size != 0) {
*imgp->ip_strendp++ = '\0';
imgp->ip_strspace--;
}
bad:
return error;
}
/*
* exec_check_permissions
*
* Description: Verify that the file that is being attempted to be executed
* is in fact allowed to be executed based on it POSIX file
* permissions and other access control criteria
*
* Parameters: struct image_params * the image parameter block
*
* Returns: 0 Success
* EACCES Permission denied
* ENOEXEC Executable file format error
* ETXTBSY Text file busy [misuse of error code]
* vnode_getattr:???
* vnode_authorize:???
*/
static int
exec_check_permissions(struct image_params *imgp)
{
struct vnode *vp = imgp->ip_vp;
struct vnode_attr *vap = imgp->ip_vattr;
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
int error;
kauth_action_t action;
/* Only allow execution of regular files */
if (!vnode_isreg(vp)) {
return EACCES;
}
/* Get the file attributes that we will be using here and elsewhere */
VATTR_INIT(vap);
VATTR_WANTED(vap, va_uid);
VATTR_WANTED(vap, va_gid);
VATTR_WANTED(vap, va_mode);
VATTR_WANTED(vap, va_fsid);
VATTR_WANTED(vap, va_fsid64);
VATTR_WANTED(vap, va_fileid);
VATTR_WANTED(vap, va_data_size);
if ((error = vnode_getattr(vp, vap, imgp->ip_vfs_context)) != 0) {
return error;
}
/*
* Ensure that at least one execute bit is on - otherwise root
* will always succeed, and we don't want to happen unless the
* file really is executable.
*/
if (!vfs_authopaque(vnode_mount(vp)) && ((vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0)) {
return EACCES;
}
/* Disallow zero length files */
if (vap->va_data_size == 0) {
return ENOEXEC;
}
imgp->ip_arch_offset = (user_size_t)0;
#if __LP64__
imgp->ip_arch_size = vap->va_data_size;
#else
if (vap->va_data_size > UINT32_MAX) {
return ENOEXEC;
}
imgp->ip_arch_size = (user_size_t)vap->va_data_size;
#endif
/* Disable setuid-ness for traced programs or if MNT_NOSUID */
if ((vp->v_mount->mnt_flag & MNT_NOSUID) || (p->p_lflag & P_LTRACED)) {
vap->va_mode &= ~(VSUID | VSGID);
}
/*
* Disable _POSIX_SPAWN_ALLOW_DATA_EXEC and _POSIX_SPAWN_DISABLE_ASLR
* flags for setuid/setgid binaries.
*/
if (vap->va_mode & (VSUID | VSGID)) {
imgp->ip_flags &= ~(IMGPF_ALLOW_DATA_EXEC | IMGPF_DISABLE_ASLR);
}
#if CONFIG_MACF
error = mac_vnode_check_exec(imgp->ip_vfs_context, vp, imgp);
if (error) {
return error;
}
#endif
/* Check for execute permission */
action = KAUTH_VNODE_EXECUTE;
/* Traced images must also be readable */
if (p->p_lflag & P_LTRACED) {
action |= KAUTH_VNODE_READ_DATA;
}
if ((error = vnode_authorize(vp, NULL, action, imgp->ip_vfs_context)) != 0) {
return error;
}
#if 0
/* Don't let it run if anyone had it open for writing */
vnode_lock(vp);
if (vp->v_writecount) {
panic("going to return ETXTBSY %x", vp);
vnode_unlock(vp);
return ETXTBSY;
}
vnode_unlock(vp);
#endif
/* XXX May want to indicate to underlying FS that vnode is open */
return error;
}
/*
* exec_handle_sugid
*
* Initially clear the P_SUGID in the process flags; if an SUGID process is
* exec'ing a non-SUGID image, then this is the point of no return.
*
* If the image being activated is SUGID, then replace the credential with a
* copy, disable tracing (unless the tracing process is root), reset the
* mach task port to revoke it, set the P_SUGID bit,
*
* If the saved user and group ID will be changing, then make sure it happens
* to a new credential, rather than a shared one.
*
* Set the security token (this is probably obsolete, given that the token
* should not technically be separate from the credential itself).
*
* Parameters: struct image_params * the image parameter block
*
* Returns: void No failure indication
*
* Implicit returns:
* <process credential> Potentially modified/replaced
* <task port> Potentially revoked
* <process flags> P_SUGID bit potentially modified
* <security token> Potentially modified
*/
__attribute__((noinline))
static int
exec_handle_sugid(struct image_params *imgp)
{
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
kauth_cred_t cred = vfs_context_ucred(imgp->ip_vfs_context);
int i;
int leave_sugid_clear = 0;
int mac_reset_ipc = 0;
int error = 0;
task_t task = NULL;
#if CONFIG_MACF
int mac_transition, disjoint_cred = 0;
int label_update_return = 0;
/*
* Determine whether a call to update the MAC label will result in the
* credential changing.
*
* Note: MAC policies which do not actually end up modifying
* the label subsequently are strongly encouraged to
* return 0 for this check, since a non-zero answer will
* slow down the exec fast path for normal binaries.
*/
mac_transition = mac_cred_check_label_update_execve(
imgp->ip_vfs_context,
imgp->ip_vp,
imgp->ip_arch_offset,
imgp->ip_scriptvp,
imgp->ip_scriptlabelp,
imgp->ip_execlabelp,
p,
imgp->ip_px_smpx);
#endif
OSBitAndAtomic(~((uint32_t)P_SUGID), &p->p_flag);
/*
* Order of the following is important; group checks must go last,
* as we use the success of the 'ismember' check combined with the
* failure of the explicit match to indicate that we will be setting
* the egid of the process even though the new process did not
* require VSUID/VSGID bits in order for it to set the new group as
* its egid.
*
* Note: Technically, by this we are implying a call to
* setegid() in the new process, rather than implying
* it used its VSGID bit to set the effective group,
* even though there is no code in that process to make
* such a call.
*/
if (((imgp->ip_origvattr->va_mode & VSUID) != 0 &&
kauth_cred_getuid(cred) != imgp->ip_origvattr->va_uid) ||
((imgp->ip_origvattr->va_mode & VSGID) != 0 &&
((kauth_cred_ismember_gid(cred, imgp->ip_origvattr->va_gid, &leave_sugid_clear) || !leave_sugid_clear) ||
(kauth_cred_getgid(cred) != imgp->ip_origvattr->va_gid))) ||
(imgp->ip_sc_port != NULL)) {
#if CONFIG_MACF
/* label for MAC transition and neither VSUID nor VSGID */
handle_mac_transition:
#endif
#if CONFIG_SETUID
/*
* Replace the credential with a copy of itself if euid or
* egid change.
*
* Note: setuid binaries will automatically opt out of
* group resolver participation as a side effect
* of this operation. This is an intentional
* part of the security model, which requires a
* participating credential be established by
* escalating privilege, setting up all other
* aspects of the credential including whether
* or not to participate in external group
* membership resolution, then dropping their
* effective privilege to that of the desired
* final credential state.
*
* Modifications to p_ucred must be guarded using the
* proc's ucred lock. This prevents others from accessing
* a garbage credential.
*/
if (imgp->ip_sc_port != NULL) {
extern int suid_cred_verify(ipc_port_t, vnode_t, uint32_t *);
int ret = -1;
uid_t uid = UINT32_MAX;
/*
* Check that the vnodes match. If a script is being
* executed check the script's vnode rather than the
* interpreter's.
*/
struct vnode *vp = imgp->ip_scriptvp != NULL ? imgp->ip_scriptvp : imgp->ip_vp;
ret = suid_cred_verify(imgp->ip_sc_port, vp, &uid);
if (ret == 0) {
apply_kauth_cred_update(p, ^kauth_cred_t (kauth_cred_t my_cred) {
return kauth_cred_setresuid(my_cred,
KAUTH_UID_NONE,
uid,
uid,
KAUTH_UID_NONE);
});
} else {
error = EPERM;
}
}
if (imgp->ip_origvattr->va_mode & VSUID) {
apply_kauth_cred_update(p, ^kauth_cred_t (kauth_cred_t my_cred) {
return kauth_cred_setresuid(my_cred,
KAUTH_UID_NONE,
imgp->ip_origvattr->va_uid,
imgp->ip_origvattr->va_uid,
KAUTH_UID_NONE);
});
}
if (imgp->ip_origvattr->va_mode & VSGID) {
apply_kauth_cred_update(p, ^kauth_cred_t (kauth_cred_t my_cred) {
return kauth_cred_setresgid(my_cred,
KAUTH_GID_NONE,
imgp->ip_origvattr->va_gid,
imgp->ip_origvattr->va_gid);
});
}
#endif /* CONFIG_SETUID */
#if CONFIG_MACF
/*
* If a policy has indicated that it will transition the label,
* before making the call into the MAC policies, get a new
* duplicate credential, so they can modify it without
* modifying any others sharing it.
*/
if (mac_transition) {
/*
* This hook may generate upcalls that require
* importance donation from the kernel.
* (23925818)
*/
thread_t thread = current_thread();
thread_enable_send_importance(thread, TRUE);
kauth_proc_label_update_execve(p,
imgp->ip_vfs_context,
imgp->ip_vp,
imgp->ip_arch_offset,
imgp->ip_scriptvp,
imgp->ip_scriptlabelp,
imgp->ip_execlabelp,
&imgp->ip_csflags,
imgp->ip_px_smpx,
&disjoint_cred, /* will be non zero if disjoint */
&label_update_return);
thread_enable_send_importance(thread, FALSE);
if (disjoint_cred) {
/*
* If updating the MAC label resulted in a
* disjoint credential, flag that we need to
* set the P_SUGID bit. This protects
* against debuggers being attached by an
* insufficiently privileged process onto the
* result of a transition to a more privileged
* credential.
*/
leave_sugid_clear = 0;
}
imgp->ip_mac_return = label_update_return;
}
mac_reset_ipc = mac_proc_check_inherit_ipc_ports(p, p->p_textvp, p->p_textoff, imgp->ip_vp, imgp->ip_arch_offset, imgp->ip_scriptvp);
#endif /* CONFIG_MACF */
/*
* If 'leave_sugid_clear' is non-zero, then we passed the
* VSUID and MACF checks, and successfully determined that
* the previous cred was a member of the VSGID group, but
* that it was not the default at the time of the execve,
* and that the post-labelling credential was not disjoint.
* So we don't set the P_SUGID or reset mach ports and fds
* on the basis of simply running this code.
*/
if (mac_reset_ipc || !leave_sugid_clear) {
/*
* Have mach reset the task and thread ports.
* We don't want anyone who had the ports before
* a setuid exec to be able to access/control the
* task/thread after.
*/
ipc_task_reset((imgp->ip_new_thread != NULL) ?
get_threadtask(imgp->ip_new_thread) : p->task);
ipc_thread_reset((imgp->ip_new_thread != NULL) ?
imgp->ip_new_thread : current_thread());
}
if (!leave_sugid_clear) {
/*
* Flag the process as setuid.
*/
OSBitOrAtomic(P_SUGID, &p->p_flag);
/*
* Radar 2261856; setuid security hole fix
* XXX For setuid processes, attempt to ensure that
* stdin, stdout, and stderr are already allocated.
* We do not want userland to accidentally allocate
* descriptors in this range which has implied meaning
* to libc.
*/
for (i = 0; i < 3; i++) {
if (fp_get_noref_locked(p, i) != NULL) {
continue;
}
/*
* Do the kernel equivalent of
*
* if i == 0
* (void) open("/dev/null", O_RDONLY);
* else
* (void) open("/dev/null", O_WRONLY);
*/
struct fileproc *fp;
int indx;
int flag;
struct nameidata *ndp = NULL;
if (i == 0) {
flag = FREAD;
} else {
flag = FWRITE;
}
if ((error = falloc(p,
&fp, &indx, imgp->ip_vfs_context)) != 0) {
continue;
}
ndp = kheap_alloc(KHEAP_TEMP,
sizeof(*ndp), Z_WAITOK | Z_ZERO);
if (ndp == NULL) {
fp_free(p, indx, fp);
error = ENOMEM;
break;
}
NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW, UIO_SYSSPACE,
CAST_USER_ADDR_T("/dev/null"),
imgp->ip_vfs_context);
if ((error = vn_open(ndp, flag, 0)) != 0) {
fp_free(p, indx, fp);
kheap_free(KHEAP_TEMP, ndp, sizeof(*ndp));
break;
}
struct fileglob *fg = fp->fp_glob;
fg->fg_flag = flag;
fg->fg_ops = &vnops;
fg->fg_data = ndp->ni_vp;
vnode_put(ndp->ni_vp);
proc_fdlock(p);
procfdtbl_releasefd(p, indx, NULL);
fp_drop(p, indx, fp, 1);
proc_fdunlock(p);
kheap_free(KHEAP_TEMP, ndp, sizeof(*ndp));
}
}
}
#if CONFIG_MACF
else {
/*
* We are here because we were told that the MAC label will
* be transitioned, and the binary is not VSUID or VSGID; to
* deal with this case, we could either duplicate a lot of
* code, or we can indicate we want to default the P_SUGID
* bit clear and jump back up.
*/
if (mac_transition) {
leave_sugid_clear = 1;
goto handle_mac_transition;
}
}
#endif /* CONFIG_MACF */
/*
* Implement the semantic where the effective user and group become
* the saved user and group in exec'ed programs.
*
* Modifications to p_ucred must be guarded using the
* proc's ucred lock. This prevents others from accessing
* a garbage credential.
*/
apply_kauth_cred_update(p, ^kauth_cred_t (kauth_cred_t my_cred) {
return kauth_cred_setsvuidgid(my_cred,
kauth_cred_getuid(my_cred),
kauth_cred_getgid(my_cred));
});
/* Update the process' identity version and set the security token */
p->p_idversion = OSIncrementAtomic(&nextpidversion);
if (imgp->ip_new_thread != NULL) {
task = get_threadtask(imgp->ip_new_thread);
} else {
task = p->task;
}
set_security_token_task_internal(p, task);
return error;
}
/*
* create_unix_stack
*
* Description: Set the user stack address for the process to the provided
* address. If a custom stack was not set as a result of the
* load process (i.e. as specified by the image file for the
* executable), then allocate the stack in the provided map and
* set up appropriate guard pages for enforcing administrative
* limits on stack growth, if they end up being needed.
*
* Parameters: p Process to set stack on
* load_result Information from mach-o load commands
* map Address map in which to allocate the new stack
*
* Returns: KERN_SUCCESS Stack successfully created
* !KERN_SUCCESS Mach failure code
*/
__attribute__((noinline))
static kern_return_t
create_unix_stack(vm_map_t map, load_result_t* load_result,
proc_t p)
{
mach_vm_size_t size, prot_size;
mach_vm_offset_t addr, prot_addr;
kern_return_t kr;
mach_vm_address_t user_stack = load_result->user_stack;
proc_lock(p);
p->user_stack = (uintptr_t)user_stack;
if (load_result->custom_stack) {
p->p_lflag |= P_LCUSTOM_STACK;
}
proc_unlock(p);
if (vm_map_page_shift(map) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("map %p user_stack 0x%llx custom %d user_stack_alloc_size 0x%llx\n", map, user_stack, load_result->custom_stack, load_result->user_stack_alloc_size);
}
if (load_result->user_stack_alloc_size > 0) {
/*
* Allocate enough space for the maximum stack size we
* will ever authorize and an extra page to act as
* a guard page for stack overflows. For default stacks,
* vm_initial_limit_stack takes care of the extra guard page.
* Otherwise we must allocate it ourselves.
*/
if (mach_vm_round_page_overflow(load_result->user_stack_alloc_size, &size)) {
return KERN_INVALID_ARGUMENT;
}
addr = vm_map_trunc_page(load_result->user_stack - size,
vm_map_page_mask(map));
kr = mach_vm_allocate_kernel(map, &addr, size,
VM_FLAGS_FIXED, VM_MEMORY_STACK);
if (kr != KERN_SUCCESS) {
// Can't allocate at default location, try anywhere
addr = 0;
kr = mach_vm_allocate_kernel(map, &addr, size,
VM_FLAGS_ANYWHERE, VM_MEMORY_STACK);
if (kr != KERN_SUCCESS) {
return kr;
}
user_stack = addr + size;
load_result->user_stack = (user_addr_t)user_stack;
proc_lock(p);
p->user_stack = (uintptr_t)user_stack;
proc_unlock(p);
}
load_result->user_stack_alloc = (user_addr_t)addr;
/*
* And prevent access to what's above the current stack
* size limit for this process.
*/
if (load_result->user_stack_size == 0) {
load_result->user_stack_size = proc_limitgetcur(p, RLIMIT_STACK, TRUE);
prot_size = vm_map_trunc_page(size - load_result->user_stack_size, vm_map_page_mask(map));
} else {
prot_size = PAGE_SIZE;
}
prot_addr = addr;
kr = mach_vm_protect(map,
prot_addr,
prot_size,
FALSE,
VM_PROT_NONE);
if (kr != KERN_SUCCESS) {
(void)mach_vm_deallocate(map, addr, size);
return kr;
}
}
return KERN_SUCCESS;
}
#include <sys/reboot.h>
/*
* load_init_program_at_path
*
* Description: Load the "init" program; in most cases, this will be "launchd"
*
* Parameters: p Process to call execve() to create
* the "init" program
* scratch_addr Page in p, scratch space
* path NULL terminated path
*
* Returns: KERN_SUCCESS Success
* !KERN_SUCCESS See execve/mac_execve for error codes
*
* Notes: The process that is passed in is the first manufactured
* process on the system, and gets here via bsd_ast() firing
* for the first time. This is done to ensure that bsd_init()
* has run to completion.
*
* The address map of the first manufactured process matches the
* word width of the kernel. Once the self-exec completes, the
* initproc might be different.
*/
static int
load_init_program_at_path(proc_t p, user_addr_t scratch_addr, const char* path)
{
int retval[2];
int error;
struct execve_args init_exec_args;
user_addr_t argv0 = USER_ADDR_NULL, argv1 = USER_ADDR_NULL;
/*
* Validate inputs and pre-conditions
*/
assert(p);
assert(scratch_addr);
assert(path);
/*
* Copy out program name.
*/
size_t path_length = strlen(path) + 1;
argv0 = scratch_addr;
error = copyout(path, argv0, path_length);
if (error) {
return error;
}
scratch_addr = USER_ADDR_ALIGN(scratch_addr + path_length, sizeof(user_addr_t));
/*
* Put out first (and only) argument, similarly.
* Assumes everything fits in a page as allocated above.
*/
if (boothowto & RB_SINGLE) {
const char *init_args = "-s";
size_t init_args_length = strlen(init_args) + 1;
argv1 = scratch_addr;
error = copyout(init_args, argv1, init_args_length);
if (error) {
return error;
}
scratch_addr = USER_ADDR_ALIGN(scratch_addr + init_args_length, sizeof(user_addr_t));
}
if (proc_is64bit(p)) {
user64_addr_t argv64bit[3] = {};
argv64bit[0] = argv0;
argv64bit[1] = argv1;
argv64bit[2] = USER_ADDR_NULL;
error = copyout(argv64bit, scratch_addr, sizeof(argv64bit));
if (error) {
return error;
}
} else {
user32_addr_t argv32bit[3] = {};
argv32bit[0] = (user32_addr_t)argv0;
argv32bit[1] = (user32_addr_t)argv1;
argv32bit[2] = USER_ADDR_NULL;
error = copyout(argv32bit, scratch_addr, sizeof(argv32bit));
if (error) {
return error;
}
}
/*
* Set up argument block for fake call to execve.
*/
init_exec_args.fname = argv0;
init_exec_args.argp = scratch_addr;
init_exec_args.envp = USER_ADDR_NULL;
/*
* So that init task is set with uid,gid 0 token
*/
set_security_token(p);
return execve(p, &init_exec_args, retval);
}
static const char * init_programs[] = {
#if DEBUG
"/usr/appleinternal/sbin/launchd.debug",
#endif
#if DEVELOPMENT || DEBUG
"/usr/appleinternal/sbin/launchd.development",
#endif
"/sbin/launchd",
};
/*
* load_init_program
*
* Description: Load the "init" program; in most cases, this will be "launchd"
*
* Parameters: p Process to call execve() to create
* the "init" program
*
* Returns: (void)
*
* Notes: The process that is passed in is the first manufactured
* process on the system, and gets here via bsd_ast() firing
* for the first time. This is done to ensure that bsd_init()
* has run to completion.
*
* In DEBUG & DEVELOPMENT builds, the launchdsuffix boot-arg
* may be used to select a specific launchd executable. As with
* the kcsuffix boot-arg, setting launchdsuffix to "" or "release"
* will force /sbin/launchd to be selected.
*
* Search order by build:
*
* DEBUG DEVELOPMENT RELEASE PATH
* ----------------------------------------------------------------------------------
* 1 1 NA /usr/appleinternal/sbin/launchd.$LAUNCHDSUFFIX
* 2 NA NA /usr/appleinternal/sbin/launchd.debug
* 3 2 NA /usr/appleinternal/sbin/launchd.development
* 4 3 1 /sbin/launchd
*/
void
load_init_program(proc_t p)
{
uint32_t i;
int error;
vm_map_t map = current_map();
mach_vm_offset_t scratch_addr = 0;
mach_vm_size_t map_page_size = vm_map_page_size(map);
(void) mach_vm_allocate_kernel(map, &scratch_addr, map_page_size, VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_NONE);
#if CONFIG_MEMORYSTATUS
(void) memorystatus_init_at_boot_snapshot();
#endif /* CONFIG_MEMORYSTATUS */
#if __has_feature(ptrauth_calls)
PE_parse_boot_argn("vm_shared_region_per_team_id", &vm_shared_region_per_team_id, sizeof(vm_shared_region_per_team_id));
PE_parse_boot_argn("vm_shared_region_by_entitlement", &vm_shared_region_by_entitlement, sizeof(vm_shared_region_by_entitlement));
PE_parse_boot_argn("vm_shared_region_reslide_aslr", &vm_shared_region_reslide_aslr, sizeof(vm_shared_region_reslide_aslr));
PE_parse_boot_argn("vm_shared_region_reslide_restrict", &vm_shared_region_reslide_restrict, sizeof(vm_shared_region_reslide_restrict));
#endif /* __has_feature(ptrauth_calls) */
#if DEBUG || DEVELOPMENT
#if XNU_TARGET_OS_OSX
PE_parse_boot_argn("unentitled_ios_sim_launch", &unentitled_ios_sim_launch, sizeof(unentitled_ios_sim_launch));
#endif /* XNU_TARGET_OS_OSX */
/* Check for boot-arg suffix first */
char launchd_suffix[64];
if (PE_parse_boot_argn("launchdsuffix", launchd_suffix, sizeof(launchd_suffix))) {
char launchd_path[128];
boolean_t is_release_suffix = ((launchd_suffix[0] == 0) ||
(strcmp(launchd_suffix, "release") == 0));
if (is_release_suffix) {
printf("load_init_program: attempting to load /sbin/launchd\n");
error = load_init_program_at_path(p, (user_addr_t)scratch_addr, "/sbin/launchd");
if (!error) {
return;
}
panic("Process 1 exec of launchd.release failed, errno %d", error);
} else {
strlcpy(launchd_path, "/usr/appleinternal/sbin/launchd.", sizeof(launchd_path));
strlcat(launchd_path, launchd_suffix, sizeof(launchd_path));
printf("load_init_program: attempting to load %s\n", launchd_path);
error = load_init_program_at_path(p, (user_addr_t)scratch_addr, launchd_path);
if (!error) {
return;
} else if (error != ENOENT) {
printf("load_init_program: failed loading %s: errno %d\n", launchd_path, error);
}
}
}
#endif
error = ENOENT;
for (i = 0; i < sizeof(init_programs) / sizeof(init_programs[0]); i++) {
printf("load_init_program: attempting to load %s\n", init_programs[i]);
error = load_init_program_at_path(p, (user_addr_t)scratch_addr, init_programs[i]);
if (!error) {
return;
} else if (error != ENOENT) {
printf("load_init_program: failed loading %s: errno %d\n", init_programs[i], error);
}
}
panic("Process 1 exec of %s failed, errno %d", ((i == 0) ? "<null>" : init_programs[i - 1]), error);
}
/*
* load_return_to_errno
*
* Description: Convert a load_return_t (Mach error) to an errno (BSD error)
*
* Parameters: lrtn Mach error number
*
* Returns: (int) BSD error number
* 0 Success
* EBADARCH Bad architecture
* EBADMACHO Bad Mach object file
* ESHLIBVERS Bad shared library version
* ENOMEM Out of memory/resource shortage
* EACCES Access denied
* ENOENT Entry not found (usually "file does
* does not exist")
* EIO An I/O error occurred
* EBADEXEC The executable is corrupt/unknown
*/
static int
load_return_to_errno(load_return_t lrtn)
{
switch (lrtn) {
case LOAD_SUCCESS:
return 0;
case LOAD_BADARCH:
return EBADARCH;
case LOAD_BADMACHO:
case LOAD_BADMACHO_UPX:
return EBADMACHO;
case LOAD_SHLIB:
return ESHLIBVERS;
case LOAD_NOSPACE:
case LOAD_RESOURCE:
return ENOMEM;
case LOAD_PROTECT:
return EACCES;
case LOAD_ENOENT:
return ENOENT;
case LOAD_IOERROR:
return EIO;
case LOAD_DECRYPTFAIL:
return EAUTH;
case LOAD_FAILURE:
default:
return EBADEXEC;
}
}
#include <mach/mach_types.h>
#include <mach/vm_prot.h>
#include <mach/semaphore.h>
#include <mach/sync_policy.h>
#include <kern/clock.h>
#include <mach/kern_return.h>
/*
* execargs_alloc
*
* Description: Allocate the block of memory used by the execve arguments.
* At the same time, we allocate a page so that we can read in
* the first page of the image.
*
* Parameters: struct image_params * the image parameter block
*
* Returns: 0 Success
* EINVAL Invalid argument
* EACCES Permission denied
* EINTR Interrupted function
* ENOMEM Not enough space
*
* Notes: This is a temporary allocation into the kernel address space
* to enable us to copy arguments in from user space. This is
* necessitated by not mapping the process calling execve() into
* the kernel address space during the execve() system call.
*
* We assemble the argument and environment, etc., into this
* region before copying it as a single block into the child
* process address space (at the top or bottom of the stack,
* depending on which way the stack grows; see the function
* exec_copyout_strings() for details).
*
* This ends up with a second (possibly unnecessary) copy compared
* with assembing the data directly into the child address space,
* instead, but since we cannot be guaranteed that the parent has
* not modified its environment, we can't really know that it's
* really a block there as well.
*/
static int execargs_waiters = 0;
static LCK_MTX_DECLARE_ATTR(execargs_cache_lock, &proc_lck_grp, &proc_lck_attr);
static void
execargs_lock_lock(void)
{
lck_mtx_lock_spin(&execargs_cache_lock);
}
static void
execargs_lock_unlock(void)
{
lck_mtx_unlock(&execargs_cache_lock);
}
static wait_result_t
execargs_lock_sleep(void)
{
return lck_mtx_sleep(&execargs_cache_lock, LCK_SLEEP_DEFAULT, &execargs_free_count, THREAD_INTERRUPTIBLE);
}
static kern_return_t
execargs_purgeable_allocate(char **execarg_address)
{
kern_return_t kr = vm_allocate_kernel(bsd_pageable_map, (vm_offset_t *)execarg_address, BSD_PAGEABLE_SIZE_PER_EXEC, VM_FLAGS_ANYWHERE | VM_FLAGS_PURGABLE, VM_KERN_MEMORY_NONE);
assert(kr == KERN_SUCCESS);
return kr;
}
static kern_return_t
execargs_purgeable_reference(void *execarg_address)
{
int state = VM_PURGABLE_NONVOLATILE;
kern_return_t kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
assert(kr == KERN_SUCCESS);
return kr;
}
static kern_return_t
execargs_purgeable_volatilize(void *execarg_address)
{
int state = VM_PURGABLE_VOLATILE | VM_PURGABLE_ORDERING_OBSOLETE;
kern_return_t kr;
kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
assert(kr == KERN_SUCCESS);
return kr;
}
static void
execargs_wakeup_waiters(void)
{
thread_wakeup(&execargs_free_count);
}
static int
execargs_alloc(struct image_params *imgp)
{
kern_return_t kret;
wait_result_t res;
int i, cache_index = -1;
execargs_lock_lock();
while (execargs_free_count == 0) {
execargs_waiters++;
res = execargs_lock_sleep();
execargs_waiters--;
if (res != THREAD_AWAKENED) {
execargs_lock_unlock();
return EINTR;
}
}
execargs_free_count--;
for (i = 0; i < execargs_cache_size; i++) {
vm_offset_t element = execargs_cache[i];
if (element) {
cache_index = i;
imgp->ip_strings = (char *)(execargs_cache[i]);
execargs_cache[i] = 0;
break;
}
}
assert(execargs_free_count >= 0);
execargs_lock_unlock();
if (cache_index == -1) {
kret = execargs_purgeable_allocate(&imgp->ip_strings);
} else {
kret = execargs_purgeable_reference(imgp->ip_strings);
}
assert(kret == KERN_SUCCESS);
if (kret != KERN_SUCCESS) {
return ENOMEM;
}
/* last page used to read in file headers */
imgp->ip_vdata = imgp->ip_strings + (NCARGS + PAGE_SIZE);
imgp->ip_strendp = imgp->ip_strings;
imgp->ip_argspace = NCARGS;
imgp->ip_strspace = (NCARGS + PAGE_SIZE);
return 0;
}
/*
* execargs_free
*
* Description: Free the block of memory used by the execve arguments and the
* first page of the executable by a previous call to the function
* execargs_alloc().
*
* Parameters: struct image_params * the image parameter block
*
* Returns: 0 Success
* EINVAL Invalid argument
* EINTR Oeration interrupted
*/
static int
execargs_free(struct image_params *imgp)
{
kern_return_t kret;
int i;
boolean_t needs_wakeup = FALSE;
kret = execargs_purgeable_volatilize(imgp->ip_strings);
execargs_lock_lock();
execargs_free_count++;
for (i = 0; i < execargs_cache_size; i++) {
vm_offset_t element = execargs_cache[i];
if (element == 0) {
execargs_cache[i] = (vm_offset_t) imgp->ip_strings;
imgp->ip_strings = NULL;
break;
}
}
assert(imgp->ip_strings == NULL);
if (execargs_waiters > 0) {
needs_wakeup = TRUE;
}
execargs_lock_unlock();
if (needs_wakeup == TRUE) {
execargs_wakeup_waiters();
}
return kret == KERN_SUCCESS ? 0 : EINVAL;
}
static void
exec_resettextvp(proc_t p, struct image_params *imgp)
{
vnode_t vp;
off_t offset;
vnode_t tvp = p->p_textvp;
int ret;
vp = imgp->ip_vp;
offset = imgp->ip_arch_offset;
if (vp == NULLVP) {
panic("exec_resettextvp: expected valid vp");
}
ret = vnode_ref(vp);
proc_lock(p);
if (ret == 0) {
p->p_textvp = vp;
p->p_textoff = offset;
} else {
p->p_textvp = NULLVP; /* this is paranoia */
p->p_textoff = 0;
}
proc_unlock(p);
if (tvp != NULLVP) {
if (vnode_getwithref(tvp) == 0) {
vnode_rele(tvp);
vnode_put(tvp);
}
}
}
// Includes the 0-byte (therefore "SIZE" instead of "LEN").
static const size_t CS_CDHASH_STRING_SIZE = CS_CDHASH_LEN * 2 + 1;
static void
cdhash_to_string(char str[CS_CDHASH_STRING_SIZE], uint8_t const * const cdhash)
{
static char const nibble[] = "0123456789abcdef";
/* Apparently still the safest way to get a hex representation
* of binary data.
* xnu's printf routines have %*D/%20D in theory, but "not really", see:
* <rdar://problem/33328859> confusion around %*D/%nD in printf
*/
for (int i = 0; i < CS_CDHASH_LEN; ++i) {
str[i * 2] = nibble[(cdhash[i] & 0xf0) >> 4];
str[i * 2 + 1] = nibble[cdhash[i] & 0x0f];
}
str[CS_CDHASH_STRING_SIZE - 1] = 0;
}
/*
* __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__
*
* Description: Waits for the userspace daemon to respond to the request
* we made. Function declared non inline to be visible in
* stackshots and spindumps as well as debugging.
*/
__attribute__((noinline)) int
__EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid)
{
return find_code_signature(task_access_port, new_pid);
}
static int
check_for_signature(proc_t p, struct image_params *imgp)
{
mach_port_t port = IPC_PORT_NULL;
kern_return_t kr = KERN_FAILURE;
int error = EACCES;
boolean_t unexpected_failure = FALSE;
struct cs_blob *csb;
boolean_t require_success = FALSE;
int spawn = (imgp->ip_flags & IMGPF_SPAWN);
int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
os_reason_t signature_failure_reason = OS_REASON_NULL;
/*
* Override inherited code signing flags with the
* ones for the process that is being successfully
* loaded
*/
proc_lock(p);
p->p_csflags = imgp->ip_csflags;
proc_unlock(p);
/* Set the switch_protect flag on the map */
if (p->p_csflags & (CS_HARD | CS_KILL)) {
vm_map_switch_protect(get_task_map(p->task), TRUE);
}
/* set the cs_enforced flags in the map */
if (p->p_csflags & CS_ENFORCEMENT) {
vm_map_cs_enforcement_set(get_task_map(p->task), TRUE);
} else {
vm_map_cs_enforcement_set(get_task_map(p->task), FALSE);
}
/*
* image activation may be failed due to policy
* which is unexpected but security framework does not
* approve of exec, kill and return immediately.
*/
if (imgp->ip_mac_return != 0) {
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY, 0, 0);
signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY);
error = imgp->ip_mac_return;
unexpected_failure = TRUE;
goto done;
}
if (imgp->ip_cs_error != OS_REASON_NULL) {
signature_failure_reason = imgp->ip_cs_error;
imgp->ip_cs_error = OS_REASON_NULL;
error = EACCES;
goto done;
}
#if XNU_TARGET_OS_OSX
/* Check for platform passed in spawn attr if iOS binary is being spawned */
if (proc_platform(p) == PLATFORM_IOS) {
struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
if (psa == NULL || psa->psa_platform == 0) {
boolean_t no_sandbox_entitled = FALSE;
#if DEBUG || DEVELOPMENT
/*
* Allow iOS binaries to spawn on internal systems
* if no-sandbox entitlement is present of unentitled_ios_sim_launch
* boot-arg set to true
*/
if (unentitled_ios_sim_launch) {
no_sandbox_entitled = TRUE;
} else {
no_sandbox_entitled = IOVnodeHasEntitlement(imgp->ip_vp,
(int64_t)imgp->ip_arch_offset, "com.apple.private.security.no-sandbox");
}
#endif /* DEBUG || DEVELOPMENT */
if (!no_sandbox_entitled) {
signature_failure_reason = os_reason_create(OS_REASON_EXEC,
EXEC_EXIT_REASON_WRONG_PLATFORM);
error = EACCES;
goto done;
}
printf("Allowing spawn of iOS binary %s since it has "
"com.apple.private.security.no-sandbox entitlement or unentitled_ios_sim_launch "
"boot-arg set to true\n", p->p_name);
} else if (psa->psa_platform != PLATFORM_IOS) {
/* Simulator binary spawned with wrong platform */
signature_failure_reason = os_reason_create(OS_REASON_EXEC,
EXEC_EXIT_REASON_WRONG_PLATFORM);
error = EACCES;
goto done;
} else {
printf("Allowing spawn of iOS binary %s since correct platform was passed in spawn\n",
p->p_name);
}
}
#endif /* XNU_TARGET_OS_OSX */
/* If the code signature came through the image activation path, we skip the
* taskgated / externally attached path. */
if (imgp->ip_csflags & CS_SIGNED) {
error = 0;
goto done;
}
/* The rest of the code is for signatures that either already have been externally
* attached (likely, but not necessarily by a previous run through the taskgated
* path), or that will now be attached by taskgated. */
kr = task_get_task_access_port(p->task, &port);
if (KERN_SUCCESS != kr || !IPC_PORT_VALID(port)) {
error = 0;
if (require_success) {
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT, 0, 0);
signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT);
error = EACCES;
}
goto done;
}
/*
* taskgated returns KERN_SUCCESS if it has completed its work
* and the exec should continue, KERN_FAILURE if the exec should
* fail, or it may error out with different error code in an
* event of mig failure (e.g. process was signalled during the
* rpc call, taskgated died, mig server died etc.).
*/
kr = __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(port, p->p_pid);
switch (kr) {
case KERN_SUCCESS:
error = 0;
break;
case KERN_FAILURE:
error = EACCES;
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG, 0, 0);
signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG);
goto done;
default:
error = EACCES;
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER, 0, 0);
signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER);
unexpected_failure = TRUE;
goto done;
}
/* Only do this if exec_resettextvp() did not fail */
if (p->p_textvp != NULLVP) {
csb = ubc_cs_blob_get(p->p_textvp, -1, -1, p->p_textoff);
if (csb != NULL) {
/* As the enforcement we can do here is very limited, we only allow things that
* are the only reason why this code path still exists:
* Adhoc signed non-platform binaries without special cs_flags and without any
* entitlements (unrestricted ones still pass AMFI). */
if (
/* Revalidate the blob if necessary through bumped generation count. */
(ubc_cs_generation_check(p->p_textvp) == 0 ||
ubc_cs_blob_revalidate(p->p_textvp, csb, imgp, 0, proc_platform(p)) == 0) &&
/* Only CS_ADHOC, no CS_KILL, CS_HARD etc. */
(csb->csb_flags & CS_ALLOWED_MACHO) == CS_ADHOC &&
/* If it has a CMS blob, it's not adhoc. The CS_ADHOC flag can lie. */
csblob_find_blob_bytes((const uint8_t *)csb->csb_mem_kaddr, csb->csb_mem_size,
CSSLOT_SIGNATURESLOT,
CSMAGIC_BLOBWRAPPER) == NULL &&
/* It could still be in a trust cache (unlikely with CS_ADHOC), or a magic path. */
csb->csb_platform_binary == 0 &&
/* No entitlements, not even unrestricted ones. */
csb->csb_entitlements_blob == NULL) {
proc_lock(p);
p->p_csflags |= CS_SIGNED | CS_VALID;
proc_unlock(p);
} else {
uint8_t cdhash[CS_CDHASH_LEN];
char cdhash_string[CS_CDHASH_STRING_SIZE];
proc_getcdhash(p, cdhash);
cdhash_to_string(cdhash_string, cdhash);
printf("ignoring detached code signature on '%s' with cdhash '%s' "
"because it is invalid, or not a simple adhoc signature.\n",
p->p_name, cdhash_string);
}
}
}
done:
if (0 == error) {
/* The process's code signature related properties are
* fully set up, so this is an opportune moment to log
* platform binary execution, if desired. */
if (platform_exec_logging != 0 && csproc_get_platform_binary(p)) {
uint8_t cdhash[CS_CDHASH_LEN];
char cdhash_string[CS_CDHASH_STRING_SIZE];
proc_getcdhash(p, cdhash);
cdhash_to_string(cdhash_string, cdhash);
os_log(peLog, "CS Platform Exec Logging: Executing platform signed binary "
"'%s' with cdhash %s\n", p->p_name, cdhash_string);
}
} else {
if (!unexpected_failure) {
p->p_csflags |= CS_KILLED;
}
/* make very sure execution fails */
if (vfexec || spawn) {
assert(signature_failure_reason != OS_REASON_NULL);
psignal_vfork_with_reason(p, p->task, imgp->ip_new_thread,
SIGKILL, signature_failure_reason);
signature_failure_reason = OS_REASON_NULL;
error = 0;
} else {
assert(signature_failure_reason != OS_REASON_NULL);
psignal_with_reason(p, SIGKILL, signature_failure_reason);
signature_failure_reason = OS_REASON_NULL;
}
}
if (port != IPC_PORT_NULL) {
ipc_port_release_send(port);
}
/* If we hit this, we likely would have leaked an exit reason */
assert(signature_failure_reason == OS_REASON_NULL);
return error;
}
/*
* Typically as soon as we start executing this process, the
* first instruction will trigger a VM fault to bring the text
* pages (as executable) into the address space, followed soon
* thereafter by dyld data structures (for dynamic executable).
* To optimize this, as well as improve support for hardware
* debuggers that can only access resident pages present
* in the process' page tables, we prefault some pages if
* possible. Errors are non-fatal.
*/
#ifndef PREVENT_CALLER_STACK_USE
#define PREVENT_CALLER_STACK_USE __attribute__((noinline))
#endif
static void PREVENT_CALLER_STACK_USE
exec_prefault_data(proc_t p __unused, struct image_params *imgp, load_result_t *load_result)
{
int ret;
size_t expected_all_image_infos_size;
kern_return_t kr;
/*
* Prefault executable or dyld entry point.
*/
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("entry_point 0x%llx\n", (uint64_t)load_result->entry_point);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(load_result->entry_point,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_EXECUTE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
DEBUG4K_ERROR("map %p va 0x%llx -> 0x%x\n", current_map(), (uint64_t)vm_map_trunc_page(load_result->entry_point, vm_map_page_mask(current_map())), kr);
}
if (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) {
expected_all_image_infos_size = sizeof(struct user64_dyld_all_image_infos);
} else {
expected_all_image_infos_size = sizeof(struct user32_dyld_all_image_infos);
}
/* Decode dyld anchor structure from <mach-o/dyld_images.h> */
if (load_result->dynlinker &&
load_result->all_image_info_addr &&
load_result->all_image_info_size >= expected_all_image_infos_size) {
union {
struct user64_dyld_all_image_infos infos64;
struct user32_dyld_all_image_infos infos32;
} all_image_infos;
/*
* Pre-fault to avoid copyin() going through the trap handler
* and recovery path.
*/
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("all_image_info_addr 0x%llx\n", load_result->all_image_info_addr);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(load_result->all_image_info_addr,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_WRITE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(load_result->all_image_info_addr, vm_map_page_mask(current_map())), kr);
}
if ((load_result->all_image_info_addr & PAGE_MASK) + expected_all_image_infos_size > PAGE_SIZE) {
/* all_image_infos straddles a page */
kr = vm_fault(current_map(),
vm_map_trunc_page(load_result->all_image_info_addr + expected_all_image_infos_size - 1,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_WRITE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(load_result->all_image_info_addr + expected_all_image_infos_size -1, vm_map_page_mask(current_map())), kr);
}
}
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("copyin(0x%llx, 0x%lx)\n", load_result->all_image_info_addr, expected_all_image_infos_size);
}
ret = copyin((user_addr_t)load_result->all_image_info_addr,
&all_image_infos,
expected_all_image_infos_size);
if (ret == 0 && all_image_infos.infos32.version >= DYLD_ALL_IMAGE_INFOS_ADDRESS_MINIMUM_VERSION) {
user_addr_t notification_address;
user_addr_t dyld_image_address;
user_addr_t dyld_version_address;
user_addr_t dyld_all_image_infos_address;
user_addr_t dyld_slide_amount;
if (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) {
notification_address = (user_addr_t)all_image_infos.infos64.notification;
dyld_image_address = (user_addr_t)all_image_infos.infos64.dyldImageLoadAddress;
dyld_version_address = (user_addr_t)all_image_infos.infos64.dyldVersion;
dyld_all_image_infos_address = (user_addr_t)all_image_infos.infos64.dyldAllImageInfosAddress;
} else {
notification_address = all_image_infos.infos32.notification;
dyld_image_address = all_image_infos.infos32.dyldImageLoadAddress;
dyld_version_address = all_image_infos.infos32.dyldVersion;
dyld_all_image_infos_address = all_image_infos.infos32.dyldAllImageInfosAddress;
}
/*
* dyld statically sets up the all_image_infos in its Mach-O
* binary at static link time, with pointers relative to its default
* load address. Since ASLR might slide dyld before its first
* instruction is executed, "dyld_slide_amount" tells us how far
* dyld was loaded compared to its default expected load address.
* All other pointers into dyld's image should be adjusted by this
* amount. At some point later, dyld will fix up pointers to take
* into account the slide, at which point the all_image_infos_address
* field in the structure will match the runtime load address, and
* "dyld_slide_amount" will be 0, if we were to consult it again.
*/
dyld_slide_amount = (user_addr_t)load_result->all_image_info_addr - dyld_all_image_infos_address;
#if 0
kprintf("exec_prefault: 0x%016llx 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%016llx\n",
(uint64_t)load_result->all_image_info_addr,
all_image_infos.infos32.version,
(uint64_t)notification_address,
(uint64_t)dyld_image_address,
(uint64_t)dyld_version_address,
(uint64_t)dyld_all_image_infos_address);
#endif
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("notification_address 0x%llx dyld_slide_amount 0x%llx\n", (uint64_t)notification_address, (uint64_t)dyld_slide_amount);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(notification_address + dyld_slide_amount,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_EXECUTE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(notification_address + dyld_slide_amount, vm_map_page_mask(current_map())), kr);
}
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("dyld_image_address 0x%llx dyld_slide_amount 0x%llx\n", (uint64_t)dyld_image_address, (uint64_t)dyld_slide_amount);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(dyld_image_address + dyld_slide_amount,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_EXECUTE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(dyld_image_address + dyld_slide_amount, vm_map_page_mask(current_map())), kr);
}
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("dyld_version_address 0x%llx dyld_slide_amount 0x%llx\n", (uint64_t)dyld_version_address, (uint64_t)dyld_slide_amount);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(dyld_version_address + dyld_slide_amount,
vm_map_page_mask(current_map())),
VM_PROT_READ,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(dyld_version_address + dyld_slide_amount, vm_map_page_mask(current_map())), kr);
}
if (vm_map_page_shift(current_map()) < (int)PAGE_SHIFT) {
DEBUG4K_LOAD("dyld_all_image_infos_address 0x%llx dyld_slide_amount 0x%llx\n", (uint64_t)dyld_version_address, (uint64_t)dyld_slide_amount);
}
kr = vm_fault(current_map(),
vm_map_trunc_page(dyld_all_image_infos_address + dyld_slide_amount,
vm_map_page_mask(current_map())),
VM_PROT_READ | VM_PROT_WRITE,
FALSE, VM_KERN_MEMORY_NONE,
THREAD_UNINT, NULL, 0);
if (kr != KERN_SUCCESS) {
// printf("%s:%d map %p va 0x%llx -> 0x%x\n", __FUNCTION__, __LINE__, current_map(), vm_map_trunc_page(dyld_all_image_infos_address + dyld_slide_amount, vm_map_page_mask(current_map())), kr);
}
}
}
}
static int
sysctl_libmalloc_experiments SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg2, req)
int changed;
errno_t error;
uint64_t value = os_atomic_load_wide(&libmalloc_experiment_factors, relaxed);
error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
if (error) {
return error;
}
if (changed) {
os_atomic_store_wide(&libmalloc_experiment_factors, value, relaxed);
}
return 0;
}
EXPERIMENT_FACTOR_PROC(_kern, libmalloc_experiments, CTLTYPE_QUAD | CTLFLAG_RW, 0, 0, &sysctl_libmalloc_experiments, "A", "");