darling-xnu/bsd/net/dlil.c
2023-05-16 21:41:14 -07:00

10702 lines
285 KiB
C

/*
* Copyright (c) 1999-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <stddef.h>
#include <ptrauth.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/domain.h>
#include <sys/user.h>
#include <sys/random.h>
#include <sys/socketvar.h>
#include <net/if_dl.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_var.h>
#include <net/dlil.h>
#include <net/if_arp.h>
#include <net/iptap.h>
#include <net/pktap.h>
#include <sys/kern_event.h>
#include <sys/kdebug.h>
#include <sys/mcache.h>
#include <sys/syslog.h>
#include <sys/protosw.h>
#include <sys/priv.h>
#include <kern/assert.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/locks.h>
#include <kern/zalloc.h>
#include <net/kpi_protocol.h>
#include <net/if_types.h>
#include <net/if_ipsec.h>
#include <net/if_llreach.h>
#include <net/if_utun.h>
#include <net/kpi_interfacefilter.h>
#include <net/classq/classq.h>
#include <net/classq/classq_sfb.h>
#include <net/flowhash.h>
#include <net/ntstat.h>
#include <net/if_llatbl.h>
#include <net/net_api_stats.h>
#include <net/if_ports_used.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#if INET
#include <netinet/in_var.h>
#include <netinet/igmp_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/if_ether.h>
#include <netinet/in_pcb.h>
#include <netinet/in_tclass.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#endif /* INET */
#include <net/nat464_utils.h>
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/mld6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <net/pf_pbuf.h>
#include <libkern/OSAtomic.h>
#include <libkern/tree.h>
#include <dev/random/randomdev.h>
#include <machine/machine_routines.h>
#include <mach/thread_act.h>
#include <mach/sdt.h>
#if CONFIG_MACF
#include <sys/kauth.h>
#include <security/mac_framework.h>
#include <net/ethernet.h>
#include <net/firewire.h>
#endif
#if PF
#include <net/pfvar.h>
#endif /* PF */
#include <net/pktsched/pktsched.h>
#include <net/pktsched/pktsched_netem.h>
#if NECP
#include <net/necp.h>
#endif /* NECP */
#include <os/log.h>
#define DBG_LAYER_BEG DLILDBG_CODE(DBG_DLIL_STATIC, 0)
#define DBG_LAYER_END DLILDBG_CODE(DBG_DLIL_STATIC, 2)
#define DBG_FNC_DLIL_INPUT DLILDBG_CODE(DBG_DLIL_STATIC, (1 << 8))
#define DBG_FNC_DLIL_OUTPUT DLILDBG_CODE(DBG_DLIL_STATIC, (2 << 8))
#define DBG_FNC_DLIL_IFOUT DLILDBG_CODE(DBG_DLIL_STATIC, (3 << 8))
#define MAX_FRAME_TYPE_SIZE 4 /* LONGWORDS */
#define MAX_LINKADDR 4 /* LONGWORDS */
#define M_NKE M_IFADDR
#if 1
#define DLIL_PRINTF printf
#else
#define DLIL_PRINTF kprintf
#endif
#define IF_DATA_REQUIRE_ALIGNED_64(f) \
_CASSERT(!(offsetof(struct if_data_internal, f) % sizeof (u_int64_t)))
#define IFNET_IF_DATA_REQUIRE_ALIGNED_64(f) \
_CASSERT(!(offsetof(struct ifnet, if_data.f) % sizeof (u_int64_t)))
enum {
kProtoKPI_v1 = 1,
kProtoKPI_v2 = 2
};
/*
* List of if_proto structures in if_proto_hash[] is protected by
* the ifnet lock. The rest of the fields are initialized at protocol
* attach time and never change, thus no lock required as long as
* a reference to it is valid, via if_proto_ref().
*/
struct if_proto {
SLIST_ENTRY(if_proto) next_hash;
u_int32_t refcount;
u_int32_t detached;
struct ifnet *ifp;
protocol_family_t protocol_family;
int proto_kpi;
union {
struct {
proto_media_input input;
proto_media_preout pre_output;
proto_media_event event;
proto_media_ioctl ioctl;
proto_media_detached detached;
proto_media_resolve_multi resolve_multi;
proto_media_send_arp send_arp;
} v1;
struct {
proto_media_input_v2 input;
proto_media_preout pre_output;
proto_media_event event;
proto_media_ioctl ioctl;
proto_media_detached detached;
proto_media_resolve_multi resolve_multi;
proto_media_send_arp send_arp;
} v2;
} kpi;
};
SLIST_HEAD(proto_hash_entry, if_proto);
#define DLIL_SDLDATALEN \
(DLIL_SDLMAXLEN - offsetof(struct sockaddr_dl, sdl_data[0]))
struct dlil_ifnet {
struct ifnet dl_if; /* public ifnet */
/*
* DLIL private fields, protected by dl_if_lock
*/
decl_lck_mtx_data(, dl_if_lock);
TAILQ_ENTRY(dlil_ifnet) dl_if_link; /* dlil_ifnet link */
u_int32_t dl_if_flags; /* flags (below) */
u_int32_t dl_if_refcnt; /* refcnt */
void (*dl_if_trace)(struct dlil_ifnet *, int); /* ref trace callback */
void *dl_if_uniqueid; /* unique interface id */
size_t dl_if_uniqueid_len; /* length of the unique id */
char dl_if_namestorage[IFNAMSIZ]; /* interface name storage */
char dl_if_xnamestorage[IFXNAMSIZ]; /* external name storage */
struct {
struct ifaddr ifa; /* lladdr ifa */
u_int8_t asdl[DLIL_SDLMAXLEN]; /* addr storage */
u_int8_t msdl[DLIL_SDLMAXLEN]; /* mask storage */
} dl_if_lladdr;
u_int8_t dl_if_descstorage[IF_DESCSIZE]; /* desc storage */
u_int8_t dl_if_permanent_ether[ETHER_ADDR_LEN]; /* permanent address */
u_int8_t dl_if_permanent_ether_is_set;
u_int8_t dl_if_unused;
struct dlil_threading_info dl_if_inpstorage; /* input thread storage */
ctrace_t dl_if_attach; /* attach PC stacktrace */
ctrace_t dl_if_detach; /* detach PC stacktrace */
};
/* Values for dl_if_flags (private to DLIL) */
#define DLIF_INUSE 0x1 /* DLIL ifnet recycler, ifnet in use */
#define DLIF_REUSE 0x2 /* DLIL ifnet recycles, ifnet is not new */
#define DLIF_DEBUG 0x4 /* has debugging info */
#define IF_REF_TRACE_HIST_SIZE 8 /* size of ref trace history */
/* For gdb */
__private_extern__ unsigned int if_ref_trace_hist_size = IF_REF_TRACE_HIST_SIZE;
struct dlil_ifnet_dbg {
struct dlil_ifnet dldbg_dlif; /* dlil_ifnet */
u_int16_t dldbg_if_refhold_cnt; /* # ifnet references */
u_int16_t dldbg_if_refrele_cnt; /* # ifnet releases */
/*
* Circular lists of ifnet_{reference,release} callers.
*/
ctrace_t dldbg_if_refhold[IF_REF_TRACE_HIST_SIZE];
ctrace_t dldbg_if_refrele[IF_REF_TRACE_HIST_SIZE];
};
#define DLIL_TO_IFP(s) (&s->dl_if)
#define IFP_TO_DLIL(s) ((struct dlil_ifnet *)s)
struct ifnet_filter {
TAILQ_ENTRY(ifnet_filter) filt_next;
u_int32_t filt_skip;
u_int32_t filt_flags;
ifnet_t filt_ifp;
const char *filt_name;
void *filt_cookie;
protocol_family_t filt_protocol;
iff_input_func filt_input;
iff_output_func filt_output;
iff_event_func filt_event;
iff_ioctl_func filt_ioctl;
iff_detached_func filt_detached;
};
struct proto_input_entry;
static TAILQ_HEAD(, dlil_ifnet) dlil_ifnet_head;
static lck_grp_t *dlil_lock_group;
lck_grp_t *ifnet_lock_group;
static lck_grp_t *ifnet_head_lock_group;
static lck_grp_t *ifnet_snd_lock_group;
static lck_grp_t *ifnet_rcv_lock_group;
lck_attr_t *ifnet_lock_attr;
decl_lck_rw_data(static, ifnet_head_lock);
decl_lck_mtx_data(static, dlil_ifnet_lock);
u_int32_t dlil_filter_disable_tso_count = 0;
#if DEBUG
static unsigned int ifnet_debug = 1; /* debugging (enabled) */
#else
static unsigned int ifnet_debug; /* debugging (disabled) */
#endif /* !DEBUG */
static unsigned int dlif_size; /* size of dlil_ifnet to allocate */
static unsigned int dlif_bufsize; /* size of dlif_size + headroom */
static struct zone *dlif_zone; /* zone for dlil_ifnet */
#define DLIF_ZONE_NAME "ifnet" /* zone name */
static ZONE_DECLARE(dlif_filt_zone, "ifnet_filter",
sizeof(struct ifnet_filter), ZC_ZFREE_CLEARMEM);
static ZONE_DECLARE(dlif_phash_zone, "ifnet_proto_hash",
sizeof(struct proto_hash_entry) * PROTO_HASH_SLOTS, ZC_ZFREE_CLEARMEM);
static ZONE_DECLARE(dlif_proto_zone, "ifnet_proto",
sizeof(struct if_proto), ZC_ZFREE_CLEARMEM);
static unsigned int dlif_tcpstat_size; /* size of tcpstat_local to allocate */
static unsigned int dlif_tcpstat_bufsize; /* size of dlif_tcpstat_size + headroom */
static struct zone *dlif_tcpstat_zone; /* zone for tcpstat_local */
#define DLIF_TCPSTAT_ZONE_NAME "ifnet_tcpstat" /* zone name */
static unsigned int dlif_udpstat_size; /* size of udpstat_local to allocate */
static unsigned int dlif_udpstat_bufsize; /* size of dlif_udpstat_size + headroom */
static struct zone *dlif_udpstat_zone; /* zone for udpstat_local */
#define DLIF_UDPSTAT_ZONE_NAME "ifnet_udpstat" /* zone name */
static u_int32_t net_rtref;
static struct dlil_main_threading_info dlil_main_input_thread_info;
__private_extern__ struct dlil_threading_info *dlil_main_input_thread =
(struct dlil_threading_info *)&dlil_main_input_thread_info;
static int dlil_event_internal(struct ifnet *ifp, struct kev_msg *msg, bool update_generation);
static int dlil_detach_filter_internal(interface_filter_t filter, int detached);
static void dlil_if_trace(struct dlil_ifnet *, int);
static void if_proto_ref(struct if_proto *);
static void if_proto_free(struct if_proto *);
static struct if_proto *find_attached_proto(struct ifnet *, u_int32_t);
static u_int32_t dlil_ifp_protolist(struct ifnet *ifp, protocol_family_t *list,
u_int32_t list_count);
static void if_flt_monitor_busy(struct ifnet *);
static void if_flt_monitor_unbusy(struct ifnet *);
static void if_flt_monitor_enter(struct ifnet *);
static void if_flt_monitor_leave(struct ifnet *);
static int dlil_interface_filters_input(struct ifnet *, struct mbuf **,
char **, protocol_family_t);
static int dlil_interface_filters_output(struct ifnet *, struct mbuf **,
protocol_family_t);
static struct ifaddr *dlil_alloc_lladdr(struct ifnet *,
const struct sockaddr_dl *);
static int ifnet_lookup(struct ifnet *);
static void if_purgeaddrs(struct ifnet *);
static errno_t ifproto_media_input_v1(struct ifnet *, protocol_family_t,
struct mbuf *, char *);
static errno_t ifproto_media_input_v2(struct ifnet *, protocol_family_t,
struct mbuf *);
static errno_t ifproto_media_preout(struct ifnet *, protocol_family_t,
mbuf_t *, const struct sockaddr *, void *, char *, char *);
static void ifproto_media_event(struct ifnet *, protocol_family_t,
const struct kev_msg *);
static errno_t ifproto_media_ioctl(struct ifnet *, protocol_family_t,
unsigned long, void *);
static errno_t ifproto_media_resolve_multi(ifnet_t, const struct sockaddr *,
struct sockaddr_dl *, size_t);
static errno_t ifproto_media_send_arp(struct ifnet *, u_short,
const struct sockaddr_dl *, const struct sockaddr *,
const struct sockaddr_dl *, const struct sockaddr *);
static errno_t ifp_if_input(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, const struct ifnet_stat_increment_param *s,
boolean_t poll, struct thread *tp);
static void ifp_if_input_poll(struct ifnet *, u_int32_t, u_int32_t,
struct mbuf **, struct mbuf **, u_int32_t *, u_int32_t *);
static errno_t ifp_if_ctl(struct ifnet *, ifnet_ctl_cmd_t, u_int32_t, void *);
static errno_t ifp_if_demux(struct ifnet *, struct mbuf *, char *,
protocol_family_t *);
static errno_t ifp_if_add_proto(struct ifnet *, protocol_family_t,
const struct ifnet_demux_desc *, u_int32_t);
static errno_t ifp_if_del_proto(struct ifnet *, protocol_family_t);
static errno_t ifp_if_check_multi(struct ifnet *, const struct sockaddr *);
#if !XNU_TARGET_OS_OSX
static errno_t ifp_if_framer(struct ifnet *, struct mbuf **,
const struct sockaddr *, const char *, const char *,
u_int32_t *, u_int32_t *);
#else /* XNU_TARGET_OS_OSX */
static errno_t ifp_if_framer(struct ifnet *, struct mbuf **,
const struct sockaddr *, const char *, const char *);
#endif /* XNU_TARGET_OS_OSX */
static errno_t ifp_if_framer_extended(struct ifnet *, struct mbuf **,
const struct sockaddr *, const char *, const char *,
u_int32_t *, u_int32_t *);
static errno_t ifp_if_set_bpf_tap(struct ifnet *, bpf_tap_mode, bpf_packet_func);
static void ifp_if_free(struct ifnet *);
static void ifp_if_event(struct ifnet *, const struct kev_msg *);
static __inline void ifp_inc_traffic_class_in(struct ifnet *, struct mbuf *);
static __inline void ifp_inc_traffic_class_out(struct ifnet *, struct mbuf *);
static errno_t dlil_input_async(struct dlil_threading_info *, struct ifnet *,
struct mbuf *, struct mbuf *, const struct ifnet_stat_increment_param *,
boolean_t, struct thread *);
static errno_t dlil_input_sync(struct dlil_threading_info *, struct ifnet *,
struct mbuf *, struct mbuf *, const struct ifnet_stat_increment_param *,
boolean_t, struct thread *);
static void dlil_main_input_thread_func(void *, wait_result_t);
static void dlil_main_input_thread_cont(void *, wait_result_t);
static void dlil_input_thread_func(void *, wait_result_t);
static void dlil_input_thread_cont(void *, wait_result_t);
static void dlil_rxpoll_input_thread_func(void *, wait_result_t);
static void dlil_rxpoll_input_thread_cont(void *, wait_result_t);
static int dlil_create_input_thread(ifnet_t, struct dlil_threading_info *,
thread_continue_t *);
static void dlil_terminate_input_thread(struct dlil_threading_info *);
static void dlil_input_stats_add(const struct ifnet_stat_increment_param *,
struct dlil_threading_info *, struct ifnet *, boolean_t);
static boolean_t dlil_input_stats_sync(struct ifnet *,
struct dlil_threading_info *);
static void dlil_input_packet_list_common(struct ifnet *, struct mbuf *,
u_int32_t, ifnet_model_t, boolean_t);
static errno_t ifnet_input_common(struct ifnet *, struct mbuf *, struct mbuf *,
const struct ifnet_stat_increment_param *, boolean_t, boolean_t);
static int dlil_is_clat_needed(protocol_family_t, mbuf_t );
static errno_t dlil_clat46(ifnet_t, protocol_family_t *, mbuf_t *);
static errno_t dlil_clat64(ifnet_t, protocol_family_t *, mbuf_t *);
#if DEBUG || DEVELOPMENT
static void dlil_verify_sum16(void);
#endif /* DEBUG || DEVELOPMENT */
static void dlil_output_cksum_dbg(struct ifnet *, struct mbuf *, uint32_t,
protocol_family_t);
static void dlil_input_cksum_dbg(struct ifnet *, struct mbuf *, char *,
protocol_family_t);
static void dlil_incr_pending_thread_count(void);
static void dlil_decr_pending_thread_count(void);
static void ifnet_detacher_thread_func(void *, wait_result_t);
static void ifnet_detacher_thread_cont(void *, wait_result_t);
static void ifnet_detach_final(struct ifnet *);
static void ifnet_detaching_enqueue(struct ifnet *);
static struct ifnet *ifnet_detaching_dequeue(void);
static void ifnet_start_thread_func(void *, wait_result_t);
static void ifnet_start_thread_cont(void *, wait_result_t);
static void ifnet_poll_thread_func(void *, wait_result_t);
static void ifnet_poll_thread_cont(void *, wait_result_t);
static errno_t ifnet_enqueue_common(struct ifnet *, classq_pkt_t *,
boolean_t, boolean_t *);
static void ifp_src_route_copyout(struct ifnet *, struct route *);
static void ifp_src_route_copyin(struct ifnet *, struct route *);
static void ifp_src_route6_copyout(struct ifnet *, struct route_in6 *);
static void ifp_src_route6_copyin(struct ifnet *, struct route_in6 *);
static int sysctl_rxpoll SYSCTL_HANDLER_ARGS;
static int sysctl_rxpoll_mode_holdtime SYSCTL_HANDLER_ARGS;
static int sysctl_rxpoll_sample_holdtime SYSCTL_HANDLER_ARGS;
static int sysctl_rxpoll_interval_time SYSCTL_HANDLER_ARGS;
static int sysctl_rxpoll_wlowat SYSCTL_HANDLER_ARGS;
static int sysctl_rxpoll_whiwat SYSCTL_HANDLER_ARGS;
static int sysctl_sndq_maxlen SYSCTL_HANDLER_ARGS;
static int sysctl_rcvq_maxlen SYSCTL_HANDLER_ARGS;
static int sysctl_hwcksum_dbg_mode SYSCTL_HANDLER_ARGS;
static int sysctl_hwcksum_dbg_partial_rxoff_forced SYSCTL_HANDLER_ARGS;
static int sysctl_hwcksum_dbg_partial_rxoff_adj SYSCTL_HANDLER_ARGS;
struct chain_len_stats tx_chain_len_stats;
static int sysctl_tx_chain_len_stats SYSCTL_HANDLER_ARGS;
#if TEST_INPUT_THREAD_TERMINATION
static int sysctl_input_thread_termination_spin SYSCTL_HANDLER_ARGS;
#endif /* TEST_INPUT_THREAD_TERMINATION */
/* The following are protected by dlil_ifnet_lock */
static TAILQ_HEAD(, ifnet) ifnet_detaching_head;
static u_int32_t ifnet_detaching_cnt;
static boolean_t ifnet_detaching_embryonic;
static void *ifnet_delayed_run; /* wait channel for detaching thread */
decl_lck_mtx_data(static, ifnet_fc_lock);
static uint32_t ifnet_flowhash_seed;
struct ifnet_flowhash_key {
char ifk_name[IFNAMSIZ];
uint32_t ifk_unit;
uint32_t ifk_flags;
uint32_t ifk_eflags;
uint32_t ifk_capabilities;
uint32_t ifk_capenable;
uint32_t ifk_output_sched_model;
uint32_t ifk_rand1;
uint32_t ifk_rand2;
};
/* Flow control entry per interface */
struct ifnet_fc_entry {
RB_ENTRY(ifnet_fc_entry) ifce_entry;
u_int32_t ifce_flowhash;
struct ifnet *ifce_ifp;
};
static uint32_t ifnet_calc_flowhash(struct ifnet *);
static int ifce_cmp(const struct ifnet_fc_entry *,
const struct ifnet_fc_entry *);
static int ifnet_fc_add(struct ifnet *);
static struct ifnet_fc_entry *ifnet_fc_get(u_int32_t);
static void ifnet_fc_entry_free(struct ifnet_fc_entry *);
/* protected by ifnet_fc_lock */
RB_HEAD(ifnet_fc_tree, ifnet_fc_entry) ifnet_fc_tree;
RB_PROTOTYPE(ifnet_fc_tree, ifnet_fc_entry, ifce_entry, ifce_cmp);
RB_GENERATE(ifnet_fc_tree, ifnet_fc_entry, ifce_entry, ifce_cmp);
static ZONE_DECLARE(ifnet_fc_zone, "ifnet_fc_zone",
sizeof(struct ifnet_fc_entry), ZC_ZFREE_CLEARMEM);
extern void bpfdetach(struct ifnet *);
extern void proto_input_run(void);
extern uint32_t udp_count_opportunistic(unsigned int ifindex,
u_int32_t flags);
extern uint32_t tcp_count_opportunistic(unsigned int ifindex,
u_int32_t flags);
__private_extern__ void link_rtrequest(int, struct rtentry *, struct sockaddr *);
#if CONFIG_MACF
#if !XNU_TARGET_OS_OSX
int dlil_lladdr_ckreq = 1;
#else /* XNU_TARGET_OS_OSX */
int dlil_lladdr_ckreq = 0;
#endif /* XNU_TARGET_OS_OSX */
#endif /* CONFIG_MACF */
#if DEBUG
int dlil_verbose = 1;
#else
int dlil_verbose = 0;
#endif /* DEBUG */
#if IFNET_INPUT_SANITY_CHK
/* sanity checking of input packet lists received */
static u_int32_t dlil_input_sanity_check = 0;
#endif /* IFNET_INPUT_SANITY_CHK */
/* rate limit debug messages */
struct timespec dlil_dbgrate = { .tv_sec = 1, .tv_nsec = 0 };
SYSCTL_DECL(_net_link_generic_system);
SYSCTL_INT(_net_link_generic_system, OID_AUTO, dlil_verbose,
CTLFLAG_RW | CTLFLAG_LOCKED, &dlil_verbose, 0, "Log DLIL error messages");
#define IF_SNDQ_MINLEN 32
u_int32_t if_sndq_maxlen = IFQ_MAXLEN;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, sndq_maxlen,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &if_sndq_maxlen, IFQ_MAXLEN,
sysctl_sndq_maxlen, "I", "Default transmit queue max length");
#define IF_RCVQ_MINLEN 32
#define IF_RCVQ_MAXLEN 256
u_int32_t if_rcvq_maxlen = IF_RCVQ_MAXLEN;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rcvq_maxlen,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &if_rcvq_maxlen, IFQ_MAXLEN,
sysctl_rcvq_maxlen, "I", "Default receive queue max length");
#define IF_RXPOLL_DECAY 2 /* ilog2 of EWMA decay rate (4) */
u_int32_t if_rxpoll_decay = IF_RXPOLL_DECAY;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, rxpoll_decay,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_decay, IF_RXPOLL_DECAY,
"ilog2 of EWMA decay rate of avg inbound packets");
#define IF_RXPOLL_MODE_HOLDTIME_MIN (10ULL * 1000 * 1000) /* 10 ms */
#define IF_RXPOLL_MODE_HOLDTIME (1000ULL * 1000 * 1000) /* 1 sec */
static u_int64_t if_rxpoll_mode_holdtime = IF_RXPOLL_MODE_HOLDTIME;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll_freeze_time,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_mode_holdtime,
IF_RXPOLL_MODE_HOLDTIME, sysctl_rxpoll_mode_holdtime,
"Q", "input poll mode freeze time");
#define IF_RXPOLL_SAMPLETIME_MIN (1ULL * 1000 * 1000) /* 1 ms */
#define IF_RXPOLL_SAMPLETIME (10ULL * 1000 * 1000) /* 10 ms */
static u_int64_t if_rxpoll_sample_holdtime = IF_RXPOLL_SAMPLETIME;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll_sample_time,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_sample_holdtime,
IF_RXPOLL_SAMPLETIME, sysctl_rxpoll_sample_holdtime,
"Q", "input poll sampling time");
static u_int64_t if_rxpoll_interval_time = IF_RXPOLL_INTERVALTIME;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll_interval_time,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_interval_time,
IF_RXPOLL_INTERVALTIME, sysctl_rxpoll_interval_time,
"Q", "input poll interval (time)");
#define IF_RXPOLL_INTERVAL_PKTS 0 /* 0 (disabled) */
u_int32_t if_rxpoll_interval_pkts = IF_RXPOLL_INTERVAL_PKTS;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, rxpoll_interval_pkts,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_interval_pkts,
IF_RXPOLL_INTERVAL_PKTS, "input poll interval (packets)");
#define IF_RXPOLL_WLOWAT 10
static u_int32_t if_sysctl_rxpoll_wlowat = IF_RXPOLL_WLOWAT;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll_wakeups_lowat,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &if_sysctl_rxpoll_wlowat,
IF_RXPOLL_WLOWAT, sysctl_rxpoll_wlowat,
"I", "input poll wakeup low watermark");
#define IF_RXPOLL_WHIWAT 100
static u_int32_t if_sysctl_rxpoll_whiwat = IF_RXPOLL_WHIWAT;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll_wakeups_hiwat,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &if_sysctl_rxpoll_whiwat,
IF_RXPOLL_WHIWAT, sysctl_rxpoll_whiwat,
"I", "input poll wakeup high watermark");
static u_int32_t if_rxpoll_max = 0; /* 0 (automatic) */
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, rxpoll_max,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll_max, 0,
"max packets per poll call");
u_int32_t if_rxpoll = 1;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, rxpoll,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &if_rxpoll, 0,
sysctl_rxpoll, "I", "enable opportunistic input polling");
#if TEST_INPUT_THREAD_TERMINATION
static u_int32_t if_input_thread_termination_spin = 0;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, input_thread_termination_spin,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&if_input_thread_termination_spin, 0,
sysctl_input_thread_termination_spin,
"I", "input thread termination spin limit");
#endif /* TEST_INPUT_THREAD_TERMINATION */
static u_int32_t cur_dlil_input_threads = 0;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, dlil_input_threads,
CTLFLAG_RD | CTLFLAG_LOCKED, &cur_dlil_input_threads, 0,
"Current number of DLIL input threads");
#if IFNET_INPUT_SANITY_CHK
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, dlil_input_sanity_check,
CTLFLAG_RW | CTLFLAG_LOCKED, &dlil_input_sanity_check, 0,
"Turn on sanity checking in DLIL input");
#endif /* IFNET_INPUT_SANITY_CHK */
static u_int32_t if_flowadv = 1;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, flow_advisory,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_flowadv, 1,
"enable flow-advisory mechanism");
static u_int32_t if_delaybased_queue = 1;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, delaybased_queue,
CTLFLAG_RW | CTLFLAG_LOCKED, &if_delaybased_queue, 1,
"enable delay based dynamic queue sizing");
static uint64_t hwcksum_in_invalidated = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_in_invalidated, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_in_invalidated, "inbound packets with invalidated hardware cksum");
uint32_t hwcksum_dbg = 0;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, hwcksum_dbg,
CTLFLAG_RW | CTLFLAG_LOCKED, &hwcksum_dbg, 0,
"enable hardware cksum debugging");
u_int32_t ifnet_start_delayed = 0;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, start_delayed,
CTLFLAG_RW | CTLFLAG_LOCKED, &ifnet_start_delayed, 0,
"number of times start was delayed");
u_int32_t ifnet_delay_start_disabled = 0;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, start_delay_disabled,
CTLFLAG_RW | CTLFLAG_LOCKED, &ifnet_delay_start_disabled, 0,
"number of times start was delayed");
static inline void
ifnet_delay_start_disabled_increment(void)
{
OSIncrementAtomic(&ifnet_delay_start_disabled);
}
#define HWCKSUM_DBG_PARTIAL_FORCED 0x1 /* forced partial checksum */
#define HWCKSUM_DBG_PARTIAL_RXOFF_ADJ 0x2 /* adjust start offset */
#define HWCKSUM_DBG_FINALIZE_FORCED 0x10 /* forced finalize */
#define HWCKSUM_DBG_MASK \
(HWCKSUM_DBG_PARTIAL_FORCED | HWCKSUM_DBG_PARTIAL_RXOFF_ADJ | \
HWCKSUM_DBG_FINALIZE_FORCED)
static uint32_t hwcksum_dbg_mode = 0;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, hwcksum_dbg_mode,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &hwcksum_dbg_mode,
0, sysctl_hwcksum_dbg_mode, "I", "hardware cksum debugging mode");
static uint64_t hwcksum_dbg_partial_forced = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_partial_forced, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_partial_forced, "packets forced using partial cksum");
static uint64_t hwcksum_dbg_partial_forced_bytes = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_partial_forced_bytes, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_partial_forced_bytes, "bytes forced using partial cksum");
static uint32_t hwcksum_dbg_partial_rxoff_forced = 0;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_partial_rxoff_forced, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&hwcksum_dbg_partial_rxoff_forced, 0,
sysctl_hwcksum_dbg_partial_rxoff_forced, "I",
"forced partial cksum rx offset");
static uint32_t hwcksum_dbg_partial_rxoff_adj = 0;
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, hwcksum_dbg_partial_rxoff_adj,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &hwcksum_dbg_partial_rxoff_adj,
0, sysctl_hwcksum_dbg_partial_rxoff_adj, "I",
"adjusted partial cksum rx offset");
static uint64_t hwcksum_dbg_verified = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_verified, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_verified, "packets verified for having good checksum");
static uint64_t hwcksum_dbg_bad_cksum = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_bad_cksum, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_bad_cksum, "packets with bad hardware calculated checksum");
static uint64_t hwcksum_dbg_bad_rxoff = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_bad_rxoff, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_bad_rxoff, "packets with invalid rxoff");
static uint64_t hwcksum_dbg_adjusted = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_adjusted, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_adjusted, "packets with rxoff adjusted");
static uint64_t hwcksum_dbg_finalized_hdr = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_finalized_hdr, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_finalized_hdr, "finalized headers");
static uint64_t hwcksum_dbg_finalized_data = 0;
SYSCTL_QUAD(_net_link_generic_system, OID_AUTO,
hwcksum_dbg_finalized_data, CTLFLAG_RD | CTLFLAG_LOCKED,
&hwcksum_dbg_finalized_data, "finalized payloads");
uint32_t hwcksum_tx = 1;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, hwcksum_tx,
CTLFLAG_RW | CTLFLAG_LOCKED, &hwcksum_tx, 0,
"enable transmit hardware checksum offload");
uint32_t hwcksum_rx = 1;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, hwcksum_rx,
CTLFLAG_RW | CTLFLAG_LOCKED, &hwcksum_rx, 0,
"enable receive hardware checksum offload");
SYSCTL_PROC(_net_link_generic_system, OID_AUTO, tx_chain_len_stats,
CTLFLAG_RD | CTLFLAG_LOCKED, 0, 9,
sysctl_tx_chain_len_stats, "S", "");
uint32_t tx_chain_len_count = 0;
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, tx_chain_len_count,
CTLFLAG_RW | CTLFLAG_LOCKED, &tx_chain_len_count, 0, "");
static uint32_t threshold_notify = 1; /* enable/disable */
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, threshold_notify,
CTLFLAG_RW | CTLFLAG_LOCKED, &threshold_notify, 0, "");
static uint32_t threshold_interval = 2; /* in seconds */
SYSCTL_UINT(_net_link_generic_system, OID_AUTO, threshold_interval,
CTLFLAG_RW | CTLFLAG_LOCKED, &threshold_interval, 0, "");
#if (DEVELOPMENT || DEBUG)
static int sysctl_get_kao_frames SYSCTL_HANDLER_ARGS;
SYSCTL_NODE(_net_link_generic_system, OID_AUTO, get_kao_frames,
CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_get_kao_frames, "");
#endif /* DEVELOPMENT || DEBUG */
struct net_api_stats net_api_stats;
SYSCTL_STRUCT(_net, OID_AUTO, api_stats, CTLFLAG_RD | CTLFLAG_LOCKED,
&net_api_stats, net_api_stats, "");
unsigned int net_rxpoll = 1;
unsigned int net_affinity = 1;
unsigned int net_async = 1; /* 0: synchronous, 1: asynchronous */
static kern_return_t dlil_affinity_set(struct thread *, u_int32_t);
extern u_int32_t inject_buckets;
static lck_grp_attr_t *dlil_grp_attributes = NULL;
static lck_attr_t *dlil_lck_attributes = NULL;
/* DLIL data threshold thread call */
static void dlil_dt_tcall_fn(thread_call_param_t, thread_call_param_t);
void
ifnet_filter_update_tso(boolean_t filter_enable)
{
/*
* update filter count and route_generation ID to let TCP
* know it should reevalute doing TSO or not
*/
OSAddAtomic(filter_enable ? 1 : -1, &dlil_filter_disable_tso_count);
routegenid_update();
}
#define DLIL_INPUT_CHECK(m, ifp) { \
struct ifnet *_rcvif = mbuf_pkthdr_rcvif(m); \
if (_rcvif == NULL || (ifp != lo_ifp && _rcvif != ifp) || \
!(mbuf_flags(m) & MBUF_PKTHDR)) { \
panic_plain("%s: invalid mbuf %p\n", __func__, m); \
/* NOTREACHED */ \
} \
}
#define DLIL_EWMA(old, new, decay) do { \
u_int32_t _avg; \
if ((_avg = (old)) > 0) \
_avg = (((_avg << (decay)) - _avg) + (new)) >> (decay); \
else \
_avg = (new); \
(old) = _avg; \
} while (0)
#define MBPS (1ULL * 1000 * 1000)
#define GBPS (MBPS * 1000)
struct rxpoll_time_tbl {
u_int64_t speed; /* downlink speed */
u_int32_t plowat; /* packets low watermark */
u_int32_t phiwat; /* packets high watermark */
u_int32_t blowat; /* bytes low watermark */
u_int32_t bhiwat; /* bytes high watermark */
};
static struct rxpoll_time_tbl rxpoll_tbl[] = {
{ .speed = 10 * MBPS, .plowat = 2, .phiwat = 8, .blowat = (1 * 1024), .bhiwat = (6 * 1024) },
{ .speed = 100 * MBPS, .plowat = 10, .phiwat = 40, .blowat = (4 * 1024), .bhiwat = (64 * 1024) },
{ .speed = 1 * GBPS, .plowat = 10, .phiwat = 40, .blowat = (4 * 1024), .bhiwat = (64 * 1024) },
{ .speed = 10 * GBPS, .plowat = 10, .phiwat = 40, .blowat = (4 * 1024), .bhiwat = (64 * 1024) },
{ .speed = 100 * GBPS, .plowat = 10, .phiwat = 40, .blowat = (4 * 1024), .bhiwat = (64 * 1024) },
{ .speed = 0, .plowat = 0, .phiwat = 0, .blowat = 0, .bhiwat = 0 }
};
decl_lck_mtx_data(static, dlil_thread_sync_lock);
static uint32_t dlil_pending_thread_cnt = 0;
static void
dlil_incr_pending_thread_count(void)
{
LCK_MTX_ASSERT(&dlil_thread_sync_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(&dlil_thread_sync_lock);
dlil_pending_thread_cnt++;
lck_mtx_unlock(&dlil_thread_sync_lock);
}
static void
dlil_decr_pending_thread_count(void)
{
LCK_MTX_ASSERT(&dlil_thread_sync_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(&dlil_thread_sync_lock);
VERIFY(dlil_pending_thread_cnt > 0);
dlil_pending_thread_cnt--;
if (dlil_pending_thread_cnt == 0) {
wakeup(&dlil_pending_thread_cnt);
}
lck_mtx_unlock(&dlil_thread_sync_lock);
}
int
proto_hash_value(u_int32_t protocol_family)
{
/*
* dlil_proto_unplumb_all() depends on the mapping between
* the hash bucket index and the protocol family defined
* here; future changes must be applied there as well.
*/
switch (protocol_family) {
case PF_INET:
return 0;
case PF_INET6:
return 1;
case PF_VLAN:
return 2;
case PF_802154:
return 3;
case PF_UNSPEC:
default:
return 4;
}
}
/*
* Caller must already be holding ifnet lock.
*/
static struct if_proto *
find_attached_proto(struct ifnet *ifp, u_int32_t protocol_family)
{
struct if_proto *proto = NULL;
u_int32_t i = proto_hash_value(protocol_family);
ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED);
if (ifp->if_proto_hash != NULL) {
proto = SLIST_FIRST(&ifp->if_proto_hash[i]);
}
while (proto != NULL && proto->protocol_family != protocol_family) {
proto = SLIST_NEXT(proto, next_hash);
}
if (proto != NULL) {
if_proto_ref(proto);
}
return proto;
}
static void
if_proto_ref(struct if_proto *proto)
{
atomic_add_32(&proto->refcount, 1);
}
extern void if_rtproto_del(struct ifnet *ifp, int protocol);
static void
if_proto_free(struct if_proto *proto)
{
u_int32_t oldval;
struct ifnet *ifp = proto->ifp;
u_int32_t proto_family = proto->protocol_family;
struct kev_dl_proto_data ev_pr_data;
oldval = atomic_add_32_ov(&proto->refcount, -1);
if (oldval > 1) {
return;
}
if (proto->proto_kpi == kProtoKPI_v1) {
if (proto->kpi.v1.detached) {
proto->kpi.v1.detached(ifp, proto->protocol_family);
}
}
if (proto->proto_kpi == kProtoKPI_v2) {
if (proto->kpi.v2.detached) {
proto->kpi.v2.detached(ifp, proto->protocol_family);
}
}
/*
* Cleanup routes that may still be in the routing table for that
* interface/protocol pair.
*/
if_rtproto_del(ifp, proto_family);
ifnet_lock_shared(ifp);
/* No more reference on this, protocol must have been detached */
VERIFY(proto->detached);
/*
* The reserved field carries the number of protocol still attached
* (subject to change)
*/
ev_pr_data.proto_family = proto_family;
ev_pr_data.proto_remaining_count = dlil_ifp_protolist(ifp, NULL, 0);
ifnet_lock_done(ifp);
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_PROTO_DETACHED,
(struct net_event_data *)&ev_pr_data,
sizeof(struct kev_dl_proto_data));
if (ev_pr_data.proto_remaining_count == 0) {
/*
* The protocol count has gone to zero, mark the interface down.
* This used to be done by configd.KernelEventMonitor, but that
* is inherently prone to races (rdar://problem/30810208).
*/
(void) ifnet_set_flags(ifp, 0, IFF_UP);
(void) ifnet_ioctl(ifp, 0, SIOCSIFFLAGS, NULL);
dlil_post_sifflags_msg(ifp);
}
zfree(dlif_proto_zone, proto);
}
__private_extern__ void
ifnet_lock_assert(struct ifnet *ifp, ifnet_lock_assert_t what)
{
#if !MACH_ASSERT
#pragma unused(ifp)
#endif
unsigned int type = 0;
int ass = 1;
switch (what) {
case IFNET_LCK_ASSERT_EXCLUSIVE:
type = LCK_RW_ASSERT_EXCLUSIVE;
break;
case IFNET_LCK_ASSERT_SHARED:
type = LCK_RW_ASSERT_SHARED;
break;
case IFNET_LCK_ASSERT_OWNED:
type = LCK_RW_ASSERT_HELD;
break;
case IFNET_LCK_ASSERT_NOTOWNED:
/* nothing to do here for RW lock; bypass assert */
ass = 0;
break;
default:
panic("bad ifnet assert type: %d", what);
/* NOTREACHED */
}
if (ass) {
LCK_RW_ASSERT(&ifp->if_lock, type);
}
}
__private_extern__ void
ifnet_lock_shared(struct ifnet *ifp)
{
lck_rw_lock_shared(&ifp->if_lock);
}
__private_extern__ void
ifnet_lock_exclusive(struct ifnet *ifp)
{
lck_rw_lock_exclusive(&ifp->if_lock);
}
__private_extern__ void
ifnet_lock_done(struct ifnet *ifp)
{
lck_rw_done(&ifp->if_lock);
}
#if INET
__private_extern__ void
if_inetdata_lock_shared(struct ifnet *ifp)
{
lck_rw_lock_shared(&ifp->if_inetdata_lock);
}
__private_extern__ void
if_inetdata_lock_exclusive(struct ifnet *ifp)
{
lck_rw_lock_exclusive(&ifp->if_inetdata_lock);
}
__private_extern__ void
if_inetdata_lock_done(struct ifnet *ifp)
{
lck_rw_done(&ifp->if_inetdata_lock);
}
#endif
__private_extern__ void
if_inet6data_lock_shared(struct ifnet *ifp)
{
lck_rw_lock_shared(&ifp->if_inet6data_lock);
}
__private_extern__ void
if_inet6data_lock_exclusive(struct ifnet *ifp)
{
lck_rw_lock_exclusive(&ifp->if_inet6data_lock);
}
__private_extern__ void
if_inet6data_lock_done(struct ifnet *ifp)
{
lck_rw_done(&ifp->if_inet6data_lock);
}
__private_extern__ void
ifnet_head_lock_shared(void)
{
lck_rw_lock_shared(&ifnet_head_lock);
}
__private_extern__ void
ifnet_head_lock_exclusive(void)
{
lck_rw_lock_exclusive(&ifnet_head_lock);
}
__private_extern__ void
ifnet_head_done(void)
{
lck_rw_done(&ifnet_head_lock);
}
__private_extern__ void
ifnet_head_assert_exclusive(void)
{
LCK_RW_ASSERT(&ifnet_head_lock, LCK_RW_ASSERT_EXCLUSIVE);
}
/*
* dlil_ifp_protolist
* - get the list of protocols attached to the interface, or just the number
* of attached protocols
* - if the number returned is greater than 'list_count', truncation occurred
*
* Note:
* - caller must already be holding ifnet lock.
*/
static u_int32_t
dlil_ifp_protolist(struct ifnet *ifp, protocol_family_t *list,
u_int32_t list_count)
{
u_int32_t count = 0;
int i;
ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_OWNED);
if (ifp->if_proto_hash == NULL) {
goto done;
}
for (i = 0; i < PROTO_HASH_SLOTS; i++) {
struct if_proto *proto;
SLIST_FOREACH(proto, &ifp->if_proto_hash[i], next_hash) {
if (list != NULL && count < list_count) {
list[count] = proto->protocol_family;
}
count++;
}
}
done:
return count;
}
__private_extern__ u_int32_t
if_get_protolist(struct ifnet * ifp, u_int32_t *protolist, u_int32_t count)
{
ifnet_lock_shared(ifp);
count = dlil_ifp_protolist(ifp, protolist, count);
ifnet_lock_done(ifp);
return count;
}
__private_extern__ void
if_free_protolist(u_int32_t *list)
{
_FREE(list, M_TEMP);
}
__private_extern__ int
dlil_post_msg(struct ifnet *ifp, u_int32_t event_subclass,
u_int32_t event_code, struct net_event_data *event_data,
u_int32_t event_data_len)
{
struct net_event_data ev_data;
struct kev_msg ev_msg;
bzero(&ev_msg, sizeof(ev_msg));
bzero(&ev_data, sizeof(ev_data));
/*
* a net event always starts with a net_event_data structure
* but the caller can generate a simple net event or
* provide a longer event structure to post
*/
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = event_subclass;
ev_msg.event_code = event_code;
if (event_data == NULL) {
event_data = &ev_data;
event_data_len = sizeof(struct net_event_data);
}
strlcpy(&event_data->if_name[0], ifp->if_name, IFNAMSIZ);
event_data->if_family = ifp->if_family;
event_data->if_unit = (u_int32_t)ifp->if_unit;
ev_msg.dv[0].data_length = event_data_len;
ev_msg.dv[0].data_ptr = event_data;
ev_msg.dv[1].data_length = 0;
bool update_generation = true;
if (event_subclass == KEV_DL_SUBCLASS) {
/* Don't update interface generation for frequent link quality and state changes */
switch (event_code) {
case KEV_DL_LINK_QUALITY_METRIC_CHANGED:
case KEV_DL_RRC_STATE_CHANGED:
case KEV_DL_NODE_PRESENCE:
case KEV_DL_NODE_ABSENCE:
case KEV_DL_MASTER_ELECTED:
update_generation = false;
break;
default:
break;
}
}
return dlil_event_internal(ifp, &ev_msg, update_generation);
}
__private_extern__ int
dlil_alloc_local_stats(struct ifnet *ifp)
{
int ret = EINVAL;
void *buf, *base, **pbuf;
if (ifp == NULL) {
goto end;
}
if (ifp->if_tcp_stat == NULL && ifp->if_udp_stat == NULL) {
/* allocate tcpstat_local structure */
buf = zalloc_flags(dlif_tcpstat_zone, Z_WAITOK | Z_ZERO);
if (buf == NULL) {
ret = ENOMEM;
goto end;
}
/* Get the 64-bit aligned base address for this object */
base = (void *)P2ROUNDUP((intptr_t)buf + sizeof(u_int64_t),
sizeof(u_int64_t));
VERIFY(((intptr_t)base + dlif_tcpstat_size) <=
((intptr_t)buf + dlif_tcpstat_bufsize));
/*
* Wind back a pointer size from the aligned base and
* save the original address so we can free it later.
*/
pbuf = (void **)((intptr_t)base - sizeof(void *));
*pbuf = buf;
ifp->if_tcp_stat = base;
/* allocate udpstat_local structure */
buf = zalloc_flags(dlif_udpstat_zone, Z_WAITOK | Z_ZERO);
if (buf == NULL) {
ret = ENOMEM;
goto end;
}
/* Get the 64-bit aligned base address for this object */
base = (void *)P2ROUNDUP((intptr_t)buf + sizeof(u_int64_t),
sizeof(u_int64_t));
VERIFY(((intptr_t)base + dlif_udpstat_size) <=
((intptr_t)buf + dlif_udpstat_bufsize));
/*
* Wind back a pointer size from the aligned base and
* save the original address so we can free it later.
*/
pbuf = (void **)((intptr_t)base - sizeof(void *));
*pbuf = buf;
ifp->if_udp_stat = base;
VERIFY(IS_P2ALIGNED(ifp->if_tcp_stat, sizeof(u_int64_t)) &&
IS_P2ALIGNED(ifp->if_udp_stat, sizeof(u_int64_t)));
ret = 0;
}
if (ifp->if_ipv4_stat == NULL) {
MALLOC(ifp->if_ipv4_stat, struct if_tcp_ecn_stat *,
sizeof(struct if_tcp_ecn_stat), M_TEMP, M_WAITOK | M_ZERO);
if (ifp->if_ipv4_stat == NULL) {
ret = ENOMEM;
goto end;
}
}
if (ifp->if_ipv6_stat == NULL) {
MALLOC(ifp->if_ipv6_stat, struct if_tcp_ecn_stat *,
sizeof(struct if_tcp_ecn_stat), M_TEMP, M_WAITOK | M_ZERO);
if (ifp->if_ipv6_stat == NULL) {
ret = ENOMEM;
goto end;
}
}
end:
if (ifp != NULL && ret != 0) {
if (ifp->if_tcp_stat != NULL) {
pbuf = (void **)
((intptr_t)ifp->if_tcp_stat - sizeof(void *));
zfree(dlif_tcpstat_zone, *pbuf);
ifp->if_tcp_stat = NULL;
}
if (ifp->if_udp_stat != NULL) {
pbuf = (void **)
((intptr_t)ifp->if_udp_stat - sizeof(void *));
zfree(dlif_udpstat_zone, *pbuf);
ifp->if_udp_stat = NULL;
}
if (ifp->if_ipv4_stat != NULL) {
FREE(ifp->if_ipv4_stat, M_TEMP);
ifp->if_ipv4_stat = NULL;
}
if (ifp->if_ipv6_stat != NULL) {
FREE(ifp->if_ipv6_stat, M_TEMP);
ifp->if_ipv6_stat = NULL;
}
}
return ret;
}
static void
dlil_reset_rxpoll_params(ifnet_t ifp)
{
ASSERT(ifp != NULL);
ifnet_set_poll_cycle(ifp, NULL);
ifp->if_poll_update = 0;
ifp->if_poll_flags = 0;
ifp->if_poll_req = 0;
ifp->if_poll_mode = IFNET_MODEL_INPUT_POLL_OFF;
bzero(&ifp->if_poll_tstats, sizeof(ifp->if_poll_tstats));
bzero(&ifp->if_poll_pstats, sizeof(ifp->if_poll_pstats));
bzero(&ifp->if_poll_sstats, sizeof(ifp->if_poll_sstats));
net_timerclear(&ifp->if_poll_mode_holdtime);
net_timerclear(&ifp->if_poll_mode_lasttime);
net_timerclear(&ifp->if_poll_sample_holdtime);
net_timerclear(&ifp->if_poll_sample_lasttime);
net_timerclear(&ifp->if_poll_dbg_lasttime);
}
static int
dlil_create_input_thread(ifnet_t ifp, struct dlil_threading_info *inp,
thread_continue_t *thfunc)
{
boolean_t dlil_rxpoll_input;
thread_continue_t func = NULL;
u_int32_t limit;
int error = 0;
dlil_rxpoll_input = (ifp != NULL && net_rxpoll &&
(ifp->if_eflags & IFEF_RXPOLL) && (ifp->if_xflags & IFXF_LEGACY));
/* default strategy utilizes the DLIL worker thread */
inp->dlth_strategy = dlil_input_async;
/* NULL ifp indicates the main input thread, called at dlil_init time */
if (ifp == NULL) {
/*
* Main input thread only.
*/
func = dlil_main_input_thread_func;
VERIFY(inp == dlil_main_input_thread);
(void) strlcat(inp->dlth_name,
"main_input", DLIL_THREADNAME_LEN);
} else if (dlil_rxpoll_input) {
/*
* Legacy (non-netif) hybrid polling.
*/
func = dlil_rxpoll_input_thread_func;
VERIFY(inp != dlil_main_input_thread);
(void) snprintf(inp->dlth_name, DLIL_THREADNAME_LEN,
"%s_input_poll", if_name(ifp));
} else if (net_async || (ifp->if_xflags & IFXF_LEGACY)) {
/*
* Asynchronous strategy.
*/
func = dlil_input_thread_func;
VERIFY(inp != dlil_main_input_thread);
(void) snprintf(inp->dlth_name, DLIL_THREADNAME_LEN,
"%s_input", if_name(ifp));
} else {
/*
* Synchronous strategy if there's a netif below and
* the device isn't capable of hybrid polling.
*/
ASSERT(func == NULL);
ASSERT(!(ifp->if_xflags & IFXF_LEGACY));
VERIFY(inp != dlil_main_input_thread);
ASSERT(!inp->dlth_affinity);
inp->dlth_strategy = dlil_input_sync;
}
VERIFY(inp->dlth_thread == THREAD_NULL);
/* let caller know */
if (thfunc != NULL) {
*thfunc = func;
}
inp->dlth_lock_grp = lck_grp_alloc_init(inp->dlth_name,
dlil_grp_attributes);
lck_mtx_init(&inp->dlth_lock, inp->dlth_lock_grp, dlil_lck_attributes);
inp->dlth_ifp = ifp; /* NULL for main input thread */
/*
* For interfaces that support opportunistic polling, set the
* low and high watermarks for outstanding inbound packets/bytes.
* Also define freeze times for transitioning between modes
* and updating the average.
*/
if (ifp != NULL && net_rxpoll && (ifp->if_eflags & IFEF_RXPOLL)) {
limit = MAX(if_rcvq_maxlen, IF_RCVQ_MINLEN);
if (ifp->if_xflags & IFXF_LEGACY) {
(void) dlil_rxpoll_set_params(ifp, NULL, FALSE);
}
} else {
limit = (u_int32_t)-1;
}
_qinit(&inp->dlth_pkts, Q_DROPTAIL, limit, QP_MBUF);
if (inp == dlil_main_input_thread) {
struct dlil_main_threading_info *inpm =
(struct dlil_main_threading_info *)inp;
_qinit(&inpm->lo_rcvq_pkts, Q_DROPTAIL, limit, QP_MBUF);
}
if (func == NULL) {
ASSERT(!(ifp->if_xflags & IFXF_LEGACY));
ASSERT(error == 0);
error = ENODEV;
goto done;
}
error = kernel_thread_start(func, inp, &inp->dlth_thread);
if (error == KERN_SUCCESS) {
thread_precedence_policy_data_t info;
__unused kern_return_t kret;
bzero(&info, sizeof(info));
info.importance = 0;
kret = thread_policy_set(inp->dlth_thread,
THREAD_PRECEDENCE_POLICY, (thread_policy_t)&info,
THREAD_PRECEDENCE_POLICY_COUNT);
ASSERT(kret == KERN_SUCCESS);
/*
* We create an affinity set so that the matching workloop
* thread or the starter thread (for loopback) can be
* scheduled on the same processor set as the input thread.
*/
if (net_affinity) {
struct thread *tp = inp->dlth_thread;
u_int32_t tag;
/*
* Randomize to reduce the probability
* of affinity tag namespace collision.
*/
read_frandom(&tag, sizeof(tag));
if (dlil_affinity_set(tp, tag) == KERN_SUCCESS) {
thread_reference(tp);
inp->dlth_affinity_tag = tag;
inp->dlth_affinity = TRUE;
}
}
} else if (inp == dlil_main_input_thread) {
panic_plain("%s: couldn't create main input thread", __func__);
/* NOTREACHED */
} else {
panic_plain("%s: couldn't create %s input thread", __func__,
if_name(ifp));
/* NOTREACHED */
}
OSAddAtomic(1, &cur_dlil_input_threads);
done:
return error;
}
#if TEST_INPUT_THREAD_TERMINATION
static int
sysctl_input_thread_termination_spin SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint32_t i;
int err;
i = if_input_thread_termination_spin;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (net_rxpoll == 0) {
return ENXIO;
}
if_input_thread_termination_spin = i;
return err;
}
#endif /* TEST_INPUT_THREAD_TERMINATION */
static void
dlil_clean_threading_info(struct dlil_threading_info *inp)
{
lck_mtx_destroy(&inp->dlth_lock, inp->dlth_lock_grp);
lck_grp_free(inp->dlth_lock_grp);
inp->dlth_lock_grp = NULL;
inp->dlth_flags = 0;
inp->dlth_wtot = 0;
bzero(inp->dlth_name, sizeof(inp->dlth_name));
inp->dlth_ifp = NULL;
VERIFY(qhead(&inp->dlth_pkts) == NULL && qempty(&inp->dlth_pkts));
qlimit(&inp->dlth_pkts) = 0;
bzero(&inp->dlth_stats, sizeof(inp->dlth_stats));
VERIFY(!inp->dlth_affinity);
inp->dlth_thread = THREAD_NULL;
inp->dlth_strategy = NULL;
VERIFY(inp->dlth_driver_thread == THREAD_NULL);
VERIFY(inp->dlth_poller_thread == THREAD_NULL);
VERIFY(inp->dlth_affinity_tag == 0);
#if IFNET_INPUT_SANITY_CHK
inp->dlth_pkts_cnt = 0;
#endif /* IFNET_INPUT_SANITY_CHK */
}
static void
dlil_terminate_input_thread(struct dlil_threading_info *inp)
{
struct ifnet *ifp = inp->dlth_ifp;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
VERIFY(current_thread() == inp->dlth_thread);
VERIFY(inp != dlil_main_input_thread);
OSAddAtomic(-1, &cur_dlil_input_threads);
#if TEST_INPUT_THREAD_TERMINATION
{ /* do something useless that won't get optimized away */
uint32_t v = 1;
for (uint32_t i = 0;
i < if_input_thread_termination_spin;
i++) {
v = (i + 1) * v;
}
DLIL_PRINTF("the value is %d\n", v);
}
#endif /* TEST_INPUT_THREAD_TERMINATION */
lck_mtx_lock_spin(&inp->dlth_lock);
_getq_all(&inp->dlth_pkts, &pkt, NULL, NULL, NULL);
VERIFY((inp->dlth_flags & DLIL_INPUT_TERMINATE) != 0);
inp->dlth_flags |= DLIL_INPUT_TERMINATE_COMPLETE;
wakeup_one((caddr_t)&inp->dlth_flags);
lck_mtx_unlock(&inp->dlth_lock);
/* free up pending packets */
if (pkt.cp_mbuf != NULL) {
mbuf_freem_list(pkt.cp_mbuf);
}
/* for the extra refcnt from kernel_thread_start() */
thread_deallocate(current_thread());
if (dlil_verbose) {
DLIL_PRINTF("%s: input thread terminated\n",
if_name(ifp));
}
/* this is the end */
thread_terminate(current_thread());
/* NOTREACHED */
}
static kern_return_t
dlil_affinity_set(struct thread *tp, u_int32_t tag)
{
thread_affinity_policy_data_t policy;
bzero(&policy, sizeof(policy));
policy.affinity_tag = tag;
return thread_policy_set(tp, THREAD_AFFINITY_POLICY,
(thread_policy_t)&policy, THREAD_AFFINITY_POLICY_COUNT);
}
void
dlil_init(void)
{
thread_t thread = THREAD_NULL;
/*
* The following fields must be 64-bit aligned for atomic operations.
*/
IF_DATA_REQUIRE_ALIGNED_64(ifi_ipackets);
IF_DATA_REQUIRE_ALIGNED_64(ifi_ierrors);
IF_DATA_REQUIRE_ALIGNED_64(ifi_opackets);
IF_DATA_REQUIRE_ALIGNED_64(ifi_oerrors);
IF_DATA_REQUIRE_ALIGNED_64(ifi_collisions);
IF_DATA_REQUIRE_ALIGNED_64(ifi_ibytes);
IF_DATA_REQUIRE_ALIGNED_64(ifi_obytes);
IF_DATA_REQUIRE_ALIGNED_64(ifi_imcasts);
IF_DATA_REQUIRE_ALIGNED_64(ifi_omcasts);
IF_DATA_REQUIRE_ALIGNED_64(ifi_iqdrops);
IF_DATA_REQUIRE_ALIGNED_64(ifi_noproto);
IF_DATA_REQUIRE_ALIGNED_64(ifi_alignerrs);
IF_DATA_REQUIRE_ALIGNED_64(ifi_dt_bytes);
IF_DATA_REQUIRE_ALIGNED_64(ifi_fpackets);
IF_DATA_REQUIRE_ALIGNED_64(ifi_fbytes);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_ipackets);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_ierrors);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_opackets);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_oerrors);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_collisions);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_ibytes);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_obytes);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_imcasts);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_omcasts);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_iqdrops);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_noproto);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_alignerrs);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_dt_bytes);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_fpackets);
IFNET_IF_DATA_REQUIRE_ALIGNED_64(ifi_fbytes);
/*
* These IF_HWASSIST_ flags must be equal to their IFNET_* counterparts.
*/
_CASSERT(IF_HWASSIST_CSUM_IP == IFNET_CSUM_IP);
_CASSERT(IF_HWASSIST_CSUM_TCP == IFNET_CSUM_TCP);
_CASSERT(IF_HWASSIST_CSUM_UDP == IFNET_CSUM_UDP);
_CASSERT(IF_HWASSIST_CSUM_IP_FRAGS == IFNET_CSUM_FRAGMENT);
_CASSERT(IF_HWASSIST_CSUM_FRAGMENT == IFNET_IP_FRAGMENT);
_CASSERT(IF_HWASSIST_CSUM_TCPIPV6 == IFNET_CSUM_TCPIPV6);
_CASSERT(IF_HWASSIST_CSUM_UDPIPV6 == IFNET_CSUM_UDPIPV6);
_CASSERT(IF_HWASSIST_CSUM_FRAGMENT_IPV6 == IFNET_IPV6_FRAGMENT);
_CASSERT(IF_HWASSIST_CSUM_PARTIAL == IFNET_CSUM_PARTIAL);
_CASSERT(IF_HWASSIST_CSUM_ZERO_INVERT == IFNET_CSUM_ZERO_INVERT);
_CASSERT(IF_HWASSIST_VLAN_TAGGING == IFNET_VLAN_TAGGING);
_CASSERT(IF_HWASSIST_VLAN_MTU == IFNET_VLAN_MTU);
_CASSERT(IF_HWASSIST_TSO_V4 == IFNET_TSO_IPV4);
_CASSERT(IF_HWASSIST_TSO_V6 == IFNET_TSO_IPV6);
/*
* ... as well as the mbuf checksum flags counterparts.
*/
_CASSERT(CSUM_IP == IF_HWASSIST_CSUM_IP);
_CASSERT(CSUM_TCP == IF_HWASSIST_CSUM_TCP);
_CASSERT(CSUM_UDP == IF_HWASSIST_CSUM_UDP);
_CASSERT(CSUM_IP_FRAGS == IF_HWASSIST_CSUM_IP_FRAGS);
_CASSERT(CSUM_FRAGMENT == IF_HWASSIST_CSUM_FRAGMENT);
_CASSERT(CSUM_TCPIPV6 == IF_HWASSIST_CSUM_TCPIPV6);
_CASSERT(CSUM_UDPIPV6 == IF_HWASSIST_CSUM_UDPIPV6);
_CASSERT(CSUM_FRAGMENT_IPV6 == IF_HWASSIST_CSUM_FRAGMENT_IPV6);
_CASSERT(CSUM_PARTIAL == IF_HWASSIST_CSUM_PARTIAL);
_CASSERT(CSUM_ZERO_INVERT == IF_HWASSIST_CSUM_ZERO_INVERT);
_CASSERT(CSUM_VLAN_TAG_VALID == IF_HWASSIST_VLAN_TAGGING);
/*
* Make sure we have at least IF_LLREACH_MAXLEN in the llreach info.
*/
_CASSERT(IF_LLREACH_MAXLEN <= IF_LLREACHINFO_ADDRLEN);
_CASSERT(IFNET_LLREACHINFO_ADDRLEN == IF_LLREACHINFO_ADDRLEN);
_CASSERT(IFRLOGF_DLIL == IFNET_LOGF_DLIL);
_CASSERT(IFRLOGF_FAMILY == IFNET_LOGF_FAMILY);
_CASSERT(IFRLOGF_DRIVER == IFNET_LOGF_DRIVER);
_CASSERT(IFRLOGF_FIRMWARE == IFNET_LOGF_FIRMWARE);
_CASSERT(IFRLOGCAT_CONNECTIVITY == IFNET_LOGCAT_CONNECTIVITY);
_CASSERT(IFRLOGCAT_QUALITY == IFNET_LOGCAT_QUALITY);
_CASSERT(IFRLOGCAT_PERFORMANCE == IFNET_LOGCAT_PERFORMANCE);
_CASSERT(IFRTYPE_FAMILY_ANY == IFNET_FAMILY_ANY);
_CASSERT(IFRTYPE_FAMILY_LOOPBACK == IFNET_FAMILY_LOOPBACK);
_CASSERT(IFRTYPE_FAMILY_ETHERNET == IFNET_FAMILY_ETHERNET);
_CASSERT(IFRTYPE_FAMILY_SLIP == IFNET_FAMILY_SLIP);
_CASSERT(IFRTYPE_FAMILY_TUN == IFNET_FAMILY_TUN);
_CASSERT(IFRTYPE_FAMILY_VLAN == IFNET_FAMILY_VLAN);
_CASSERT(IFRTYPE_FAMILY_PPP == IFNET_FAMILY_PPP);
_CASSERT(IFRTYPE_FAMILY_PVC == IFNET_FAMILY_PVC);
_CASSERT(IFRTYPE_FAMILY_DISC == IFNET_FAMILY_DISC);
_CASSERT(IFRTYPE_FAMILY_MDECAP == IFNET_FAMILY_MDECAP);
_CASSERT(IFRTYPE_FAMILY_GIF == IFNET_FAMILY_GIF);
_CASSERT(IFRTYPE_FAMILY_FAITH == IFNET_FAMILY_FAITH);
_CASSERT(IFRTYPE_FAMILY_STF == IFNET_FAMILY_STF);
_CASSERT(IFRTYPE_FAMILY_FIREWIRE == IFNET_FAMILY_FIREWIRE);
_CASSERT(IFRTYPE_FAMILY_BOND == IFNET_FAMILY_BOND);
_CASSERT(IFRTYPE_FAMILY_CELLULAR == IFNET_FAMILY_CELLULAR);
_CASSERT(IFRTYPE_FAMILY_6LOWPAN == IFNET_FAMILY_6LOWPAN);
_CASSERT(IFRTYPE_FAMILY_UTUN == IFNET_FAMILY_UTUN);
_CASSERT(IFRTYPE_FAMILY_IPSEC == IFNET_FAMILY_IPSEC);
_CASSERT(IFRTYPE_SUBFAMILY_ANY == IFNET_SUBFAMILY_ANY);
_CASSERT(IFRTYPE_SUBFAMILY_USB == IFNET_SUBFAMILY_USB);
_CASSERT(IFRTYPE_SUBFAMILY_BLUETOOTH == IFNET_SUBFAMILY_BLUETOOTH);
_CASSERT(IFRTYPE_SUBFAMILY_WIFI == IFNET_SUBFAMILY_WIFI);
_CASSERT(IFRTYPE_SUBFAMILY_THUNDERBOLT == IFNET_SUBFAMILY_THUNDERBOLT);
_CASSERT(IFRTYPE_SUBFAMILY_RESERVED == IFNET_SUBFAMILY_RESERVED);
_CASSERT(IFRTYPE_SUBFAMILY_INTCOPROC == IFNET_SUBFAMILY_INTCOPROC);
_CASSERT(IFRTYPE_SUBFAMILY_QUICKRELAY == IFNET_SUBFAMILY_QUICKRELAY);
_CASSERT(IFRTYPE_SUBFAMILY_DEFAULT == IFNET_SUBFAMILY_DEFAULT);
_CASSERT(DLIL_MODIDLEN == IFNET_MODIDLEN);
_CASSERT(DLIL_MODARGLEN == IFNET_MODARGLEN);
PE_parse_boot_argn("net_affinity", &net_affinity,
sizeof(net_affinity));
PE_parse_boot_argn("net_rxpoll", &net_rxpoll, sizeof(net_rxpoll));
PE_parse_boot_argn("net_rtref", &net_rtref, sizeof(net_rtref));
PE_parse_boot_argn("net_async", &net_async, sizeof(net_async));
PE_parse_boot_argn("ifnet_debug", &ifnet_debug, sizeof(ifnet_debug));
VERIFY(dlil_pending_thread_cnt == 0);
dlif_size = (ifnet_debug == 0) ? sizeof(struct dlil_ifnet) :
sizeof(struct dlil_ifnet_dbg);
/* Enforce 64-bit alignment for dlil_ifnet structure */
dlif_bufsize = dlif_size + sizeof(void *) + sizeof(u_int64_t);
dlif_bufsize = (uint32_t)P2ROUNDUP(dlif_bufsize, sizeof(u_int64_t));
dlif_zone = zone_create(DLIF_ZONE_NAME, dlif_bufsize, ZC_ZFREE_CLEARMEM);
dlif_tcpstat_size = sizeof(struct tcpstat_local);
/* Enforce 64-bit alignment for tcpstat_local structure */
dlif_tcpstat_bufsize =
dlif_tcpstat_size + sizeof(void *) + sizeof(u_int64_t);
dlif_tcpstat_bufsize = (uint32_t)
P2ROUNDUP(dlif_tcpstat_bufsize, sizeof(u_int64_t));
dlif_tcpstat_zone = zone_create(DLIF_TCPSTAT_ZONE_NAME,
dlif_tcpstat_bufsize, ZC_ZFREE_CLEARMEM);
dlif_udpstat_size = sizeof(struct udpstat_local);
/* Enforce 64-bit alignment for udpstat_local structure */
dlif_udpstat_bufsize =
dlif_udpstat_size + sizeof(void *) + sizeof(u_int64_t);
dlif_udpstat_bufsize = (uint32_t)
P2ROUNDUP(dlif_udpstat_bufsize, sizeof(u_int64_t));
dlif_udpstat_zone = zone_create(DLIF_UDPSTAT_ZONE_NAME,
dlif_udpstat_bufsize, ZC_ZFREE_CLEARMEM);
eventhandler_lists_ctxt_init(&ifnet_evhdlr_ctxt);
TAILQ_INIT(&dlil_ifnet_head);
TAILQ_INIT(&ifnet_head);
TAILQ_INIT(&ifnet_detaching_head);
TAILQ_INIT(&ifnet_ordered_head);
/* Setup the lock groups we will use */
dlil_grp_attributes = lck_grp_attr_alloc_init();
dlil_lock_group = lck_grp_alloc_init("DLIL internal locks",
dlil_grp_attributes);
ifnet_lock_group = lck_grp_alloc_init("ifnet locks",
dlil_grp_attributes);
ifnet_head_lock_group = lck_grp_alloc_init("ifnet head lock",
dlil_grp_attributes);
ifnet_rcv_lock_group = lck_grp_alloc_init("ifnet rcv locks",
dlil_grp_attributes);
ifnet_snd_lock_group = lck_grp_alloc_init("ifnet snd locks",
dlil_grp_attributes);
/* Setup the lock attributes we will use */
dlil_lck_attributes = lck_attr_alloc_init();
ifnet_lock_attr = lck_attr_alloc_init();
lck_rw_init(&ifnet_head_lock, ifnet_head_lock_group,
dlil_lck_attributes);
lck_mtx_init(&dlil_ifnet_lock, dlil_lock_group, dlil_lck_attributes);
lck_mtx_init(&dlil_thread_sync_lock, dlil_lock_group, dlil_lck_attributes);
/* Setup interface flow control related items */
lck_mtx_init(&ifnet_fc_lock, dlil_lock_group, dlil_lck_attributes);
/* Initialize interface address subsystem */
ifa_init();
#if PF
/* Initialize the packet filter */
pfinit();
#endif /* PF */
/* Initialize queue algorithms */
classq_init();
/* Initialize packet schedulers */
pktsched_init();
/* Initialize flow advisory subsystem */
flowadv_init();
/* Initialize the pktap virtual interface */
pktap_init();
/* Initialize the service class to dscp map */
net_qos_map_init();
/* Initialize the interface port list */
if_ports_used_init();
/* Initialize the interface low power mode event handler */
if_low_power_evhdlr_init();
#if DEBUG || DEVELOPMENT
/* Run self-tests */
dlil_verify_sum16();
#endif /* DEBUG || DEVELOPMENT */
/* Initialize link layer table */
lltable_glbl_init();
/*
* Create and start up the main DLIL input thread and the interface
* detacher threads once everything is initialized.
*/
dlil_incr_pending_thread_count();
(void) dlil_create_input_thread(NULL, dlil_main_input_thread, NULL);
/*
* Create ifnet detacher thread.
* When an interface gets detached, part of the detach processing
* is delayed. The interface is added to delayed detach list
* and this thread is woken up to call ifnet_detach_final
* on these interfaces.
*/
dlil_incr_pending_thread_count();
if (kernel_thread_start(ifnet_detacher_thread_func,
NULL, &thread) != KERN_SUCCESS) {
panic_plain("%s: couldn't create detacher thread", __func__);
/* NOTREACHED */
}
thread_deallocate(thread);
/*
* Wait for the created kernel threads for dlil to get
* scheduled and run at least once before we proceed
*/
lck_mtx_lock(&dlil_thread_sync_lock);
while (dlil_pending_thread_cnt != 0) {
DLIL_PRINTF("%s: Waiting for all the create dlil kernel "
"threads to get scheduled at least once.\n", __func__);
(void) msleep(&dlil_pending_thread_cnt, &dlil_thread_sync_lock,
(PZERO - 1), __func__, NULL);
LCK_MTX_ASSERT(&dlil_thread_sync_lock, LCK_ASSERT_OWNED);
}
lck_mtx_unlock(&dlil_thread_sync_lock);
DLIL_PRINTF("%s: All the created dlil kernel threads have been "
"scheduled at least once. Proceeding.\n", __func__);
}
static void
if_flt_monitor_busy(struct ifnet *ifp)
{
LCK_MTX_ASSERT(&ifp->if_flt_lock, LCK_MTX_ASSERT_OWNED);
++ifp->if_flt_busy;
VERIFY(ifp->if_flt_busy != 0);
}
static void
if_flt_monitor_unbusy(struct ifnet *ifp)
{
if_flt_monitor_leave(ifp);
}
static void
if_flt_monitor_enter(struct ifnet *ifp)
{
LCK_MTX_ASSERT(&ifp->if_flt_lock, LCK_MTX_ASSERT_OWNED);
while (ifp->if_flt_busy) {
++ifp->if_flt_waiters;
(void) msleep(&ifp->if_flt_head, &ifp->if_flt_lock,
(PZERO - 1), "if_flt_monitor", NULL);
}
if_flt_monitor_busy(ifp);
}
static void
if_flt_monitor_leave(struct ifnet *ifp)
{
LCK_MTX_ASSERT(&ifp->if_flt_lock, LCK_MTX_ASSERT_OWNED);
VERIFY(ifp->if_flt_busy != 0);
--ifp->if_flt_busy;
if (ifp->if_flt_busy == 0 && ifp->if_flt_waiters > 0) {
ifp->if_flt_waiters = 0;
wakeup(&ifp->if_flt_head);
}
}
__private_extern__ int
dlil_attach_filter(struct ifnet *ifp, const struct iff_filter *if_filter,
interface_filter_t *filter_ref, u_int32_t flags)
{
int retval = 0;
struct ifnet_filter *filter = NULL;
ifnet_head_lock_shared();
/* Check that the interface is in the global list */
if (!ifnet_lookup(ifp)) {
retval = ENXIO;
goto done;
}
filter = zalloc_flags(dlif_filt_zone, Z_WAITOK | Z_ZERO);
if (filter == NULL) {
retval = ENOMEM;
goto done;
}
/* refcnt held above during lookup */
filter->filt_flags = flags;
filter->filt_ifp = ifp;
filter->filt_cookie = if_filter->iff_cookie;
filter->filt_name = if_filter->iff_name;
filter->filt_protocol = if_filter->iff_protocol;
/*
* Do not install filter callbacks for internal coproc interface
*/
if (!IFNET_IS_INTCOPROC(ifp)) {
filter->filt_input = if_filter->iff_input;
filter->filt_output = if_filter->iff_output;
filter->filt_event = if_filter->iff_event;
filter->filt_ioctl = if_filter->iff_ioctl;
}
filter->filt_detached = if_filter->iff_detached;
lck_mtx_lock(&ifp->if_flt_lock);
if_flt_monitor_enter(ifp);
LCK_MTX_ASSERT(&ifp->if_flt_lock, LCK_MTX_ASSERT_OWNED);
TAILQ_INSERT_TAIL(&ifp->if_flt_head, filter, filt_next);
if_flt_monitor_leave(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
*filter_ref = filter;
/*
* Bump filter count and route_generation ID to let TCP
* know it shouldn't do TSO on this connection
*/
if ((filter->filt_flags & DLIL_IFF_TSO) == 0) {
ifnet_filter_update_tso(TRUE);
}
OSIncrementAtomic64(&net_api_stats.nas_iflt_attach_count);
INC_ATOMIC_INT64_LIM(net_api_stats.nas_iflt_attach_total);
if ((filter->filt_flags & DLIL_IFF_INTERNAL)) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_iflt_attach_os_total);
}
if (dlil_verbose) {
DLIL_PRINTF("%s: %s filter attached\n", if_name(ifp),
if_filter->iff_name);
}
done:
ifnet_head_done();
if (retval != 0 && ifp != NULL) {
DLIL_PRINTF("%s: failed to attach %s (err=%d)\n",
if_name(ifp), if_filter->iff_name, retval);
}
if (retval != 0 && filter != NULL) {
zfree(dlif_filt_zone, filter);
}
return retval;
}
static int
dlil_detach_filter_internal(interface_filter_t filter, int detached)
{
int retval = 0;
if (detached == 0) {
ifnet_t ifp = NULL;
ifnet_head_lock_shared();
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
interface_filter_t entry = NULL;
lck_mtx_lock(&ifp->if_flt_lock);
TAILQ_FOREACH(entry, &ifp->if_flt_head, filt_next) {
if (entry != filter || entry->filt_skip) {
continue;
}
/*
* We've found a match; since it's possible
* that the thread gets blocked in the monitor,
* we do the lock dance. Interface should
* not be detached since we still have a use
* count held during filter attach.
*/
entry->filt_skip = 1; /* skip input/output */
lck_mtx_unlock(&ifp->if_flt_lock);
ifnet_head_done();
lck_mtx_lock(&ifp->if_flt_lock);
if_flt_monitor_enter(ifp);
LCK_MTX_ASSERT(&ifp->if_flt_lock,
LCK_MTX_ASSERT_OWNED);
/* Remove the filter from the list */
TAILQ_REMOVE(&ifp->if_flt_head, filter,
filt_next);
if_flt_monitor_leave(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
if (dlil_verbose) {
DLIL_PRINTF("%s: %s filter detached\n",
if_name(ifp), filter->filt_name);
}
goto destroy;
}
lck_mtx_unlock(&ifp->if_flt_lock);
}
ifnet_head_done();
/* filter parameter is not a valid filter ref */
retval = EINVAL;
goto done;
}
if (dlil_verbose) {
DLIL_PRINTF("%s filter detached\n", filter->filt_name);
}
destroy:
/* Call the detached function if there is one */
if (filter->filt_detached) {
filter->filt_detached(filter->filt_cookie, filter->filt_ifp);
}
/*
* Decrease filter count and route_generation ID to let TCP
* know it should reevalute doing TSO or not
*/
if ((filter->filt_flags & DLIL_IFF_TSO) == 0) {
ifnet_filter_update_tso(FALSE);
}
VERIFY(OSDecrementAtomic64(&net_api_stats.nas_iflt_attach_count) > 0);
/* Free the filter */
zfree(dlif_filt_zone, filter);
filter = NULL;
done:
if (retval != 0 && filter != NULL) {
DLIL_PRINTF("failed to detach %s filter (err=%d)\n",
filter->filt_name, retval);
}
return retval;
}
__private_extern__ void
dlil_detach_filter(interface_filter_t filter)
{
if (filter == NULL) {
return;
}
dlil_detach_filter_internal(filter, 0);
}
__private_extern__ boolean_t
dlil_has_ip_filter(void)
{
boolean_t has_filter = (net_api_stats.nas_ipf_add_count > 0);
DTRACE_IP1(dlil_has_ip_filter, boolean_t, has_filter);
return has_filter;
}
__private_extern__ boolean_t
dlil_has_if_filter(struct ifnet *ifp)
{
boolean_t has_filter = !TAILQ_EMPTY(&ifp->if_flt_head);
DTRACE_IP1(dlil_has_if_filter, boolean_t, has_filter);
return has_filter;
}
static inline void
dlil_input_wakeup(struct dlil_threading_info *inp)
{
LCK_MTX_ASSERT(&inp->dlth_lock, LCK_MTX_ASSERT_OWNED);
inp->dlth_flags |= DLIL_INPUT_WAITING;
if (!(inp->dlth_flags & DLIL_INPUT_RUNNING)) {
inp->dlth_wtot++;
wakeup_one((caddr_t)&inp->dlth_flags);
}
}
__attribute__((noreturn))
static void
dlil_main_input_thread_func(void *v, wait_result_t w)
{
#pragma unused(w)
struct dlil_threading_info *inp = v;
VERIFY(inp == dlil_main_input_thread);
VERIFY(inp->dlth_ifp == NULL);
VERIFY(current_thread() == inp->dlth_thread);
lck_mtx_lock(&inp->dlth_lock);
VERIFY(!(inp->dlth_flags & (DLIL_INPUT_EMBRYONIC | DLIL_INPUT_RUNNING)));
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
inp->dlth_flags |= DLIL_INPUT_EMBRYONIC;
/* wake up once to get out of embryonic state */
dlil_input_wakeup(inp);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_main_input_thread_cont, inp);
/* NOTREACHED */
__builtin_unreachable();
}
/*
* Main input thread:
*
* a) handles all inbound packets for lo0
* b) handles all inbound packets for interfaces with no dedicated
* input thread (e.g. anything but Ethernet/PDP or those that support
* opportunistic polling.)
* c) protocol registrations
* d) packet injections
*/
__attribute__((noreturn))
static void
dlil_main_input_thread_cont(void *v, wait_result_t wres)
{
struct dlil_main_threading_info *inpm = v;
struct dlil_threading_info *inp = v;
/* main input thread is uninterruptible */
VERIFY(wres != THREAD_INTERRUPTED);
lck_mtx_lock_spin(&inp->dlth_lock);
VERIFY(!(inp->dlth_flags & (DLIL_INPUT_TERMINATE |
DLIL_INPUT_RUNNING)));
inp->dlth_flags |= DLIL_INPUT_RUNNING;
while (1) {
struct mbuf *m = NULL, *m_loop = NULL;
u_int32_t m_cnt, m_cnt_loop;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
boolean_t proto_req;
boolean_t embryonic;
inp->dlth_flags &= ~DLIL_INPUT_WAITING;
if (__improbable(embryonic =
(inp->dlth_flags & DLIL_INPUT_EMBRYONIC))) {
inp->dlth_flags &= ~DLIL_INPUT_EMBRYONIC;
}
proto_req = (inp->dlth_flags &
(DLIL_PROTO_WAITING | DLIL_PROTO_REGISTER));
/* Packets for non-dedicated interfaces other than lo0 */
m_cnt = qlen(&inp->dlth_pkts);
_getq_all(&inp->dlth_pkts, &pkt, NULL, NULL, NULL);
m = pkt.cp_mbuf;
/* Packets exclusive to lo0 */
m_cnt_loop = qlen(&inpm->lo_rcvq_pkts);
_getq_all(&inpm->lo_rcvq_pkts, &pkt, NULL, NULL, NULL);
m_loop = pkt.cp_mbuf;
inp->dlth_wtot = 0;
lck_mtx_unlock(&inp->dlth_lock);
if (__improbable(embryonic)) {
dlil_decr_pending_thread_count();
}
/*
* NOTE warning %%% attention !!!!
* We should think about putting some thread starvation
* safeguards if we deal with long chains of packets.
*/
if (__probable(m_loop != NULL)) {
dlil_input_packet_list_extended(lo_ifp, m_loop,
m_cnt_loop, IFNET_MODEL_INPUT_POLL_OFF);
}
if (__probable(m != NULL)) {
dlil_input_packet_list_extended(NULL, m,
m_cnt, IFNET_MODEL_INPUT_POLL_OFF);
}
if (__improbable(proto_req)) {
proto_input_run();
}
lck_mtx_lock_spin(&inp->dlth_lock);
VERIFY(inp->dlth_flags & DLIL_INPUT_RUNNING);
/* main input thread cannot be terminated */
VERIFY(!(inp->dlth_flags & DLIL_INPUT_TERMINATE));
if (!(inp->dlth_flags & ~DLIL_INPUT_RUNNING)) {
break;
}
}
inp->dlth_flags &= ~DLIL_INPUT_RUNNING;
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_main_input_thread_cont, inp);
VERIFY(0); /* we should never get here */
/* NOTREACHED */
__builtin_unreachable();
}
/*
* Input thread for interfaces with legacy input model.
*/
__attribute__((noreturn))
static void
dlil_input_thread_func(void *v, wait_result_t w)
{
#pragma unused(w)
char thread_name[MAXTHREADNAMESIZE];
struct dlil_threading_info *inp = v;
struct ifnet *ifp = inp->dlth_ifp;
VERIFY(inp != dlil_main_input_thread);
VERIFY(ifp != NULL);
VERIFY(!(ifp->if_eflags & IFEF_RXPOLL) || !net_rxpoll ||
!(ifp->if_xflags & IFXF_LEGACY));
VERIFY(ifp->if_poll_mode == IFNET_MODEL_INPUT_POLL_OFF ||
!(ifp->if_xflags & IFXF_LEGACY));
VERIFY(current_thread() == inp->dlth_thread);
/* construct the name for this thread, and then apply it */
bzero(thread_name, sizeof(thread_name));
(void) snprintf(thread_name, sizeof(thread_name),
"dlil_input_%s", ifp->if_xname);
thread_set_thread_name(inp->dlth_thread, thread_name);
lck_mtx_lock(&inp->dlth_lock);
VERIFY(!(inp->dlth_flags & (DLIL_INPUT_EMBRYONIC | DLIL_INPUT_RUNNING)));
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
inp->dlth_flags |= DLIL_INPUT_EMBRYONIC;
/* wake up once to get out of embryonic state */
dlil_input_wakeup(inp);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_input_thread_cont, inp);
/* NOTREACHED */
__builtin_unreachable();
}
__attribute__((noreturn))
static void
dlil_input_thread_cont(void *v, wait_result_t wres)
{
struct dlil_threading_info *inp = v;
struct ifnet *ifp = inp->dlth_ifp;
lck_mtx_lock_spin(&inp->dlth_lock);
if (__improbable(wres == THREAD_INTERRUPTED ||
(inp->dlth_flags & DLIL_INPUT_TERMINATE))) {
goto terminate;
}
VERIFY(!(inp->dlth_flags & DLIL_INPUT_RUNNING));
inp->dlth_flags |= DLIL_INPUT_RUNNING;
while (1) {
struct mbuf *m = NULL;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
boolean_t notify = FALSE;
boolean_t embryonic;
u_int32_t m_cnt;
inp->dlth_flags &= ~DLIL_INPUT_WAITING;
if (__improbable(embryonic =
(inp->dlth_flags & DLIL_INPUT_EMBRYONIC))) {
inp->dlth_flags &= ~DLIL_INPUT_EMBRYONIC;
}
/*
* Protocol registration and injection must always use
* the main input thread; in theory the latter can utilize
* the corresponding input thread where the packet arrived
* on, but that requires our knowing the interface in advance
* (and the benefits might not worth the trouble.)
*/
VERIFY(!(inp->dlth_flags &
(DLIL_PROTO_WAITING | DLIL_PROTO_REGISTER)));
/* Packets for this interface */
m_cnt = qlen(&inp->dlth_pkts);
_getq_all(&inp->dlth_pkts, &pkt, NULL, NULL, NULL);
m = pkt.cp_mbuf;
inp->dlth_wtot = 0;
notify = dlil_input_stats_sync(ifp, inp);
lck_mtx_unlock(&inp->dlth_lock);
if (__improbable(embryonic)) {
ifnet_decr_pending_thread_count(ifp);
}
if (__improbable(notify)) {
ifnet_notify_data_threshold(ifp);
}
/*
* NOTE warning %%% attention !!!!
* We should think about putting some thread starvation
* safeguards if we deal with long chains of packets.
*/
if (__probable(m != NULL)) {
dlil_input_packet_list_extended(NULL, m,
m_cnt, ifp->if_poll_mode);
}
lck_mtx_lock_spin(&inp->dlth_lock);
VERIFY(inp->dlth_flags & DLIL_INPUT_RUNNING);
if (!(inp->dlth_flags & ~(DLIL_INPUT_RUNNING |
DLIL_INPUT_TERMINATE))) {
break;
}
}
inp->dlth_flags &= ~DLIL_INPUT_RUNNING;
if (__improbable(inp->dlth_flags & DLIL_INPUT_TERMINATE)) {
terminate:
lck_mtx_unlock(&inp->dlth_lock);
dlil_terminate_input_thread(inp);
/* NOTREACHED */
} else {
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_input_thread_cont, inp);
/* NOTREACHED */
}
VERIFY(0); /* we should never get here */
/* NOTREACHED */
__builtin_unreachable();
}
/*
* Input thread for interfaces with opportunistic polling input model.
*/
__attribute__((noreturn))
static void
dlil_rxpoll_input_thread_func(void *v, wait_result_t w)
{
#pragma unused(w)
char thread_name[MAXTHREADNAMESIZE];
struct dlil_threading_info *inp = v;
struct ifnet *ifp = inp->dlth_ifp;
VERIFY(inp != dlil_main_input_thread);
VERIFY(ifp != NULL && (ifp->if_eflags & IFEF_RXPOLL) &&
(ifp->if_xflags & IFXF_LEGACY));
VERIFY(current_thread() == inp->dlth_thread);
/* construct the name for this thread, and then apply it */
bzero(thread_name, sizeof(thread_name));
(void) snprintf(thread_name, sizeof(thread_name),
"dlil_input_poll_%s", ifp->if_xname);
thread_set_thread_name(inp->dlth_thread, thread_name);
lck_mtx_lock(&inp->dlth_lock);
VERIFY(!(inp->dlth_flags & (DLIL_INPUT_EMBRYONIC | DLIL_INPUT_RUNNING)));
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
inp->dlth_flags |= DLIL_INPUT_EMBRYONIC;
/* wake up once to get out of embryonic state */
dlil_input_wakeup(inp);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_rxpoll_input_thread_cont, inp);
/* NOTREACHED */
__builtin_unreachable();
}
__attribute__((noreturn))
static void
dlil_rxpoll_input_thread_cont(void *v, wait_result_t wres)
{
struct dlil_threading_info *inp = v;
struct ifnet *ifp = inp->dlth_ifp;
struct timespec ts;
lck_mtx_lock_spin(&inp->dlth_lock);
if (__improbable(wres == THREAD_INTERRUPTED ||
(inp->dlth_flags & DLIL_INPUT_TERMINATE))) {
goto terminate;
}
VERIFY(!(inp->dlth_flags & DLIL_INPUT_RUNNING));
inp->dlth_flags |= DLIL_INPUT_RUNNING;
while (1) {
struct mbuf *m = NULL;
uint32_t m_cnt, poll_req = 0;
uint64_t m_size = 0;
ifnet_model_t mode;
struct timespec now, delta;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
boolean_t notify;
boolean_t embryonic;
uint64_t ival;
inp->dlth_flags &= ~DLIL_INPUT_WAITING;
if (__improbable(embryonic =
(inp->dlth_flags & DLIL_INPUT_EMBRYONIC))) {
inp->dlth_flags &= ~DLIL_INPUT_EMBRYONIC;
goto skip;
}
if ((ival = ifp->if_rxpoll_ival) < IF_RXPOLL_INTERVALTIME_MIN) {
ival = IF_RXPOLL_INTERVALTIME_MIN;
}
/* Link parameters changed? */
if (ifp->if_poll_update != 0) {
ifp->if_poll_update = 0;
(void) dlil_rxpoll_set_params(ifp, NULL, TRUE);
}
/* Current operating mode */
mode = ifp->if_poll_mode;
/*
* Protocol registration and injection must always use
* the main input thread; in theory the latter can utilize
* the corresponding input thread where the packet arrived
* on, but that requires our knowing the interface in advance
* (and the benefits might not worth the trouble.)
*/
VERIFY(!(inp->dlth_flags &
(DLIL_PROTO_WAITING | DLIL_PROTO_REGISTER)));
/* Total count of all packets */
m_cnt = qlen(&inp->dlth_pkts);
/* Total bytes of all packets */
m_size = qsize(&inp->dlth_pkts);
/* Packets for this interface */
_getq_all(&inp->dlth_pkts, &pkt, NULL, NULL, NULL);
m = pkt.cp_mbuf;
VERIFY(m != NULL || m_cnt == 0);
nanouptime(&now);
if (!net_timerisset(&ifp->if_poll_sample_lasttime)) {
*(&ifp->if_poll_sample_lasttime) = *(&now);
}
net_timersub(&now, &ifp->if_poll_sample_lasttime, &delta);
if (if_rxpoll && net_timerisset(&ifp->if_poll_sample_holdtime)) {
u_int32_t ptot, btot;
/* Accumulate statistics for current sampling */
PKTCNTR_ADD(&ifp->if_poll_sstats, m_cnt, m_size);
if (net_timercmp(&delta, &ifp->if_poll_sample_holdtime, <)) {
goto skip;
}
*(&ifp->if_poll_sample_lasttime) = *(&now);
/* Calculate min/max of inbound bytes */
btot = (u_int32_t)ifp->if_poll_sstats.bytes;
if (ifp->if_rxpoll_bmin == 0 || ifp->if_rxpoll_bmin > btot) {
ifp->if_rxpoll_bmin = btot;
}
if (btot > ifp->if_rxpoll_bmax) {
ifp->if_rxpoll_bmax = btot;
}
/* Calculate EWMA of inbound bytes */
DLIL_EWMA(ifp->if_rxpoll_bavg, btot, if_rxpoll_decay);
/* Calculate min/max of inbound packets */
ptot = (u_int32_t)ifp->if_poll_sstats.packets;
if (ifp->if_rxpoll_pmin == 0 || ifp->if_rxpoll_pmin > ptot) {
ifp->if_rxpoll_pmin = ptot;
}
if (ptot > ifp->if_rxpoll_pmax) {
ifp->if_rxpoll_pmax = ptot;
}
/* Calculate EWMA of inbound packets */
DLIL_EWMA(ifp->if_rxpoll_pavg, ptot, if_rxpoll_decay);
/* Reset sampling statistics */
PKTCNTR_CLEAR(&ifp->if_poll_sstats);
/* Calculate EWMA of wakeup requests */
DLIL_EWMA(ifp->if_rxpoll_wavg, inp->dlth_wtot,
if_rxpoll_decay);
inp->dlth_wtot = 0;
if (dlil_verbose) {
if (!net_timerisset(&ifp->if_poll_dbg_lasttime)) {
*(&ifp->if_poll_dbg_lasttime) = *(&now);
}
net_timersub(&now, &ifp->if_poll_dbg_lasttime, &delta);
if (net_timercmp(&delta, &dlil_dbgrate, >=)) {
*(&ifp->if_poll_dbg_lasttime) = *(&now);
DLIL_PRINTF("%s: [%s] pkts avg %d max %d "
"limits [%d/%d], wreq avg %d "
"limits [%d/%d], bytes avg %d "
"limits [%d/%d]\n", if_name(ifp),
(ifp->if_poll_mode ==
IFNET_MODEL_INPUT_POLL_ON) ?
"ON" : "OFF", ifp->if_rxpoll_pavg,
ifp->if_rxpoll_pmax,
ifp->if_rxpoll_plowat,
ifp->if_rxpoll_phiwat,
ifp->if_rxpoll_wavg,
ifp->if_rxpoll_wlowat,
ifp->if_rxpoll_whiwat,
ifp->if_rxpoll_bavg,
ifp->if_rxpoll_blowat,
ifp->if_rxpoll_bhiwat);
}
}
/* Perform mode transition, if necessary */
if (!net_timerisset(&ifp->if_poll_mode_lasttime)) {
*(&ifp->if_poll_mode_lasttime) = *(&now);
}
net_timersub(&now, &ifp->if_poll_mode_lasttime, &delta);
if (net_timercmp(&delta, &ifp->if_poll_mode_holdtime, <)) {
goto skip;
}
if (ifp->if_rxpoll_pavg <= ifp->if_rxpoll_plowat &&
ifp->if_rxpoll_bavg <= ifp->if_rxpoll_blowat &&
ifp->if_poll_mode != IFNET_MODEL_INPUT_POLL_OFF) {
mode = IFNET_MODEL_INPUT_POLL_OFF;
} else if (ifp->if_rxpoll_pavg >= ifp->if_rxpoll_phiwat &&
(ifp->if_rxpoll_bavg >= ifp->if_rxpoll_bhiwat ||
ifp->if_rxpoll_wavg >= ifp->if_rxpoll_whiwat) &&
ifp->if_poll_mode != IFNET_MODEL_INPUT_POLL_ON) {
mode = IFNET_MODEL_INPUT_POLL_ON;
}
if (mode != ifp->if_poll_mode) {
ifp->if_poll_mode = mode;
*(&ifp->if_poll_mode_lasttime) = *(&now);
poll_req++;
}
}
skip:
notify = dlil_input_stats_sync(ifp, inp);
lck_mtx_unlock(&inp->dlth_lock);
if (__improbable(embryonic)) {
ifnet_decr_pending_thread_count(ifp);
}
if (__improbable(notify)) {
ifnet_notify_data_threshold(ifp);
}
/*
* If there's a mode change and interface is still attached,
* perform a downcall to the driver for the new mode. Also
* hold an IO refcnt on the interface to prevent it from
* being detached (will be release below.)
*/
if (poll_req != 0 && ifnet_is_attached(ifp, 1)) {
struct ifnet_model_params p = {
.model = mode, .reserved = { 0 }
};
errno_t err;
if (dlil_verbose) {
DLIL_PRINTF("%s: polling is now %s, "
"pkts avg %d max %d limits [%d/%d], "
"wreq avg %d limits [%d/%d], "
"bytes avg %d limits [%d/%d]\n",
if_name(ifp),
(mode == IFNET_MODEL_INPUT_POLL_ON) ?
"ON" : "OFF", ifp->if_rxpoll_pavg,
ifp->if_rxpoll_pmax, ifp->if_rxpoll_plowat,
ifp->if_rxpoll_phiwat, ifp->if_rxpoll_wavg,
ifp->if_rxpoll_wlowat, ifp->if_rxpoll_whiwat,
ifp->if_rxpoll_bavg, ifp->if_rxpoll_blowat,
ifp->if_rxpoll_bhiwat);
}
if ((err = ((*ifp->if_input_ctl)(ifp,
IFNET_CTL_SET_INPUT_MODEL, sizeof(p), &p))) != 0) {
DLIL_PRINTF("%s: error setting polling mode "
"to %s (%d)\n", if_name(ifp),
(mode == IFNET_MODEL_INPUT_POLL_ON) ?
"ON" : "OFF", err);
}
switch (mode) {
case IFNET_MODEL_INPUT_POLL_OFF:
ifnet_set_poll_cycle(ifp, NULL);
ifp->if_rxpoll_offreq++;
if (err != 0) {
ifp->if_rxpoll_offerr++;
}
break;
case IFNET_MODEL_INPUT_POLL_ON:
net_nsectimer(&ival, &ts);
ifnet_set_poll_cycle(ifp, &ts);
ifnet_poll(ifp);
ifp->if_rxpoll_onreq++;
if (err != 0) {
ifp->if_rxpoll_onerr++;
}
break;
default:
VERIFY(0);
/* NOTREACHED */
}
/* Release the IO refcnt */
ifnet_decr_iorefcnt(ifp);
}
/*
* NOTE warning %%% attention !!!!
* We should think about putting some thread starvation
* safeguards if we deal with long chains of packets.
*/
if (__probable(m != NULL)) {
dlil_input_packet_list_extended(NULL, m, m_cnt, mode);
}
lck_mtx_lock_spin(&inp->dlth_lock);
VERIFY(inp->dlth_flags & DLIL_INPUT_RUNNING);
if (!(inp->dlth_flags & ~(DLIL_INPUT_RUNNING |
DLIL_INPUT_TERMINATE))) {
break;
}
}
inp->dlth_flags &= ~DLIL_INPUT_RUNNING;
if (__improbable(inp->dlth_flags & DLIL_INPUT_TERMINATE)) {
terminate:
lck_mtx_unlock(&inp->dlth_lock);
dlil_terminate_input_thread(inp);
/* NOTREACHED */
} else {
(void) assert_wait(&inp->dlth_flags, THREAD_UNINT);
lck_mtx_unlock(&inp->dlth_lock);
(void) thread_block_parameter(dlil_rxpoll_input_thread_cont,
inp);
/* NOTREACHED */
}
VERIFY(0); /* we should never get here */
/* NOTREACHED */
__builtin_unreachable();
}
errno_t
dlil_rxpoll_validate_params(struct ifnet_poll_params *p)
{
if (p != NULL) {
if ((p->packets_lowat == 0 && p->packets_hiwat != 0) ||
(p->packets_lowat != 0 && p->packets_hiwat == 0)) {
return EINVAL;
}
if (p->packets_lowat != 0 && /* hiwat must be non-zero */
p->packets_lowat >= p->packets_hiwat) {
return EINVAL;
}
if ((p->bytes_lowat == 0 && p->bytes_hiwat != 0) ||
(p->bytes_lowat != 0 && p->bytes_hiwat == 0)) {
return EINVAL;
}
if (p->bytes_lowat != 0 && /* hiwat must be non-zero */
p->bytes_lowat >= p->bytes_hiwat) {
return EINVAL;
}
if (p->interval_time != 0 &&
p->interval_time < IF_RXPOLL_INTERVALTIME_MIN) {
p->interval_time = IF_RXPOLL_INTERVALTIME_MIN;
}
}
return 0;
}
void
dlil_rxpoll_update_params(struct ifnet *ifp, struct ifnet_poll_params *p)
{
u_int64_t sample_holdtime, inbw;
if ((inbw = ifnet_input_linkrate(ifp)) == 0 && p == NULL) {
sample_holdtime = 0; /* polling is disabled */
ifp->if_rxpoll_wlowat = ifp->if_rxpoll_plowat =
ifp->if_rxpoll_blowat = 0;
ifp->if_rxpoll_whiwat = ifp->if_rxpoll_phiwat =
ifp->if_rxpoll_bhiwat = (u_int32_t)-1;
ifp->if_rxpoll_plim = 0;
ifp->if_rxpoll_ival = IF_RXPOLL_INTERVALTIME_MIN;
} else {
u_int32_t plowat, phiwat, blowat, bhiwat, plim;
u_int64_t ival;
unsigned int n, i;
for (n = 0, i = 0; rxpoll_tbl[i].speed != 0; i++) {
if (inbw < rxpoll_tbl[i].speed) {
break;
}
n = i;
}
/* auto-tune if caller didn't specify a value */
plowat = ((p == NULL || p->packets_lowat == 0) ?
rxpoll_tbl[n].plowat : p->packets_lowat);
phiwat = ((p == NULL || p->packets_hiwat == 0) ?
rxpoll_tbl[n].phiwat : p->packets_hiwat);
blowat = ((p == NULL || p->bytes_lowat == 0) ?
rxpoll_tbl[n].blowat : p->bytes_lowat);
bhiwat = ((p == NULL || p->bytes_hiwat == 0) ?
rxpoll_tbl[n].bhiwat : p->bytes_hiwat);
plim = ((p == NULL || p->packets_limit == 0) ?
if_rxpoll_max : p->packets_limit);
ival = ((p == NULL || p->interval_time == 0) ?
if_rxpoll_interval_time : p->interval_time);
VERIFY(plowat != 0 && phiwat != 0);
VERIFY(blowat != 0 && bhiwat != 0);
VERIFY(ival >= IF_RXPOLL_INTERVALTIME_MIN);
sample_holdtime = if_rxpoll_sample_holdtime;
ifp->if_rxpoll_wlowat = if_sysctl_rxpoll_wlowat;
ifp->if_rxpoll_whiwat = if_sysctl_rxpoll_whiwat;
ifp->if_rxpoll_plowat = plowat;
ifp->if_rxpoll_phiwat = phiwat;
ifp->if_rxpoll_blowat = blowat;
ifp->if_rxpoll_bhiwat = bhiwat;
ifp->if_rxpoll_plim = plim;
ifp->if_rxpoll_ival = ival;
}
net_nsectimer(&if_rxpoll_mode_holdtime, &ifp->if_poll_mode_holdtime);
net_nsectimer(&sample_holdtime, &ifp->if_poll_sample_holdtime);
if (dlil_verbose) {
DLIL_PRINTF("%s: speed %llu bps, sample per %llu nsec, "
"poll interval %llu nsec, pkts per poll %u, "
"pkt limits [%u/%u], wreq limits [%u/%u], "
"bytes limits [%u/%u]\n", if_name(ifp),
inbw, sample_holdtime, ifp->if_rxpoll_ival,
ifp->if_rxpoll_plim, ifp->if_rxpoll_plowat,
ifp->if_rxpoll_phiwat, ifp->if_rxpoll_wlowat,
ifp->if_rxpoll_whiwat, ifp->if_rxpoll_blowat,
ifp->if_rxpoll_bhiwat);
}
}
/*
* Must be called on an attached ifnet (caller is expected to check.)
* Caller may pass NULL for poll parameters to indicate "auto-tuning."
*/
errno_t
dlil_rxpoll_set_params(struct ifnet *ifp, struct ifnet_poll_params *p,
boolean_t locked)
{
errno_t err;
struct dlil_threading_info *inp;
VERIFY(ifp != NULL);
if (!(ifp->if_eflags & IFEF_RXPOLL) || (inp = ifp->if_inp) == NULL) {
return ENXIO;
}
err = dlil_rxpoll_validate_params(p);
if (err != 0) {
return err;
}
if (!locked) {
lck_mtx_lock(&inp->dlth_lock);
}
LCK_MTX_ASSERT(&inp->dlth_lock, LCK_MTX_ASSERT_OWNED);
/*
* Normally, we'd reset the parameters to the auto-tuned values
* if the the input thread detects a change in link rate. If the
* driver provides its own parameters right after a link rate
* changes, but before the input thread gets to run, we want to
* make sure to keep the driver's values. Clearing if_poll_update
* will achieve that.
*/
if (p != NULL && !locked && ifp->if_poll_update != 0) {
ifp->if_poll_update = 0;
}
dlil_rxpoll_update_params(ifp, p);
if (!locked) {
lck_mtx_unlock(&inp->dlth_lock);
}
return 0;
}
/*
* Must be called on an attached ifnet (caller is expected to check.)
*/
errno_t
dlil_rxpoll_get_params(struct ifnet *ifp, struct ifnet_poll_params *p)
{
struct dlil_threading_info *inp;
VERIFY(ifp != NULL && p != NULL);
if (!(ifp->if_eflags & IFEF_RXPOLL) || (inp = ifp->if_inp) == NULL) {
return ENXIO;
}
bzero(p, sizeof(*p));
lck_mtx_lock(&inp->dlth_lock);
p->packets_limit = ifp->if_rxpoll_plim;
p->packets_lowat = ifp->if_rxpoll_plowat;
p->packets_hiwat = ifp->if_rxpoll_phiwat;
p->bytes_lowat = ifp->if_rxpoll_blowat;
p->bytes_hiwat = ifp->if_rxpoll_bhiwat;
p->interval_time = ifp->if_rxpoll_ival;
lck_mtx_unlock(&inp->dlth_lock);
return 0;
}
errno_t
ifnet_input(struct ifnet *ifp, struct mbuf *m_head,
const struct ifnet_stat_increment_param *s)
{
return ifnet_input_common(ifp, m_head, NULL, s, FALSE, FALSE);
}
errno_t
ifnet_input_extended(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, const struct ifnet_stat_increment_param *s)
{
return ifnet_input_common(ifp, m_head, m_tail, s, TRUE, FALSE);
}
errno_t
ifnet_input_poll(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, const struct ifnet_stat_increment_param *s)
{
return ifnet_input_common(ifp, m_head, m_tail, s,
(m_head != NULL), TRUE);
}
static errno_t
ifnet_input_common(struct ifnet *ifp, struct mbuf *m_head, struct mbuf *m_tail,
const struct ifnet_stat_increment_param *s, boolean_t ext, boolean_t poll)
{
dlil_input_func input_func;
struct ifnet_stat_increment_param _s;
u_int32_t m_cnt = 0, m_size = 0;
struct mbuf *last;
errno_t err = 0;
if ((m_head == NULL && !poll) || (s == NULL && ext)) {
if (m_head != NULL) {
mbuf_freem_list(m_head);
}
return EINVAL;
}
VERIFY(m_head != NULL || (s == NULL && m_tail == NULL && !ext && poll));
VERIFY(m_tail == NULL || ext);
VERIFY(s != NULL || !ext);
/*
* Drop the packet(s) if the parameters are invalid, or if the
* interface is no longer attached; else hold an IO refcnt to
* prevent it from being detached (will be released below.)
*/
if (ifp == NULL || (ifp != lo_ifp && !ifnet_datamov_begin(ifp))) {
if (m_head != NULL) {
mbuf_freem_list(m_head);
}
return EINVAL;
}
input_func = ifp->if_input_dlil;
VERIFY(input_func != NULL);
if (m_tail == NULL) {
last = m_head;
while (m_head != NULL) {
#if IFNET_INPUT_SANITY_CHK
if (__improbable(dlil_input_sanity_check != 0)) {
DLIL_INPUT_CHECK(last, ifp);
}
#endif /* IFNET_INPUT_SANITY_CHK */
m_cnt++;
m_size += m_length(last);
if (mbuf_nextpkt(last) == NULL) {
break;
}
last = mbuf_nextpkt(last);
}
m_tail = last;
} else {
#if IFNET_INPUT_SANITY_CHK
if (__improbable(dlil_input_sanity_check != 0)) {
last = m_head;
while (1) {
DLIL_INPUT_CHECK(last, ifp);
m_cnt++;
m_size += m_length(last);
if (mbuf_nextpkt(last) == NULL) {
break;
}
last = mbuf_nextpkt(last);
}
} else {
m_cnt = s->packets_in;
m_size = s->bytes_in;
last = m_tail;
}
#else
m_cnt = s->packets_in;
m_size = s->bytes_in;
last = m_tail;
#endif /* IFNET_INPUT_SANITY_CHK */
}
if (last != m_tail) {
panic_plain("%s: invalid input packet chain for %s, "
"tail mbuf %p instead of %p\n", __func__, if_name(ifp),
m_tail, last);
}
/*
* Assert packet count only for the extended variant, for backwards
* compatibility, since this came directly from the device driver.
* Relax this assertion for input bytes, as the driver may have
* included the link-layer headers in the computation; hence
* m_size is just an approximation.
*/
if (ext && s->packets_in != m_cnt) {
panic_plain("%s: input packet count mismatch for %s, "
"%d instead of %d\n", __func__, if_name(ifp),
s->packets_in, m_cnt);
}
if (s == NULL) {
bzero(&_s, sizeof(_s));
s = &_s;
} else {
_s = *s;
}
_s.packets_in = m_cnt;
_s.bytes_in = m_size;
err = (*input_func)(ifp, m_head, m_tail, s, poll, current_thread());
if (ifp != lo_ifp) {
/* Release the IO refcnt */
ifnet_datamov_end(ifp);
}
return err;
}
errno_t
dlil_output_handler(struct ifnet *ifp, struct mbuf *m)
{
return ifp->if_output(ifp, m);
}
errno_t
dlil_input_handler(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, const struct ifnet_stat_increment_param *s,
boolean_t poll, struct thread *tp)
{
struct dlil_threading_info *inp = ifp->if_inp;
if (__improbable(inp == NULL)) {
inp = dlil_main_input_thread;
}
return inp->dlth_strategy(inp, ifp, m_head, m_tail, s, poll, tp);
}
static errno_t
dlil_input_async(struct dlil_threading_info *inp,
struct ifnet *ifp, struct mbuf *m_head, struct mbuf *m_tail,
const struct ifnet_stat_increment_param *s, boolean_t poll,
struct thread *tp)
{
u_int32_t m_cnt = s->packets_in;
u_int32_t m_size = s->bytes_in;
boolean_t notify = FALSE;
/*
* If there is a matching DLIL input thread associated with an
* affinity set, associate this thread with the same set. We
* will only do this once.
*/
lck_mtx_lock_spin(&inp->dlth_lock);
if (inp != dlil_main_input_thread && inp->dlth_affinity && tp != NULL &&
((!poll && inp->dlth_driver_thread == THREAD_NULL) ||
(poll && inp->dlth_poller_thread == THREAD_NULL))) {
u_int32_t tag = inp->dlth_affinity_tag;
if (poll) {
VERIFY(inp->dlth_poller_thread == THREAD_NULL);
inp->dlth_poller_thread = tp;
} else {
VERIFY(inp->dlth_driver_thread == THREAD_NULL);
inp->dlth_driver_thread = tp;
}
lck_mtx_unlock(&inp->dlth_lock);
/* Associate the current thread with the new affinity tag */
(void) dlil_affinity_set(tp, tag);
/*
* Take a reference on the current thread; during detach,
* we will need to refer to it in order to tear down its
* affinity.
*/
thread_reference(tp);
lck_mtx_lock_spin(&inp->dlth_lock);
}
VERIFY(m_head != NULL || (m_tail == NULL && m_cnt == 0));
/*
* Because of loopbacked multicast we cannot stuff the ifp in
* the rcvif of the packet header: loopback (lo0) packets use a
* dedicated list so that we can later associate them with lo_ifp
* on their way up the stack. Packets for other interfaces without
* dedicated input threads go to the regular list.
*/
if (m_head != NULL) {
classq_pkt_t head, tail;
CLASSQ_PKT_INIT_MBUF(&head, m_head);
CLASSQ_PKT_INIT_MBUF(&tail, m_tail);
if (inp == dlil_main_input_thread && ifp == lo_ifp) {
struct dlil_main_threading_info *inpm =
(struct dlil_main_threading_info *)inp;
_addq_multi(&inpm->lo_rcvq_pkts, &head, &tail,
m_cnt, m_size);
} else {
_addq_multi(&inp->dlth_pkts, &head, &tail,
m_cnt, m_size);
}
}
#if IFNET_INPUT_SANITY_CHK
if (__improbable(dlil_input_sanity_check != 0)) {
u_int32_t count = 0, size = 0;
struct mbuf *m0;
for (m0 = m_head; m0; m0 = mbuf_nextpkt(m0)) {
size += m_length(m0);
count++;
}
if (count != m_cnt) {
panic_plain("%s: invalid total packet count %u "
"(expected %u)\n", if_name(ifp), count, m_cnt);
/* NOTREACHED */
__builtin_unreachable();
} else if (size != m_size) {
panic_plain("%s: invalid total packet size %u "
"(expected %u)\n", if_name(ifp), size, m_size);
/* NOTREACHED */
__builtin_unreachable();
}
inp->dlth_pkts_cnt += m_cnt;
}
#endif /* IFNET_INPUT_SANITY_CHK */
dlil_input_stats_add(s, inp, ifp, poll);
/*
* If we're using the main input thread, synchronize the
* stats now since we have the interface context. All
* other cases involving dedicated input threads will
* have their stats synchronized there.
*/
if (inp == dlil_main_input_thread) {
notify = dlil_input_stats_sync(ifp, inp);
}
dlil_input_wakeup(inp);
lck_mtx_unlock(&inp->dlth_lock);
if (notify) {
ifnet_notify_data_threshold(ifp);
}
return 0;
}
static errno_t
dlil_input_sync(struct dlil_threading_info *inp,
struct ifnet *ifp, struct mbuf *m_head, struct mbuf *m_tail,
const struct ifnet_stat_increment_param *s, boolean_t poll,
struct thread *tp)
{
#pragma unused(tp)
u_int32_t m_cnt = s->packets_in;
u_int32_t m_size = s->bytes_in;
boolean_t notify = FALSE;
classq_pkt_t head, tail;
ASSERT(inp != dlil_main_input_thread);
/* XXX: should we just assert instead? */
if (__improbable(m_head == NULL)) {
return 0;
}
CLASSQ_PKT_INIT_MBUF(&head, m_head);
CLASSQ_PKT_INIT_MBUF(&tail, m_tail);
lck_mtx_lock_spin(&inp->dlth_lock);
_addq_multi(&inp->dlth_pkts, &head, &tail, m_cnt, m_size);
#if IFNET_INPUT_SANITY_CHK
if (__improbable(dlil_input_sanity_check != 0)) {
u_int32_t count = 0, size = 0;
struct mbuf *m0;
for (m0 = m_head; m0; m0 = mbuf_nextpkt(m0)) {
size += m_length(m0);
count++;
}
if (count != m_cnt) {
panic_plain("%s: invalid total packet count %u "
"(expected %u)\n", if_name(ifp), count, m_cnt);
/* NOTREACHED */
__builtin_unreachable();
} else if (size != m_size) {
panic_plain("%s: invalid total packet size %u "
"(expected %u)\n", if_name(ifp), size, m_size);
/* NOTREACHED */
__builtin_unreachable();
}
inp->dlth_pkts_cnt += m_cnt;
}
#endif /* IFNET_INPUT_SANITY_CHK */
dlil_input_stats_add(s, inp, ifp, poll);
m_cnt = qlen(&inp->dlth_pkts);
_getq_all(&inp->dlth_pkts, &head, NULL, NULL, NULL);
notify = dlil_input_stats_sync(ifp, inp);
lck_mtx_unlock(&inp->dlth_lock);
if (notify) {
ifnet_notify_data_threshold(ifp);
}
/*
* NOTE warning %%% attention !!!!
* We should think about putting some thread starvation
* safeguards if we deal with long chains of packets.
*/
if (head.cp_mbuf != NULL) {
dlil_input_packet_list_extended(NULL, head.cp_mbuf,
m_cnt, ifp->if_poll_mode);
}
return 0;
}
static void
ifnet_start_common(struct ifnet *ifp, boolean_t resetfc)
{
if (!(ifp->if_eflags & IFEF_TXSTART)) {
return;
}
/*
* If the starter thread is inactive, signal it to do work,
* unless the interface is being flow controlled from below,
* e.g. a virtual interface being flow controlled by a real
* network interface beneath it, or it's been disabled via
* a call to ifnet_disable_output().
*/
lck_mtx_lock_spin(&ifp->if_start_lock);
if (resetfc) {
ifp->if_start_flags &= ~IFSF_FLOW_CONTROLLED;
} else if (ifp->if_start_flags & IFSF_FLOW_CONTROLLED) {
lck_mtx_unlock(&ifp->if_start_lock);
return;
}
ifp->if_start_req++;
if (!ifp->if_start_active && ifp->if_start_thread != THREAD_NULL &&
(resetfc || !(ifp->if_eflags & IFEF_ENQUEUE_MULTI) ||
IFCQ_LEN(&ifp->if_snd) >= ifp->if_start_delay_qlen ||
ifp->if_start_delayed == 0)) {
(void) wakeup_one((caddr_t)&ifp->if_start_thread);
}
lck_mtx_unlock(&ifp->if_start_lock);
}
void
ifnet_start(struct ifnet *ifp)
{
ifnet_start_common(ifp, FALSE);
}
__attribute__((noreturn))
static void
ifnet_start_thread_func(void *v, wait_result_t w)
{
#pragma unused(w)
struct ifnet *ifp = v;
char thread_name[MAXTHREADNAMESIZE];
/* Construct the name for this thread, and then apply it. */
bzero(thread_name, sizeof(thread_name));
(void) snprintf(thread_name, sizeof(thread_name),
"ifnet_start_%s", ifp->if_xname);
ASSERT(ifp->if_start_thread == current_thread());
thread_set_thread_name(current_thread(), thread_name);
/*
* Treat the dedicated starter thread for lo0 as equivalent to
* the driver workloop thread; if net_affinity is enabled for
* the main input thread, associate this starter thread to it
* by binding them with the same affinity tag. This is done
* only once (as we only have one lo_ifp which never goes away.)
*/
if (ifp == lo_ifp) {
struct dlil_threading_info *inp = dlil_main_input_thread;
struct thread *tp = current_thread();
lck_mtx_lock(&inp->dlth_lock);
if (inp->dlth_affinity) {
u_int32_t tag = inp->dlth_affinity_tag;
VERIFY(inp->dlth_driver_thread == THREAD_NULL);
VERIFY(inp->dlth_poller_thread == THREAD_NULL);
inp->dlth_driver_thread = tp;
lck_mtx_unlock(&inp->dlth_lock);
/* Associate this thread with the affinity tag */
(void) dlil_affinity_set(tp, tag);
} else {
lck_mtx_unlock(&inp->dlth_lock);
}
}
lck_mtx_lock(&ifp->if_start_lock);
VERIFY(!ifp->if_start_embryonic && !ifp->if_start_active);
(void) assert_wait(&ifp->if_start_thread, THREAD_UNINT);
ifp->if_start_embryonic = 1;
/* wake up once to get out of embryonic state */
ifp->if_start_req++;
(void) wakeup_one((caddr_t)&ifp->if_start_thread);
lck_mtx_unlock(&ifp->if_start_lock);
(void) thread_block_parameter(ifnet_start_thread_cont, ifp);
/* NOTREACHED */
__builtin_unreachable();
}
__attribute__((noreturn))
static void
ifnet_start_thread_cont(void *v, wait_result_t wres)
{
struct ifnet *ifp = v;
struct ifclassq *ifq = &ifp->if_snd;
lck_mtx_lock_spin(&ifp->if_start_lock);
if (__improbable(wres == THREAD_INTERRUPTED ||
ifp->if_start_thread == THREAD_NULL)) {
goto terminate;
}
if (__improbable(ifp->if_start_embryonic)) {
ifp->if_start_embryonic = 0;
lck_mtx_unlock(&ifp->if_start_lock);
ifnet_decr_pending_thread_count(ifp);
lck_mtx_lock_spin(&ifp->if_start_lock);
goto skip;
}
ifp->if_start_active = 1;
/*
* Keep on servicing until no more request.
*/
for (;;) {
u_int32_t req = ifp->if_start_req;
if (!IFCQ_IS_EMPTY(ifq) &&
(ifp->if_eflags & IFEF_ENQUEUE_MULTI) &&
ifp->if_start_delayed == 0 &&
IFCQ_LEN(ifq) < ifp->if_start_delay_qlen &&
(ifp->if_eflags & IFEF_DELAY_START)) {
ifp->if_start_delayed = 1;
ifnet_start_delayed++;
break;
} else {
ifp->if_start_delayed = 0;
}
lck_mtx_unlock(&ifp->if_start_lock);
/*
* If no longer attached, don't call start because ifp
* is being destroyed; else hold an IO refcnt to
* prevent the interface from being detached (will be
* released below.)
*/
if (!ifnet_datamov_begin(ifp)) {
lck_mtx_lock_spin(&ifp->if_start_lock);
break;
}
/* invoke the driver's start routine */
((*ifp->if_start)(ifp));
/*
* Release the io ref count taken above.
*/
ifnet_datamov_end(ifp);
lck_mtx_lock_spin(&ifp->if_start_lock);
/*
* If there's no pending request or if the
* interface has been disabled, we're done.
*/
if (req == ifp->if_start_req ||
(ifp->if_start_flags & IFSF_FLOW_CONTROLLED)) {
break;
}
}
skip:
ifp->if_start_req = 0;
ifp->if_start_active = 0;
if (__probable(ifp->if_start_thread != THREAD_NULL)) {
uint64_t deadline = TIMEOUT_WAIT_FOREVER;
struct timespec delay_start_ts;
struct timespec *ts;
/*
* Wakeup N ns from now if rate-controlled by TBR, and if
* there are still packets in the send queue which haven't
* been dequeued so far; else sleep indefinitely (ts = NULL)
* until ifnet_start() is called again.
*/
ts = ((IFCQ_TBR_IS_ENABLED(ifq) && !IFCQ_IS_EMPTY(ifq)) ?
&ifp->if_start_cycle : NULL);
if (ts == NULL && ifp->if_start_delayed == 1) {
delay_start_ts.tv_sec = 0;
delay_start_ts.tv_nsec = ifp->if_start_delay_timeout;
ts = &delay_start_ts;
}
if (ts != NULL && ts->tv_sec == 0 && ts->tv_nsec == 0) {
ts = NULL;
}
if (__improbable(ts != NULL)) {
clock_interval_to_deadline((uint32_t)(ts->tv_nsec +
(ts->tv_sec * NSEC_PER_SEC)), 1, &deadline);
}
(void) assert_wait_deadline(&ifp->if_start_thread,
THREAD_UNINT, deadline);
lck_mtx_unlock(&ifp->if_start_lock);
(void) thread_block_parameter(ifnet_start_thread_cont, ifp);
/* NOTREACHED */
} else {
terminate:
/* interface is detached? */
ifnet_set_start_cycle(ifp, NULL);
lck_mtx_unlock(&ifp->if_start_lock);
ifnet_purge(ifp);
if (dlil_verbose) {
DLIL_PRINTF("%s: starter thread terminated\n",
if_name(ifp));
}
/* for the extra refcnt from kernel_thread_start() */
thread_deallocate(current_thread());
/* this is the end */
thread_terminate(current_thread());
/* NOTREACHED */
}
/* must never get here */
VERIFY(0);
/* NOTREACHED */
__builtin_unreachable();
}
void
ifnet_set_start_cycle(struct ifnet *ifp, struct timespec *ts)
{
if (ts == NULL) {
bzero(&ifp->if_start_cycle, sizeof(ifp->if_start_cycle));
} else {
*(&ifp->if_start_cycle) = *ts;
}
if (ts != NULL && ts->tv_nsec != 0 && dlil_verbose) {
DLIL_PRINTF("%s: restart interval set to %lu nsec\n",
if_name(ifp), ts->tv_nsec);
}
}
static inline void
ifnet_poll_wakeup(struct ifnet *ifp)
{
LCK_MTX_ASSERT(&ifp->if_poll_lock, LCK_MTX_ASSERT_OWNED);
ifp->if_poll_req++;
if (!(ifp->if_poll_flags & IF_POLLF_RUNNING) &&
ifp->if_poll_thread != THREAD_NULL) {
wakeup_one((caddr_t)&ifp->if_poll_thread);
}
}
void
ifnet_poll(struct ifnet *ifp)
{
/*
* If the poller thread is inactive, signal it to do work.
*/
lck_mtx_lock_spin(&ifp->if_poll_lock);
ifnet_poll_wakeup(ifp);
lck_mtx_unlock(&ifp->if_poll_lock);
}
__attribute__((noreturn))
static void
ifnet_poll_thread_func(void *v, wait_result_t w)
{
#pragma unused(w)
char thread_name[MAXTHREADNAMESIZE];
struct ifnet *ifp = v;
VERIFY(ifp->if_eflags & IFEF_RXPOLL);
VERIFY(current_thread() == ifp->if_poll_thread);
/* construct the name for this thread, and then apply it */
bzero(thread_name, sizeof(thread_name));
(void) snprintf(thread_name, sizeof(thread_name),
"ifnet_poller_%s", ifp->if_xname);
thread_set_thread_name(ifp->if_poll_thread, thread_name);
lck_mtx_lock(&ifp->if_poll_lock);
VERIFY(!(ifp->if_poll_flags & (IF_POLLF_EMBRYONIC | IF_POLLF_RUNNING)));
(void) assert_wait(&ifp->if_poll_thread, THREAD_UNINT);
ifp->if_poll_flags |= IF_POLLF_EMBRYONIC;
/* wake up once to get out of embryonic state */
ifnet_poll_wakeup(ifp);
lck_mtx_unlock(&ifp->if_poll_lock);
(void) thread_block_parameter(ifnet_poll_thread_cont, ifp);
/* NOTREACHED */
__builtin_unreachable();
}
__attribute__((noreturn))
static void
ifnet_poll_thread_cont(void *v, wait_result_t wres)
{
struct dlil_threading_info *inp;
struct ifnet *ifp = v;
struct ifnet_stat_increment_param s;
struct timespec start_time;
VERIFY(ifp->if_eflags & IFEF_RXPOLL);
bzero(&s, sizeof(s));
net_timerclear(&start_time);
lck_mtx_lock_spin(&ifp->if_poll_lock);
if (__improbable(wres == THREAD_INTERRUPTED ||
ifp->if_poll_thread == THREAD_NULL)) {
goto terminate;
}
inp = ifp->if_inp;
VERIFY(inp != NULL);
if (__improbable(ifp->if_poll_flags & IF_POLLF_EMBRYONIC)) {
ifp->if_poll_flags &= ~IF_POLLF_EMBRYONIC;
lck_mtx_unlock(&ifp->if_poll_lock);
ifnet_decr_pending_thread_count(ifp);
lck_mtx_lock_spin(&ifp->if_poll_lock);
goto skip;
}
ifp->if_poll_flags |= IF_POLLF_RUNNING;
/*
* Keep on servicing until no more request.
*/
for (;;) {
struct mbuf *m_head, *m_tail;
u_int32_t m_lim, m_cnt, m_totlen;
u_int16_t req = ifp->if_poll_req;
m_lim = (ifp->if_rxpoll_plim != 0) ? ifp->if_rxpoll_plim :
MAX((qlimit(&inp->dlth_pkts)), (ifp->if_rxpoll_phiwat << 2));
lck_mtx_unlock(&ifp->if_poll_lock);
/*
* If no longer attached, there's nothing to do;
* else hold an IO refcnt to prevent the interface
* from being detached (will be released below.)
*/
if (!ifnet_is_attached(ifp, 1)) {
lck_mtx_lock_spin(&ifp->if_poll_lock);
break;
}
if (dlil_verbose > 1) {
DLIL_PRINTF("%s: polling up to %d pkts, "
"pkts avg %d max %d, wreq avg %d, "
"bytes avg %d\n",
if_name(ifp), m_lim,
ifp->if_rxpoll_pavg, ifp->if_rxpoll_pmax,
ifp->if_rxpoll_wavg, ifp->if_rxpoll_bavg);
}
/* invoke the driver's input poll routine */
((*ifp->if_input_poll)(ifp, 0, m_lim, &m_head, &m_tail,
&m_cnt, &m_totlen));
if (m_head != NULL) {
VERIFY(m_tail != NULL && m_cnt > 0);
if (dlil_verbose > 1) {
DLIL_PRINTF("%s: polled %d pkts, "
"pkts avg %d max %d, wreq avg %d, "
"bytes avg %d\n",
if_name(ifp), m_cnt,
ifp->if_rxpoll_pavg, ifp->if_rxpoll_pmax,
ifp->if_rxpoll_wavg, ifp->if_rxpoll_bavg);
}
/* stats are required for extended variant */
s.packets_in = m_cnt;
s.bytes_in = m_totlen;
(void) ifnet_input_common(ifp, m_head, m_tail,
&s, TRUE, TRUE);
} else {
if (dlil_verbose > 1) {
DLIL_PRINTF("%s: no packets, "
"pkts avg %d max %d, wreq avg %d, "
"bytes avg %d\n",
if_name(ifp), ifp->if_rxpoll_pavg,
ifp->if_rxpoll_pmax, ifp->if_rxpoll_wavg,
ifp->if_rxpoll_bavg);
}
(void) ifnet_input_common(ifp, NULL, NULL,
NULL, FALSE, TRUE);
}
/* Release the io ref count */
ifnet_decr_iorefcnt(ifp);
lck_mtx_lock_spin(&ifp->if_poll_lock);
/* if there's no pending request, we're done */
if (req == ifp->if_poll_req ||
ifp->if_poll_thread == THREAD_NULL) {
break;
}
}
skip:
ifp->if_poll_req = 0;
ifp->if_poll_flags &= ~IF_POLLF_RUNNING;
if (ifp->if_poll_thread != THREAD_NULL) {
uint64_t deadline = TIMEOUT_WAIT_FOREVER;
struct timespec *ts;
/*
* Wakeup N ns from now, else sleep indefinitely (ts = NULL)
* until ifnet_poll() is called again.
*/
ts = &ifp->if_poll_cycle;
if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
ts = NULL;
}
if (ts != NULL) {
clock_interval_to_deadline((uint32_t)(ts->tv_nsec +
(ts->tv_sec * NSEC_PER_SEC)), 1, &deadline);
}
(void) assert_wait_deadline(&ifp->if_poll_thread,
THREAD_UNINT, deadline);
lck_mtx_unlock(&ifp->if_poll_lock);
(void) thread_block_parameter(ifnet_poll_thread_cont, ifp);
/* NOTREACHED */
} else {
terminate:
/* interface is detached (maybe while asleep)? */
ifnet_set_poll_cycle(ifp, NULL);
lck_mtx_unlock(&ifp->if_poll_lock);
if (dlil_verbose) {
DLIL_PRINTF("%s: poller thread terminated\n",
if_name(ifp));
}
/* for the extra refcnt from kernel_thread_start() */
thread_deallocate(current_thread());
/* this is the end */
thread_terminate(current_thread());
/* NOTREACHED */
}
/* must never get here */
VERIFY(0);
/* NOTREACHED */
__builtin_unreachable();
}
void
ifnet_set_poll_cycle(struct ifnet *ifp, struct timespec *ts)
{
if (ts == NULL) {
bzero(&ifp->if_poll_cycle, sizeof(ifp->if_poll_cycle));
} else {
*(&ifp->if_poll_cycle) = *ts;
}
if (ts != NULL && ts->tv_nsec != 0 && dlil_verbose) {
DLIL_PRINTF("%s: poll interval set to %lu nsec\n",
if_name(ifp), ts->tv_nsec);
}
}
void
ifnet_purge(struct ifnet *ifp)
{
if (ifp != NULL && (ifp->if_eflags & IFEF_TXSTART)) {
if_qflush(ifp, 0);
}
}
void
ifnet_update_sndq(struct ifclassq *ifq, cqev_t ev)
{
IFCQ_LOCK_ASSERT_HELD(ifq);
if (!(IFCQ_IS_READY(ifq))) {
return;
}
if (IFCQ_TBR_IS_ENABLED(ifq)) {
struct tb_profile tb = {
.rate = ifq->ifcq_tbr.tbr_rate_raw,
.percent = ifq->ifcq_tbr.tbr_percent, .depth = 0
};
(void) ifclassq_tbr_set(ifq, &tb, FALSE);
}
ifclassq_update(ifq, ev);
}
void
ifnet_update_rcv(struct ifnet *ifp, cqev_t ev)
{
switch (ev) {
case CLASSQ_EV_LINK_BANDWIDTH:
if (net_rxpoll && (ifp->if_eflags & IFEF_RXPOLL)) {
ifp->if_poll_update++;
}
break;
default:
break;
}
}
errno_t
ifnet_set_output_sched_model(struct ifnet *ifp, u_int32_t model)
{
struct ifclassq *ifq;
u_int32_t omodel;
errno_t err;
if (ifp == NULL || model >= IFNET_SCHED_MODEL_MAX) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART)) {
return ENXIO;
}
ifq = &ifp->if_snd;
IFCQ_LOCK(ifq);
omodel = ifp->if_output_sched_model;
ifp->if_output_sched_model = model;
if ((err = ifclassq_pktsched_setup(ifq)) != 0) {
ifp->if_output_sched_model = omodel;
}
IFCQ_UNLOCK(ifq);
return err;
}
errno_t
ifnet_set_sndq_maxlen(struct ifnet *ifp, u_int32_t maxqlen)
{
if (ifp == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART)) {
return ENXIO;
}
ifclassq_set_maxlen(&ifp->if_snd, maxqlen);
return 0;
}
errno_t
ifnet_get_sndq_maxlen(struct ifnet *ifp, u_int32_t *maxqlen)
{
if (ifp == NULL || maxqlen == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART)) {
return ENXIO;
}
*maxqlen = ifclassq_get_maxlen(&ifp->if_snd);
return 0;
}
errno_t
ifnet_get_sndq_len(struct ifnet *ifp, u_int32_t *pkts)
{
errno_t err;
if (ifp == NULL || pkts == NULL) {
err = EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART)) {
err = ENXIO;
} else {
err = ifclassq_get_len(&ifp->if_snd, MBUF_SC_UNSPEC,
pkts, NULL);
}
return err;
}
errno_t
ifnet_get_service_class_sndq_len(struct ifnet *ifp, mbuf_svc_class_t sc,
u_int32_t *pkts, u_int32_t *bytes)
{
errno_t err;
if (ifp == NULL || !MBUF_VALID_SC(sc) ||
(pkts == NULL && bytes == NULL)) {
err = EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART)) {
err = ENXIO;
} else {
err = ifclassq_get_len(&ifp->if_snd, sc, pkts, bytes);
}
return err;
}
errno_t
ifnet_set_rcvq_maxlen(struct ifnet *ifp, u_int32_t maxqlen)
{
struct dlil_threading_info *inp;
if (ifp == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_RXPOLL) || ifp->if_inp == NULL) {
return ENXIO;
}
if (maxqlen == 0) {
maxqlen = if_rcvq_maxlen;
} else if (maxqlen < IF_RCVQ_MINLEN) {
maxqlen = IF_RCVQ_MINLEN;
}
inp = ifp->if_inp;
lck_mtx_lock(&inp->dlth_lock);
qlimit(&inp->dlth_pkts) = maxqlen;
lck_mtx_unlock(&inp->dlth_lock);
return 0;
}
errno_t
ifnet_get_rcvq_maxlen(struct ifnet *ifp, u_int32_t *maxqlen)
{
struct dlil_threading_info *inp;
if (ifp == NULL || maxqlen == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_RXPOLL) || ifp->if_inp == NULL) {
return ENXIO;
}
inp = ifp->if_inp;
lck_mtx_lock(&inp->dlth_lock);
*maxqlen = qlimit(&inp->dlth_pkts);
lck_mtx_unlock(&inp->dlth_lock);
return 0;
}
void
ifnet_enqueue_multi_setup(struct ifnet *ifp, uint16_t delay_qlen,
uint16_t delay_timeout)
{
if (delay_qlen > 0 && delay_timeout > 0) {
if_set_eflags(ifp, IFEF_ENQUEUE_MULTI);
ifp->if_start_delay_qlen = MIN(100, delay_qlen);
ifp->if_start_delay_timeout = min(20000, delay_timeout);
/* convert timeout to nanoseconds */
ifp->if_start_delay_timeout *= 1000;
kprintf("%s: forced IFEF_ENQUEUE_MULTI qlen %u timeout %u\n",
ifp->if_xname, (uint32_t)delay_qlen,
(uint32_t)delay_timeout);
} else {
if_clear_eflags(ifp, IFEF_ENQUEUE_MULTI);
}
}
/*
* This function clears the DSCP bits in the IPV4/V6 header pointed to by buf.
* While it's ok for buf to be not 32 bit aligned, the caller must ensure that
* buf holds the full header.
*/
static __attribute__((noinline)) void
ifnet_mcast_clear_dscp(uint8_t *buf, uint8_t ip_ver)
{
struct ip *ip;
struct ip6_hdr *ip6;
uint8_t lbuf[64] __attribute__((aligned(8)));
uint8_t *p = buf;
if (ip_ver == IPVERSION) {
uint8_t old_tos;
uint32_t sum;
if (__improbable(!IP_HDR_ALIGNED_P(p))) {
DTRACE_IP1(not__aligned__v4, uint8_t *, buf);
bcopy(buf, lbuf, sizeof(struct ip));
p = lbuf;
}
ip = (struct ip *)(void *)p;
if (__probable((ip->ip_tos & ~IPTOS_ECN_MASK) == 0)) {
return;
}
DTRACE_IP1(clear__v4, struct ip *, ip);
old_tos = ip->ip_tos;
ip->ip_tos &= IPTOS_ECN_MASK;
sum = ip->ip_sum + htons(old_tos) - htons(ip->ip_tos);
sum = (sum >> 16) + (sum & 0xffff);
ip->ip_sum = (uint16_t)(sum & 0xffff);
if (__improbable(p == lbuf)) {
bcopy(lbuf, buf, sizeof(struct ip));
}
} else {
uint32_t flow;
ASSERT(ip_ver == IPV6_VERSION);
if (__improbable(!IP_HDR_ALIGNED_P(p))) {
DTRACE_IP1(not__aligned__v6, uint8_t *, buf);
bcopy(buf, lbuf, sizeof(struct ip6_hdr));
p = lbuf;
}
ip6 = (struct ip6_hdr *)(void *)p;
flow = ntohl(ip6->ip6_flow);
if (__probable((flow & IP6FLOW_DSCP_MASK) == 0)) {
return;
}
DTRACE_IP1(clear__v6, struct ip6_hdr *, ip6);
ip6->ip6_flow = htonl(flow & ~IP6FLOW_DSCP_MASK);
if (__improbable(p == lbuf)) {
bcopy(lbuf, buf, sizeof(struct ip6_hdr));
}
}
}
static inline errno_t
ifnet_enqueue_ifclassq(struct ifnet *ifp, classq_pkt_t *p, boolean_t flush,
boolean_t *pdrop)
{
volatile uint64_t *fg_ts = NULL;
volatile uint64_t *rt_ts = NULL;
struct timespec now;
u_int64_t now_nsec = 0;
int error = 0;
uint8_t *mcast_buf = NULL;
uint8_t ip_ver;
uint32_t pktlen;
ASSERT(ifp->if_eflags & IFEF_TXSTART);
/*
* If packet already carries a timestamp, either from dlil_output()
* or from flowswitch, use it here. Otherwise, record timestamp.
* PKTF_TS_VALID is always cleared prior to entering classq, i.e.
* the timestamp value is used internally there.
*/
switch (p->cp_ptype) {
case QP_MBUF:
ASSERT(p->cp_mbuf->m_flags & M_PKTHDR);
ASSERT(p->cp_mbuf->m_nextpkt == NULL);
if (!(p->cp_mbuf->m_pkthdr.pkt_flags & PKTF_TS_VALID) ||
p->cp_mbuf->m_pkthdr.pkt_timestamp == 0) {
nanouptime(&now);
net_timernsec(&now, &now_nsec);
p->cp_mbuf->m_pkthdr.pkt_timestamp = now_nsec;
}
p->cp_mbuf->m_pkthdr.pkt_flags &= ~PKTF_TS_VALID;
/*
* If the packet service class is not background,
* update the timestamp to indicate recent activity
* on a foreground socket.
*/
if ((p->cp_mbuf->m_pkthdr.pkt_flags & PKTF_FLOW_ID) &&
p->cp_mbuf->m_pkthdr.pkt_flowsrc == FLOWSRC_INPCB) {
if (!(p->cp_mbuf->m_pkthdr.pkt_flags &
PKTF_SO_BACKGROUND)) {
ifp->if_fg_sendts = (uint32_t)_net_uptime;
if (fg_ts != NULL) {
*fg_ts = (uint32_t)_net_uptime;
}
}
if (p->cp_mbuf->m_pkthdr.pkt_flags & PKTF_SO_REALTIME) {
ifp->if_rt_sendts = (uint32_t)_net_uptime;
if (rt_ts != NULL) {
*rt_ts = (uint32_t)_net_uptime;
}
}
}
pktlen = m_pktlen(p->cp_mbuf);
/*
* Some Wi-Fi AP implementations do not correctly handle
* multicast IP packets with DSCP bits set (radr://9331522).
* As a workaround we clear the DSCP bits but keep service
* class (rdar://51507725).
*/
if ((p->cp_mbuf->m_flags & M_MCAST) != 0 &&
IFNET_IS_WIFI_INFRA(ifp)) {
size_t len = mbuf_len(p->cp_mbuf), hlen;
struct ether_header *eh;
boolean_t pullup = FALSE;
uint16_t etype;
if (__improbable(len < sizeof(struct ether_header))) {
DTRACE_IP1(small__ether, size_t, len);
if ((p->cp_mbuf = m_pullup(p->cp_mbuf,
sizeof(struct ether_header))) == NULL) {
return ENOMEM;
}
}
eh = (struct ether_header *)mbuf_data(p->cp_mbuf);
etype = ntohs(eh->ether_type);
if (etype == ETHERTYPE_IP) {
hlen = sizeof(struct ether_header) +
sizeof(struct ip);
if (len < hlen) {
DTRACE_IP1(small__v4, size_t, len);
pullup = TRUE;
}
ip_ver = IPVERSION;
} else if (etype == ETHERTYPE_IPV6) {
hlen = sizeof(struct ether_header) +
sizeof(struct ip6_hdr);
if (len < hlen) {
DTRACE_IP1(small__v6, size_t, len);
pullup = TRUE;
}
ip_ver = IPV6_VERSION;
} else {
DTRACE_IP1(invalid__etype, uint16_t, etype);
break;
}
if (pullup) {
if ((p->cp_mbuf = m_pullup(p->cp_mbuf, (int)hlen)) ==
NULL) {
return ENOMEM;
}
eh = (struct ether_header *)mbuf_data(
p->cp_mbuf);
}
mcast_buf = (uint8_t *)(eh + 1);
/*
* ifnet_mcast_clear_dscp() will finish the work below.
* Note that the pullups above ensure that mcast_buf
* points to a full IP header.
*/
}
break;
default:
VERIFY(0);
/* NOTREACHED */
__builtin_unreachable();
}
if (mcast_buf != NULL) {
ifnet_mcast_clear_dscp(mcast_buf, ip_ver);
}
if (ifp->if_eflags & IFEF_ENQUEUE_MULTI) {
if (now_nsec == 0) {
nanouptime(&now);
net_timernsec(&now, &now_nsec);
}
/*
* If the driver chose to delay start callback for
* coalescing multiple packets, Then use the following
* heuristics to make sure that start callback will
* be delayed only when bulk data transfer is detected.
* 1. number of packets enqueued in (delay_win * 2) is
* greater than or equal to the delay qlen.
* 2. If delay_start is enabled it will stay enabled for
* another 10 idle windows. This is to take into account
* variable RTT and burst traffic.
* 3. If the time elapsed since last enqueue is more
* than 200ms we disable delaying start callback. This is
* is to take idle time into account.
*/
u_int64_t dwin = (ifp->if_start_delay_timeout << 1);
if (ifp->if_start_delay_swin > 0) {
if ((ifp->if_start_delay_swin + dwin) > now_nsec) {
ifp->if_start_delay_cnt++;
} else if ((now_nsec - ifp->if_start_delay_swin)
>= (200 * 1000 * 1000)) {
ifp->if_start_delay_swin = now_nsec;
ifp->if_start_delay_cnt = 1;
ifp->if_start_delay_idle = 0;
if (ifp->if_eflags & IFEF_DELAY_START) {
if_clear_eflags(ifp, IFEF_DELAY_START);
ifnet_delay_start_disabled_increment();
}
} else {
if (ifp->if_start_delay_cnt >=
ifp->if_start_delay_qlen) {
if_set_eflags(ifp, IFEF_DELAY_START);
ifp->if_start_delay_idle = 0;
} else {
if (ifp->if_start_delay_idle >= 10) {
if_clear_eflags(ifp,
IFEF_DELAY_START);
ifnet_delay_start_disabled_increment();
} else {
ifp->if_start_delay_idle++;
}
}
ifp->if_start_delay_swin = now_nsec;
ifp->if_start_delay_cnt = 1;
}
} else {
ifp->if_start_delay_swin = now_nsec;
ifp->if_start_delay_cnt = 1;
ifp->if_start_delay_idle = 0;
if_clear_eflags(ifp, IFEF_DELAY_START);
}
} else {
if_clear_eflags(ifp, IFEF_DELAY_START);
}
/* enqueue the packet (caller consumes object) */
error = ifclassq_enqueue(&ifp->if_snd, p, p, 1, pktlen, pdrop);
/*
* Tell the driver to start dequeueing; do this even when the queue
* for the packet is suspended (EQSUSPENDED), as the driver could still
* be dequeueing from other unsuspended queues.
*/
if (!(ifp->if_eflags & IFEF_ENQUEUE_MULTI) &&
((error == 0 && flush) || error == EQFULL || error == EQSUSPENDED)) {
ifnet_start(ifp);
}
return error;
}
static inline errno_t
ifnet_enqueue_ifclassq_chain(struct ifnet *ifp, classq_pkt_t *head,
classq_pkt_t *tail, uint32_t cnt, uint32_t bytes, boolean_t flush,
boolean_t *pdrop)
{
int error;
/* enqueue the packet (caller consumes object) */
error = ifclassq_enqueue(&ifp->if_snd, head, tail, cnt, bytes, pdrop);
/*
* Tell the driver to start dequeueing; do this even when the queue
* for the packet is suspended (EQSUSPENDED), as the driver could still
* be dequeueing from other unsuspended queues.
*/
if ((error == 0 && flush) || error == EQFULL || error == EQSUSPENDED) {
ifnet_start(ifp);
}
return error;
}
int
ifnet_enqueue_netem(void *handle, pktsched_pkt_t *pkts, uint32_t n_pkts)
{
struct ifnet *ifp = handle;
boolean_t pdrop; /* dummy */
uint32_t i;
ASSERT(n_pkts >= 1);
for (i = 0; i < n_pkts - 1; i++) {
(void) ifnet_enqueue_ifclassq(ifp, &pkts[i].pktsched_pkt,
FALSE, &pdrop);
}
/* flush with the last packet */
(void) ifnet_enqueue_ifclassq(ifp, &pkts[i].pktsched_pkt, TRUE, &pdrop);
return 0;
}
static inline errno_t
ifnet_enqueue_common(struct ifnet *ifp, classq_pkt_t *pkt, boolean_t flush,
boolean_t *pdrop)
{
if (ifp->if_output_netem != NULL) {
return netem_enqueue(ifp->if_output_netem, pkt, pdrop);
} else {
return ifnet_enqueue_ifclassq(ifp, pkt, flush, pdrop);
}
}
errno_t
ifnet_enqueue(struct ifnet *ifp, struct mbuf *m)
{
boolean_t pdrop;
return ifnet_enqueue_mbuf(ifp, m, TRUE, &pdrop);
}
errno_t
ifnet_enqueue_mbuf(struct ifnet *ifp, struct mbuf *m, boolean_t flush,
boolean_t *pdrop)
{
classq_pkt_t pkt;
if (ifp == NULL || m == NULL || !(m->m_flags & M_PKTHDR) ||
m->m_nextpkt != NULL) {
if (m != NULL) {
m_freem_list(m);
*pdrop = TRUE;
}
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
!IF_FULLY_ATTACHED(ifp)) {
/* flag tested without lock for performance */
m_freem(m);
*pdrop = TRUE;
return ENXIO;
} else if (!(ifp->if_flags & IFF_UP)) {
m_freem(m);
*pdrop = TRUE;
return ENETDOWN;
}
CLASSQ_PKT_INIT_MBUF(&pkt, m);
return ifnet_enqueue_common(ifp, &pkt, flush, pdrop);
}
errno_t
ifnet_enqueue_mbuf_chain(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, uint32_t cnt, uint32_t bytes, boolean_t flush,
boolean_t *pdrop)
{
classq_pkt_t head, tail;
ASSERT(m_head != NULL);
ASSERT((m_head->m_flags & M_PKTHDR) != 0);
ASSERT(m_tail != NULL);
ASSERT((m_tail->m_flags & M_PKTHDR) != 0);
ASSERT(ifp != NULL);
ASSERT((ifp->if_eflags & IFEF_TXSTART) != 0);
if (!IF_FULLY_ATTACHED(ifp)) {
/* flag tested without lock for performance */
m_freem_list(m_head);
*pdrop = TRUE;
return ENXIO;
} else if (!(ifp->if_flags & IFF_UP)) {
m_freem_list(m_head);
*pdrop = TRUE;
return ENETDOWN;
}
CLASSQ_PKT_INIT_MBUF(&head, m_head);
CLASSQ_PKT_INIT_MBUF(&tail, m_tail);
return ifnet_enqueue_ifclassq_chain(ifp, &head, &tail, cnt, bytes,
flush, pdrop);
}
errno_t
ifnet_dequeue(struct ifnet *ifp, struct mbuf **mp)
{
errno_t rc;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
if (ifp == NULL || mp == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
ifp->if_output_sched_model >= IFNET_SCHED_MODEL_MAX) {
return ENXIO;
}
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
rc = ifclassq_dequeue(&ifp->if_snd, 1, CLASSQ_DEQUEUE_MAX_BYTE_LIMIT,
&pkt, NULL, NULL, NULL);
VERIFY((pkt.cp_ptype == QP_MBUF) || (pkt.cp_mbuf == NULL));
ifnet_decr_iorefcnt(ifp);
*mp = pkt.cp_mbuf;
return rc;
}
errno_t
ifnet_dequeue_service_class(struct ifnet *ifp, mbuf_svc_class_t sc,
struct mbuf **mp)
{
errno_t rc;
classq_pkt_t pkt = CLASSQ_PKT_INITIALIZER(pkt);
if (ifp == NULL || mp == NULL || !MBUF_VALID_SC(sc)) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
ifp->if_output_sched_model >= IFNET_SCHED_MODEL_MAX) {
return ENXIO;
}
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
rc = ifclassq_dequeue_sc(&ifp->if_snd, sc, 1,
CLASSQ_DEQUEUE_MAX_BYTE_LIMIT, &pkt, NULL, NULL, NULL);
VERIFY((pkt.cp_ptype == QP_MBUF) || (pkt.cp_mbuf == NULL));
ifnet_decr_iorefcnt(ifp);
*mp = pkt.cp_mbuf;
return rc;
}
errno_t
ifnet_dequeue_multi(struct ifnet *ifp, u_int32_t pkt_limit,
struct mbuf **head, struct mbuf **tail, u_int32_t *cnt, u_int32_t *len)
{
errno_t rc;
classq_pkt_t pkt_head = CLASSQ_PKT_INITIALIZER(pkt_head);
classq_pkt_t pkt_tail = CLASSQ_PKT_INITIALIZER(pkt_tail);
if (ifp == NULL || head == NULL || pkt_limit < 1) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
ifp->if_output_sched_model >= IFNET_SCHED_MODEL_MAX) {
return ENXIO;
}
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
rc = ifclassq_dequeue(&ifp->if_snd, pkt_limit,
CLASSQ_DEQUEUE_MAX_BYTE_LIMIT, &pkt_head, &pkt_tail, cnt, len);
VERIFY((pkt_head.cp_ptype == QP_MBUF) || (pkt_head.cp_mbuf == NULL));
ifnet_decr_iorefcnt(ifp);
*head = pkt_head.cp_mbuf;
if (tail != NULL) {
*tail = pkt_tail.cp_mbuf;
}
return rc;
}
errno_t
ifnet_dequeue_multi_bytes(struct ifnet *ifp, u_int32_t byte_limit,
struct mbuf **head, struct mbuf **tail, u_int32_t *cnt, u_int32_t *len)
{
errno_t rc;
classq_pkt_t pkt_head = CLASSQ_PKT_INITIALIZER(pkt_head);
classq_pkt_t pkt_tail = CLASSQ_PKT_INITIALIZER(pkt_tail);
if (ifp == NULL || head == NULL || byte_limit < 1) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
ifp->if_output_sched_model >= IFNET_SCHED_MODEL_MAX) {
return ENXIO;
}
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
rc = ifclassq_dequeue(&ifp->if_snd, CLASSQ_DEQUEUE_MAX_PKT_LIMIT,
byte_limit, &pkt_head, &pkt_tail, cnt, len);
VERIFY((pkt_head.cp_ptype == QP_MBUF) || (pkt_head.cp_mbuf == NULL));
ifnet_decr_iorefcnt(ifp);
*head = pkt_head.cp_mbuf;
if (tail != NULL) {
*tail = pkt_tail.cp_mbuf;
}
return rc;
}
errno_t
ifnet_dequeue_service_class_multi(struct ifnet *ifp, mbuf_svc_class_t sc,
u_int32_t pkt_limit, struct mbuf **head, struct mbuf **tail, u_int32_t *cnt,
u_int32_t *len)
{
errno_t rc;
classq_pkt_t pkt_head = CLASSQ_PKT_INITIALIZER(pkt_head);
classq_pkt_t pkt_tail = CLASSQ_PKT_INITIALIZER(pkt_tail);
if (ifp == NULL || head == NULL || pkt_limit < 1 ||
!MBUF_VALID_SC(sc)) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
ifp->if_output_sched_model >= IFNET_SCHED_MODEL_MAX) {
return ENXIO;
}
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
rc = ifclassq_dequeue_sc(&ifp->if_snd, sc, pkt_limit,
CLASSQ_DEQUEUE_MAX_BYTE_LIMIT, &pkt_head, &pkt_tail,
cnt, len);
VERIFY((pkt_head.cp_ptype == QP_MBUF) || (pkt_head.cp_mbuf == NULL));
ifnet_decr_iorefcnt(ifp);
*head = pkt_head.cp_mbuf;
if (tail != NULL) {
*tail = pkt_tail.cp_mbuf;
}
return rc;
}
#if XNU_TARGET_OS_OSX
errno_t
ifnet_framer_stub(struct ifnet *ifp, struct mbuf **m,
const struct sockaddr *dest, const char *dest_linkaddr,
const char *frame_type, u_int32_t *pre, u_int32_t *post)
{
if (pre != NULL) {
*pre = 0;
}
if (post != NULL) {
*post = 0;
}
return ifp->if_framer_legacy(ifp, m, dest, dest_linkaddr, frame_type);
}
#endif /* XNU_TARGET_OS_OSX */
static boolean_t
packet_has_vlan_tag(struct mbuf * m)
{
u_int tag = 0;
if ((m->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) != 0) {
tag = EVL_VLANOFTAG(m->m_pkthdr.vlan_tag);
if (tag == 0) {
/* the packet is just priority-tagged, clear the bit */
m->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
}
}
return tag != 0;
}
static int
dlil_interface_filters_input(struct ifnet *ifp, struct mbuf **m_p,
char **frame_header_p, protocol_family_t protocol_family)
{
boolean_t is_vlan_packet = FALSE;
struct ifnet_filter *filter;
struct mbuf *m = *m_p;
is_vlan_packet = packet_has_vlan_tag(m);
if (TAILQ_EMPTY(&ifp->if_flt_head)) {
return 0;
}
/*
* Pass the inbound packet to the interface filters
*/
lck_mtx_lock_spin(&ifp->if_flt_lock);
/* prevent filter list from changing in case we drop the lock */
if_flt_monitor_busy(ifp);
TAILQ_FOREACH(filter, &ifp->if_flt_head, filt_next) {
int result;
/* exclude VLAN packets from external filters PR-3586856 */
if (is_vlan_packet &&
(filter->filt_flags & DLIL_IFF_INTERNAL) == 0) {
continue;
}
if (!filter->filt_skip && filter->filt_input != NULL &&
(filter->filt_protocol == 0 ||
filter->filt_protocol == protocol_family)) {
lck_mtx_unlock(&ifp->if_flt_lock);
result = (*filter->filt_input)(filter->filt_cookie,
ifp, protocol_family, m_p, frame_header_p);
lck_mtx_lock_spin(&ifp->if_flt_lock);
if (result != 0) {
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
return result;
}
}
}
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
/*
* Strip away M_PROTO1 bit prior to sending packet up the stack as
* it is meant to be local to a subsystem -- if_bridge for M_PROTO1
*/
if (*m_p != NULL) {
(*m_p)->m_flags &= ~M_PROTO1;
}
return 0;
}
static int
dlil_interface_filters_output(struct ifnet *ifp, struct mbuf **m_p,
protocol_family_t protocol_family)
{
boolean_t is_vlan_packet;
struct ifnet_filter *filter;
struct mbuf *m = *m_p;
is_vlan_packet = packet_has_vlan_tag(m);
/*
* Pass the outbound packet to the interface filters
*/
lck_mtx_lock_spin(&ifp->if_flt_lock);
/* prevent filter list from changing in case we drop the lock */
if_flt_monitor_busy(ifp);
TAILQ_FOREACH(filter, &ifp->if_flt_head, filt_next) {
int result;
/* exclude VLAN packets from external filters PR-3586856 */
if (is_vlan_packet &&
(filter->filt_flags & DLIL_IFF_INTERNAL) == 0) {
continue;
}
if (!filter->filt_skip && filter->filt_output != NULL &&
(filter->filt_protocol == 0 ||
filter->filt_protocol == protocol_family)) {
lck_mtx_unlock(&ifp->if_flt_lock);
result = filter->filt_output(filter->filt_cookie, ifp,
protocol_family, m_p);
lck_mtx_lock_spin(&ifp->if_flt_lock);
if (result != 0) {
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
return result;
}
}
}
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
return 0;
}
static void
dlil_ifproto_input(struct if_proto * ifproto, mbuf_t m)
{
int error;
if (ifproto->proto_kpi == kProtoKPI_v1) {
/* Version 1 protocols get one packet at a time */
while (m != NULL) {
char * frame_header;
mbuf_t next_packet;
next_packet = m->m_nextpkt;
m->m_nextpkt = NULL;
frame_header = m->m_pkthdr.pkt_hdr;
m->m_pkthdr.pkt_hdr = NULL;
error = (*ifproto->kpi.v1.input)(ifproto->ifp,
ifproto->protocol_family, m, frame_header);
if (error != 0 && error != EJUSTRETURN) {
m_freem(m);
}
m = next_packet;
}
} else if (ifproto->proto_kpi == kProtoKPI_v2) {
/* Version 2 protocols support packet lists */
error = (*ifproto->kpi.v2.input)(ifproto->ifp,
ifproto->protocol_family, m);
if (error != 0 && error != EJUSTRETURN) {
m_freem_list(m);
}
}
}
static void
dlil_input_stats_add(const struct ifnet_stat_increment_param *s,
struct dlil_threading_info *inp, struct ifnet *ifp, boolean_t poll)
{
struct ifnet_stat_increment_param *d = &inp->dlth_stats;
if (s->packets_in != 0) {
d->packets_in += s->packets_in;
}
if (s->bytes_in != 0) {
d->bytes_in += s->bytes_in;
}
if (s->errors_in != 0) {
d->errors_in += s->errors_in;
}
if (s->packets_out != 0) {
d->packets_out += s->packets_out;
}
if (s->bytes_out != 0) {
d->bytes_out += s->bytes_out;
}
if (s->errors_out != 0) {
d->errors_out += s->errors_out;
}
if (s->collisions != 0) {
d->collisions += s->collisions;
}
if (s->dropped != 0) {
d->dropped += s->dropped;
}
if (poll) {
PKTCNTR_ADD(&ifp->if_poll_tstats, s->packets_in, s->bytes_in);
}
}
static boolean_t
dlil_input_stats_sync(struct ifnet *ifp, struct dlil_threading_info *inp)
{
struct ifnet_stat_increment_param *s = &inp->dlth_stats;
/*
* Use of atomic operations is unavoidable here because
* these stats may also be incremented elsewhere via KPIs.
*/
if (s->packets_in != 0) {
atomic_add_64(&ifp->if_data.ifi_ipackets, s->packets_in);
s->packets_in = 0;
}
if (s->bytes_in != 0) {
atomic_add_64(&ifp->if_data.ifi_ibytes, s->bytes_in);
s->bytes_in = 0;
}
if (s->errors_in != 0) {
atomic_add_64(&ifp->if_data.ifi_ierrors, s->errors_in);
s->errors_in = 0;
}
if (s->packets_out != 0) {
atomic_add_64(&ifp->if_data.ifi_opackets, s->packets_out);
s->packets_out = 0;
}
if (s->bytes_out != 0) {
atomic_add_64(&ifp->if_data.ifi_obytes, s->bytes_out);
s->bytes_out = 0;
}
if (s->errors_out != 0) {
atomic_add_64(&ifp->if_data.ifi_oerrors, s->errors_out);
s->errors_out = 0;
}
if (s->collisions != 0) {
atomic_add_64(&ifp->if_data.ifi_collisions, s->collisions);
s->collisions = 0;
}
if (s->dropped != 0) {
atomic_add_64(&ifp->if_data.ifi_iqdrops, s->dropped);
s->dropped = 0;
}
/*
* No need for atomic operations as they are modified here
* only from within the DLIL input thread context.
*/
if (ifp->if_poll_tstats.packets != 0) {
ifp->if_poll_pstats.ifi_poll_packets += ifp->if_poll_tstats.packets;
ifp->if_poll_tstats.packets = 0;
}
if (ifp->if_poll_tstats.bytes != 0) {
ifp->if_poll_pstats.ifi_poll_bytes += ifp->if_poll_tstats.bytes;
ifp->if_poll_tstats.bytes = 0;
}
return ifp->if_data_threshold != 0;
}
__private_extern__ void
dlil_input_packet_list(struct ifnet *ifp, struct mbuf *m)
{
return dlil_input_packet_list_common(ifp, m, 0,
IFNET_MODEL_INPUT_POLL_OFF, FALSE);
}
__private_extern__ void
dlil_input_packet_list_extended(struct ifnet *ifp, struct mbuf *m,
u_int32_t cnt, ifnet_model_t mode)
{
return dlil_input_packet_list_common(ifp, m, cnt, mode, TRUE);
}
static void
dlil_input_packet_list_common(struct ifnet *ifp_param, struct mbuf *m,
u_int32_t cnt, ifnet_model_t mode, boolean_t ext)
{
int error = 0;
protocol_family_t protocol_family;
mbuf_t next_packet;
ifnet_t ifp = ifp_param;
char *frame_header = NULL;
struct if_proto *last_ifproto = NULL;
mbuf_t pkt_first = NULL;
mbuf_t *pkt_next = NULL;
u_int32_t poll_thresh = 0, poll_ival = 0;
int iorefcnt = 0;
KERNEL_DEBUG(DBG_FNC_DLIL_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
if (ext && mode == IFNET_MODEL_INPUT_POLL_ON && cnt > 1 &&
(poll_ival = if_rxpoll_interval_pkts) > 0) {
poll_thresh = cnt;
}
while (m != NULL) {
struct if_proto *ifproto = NULL;
uint32_t pktf_mask; /* pkt flags to preserve */
if (ifp_param == NULL) {
ifp = m->m_pkthdr.rcvif;
}
if ((ifp->if_eflags & IFEF_RXPOLL) &&
(ifp->if_xflags & IFXF_LEGACY) && poll_thresh != 0 &&
poll_ival > 0 && (--poll_thresh % poll_ival) == 0) {
ifnet_poll(ifp);
}
/* Check if this mbuf looks valid */
MBUF_INPUT_CHECK(m, ifp);
next_packet = m->m_nextpkt;
m->m_nextpkt = NULL;
frame_header = m->m_pkthdr.pkt_hdr;
m->m_pkthdr.pkt_hdr = NULL;
/*
* Get an IO reference count if the interface is not
* loopback (lo0) and it is attached; lo0 never goes
* away, so optimize for that.
*/
if (ifp != lo_ifp) {
/* iorefcnt is 0 if it hasn't been taken yet */
if (iorefcnt == 0) {
if (!ifnet_datamov_begin(ifp)) {
m_freem(m);
goto next;
}
}
iorefcnt = 1;
/*
* Preserve the time stamp and skip pktap flags.
*/
pktf_mask = PKTF_TS_VALID | PKTF_SKIP_PKTAP;
} else {
/*
* If this arrived on lo0, preserve interface addr
* info to allow for connectivity between loopback
* and local interface addresses.
*/
pktf_mask = (PKTF_LOOP | PKTF_IFAINFO);
}
/* make sure packet comes in clean */
m_classifier_init(m, pktf_mask);
ifp_inc_traffic_class_in(ifp, m);
/* find which protocol family this packet is for */
ifnet_lock_shared(ifp);
error = (*ifp->if_demux)(ifp, m, frame_header,
&protocol_family);
ifnet_lock_done(ifp);
if (error != 0) {
if (error == EJUSTRETURN) {
goto next;
}
protocol_family = 0;
}
pktap_input(ifp, protocol_family, m, frame_header);
/* Drop v4 packets received on CLAT46 enabled interface */
if (protocol_family == PF_INET && IS_INTF_CLAT46(ifp)) {
m_freem(m);
ip6stat.ip6s_clat464_in_v4_drop++;
goto next;
}
/* Translate the packet if it is received on CLAT interface */
if (protocol_family == PF_INET6 && IS_INTF_CLAT46(ifp)
&& dlil_is_clat_needed(protocol_family, m)) {
char *data = NULL;
struct ether_header eh;
struct ether_header *ehp = NULL;
if (ifp->if_type == IFT_ETHER) {
ehp = (struct ether_header *)(void *)frame_header;
/* Skip RX Ethernet packets if they are not IPV6 */
if (ntohs(ehp->ether_type) != ETHERTYPE_IPV6) {
goto skip_clat;
}
/* Keep a copy of frame_header for Ethernet packets */
bcopy(frame_header, (caddr_t)&eh, ETHER_HDR_LEN);
}
error = dlil_clat64(ifp, &protocol_family, &m);
data = (char *) mbuf_data(m);
if (error != 0) {
m_freem(m);
ip6stat.ip6s_clat464_in_drop++;
goto next;
}
/* Native v6 should be No-op */
if (protocol_family != PF_INET) {
goto skip_clat;
}
/* Do this only for translated v4 packets. */
switch (ifp->if_type) {
case IFT_CELLULAR:
frame_header = data;
break;
case IFT_ETHER:
/*
* Drop if the mbuf doesn't have enough
* space for Ethernet header
*/
if (M_LEADINGSPACE(m) < ETHER_HDR_LEN) {
m_free(m);
ip6stat.ip6s_clat464_in_drop++;
goto next;
}
/*
* Set the frame_header ETHER_HDR_LEN bytes
* preceeding the data pointer. Change
* the ether_type too.
*/
frame_header = data - ETHER_HDR_LEN;
eh.ether_type = htons(ETHERTYPE_IP);
bcopy((caddr_t)&eh, frame_header, ETHER_HDR_LEN);
break;
}
}
skip_clat:
if (hwcksum_dbg != 0 && !(ifp->if_flags & IFF_LOOPBACK) &&
!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
dlil_input_cksum_dbg(ifp, m, frame_header,
protocol_family);
}
/*
* For partial checksum offload, we expect the driver to
* set the start offset indicating the start of the span
* that is covered by the hardware-computed checksum;
* adjust this start offset accordingly because the data
* pointer has been advanced beyond the link-layer header.
*
* Virtual lan types (bridge, vlan, bond) can call
* dlil_input_packet_list() with the same packet with the
* checksum flags set. Set a flag indicating that the
* adjustment has already been done.
*/
if ((m->m_pkthdr.csum_flags & CSUM_ADJUST_DONE) != 0) {
/* adjustment has already been done */
} else if ((m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
int adj;
if (frame_header == NULL ||
frame_header < (char *)mbuf_datastart(m) ||
frame_header > (char *)m->m_data ||
(adj = (int)(m->m_data - frame_header)) >
m->m_pkthdr.csum_rx_start) {
m->m_pkthdr.csum_data = 0;
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
hwcksum_in_invalidated++;
} else {
m->m_pkthdr.csum_rx_start -= adj;
}
/* make sure we don't adjust more than once */
m->m_pkthdr.csum_flags |= CSUM_ADJUST_DONE;
}
if (clat_debug) {
pktap_input(ifp, protocol_family, m, frame_header);
}
if (m->m_flags & (M_BCAST | M_MCAST)) {
atomic_add_64(&ifp->if_imcasts, 1);
}
/* run interface filters */
error = dlil_interface_filters_input(ifp, &m,
&frame_header, protocol_family);
if (error != 0) {
if (error != EJUSTRETURN) {
m_freem(m);
}
goto next;
}
/*
* A VLAN interface receives VLAN-tagged packets by attaching
* its PF_VLAN protocol to a parent interface. When a VLAN
* interface is a member of a bridge, the parent interface
* receives VLAN-tagged M_PROMISC packets. A VLAN-tagged
* M_PROMISC packet must be processed by the VLAN protocol
* so that it can be sent up the stack via
* dlil_input_packet_list(). That allows the bridge interface's
* input filter, attached to the VLAN interface, to process
* the packet.
*/
if (protocol_family != PF_VLAN &&
(m->m_flags & M_PROMISC) != 0) {
m_freem(m);
goto next;
}
/* Lookup the protocol attachment to this interface */
if (protocol_family == 0) {
ifproto = NULL;
} else if (last_ifproto != NULL && last_ifproto->ifp == ifp &&
(last_ifproto->protocol_family == protocol_family)) {
VERIFY(ifproto == NULL);
ifproto = last_ifproto;
if_proto_ref(last_ifproto);
} else {
VERIFY(ifproto == NULL);
ifnet_lock_shared(ifp);
/* callee holds a proto refcnt upon success */
ifproto = find_attached_proto(ifp, protocol_family);
ifnet_lock_done(ifp);
}
if (ifproto == NULL) {
/* no protocol for this packet, discard */
m_freem(m);
goto next;
}
if (ifproto != last_ifproto) {
if (last_ifproto != NULL) {
/* pass up the list for the previous protocol */
dlil_ifproto_input(last_ifproto, pkt_first);
pkt_first = NULL;
if_proto_free(last_ifproto);
}
last_ifproto = ifproto;
if_proto_ref(ifproto);
}
/* extend the list */
m->m_pkthdr.pkt_hdr = frame_header;
if (pkt_first == NULL) {
pkt_first = m;
} else {
*pkt_next = m;
}
pkt_next = &m->m_nextpkt;
next:
if (next_packet == NULL && last_ifproto != NULL) {
/* pass up the last list of packets */
dlil_ifproto_input(last_ifproto, pkt_first);
if_proto_free(last_ifproto);
last_ifproto = NULL;
}
if (ifproto != NULL) {
if_proto_free(ifproto);
ifproto = NULL;
}
m = next_packet;
/* update the driver's multicast filter, if needed */
if (ifp->if_updatemcasts > 0 && if_mcasts_update(ifp) == 0) {
ifp->if_updatemcasts = 0;
}
if (iorefcnt == 1) {
/* If the next mbuf is on a different interface, unlock data-mov */
if (!m || (ifp != ifp_param && ifp != m->m_pkthdr.rcvif)) {
ifnet_datamov_end(ifp);
iorefcnt = 0;
}
}
}
KERNEL_DEBUG(DBG_FNC_DLIL_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
errno_t
if_mcasts_update(struct ifnet *ifp)
{
errno_t err;
err = ifnet_ioctl(ifp, 0, SIOCADDMULTI, NULL);
if (err == EAFNOSUPPORT) {
err = 0;
}
DLIL_PRINTF("%s: %s %d suspended link-layer multicast membership(s) "
"(err=%d)\n", if_name(ifp),
(err == 0 ? "successfully restored" : "failed to restore"),
ifp->if_updatemcasts, err);
/* just return success */
return 0;
}
/* If ifp is set, we will increment the generation for the interface */
int
dlil_post_complete_msg(struct ifnet *ifp, struct kev_msg *event)
{
if (ifp != NULL) {
ifnet_increment_generation(ifp);
}
#if NECP
necp_update_all_clients();
#endif /* NECP */
return kev_post_msg(event);
}
__private_extern__ void
dlil_post_sifflags_msg(struct ifnet * ifp)
{
struct kev_msg ev_msg;
struct net_event_data ev_data;
bzero(&ev_data, sizeof(ev_data));
bzero(&ev_msg, sizeof(ev_msg));
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_DL_SUBCLASS;
ev_msg.event_code = KEV_DL_SIFFLAGS;
strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
ev_data.if_family = ifp->if_family;
ev_data.if_unit = (u_int32_t) ifp->if_unit;
ev_msg.dv[0].data_length = sizeof(struct net_event_data);
ev_msg.dv[0].data_ptr = &ev_data;
ev_msg.dv[1].data_length = 0;
dlil_post_complete_msg(ifp, &ev_msg);
}
#define TMP_IF_PROTO_ARR_SIZE 10
static int
dlil_event_internal(struct ifnet *ifp, struct kev_msg *event, bool update_generation)
{
struct ifnet_filter *filter = NULL;
struct if_proto *proto = NULL;
int if_proto_count = 0;
struct if_proto **tmp_ifproto_arr = NULL;
struct if_proto *tmp_ifproto_stack_arr[TMP_IF_PROTO_ARR_SIZE] = {NULL};
int tmp_ifproto_arr_idx = 0;
bool tmp_malloc = false;
/*
* Pass the event to the interface filters
*/
lck_mtx_lock_spin(&ifp->if_flt_lock);
/* prevent filter list from changing in case we drop the lock */
if_flt_monitor_busy(ifp);
TAILQ_FOREACH(filter, &ifp->if_flt_head, filt_next) {
if (filter->filt_event != NULL) {
lck_mtx_unlock(&ifp->if_flt_lock);
filter->filt_event(filter->filt_cookie, ifp,
filter->filt_protocol, event);
lck_mtx_lock_spin(&ifp->if_flt_lock);
}
}
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
/* Get an io ref count if the interface is attached */
if (!ifnet_is_attached(ifp, 1)) {
goto done;
}
/*
* An embedded tmp_list_entry in if_proto may still get
* over-written by another thread after giving up ifnet lock,
* therefore we are avoiding embedded pointers here.
*/
ifnet_lock_shared(ifp);
if_proto_count = dlil_ifp_protolist(ifp, NULL, 0);
if (if_proto_count) {
int i;
VERIFY(ifp->if_proto_hash != NULL);
if (if_proto_count <= TMP_IF_PROTO_ARR_SIZE) {
tmp_ifproto_arr = tmp_ifproto_stack_arr;
} else {
MALLOC(tmp_ifproto_arr, struct if_proto **,
sizeof(*tmp_ifproto_arr) * if_proto_count,
M_TEMP, M_ZERO);
if (tmp_ifproto_arr == NULL) {
ifnet_lock_done(ifp);
goto cleanup;
}
tmp_malloc = true;
}
for (i = 0; i < PROTO_HASH_SLOTS; i++) {
SLIST_FOREACH(proto, &ifp->if_proto_hash[i],
next_hash) {
if_proto_ref(proto);
tmp_ifproto_arr[tmp_ifproto_arr_idx] = proto;
tmp_ifproto_arr_idx++;
}
}
VERIFY(if_proto_count == tmp_ifproto_arr_idx);
}
ifnet_lock_done(ifp);
for (tmp_ifproto_arr_idx = 0; tmp_ifproto_arr_idx < if_proto_count;
tmp_ifproto_arr_idx++) {
proto = tmp_ifproto_arr[tmp_ifproto_arr_idx];
VERIFY(proto != NULL);
proto_media_event eventp =
(proto->proto_kpi == kProtoKPI_v1 ?
proto->kpi.v1.event :
proto->kpi.v2.event);
if (eventp != NULL) {
eventp(ifp, proto->protocol_family,
event);
}
if_proto_free(proto);
}
cleanup:
if (tmp_malloc) {
FREE(tmp_ifproto_arr, M_TEMP);
}
/* Pass the event to the interface */
if (ifp->if_event != NULL) {
ifp->if_event(ifp, event);
}
/* Release the io ref count */
ifnet_decr_iorefcnt(ifp);
done:
return dlil_post_complete_msg(update_generation ? ifp : NULL, event);
}
errno_t
ifnet_event(ifnet_t ifp, struct kern_event_msg *event)
{
struct kev_msg kev_msg;
int result = 0;
if (ifp == NULL || event == NULL) {
return EINVAL;
}
bzero(&kev_msg, sizeof(kev_msg));
kev_msg.vendor_code = event->vendor_code;
kev_msg.kev_class = event->kev_class;
kev_msg.kev_subclass = event->kev_subclass;
kev_msg.event_code = event->event_code;
kev_msg.dv[0].data_ptr = &event->event_data[0];
kev_msg.dv[0].data_length = event->total_size - KEV_MSG_HEADER_SIZE;
kev_msg.dv[1].data_length = 0;
result = dlil_event_internal(ifp, &kev_msg, TRUE);
return result;
}
static void
dlil_count_chain_len(mbuf_t m, struct chain_len_stats *cls)
{
mbuf_t n = m;
int chainlen = 0;
while (n != NULL) {
chainlen++;
n = n->m_next;
}
switch (chainlen) {
case 0:
break;
case 1:
atomic_add_64(&cls->cls_one, 1);
break;
case 2:
atomic_add_64(&cls->cls_two, 1);
break;
case 3:
atomic_add_64(&cls->cls_three, 1);
break;
case 4:
atomic_add_64(&cls->cls_four, 1);
break;
case 5:
default:
atomic_add_64(&cls->cls_five_or_more, 1);
break;
}
}
/*
* dlil_output
*
* Caller should have a lock on the protocol domain if the protocol
* doesn't support finer grained locking. In most cases, the lock
* will be held from the socket layer and won't be released until
* we return back to the socket layer.
*
* This does mean that we must take a protocol lock before we take
* an interface lock if we're going to take both. This makes sense
* because a protocol is likely to interact with an ifp while it
* is under the protocol lock.
*
* An advisory code will be returned if adv is not null. This
* can be used to provide feedback about interface queues to the
* application.
*/
errno_t
dlil_output(ifnet_t ifp, protocol_family_t proto_family, mbuf_t packetlist,
void *route, const struct sockaddr *dest, int raw, struct flowadv *adv)
{
char *frame_type = NULL;
char *dst_linkaddr = NULL;
int retval = 0;
char frame_type_buffer[MAX_FRAME_TYPE_SIZE * 4];
char dst_linkaddr_buffer[MAX_LINKADDR * 4];
struct if_proto *proto = NULL;
mbuf_t m = NULL;
mbuf_t send_head = NULL;
mbuf_t *send_tail = &send_head;
int iorefcnt = 0;
u_int32_t pre = 0, post = 0;
u_int32_t fpkts = 0, fbytes = 0;
int32_t flen = 0;
struct timespec now;
u_int64_t now_nsec;
boolean_t did_clat46 = FALSE;
protocol_family_t old_proto_family = proto_family;
struct sockaddr_in6 dest6;
struct rtentry *rt = NULL;
u_int32_t m_loop_set = 0;
KERNEL_DEBUG(DBG_FNC_DLIL_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
/*
* Get an io refcnt if the interface is attached to prevent ifnet_detach
* from happening while this operation is in progress
*/
if (!ifnet_datamov_begin(ifp)) {
retval = ENXIO;
goto cleanup;
}
iorefcnt = 1;
VERIFY(ifp->if_output_dlil != NULL);
/* update the driver's multicast filter, if needed */
if (ifp->if_updatemcasts > 0 && if_mcasts_update(ifp) == 0) {
ifp->if_updatemcasts = 0;
}
frame_type = frame_type_buffer;
dst_linkaddr = dst_linkaddr_buffer;
if (raw == 0) {
ifnet_lock_shared(ifp);
/* callee holds a proto refcnt upon success */
proto = find_attached_proto(ifp, proto_family);
if (proto == NULL) {
ifnet_lock_done(ifp);
retval = ENXIO;
goto cleanup;
}
ifnet_lock_done(ifp);
}
preout_again:
if (packetlist == NULL) {
goto cleanup;
}
m = packetlist;
packetlist = packetlist->m_nextpkt;
m->m_nextpkt = NULL;
/*
* Perform address family translation for the first
* packet outside the loop in order to perform address
* lookup for the translated proto family.
*/
if (proto_family == PF_INET && IS_INTF_CLAT46(ifp) &&
(ifp->if_type == IFT_CELLULAR ||
dlil_is_clat_needed(proto_family, m))) {
retval = dlil_clat46(ifp, &proto_family, &m);
/*
* Go to the next packet if translation fails
*/
if (retval != 0) {
m_freem(m);
m = NULL;
ip6stat.ip6s_clat464_out_drop++;
/* Make sure that the proto family is PF_INET */
ASSERT(proto_family == PF_INET);
goto preout_again;
}
/*
* Free the old one and make it point to the IPv6 proto structure.
*
* Change proto for the first time we have successfully
* performed address family translation.
*/
if (!did_clat46 && proto_family == PF_INET6) {
did_clat46 = TRUE;
if (proto != NULL) {
if_proto_free(proto);
}
ifnet_lock_shared(ifp);
/* callee holds a proto refcnt upon success */
proto = find_attached_proto(ifp, proto_family);
if (proto == NULL) {
ifnet_lock_done(ifp);
retval = ENXIO;
m_freem(m);
m = NULL;
goto cleanup;
}
ifnet_lock_done(ifp);
if (ifp->if_type == IFT_ETHER) {
/* Update the dest to translated v6 address */
dest6.sin6_len = sizeof(struct sockaddr_in6);
dest6.sin6_family = AF_INET6;
dest6.sin6_addr = (mtod(m, struct ip6_hdr *))->ip6_dst;
dest = (const struct sockaddr *)&dest6;
/*
* Lookup route to the translated destination
* Free this route ref during cleanup
*/
rt = rtalloc1_scoped((struct sockaddr *)&dest6,
0, 0, ifp->if_index);
route = rt;
}
}
}
/*
* This path gets packet chain going to the same destination.
* The pre output routine is used to either trigger resolution of
* the next hop or retreive the next hop's link layer addressing.
* For ex: ether_inet(6)_pre_output routine.
*
* If the routine returns EJUSTRETURN, it implies that packet has
* been queued, and therefore we have to call preout_again for the
* following packet in the chain.
*
* For errors other than EJUSTRETURN, the current packet is freed
* and the rest of the chain (pointed by packetlist is freed as
* part of clean up.
*
* Else if there is no error the retrieved information is used for
* all the packets in the chain.
*/
if (raw == 0) {
proto_media_preout preoutp = (proto->proto_kpi == kProtoKPI_v1 ?
proto->kpi.v1.pre_output : proto->kpi.v2.pre_output);
retval = 0;
if (preoutp != NULL) {
retval = preoutp(ifp, proto_family, &m, dest, route,
frame_type, dst_linkaddr);
if (retval != 0) {
if (retval == EJUSTRETURN) {
goto preout_again;
}
m_freem(m);
m = NULL;
goto cleanup;
}
}
}
do {
/*
* pkt_hdr is set here to point to m_data prior to
* calling into the framer. This value of pkt_hdr is
* used by the netif gso logic to retrieve the ip header
* for the TCP packets, offloaded for TSO processing.
*/
if ((raw != 0) && (ifp->if_family == IFNET_FAMILY_ETHERNET)) {
uint8_t vlan_encap_len = 0;
if ((m->m_pkthdr.csum_flags & CSUM_VLAN_ENCAP_PRESENT) != 0) {
vlan_encap_len = ETHER_VLAN_ENCAP_LEN;
}
m->m_pkthdr.pkt_hdr = mtod(m, char *) + ETHER_HDR_LEN + vlan_encap_len;
} else {
m->m_pkthdr.pkt_hdr = mtod(m, void *);
}
/*
* Perform address family translation if needed.
* For now we only support stateless 4 to 6 translation
* on the out path.
*
* The routine below translates IP header, updates protocol
* checksum and also translates ICMP.
*
* We skip the first packet as it is already translated and
* the proto family is set to PF_INET6.
*/
if (proto_family == PF_INET && IS_INTF_CLAT46(ifp) &&
(ifp->if_type == IFT_CELLULAR ||
dlil_is_clat_needed(proto_family, m))) {
retval = dlil_clat46(ifp, &proto_family, &m);
/* Goto the next packet if the translation fails */
if (retval != 0) {
m_freem(m);
m = NULL;
ip6stat.ip6s_clat464_out_drop++;
goto next;
}
}
#if CONFIG_DTRACE
if (!raw && proto_family == PF_INET) {
struct ip *ip = mtod(m, struct ip *);
DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
struct ip *, ip, struct ifnet *, ifp,
struct ip *, ip, struct ip6_hdr *, NULL);
} else if (!raw && proto_family == PF_INET6) {
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
struct ip6_hdr *, ip6, struct ifnet *, ifp,
struct ip *, NULL, struct ip6_hdr *, ip6);
}
#endif /* CONFIG_DTRACE */
if (raw == 0 && ifp->if_framer != NULL) {
int rcvif_set = 0;
/*
* If this is a broadcast packet that needs to be
* looped back into the system, set the inbound ifp
* to that of the outbound ifp. This will allow
* us to determine that it is a legitimate packet
* for the system. Only set the ifp if it's not
* already set, just to be safe.
*/
if ((m->m_flags & (M_BCAST | M_LOOP)) &&
m->m_pkthdr.rcvif == NULL) {
m->m_pkthdr.rcvif = ifp;
rcvif_set = 1;
}
m_loop_set = m->m_flags & M_LOOP;
retval = ifp->if_framer(ifp, &m, dest, dst_linkaddr,
frame_type, &pre, &post);
if (retval != 0) {
if (retval != EJUSTRETURN) {
m_freem(m);
}
goto next;
}
/*
* For partial checksum offload, adjust the start
* and stuff offsets based on the prepended header.
*/
if ((m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
m->m_pkthdr.csum_tx_stuff += pre;
m->m_pkthdr.csum_tx_start += pre;
}
if (hwcksum_dbg != 0 && !(ifp->if_flags & IFF_LOOPBACK)) {
dlil_output_cksum_dbg(ifp, m, pre,
proto_family);
}
/*
* Clear the ifp if it was set above, and to be
* safe, only if it is still the same as the
* outbound ifp we have in context. If it was
* looped back, then a copy of it was sent to the
* loopback interface with the rcvif set, and we
* are clearing the one that will go down to the
* layer below.
*/
if (rcvif_set && m->m_pkthdr.rcvif == ifp) {
m->m_pkthdr.rcvif = NULL;
}
}
/*
* Let interface filters (if any) do their thing ...
*/
retval = dlil_interface_filters_output(ifp, &m, proto_family);
if (retval != 0) {
if (retval != EJUSTRETURN) {
m_freem(m);
}
goto next;
}
/*
* Strip away M_PROTO1 bit prior to sending packet
* to the driver as this field may be used by the driver
*/
m->m_flags &= ~M_PROTO1;
/*
* If the underlying interface is not capable of handling a
* packet whose data portion spans across physically disjoint
* pages, we need to "normalize" the packet so that we pass
* down a chain of mbufs where each mbuf points to a span that
* resides in the system page boundary. If the packet does
* not cross page(s), the following is a no-op.
*/
if (!(ifp->if_hwassist & IFNET_MULTIPAGES)) {
if ((m = m_normalize(m)) == NULL) {
goto next;
}
}
/*
* If this is a TSO packet, make sure the interface still
* advertise TSO capability.
*/
if (TSO_IPV4_NOTOK(ifp, m) || TSO_IPV6_NOTOK(ifp, m)) {
retval = EMSGSIZE;
m_freem(m);
goto cleanup;
}
ifp_inc_traffic_class_out(ifp, m);
pktap_output(ifp, proto_family, m, pre, post);
/*
* Count the number of elements in the mbuf chain
*/
if (tx_chain_len_count) {
dlil_count_chain_len(m, &tx_chain_len_stats);
}
/*
* Record timestamp; ifnet_enqueue() will use this info
* rather than redoing the work. An optimization could
* involve doing this just once at the top, if there are
* no interface filters attached, but that's probably
* not a big deal.
*/
nanouptime(&now);
net_timernsec(&now, &now_nsec);
(void) mbuf_set_timestamp(m, now_nsec, TRUE);
/*
* Discard partial sum information if this packet originated
* from another interface; the packet would already have the
* final checksum and we shouldn't recompute it.
*/
if ((m->m_pkthdr.pkt_flags & PKTF_FORWARDED) &&
(m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
m->m_pkthdr.csum_flags &= ~CSUM_TX_FLAGS;
m->m_pkthdr.csum_data = 0;
}
/*
* Finally, call the driver.
*/
if (ifp->if_eflags & (IFEF_SENDLIST | IFEF_ENQUEUE_MULTI)) {
if (m->m_pkthdr.pkt_flags & PKTF_FORWARDED) {
flen += (m_pktlen(m) - (pre + post));
m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
}
*send_tail = m;
send_tail = &m->m_nextpkt;
} else {
if (m->m_pkthdr.pkt_flags & PKTF_FORWARDED) {
flen = (m_pktlen(m) - (pre + post));
m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
} else {
flen = 0;
}
KERNEL_DEBUG(DBG_FNC_DLIL_IFOUT | DBG_FUNC_START,
0, 0, 0, 0, 0);
retval = (*ifp->if_output_dlil)(ifp, m);
if (retval == EQFULL || retval == EQSUSPENDED) {
if (adv != NULL && adv->code == FADV_SUCCESS) {
adv->code = (retval == EQFULL ?
FADV_FLOW_CONTROLLED :
FADV_SUSPENDED);
}
retval = 0;
}
if (retval == 0 && flen > 0) {
fbytes += flen;
fpkts++;
}
if (retval != 0 && dlil_verbose) {
DLIL_PRINTF("%s: output error on %s retval = %d\n",
__func__, if_name(ifp),
retval);
}
KERNEL_DEBUG(DBG_FNC_DLIL_IFOUT | DBG_FUNC_END,
0, 0, 0, 0, 0);
}
KERNEL_DEBUG(DBG_FNC_DLIL_IFOUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
next:
m = packetlist;
if (m != NULL) {
m->m_flags |= m_loop_set;
packetlist = packetlist->m_nextpkt;
m->m_nextpkt = NULL;
}
/* Reset the proto family to old proto family for CLAT */
if (did_clat46) {
proto_family = old_proto_family;
}
} while (m != NULL);
if (send_head != NULL) {
KERNEL_DEBUG(DBG_FNC_DLIL_IFOUT | DBG_FUNC_START,
0, 0, 0, 0, 0);
if (ifp->if_eflags & IFEF_SENDLIST) {
retval = (*ifp->if_output_dlil)(ifp, send_head);
if (retval == EQFULL || retval == EQSUSPENDED) {
if (adv != NULL) {
adv->code = (retval == EQFULL ?
FADV_FLOW_CONTROLLED :
FADV_SUSPENDED);
}
retval = 0;
}
if (retval == 0 && flen > 0) {
fbytes += flen;
fpkts++;
}
if (retval != 0 && dlil_verbose) {
DLIL_PRINTF("%s: output error on %s retval = %d\n",
__func__, if_name(ifp), retval);
}
} else {
struct mbuf *send_m;
int enq_cnt = 0;
VERIFY(ifp->if_eflags & IFEF_ENQUEUE_MULTI);
while (send_head != NULL) {
send_m = send_head;
send_head = send_m->m_nextpkt;
send_m->m_nextpkt = NULL;
retval = (*ifp->if_output_dlil)(ifp, send_m);
if (retval == EQFULL || retval == EQSUSPENDED) {
if (adv != NULL) {
adv->code = (retval == EQFULL ?
FADV_FLOW_CONTROLLED :
FADV_SUSPENDED);
}
retval = 0;
}
if (retval == 0) {
enq_cnt++;
if (flen > 0) {
fpkts++;
}
}
if (retval != 0 && dlil_verbose) {
DLIL_PRINTF("%s: output error on %s "
"retval = %d\n",
__func__, if_name(ifp), retval);
}
}
if (enq_cnt > 0) {
fbytes += flen;
ifnet_start(ifp);
}
}
KERNEL_DEBUG(DBG_FNC_DLIL_IFOUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
}
KERNEL_DEBUG(DBG_FNC_DLIL_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0);
cleanup:
if (fbytes > 0) {
ifp->if_fbytes += fbytes;
}
if (fpkts > 0) {
ifp->if_fpackets += fpkts;
}
if (proto != NULL) {
if_proto_free(proto);
}
if (packetlist) { /* if any packets are left, clean up */
mbuf_freem_list(packetlist);
}
if (retval == EJUSTRETURN) {
retval = 0;
}
if (iorefcnt == 1) {
ifnet_datamov_end(ifp);
}
if (rt != NULL) {
rtfree(rt);
rt = NULL;
}
return retval;
}
/*
* This routine checks if the destination address is not a loopback, link-local,
* multicast or broadcast address.
*/
static int
dlil_is_clat_needed(protocol_family_t proto_family, mbuf_t m)
{
int ret = 0;
switch (proto_family) {
case PF_INET: {
struct ip *iph = mtod(m, struct ip *);
if (CLAT46_NEEDED(ntohl(iph->ip_dst.s_addr))) {
ret = 1;
}
break;
}
case PF_INET6: {
struct ip6_hdr *ip6h = mtod(m, struct ip6_hdr *);
if ((size_t)m_pktlen(m) >= sizeof(struct ip6_hdr) &&
CLAT64_NEEDED(&ip6h->ip6_dst)) {
ret = 1;
}
break;
}
}
return ret;
}
/*
* @brief This routine translates IPv4 packet to IPv6 packet,
* updates protocol checksum and also translates ICMP for code
* along with inner header translation.
*
* @param ifp Pointer to the interface
* @param proto_family pointer to protocol family. It is updated if function
* performs the translation successfully.
* @param m Pointer to the pointer pointing to the packet. Needed because this
* routine can end up changing the mbuf to a different one.
*
* @return 0 on success or else a negative value.
*/
static errno_t
dlil_clat46(ifnet_t ifp, protocol_family_t *proto_family, mbuf_t *m)
{
VERIFY(*proto_family == PF_INET);
VERIFY(IS_INTF_CLAT46(ifp));
pbuf_t pbuf_store, *pbuf = NULL;
struct ip *iph = NULL;
struct in_addr osrc, odst;
uint8_t proto = 0;
struct in6_ifaddr *ia6_clat_src = NULL;
struct in6_addr *src = NULL;
struct in6_addr dst;
int error = 0;
uint16_t off = 0;
uint16_t tot_len = 0;
uint16_t ip_id_val = 0;
uint16_t ip_frag_off = 0;
boolean_t is_frag = FALSE;
boolean_t is_first_frag = TRUE;
boolean_t is_last_frag = TRUE;
pbuf_init_mbuf(&pbuf_store, *m, ifp);
pbuf = &pbuf_store;
iph = pbuf->pb_data;
osrc = iph->ip_src;
odst = iph->ip_dst;
proto = iph->ip_p;
off = (uint16_t)(iph->ip_hl << 2);
ip_id_val = iph->ip_id;
ip_frag_off = ntohs(iph->ip_off) & IP_OFFMASK;
tot_len = ntohs(iph->ip_len);
/*
* For packets that are not first frags
* we only need to adjust CSUM.
* For 4 to 6, Fragmentation header gets appended
* after proto translation.
*/
if (ntohs(iph->ip_off) & ~(IP_DF | IP_RF)) {
is_frag = TRUE;
/* If the offset is not zero, it is not first frag */
if (ip_frag_off != 0) {
is_first_frag = FALSE;
}
/* If IP_MF is set, then it is not last frag */
if (ntohs(iph->ip_off) & IP_MF) {
is_last_frag = FALSE;
}
}
/*
* Retrive the local IPv6 CLAT46 address reserved for stateless
* translation.
*/
ia6_clat_src = in6ifa_ifpwithflag(ifp, IN6_IFF_CLAT46);
if (ia6_clat_src == NULL) {
ip6stat.ip6s_clat464_out_nov6addr_drop++;
error = -1;
goto cleanup;
}
src = &ia6_clat_src->ia_addr.sin6_addr;
/*
* Translate IPv4 destination to IPv6 destination by using the
* prefixes learned through prior PLAT discovery.
*/
if ((error = nat464_synthesize_ipv6(ifp, &odst, &dst)) != 0) {
ip6stat.ip6s_clat464_out_v6synthfail_drop++;
goto cleanup;
}
/* Translate the IP header part first */
error = (nat464_translate_46(pbuf, off, iph->ip_tos, iph->ip_p,
iph->ip_ttl, *src, dst, tot_len) == NT_NAT64) ? 0 : -1;
iph = NULL; /* Invalidate iph as pbuf has been modified */
if (error != 0) {
ip6stat.ip6s_clat464_out_46transfail_drop++;
goto cleanup;
}
/*
* Translate protocol header, update checksum, checksum flags
* and related fields.
*/
error = (nat464_translate_proto(pbuf, (struct nat464_addr *)&osrc, (struct nat464_addr *)&odst,
proto, PF_INET, PF_INET6, NT_OUT, !is_first_frag) == NT_NAT64) ? 0 : -1;
if (error != 0) {
ip6stat.ip6s_clat464_out_46proto_transfail_drop++;
goto cleanup;
}
/* Now insert the IPv6 fragment header */
if (is_frag) {
error = nat464_insert_frag46(pbuf, ip_id_val, ip_frag_off, is_last_frag);
if (error != 0) {
ip6stat.ip6s_clat464_out_46frag_transfail_drop++;
goto cleanup;
}
}
cleanup:
if (ia6_clat_src != NULL) {
IFA_REMREF(&ia6_clat_src->ia_ifa);
}
if (pbuf_is_valid(pbuf)) {
*m = pbuf->pb_mbuf;
pbuf->pb_mbuf = NULL;
pbuf_destroy(pbuf);
} else {
error = -1;
ip6stat.ip6s_clat464_out_invalpbuf_drop++;
}
if (error == 0) {
*proto_family = PF_INET6;
ip6stat.ip6s_clat464_out_success++;
}
return error;
}
/*
* @brief This routine translates incoming IPv6 to IPv4 packet,
* updates protocol checksum and also translates ICMPv6 outer
* and inner headers
*
* @return 0 on success or else a negative value.
*/
static errno_t
dlil_clat64(ifnet_t ifp, protocol_family_t *proto_family, mbuf_t *m)
{
VERIFY(*proto_family == PF_INET6);
VERIFY(IS_INTF_CLAT46(ifp));
struct ip6_hdr *ip6h = NULL;
struct in6_addr osrc, odst;
uint8_t proto = 0;
struct in6_ifaddr *ia6_clat_dst = NULL;
struct in_ifaddr *ia4_clat_dst = NULL;
struct in_addr *dst = NULL;
struct in_addr src;
int error = 0;
uint32_t off = 0;
u_int64_t tot_len = 0;
uint8_t tos = 0;
boolean_t is_first_frag = TRUE;
/* Incoming mbuf does not contain valid IP6 header */
if ((size_t)(*m)->m_pkthdr.len < sizeof(struct ip6_hdr) ||
((size_t)(*m)->m_len < sizeof(struct ip6_hdr) &&
(*m = m_pullup(*m, sizeof(struct ip6_hdr))) == NULL)) {
ip6stat.ip6s_clat464_in_tooshort_drop++;
return -1;
}
ip6h = mtod(*m, struct ip6_hdr *);
/* Validate that mbuf contains IP payload equal to ip6_plen */
if ((size_t)(*m)->m_pkthdr.len < ntohs(ip6h->ip6_plen) + sizeof(struct ip6_hdr)) {
ip6stat.ip6s_clat464_in_tooshort_drop++;
return -1;
}
osrc = ip6h->ip6_src;
odst = ip6h->ip6_dst;
/*
* Retrieve the local CLAT46 reserved IPv6 address.
* Let the packet pass if we don't find one, as the flag
* may get set before IPv6 configuration has taken place.
*/
ia6_clat_dst = in6ifa_ifpwithflag(ifp, IN6_IFF_CLAT46);
if (ia6_clat_dst == NULL) {
goto done;
}
/*
* Check if the original dest in the packet is same as the reserved
* CLAT46 IPv6 address
*/
if (IN6_ARE_ADDR_EQUAL(&odst, &ia6_clat_dst->ia_addr.sin6_addr)) {
pbuf_t pbuf_store, *pbuf = NULL;
pbuf_init_mbuf(&pbuf_store, *m, ifp);
pbuf = &pbuf_store;
/*
* Retrive the local CLAT46 IPv4 address reserved for stateless
* translation.
*/
ia4_clat_dst = inifa_ifpclatv4(ifp);
if (ia4_clat_dst == NULL) {
IFA_REMREF(&ia6_clat_dst->ia_ifa);
ip6stat.ip6s_clat464_in_nov4addr_drop++;
error = -1;
goto cleanup;
}
IFA_REMREF(&ia6_clat_dst->ia_ifa);
/* Translate IPv6 src to IPv4 src by removing the NAT64 prefix */
dst = &ia4_clat_dst->ia_addr.sin_addr;
if ((error = nat464_synthesize_ipv4(ifp, &osrc, &src)) != 0) {
ip6stat.ip6s_clat464_in_v4synthfail_drop++;
error = -1;
goto cleanup;
}
ip6h = pbuf->pb_data;
off = sizeof(struct ip6_hdr);
proto = ip6h->ip6_nxt;
tos = (ntohl(ip6h->ip6_flow) >> 20) & 0xff;
tot_len = ntohs(ip6h->ip6_plen) + sizeof(struct ip6_hdr);
/*
* Translate the IP header and update the fragmentation
* header if needed
*/
error = (nat464_translate_64(pbuf, off, tos, &proto,
ip6h->ip6_hlim, src, *dst, tot_len, &is_first_frag) == NT_NAT64) ?
0 : -1;
ip6h = NULL; /* Invalidate ip6h as pbuf has been changed */
if (error != 0) {
ip6stat.ip6s_clat464_in_64transfail_drop++;
goto cleanup;
}
/*
* Translate protocol header, update checksum, checksum flags
* and related fields.
*/
error = (nat464_translate_proto(pbuf, (struct nat464_addr *)&osrc,
(struct nat464_addr *)&odst, proto, PF_INET6, PF_INET,
NT_IN, !is_first_frag) == NT_NAT64) ? 0 : -1;
if (error != 0) {
ip6stat.ip6s_clat464_in_64proto_transfail_drop++;
goto cleanup;
}
cleanup:
if (ia4_clat_dst != NULL) {
IFA_REMREF(&ia4_clat_dst->ia_ifa);
}
if (pbuf_is_valid(pbuf)) {
*m = pbuf->pb_mbuf;
pbuf->pb_mbuf = NULL;
pbuf_destroy(pbuf);
} else {
error = -1;
ip6stat.ip6s_clat464_in_invalpbuf_drop++;
}
if (error == 0) {
*proto_family = PF_INET;
ip6stat.ip6s_clat464_in_success++;
}
} /* CLAT traffic */
done:
return error;
}
errno_t
ifnet_ioctl(ifnet_t ifp, protocol_family_t proto_fam, u_long ioctl_code,
void *ioctl_arg)
{
struct ifnet_filter *filter;
int retval = EOPNOTSUPP;
int result = 0;
if (ifp == NULL || ioctl_code == 0) {
return EINVAL;
}
/* Get an io ref count if the interface is attached */
if (!ifnet_is_attached(ifp, 1)) {
return EOPNOTSUPP;
}
/*
* Run the interface filters first.
* We want to run all filters before calling the protocol,
* interface family, or interface.
*/
lck_mtx_lock_spin(&ifp->if_flt_lock);
/* prevent filter list from changing in case we drop the lock */
if_flt_monitor_busy(ifp);
TAILQ_FOREACH(filter, &ifp->if_flt_head, filt_next) {
if (filter->filt_ioctl != NULL && (filter->filt_protocol == 0 ||
filter->filt_protocol == proto_fam)) {
lck_mtx_unlock(&ifp->if_flt_lock);
result = filter->filt_ioctl(filter->filt_cookie, ifp,
proto_fam, ioctl_code, ioctl_arg);
lck_mtx_lock_spin(&ifp->if_flt_lock);
/* Only update retval if no one has handled the ioctl */
if (retval == EOPNOTSUPP || result == EJUSTRETURN) {
if (result == ENOTSUP) {
result = EOPNOTSUPP;
}
retval = result;
if (retval != 0 && retval != EOPNOTSUPP) {
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
goto cleanup;
}
}
}
}
/* we're done with the filter list */
if_flt_monitor_unbusy(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
/* Allow the protocol to handle the ioctl */
if (proto_fam != 0) {
struct if_proto *proto;
/* callee holds a proto refcnt upon success */
ifnet_lock_shared(ifp);
proto = find_attached_proto(ifp, proto_fam);
ifnet_lock_done(ifp);
if (proto != NULL) {
proto_media_ioctl ioctlp =
(proto->proto_kpi == kProtoKPI_v1 ?
proto->kpi.v1.ioctl : proto->kpi.v2.ioctl);
result = EOPNOTSUPP;
if (ioctlp != NULL) {
result = ioctlp(ifp, proto_fam, ioctl_code,
ioctl_arg);
}
if_proto_free(proto);
/* Only update retval if no one has handled the ioctl */
if (retval == EOPNOTSUPP || result == EJUSTRETURN) {
if (result == ENOTSUP) {
result = EOPNOTSUPP;
}
retval = result;
if (retval && retval != EOPNOTSUPP) {
goto cleanup;
}
}
}
}
/* retval is either 0 or EOPNOTSUPP */
/*
* Let the interface handle this ioctl.
* If it returns EOPNOTSUPP, ignore that, we may have
* already handled this in the protocol or family.
*/
if (ifp->if_ioctl) {
result = (*ifp->if_ioctl)(ifp, ioctl_code, ioctl_arg);
}
/* Only update retval if no one has handled the ioctl */
if (retval == EOPNOTSUPP || result == EJUSTRETURN) {
if (result == ENOTSUP) {
result = EOPNOTSUPP;
}
retval = result;
if (retval && retval != EOPNOTSUPP) {
goto cleanup;
}
}
cleanup:
if (retval == EJUSTRETURN) {
retval = 0;
}
ifnet_decr_iorefcnt(ifp);
return retval;
}
__private_extern__ errno_t
dlil_set_bpf_tap(ifnet_t ifp, bpf_tap_mode mode, bpf_packet_func callback)
{
errno_t error = 0;
if (ifp->if_set_bpf_tap) {
/* Get an io reference on the interface if it is attached */
if (!ifnet_is_attached(ifp, 1)) {
return ENXIO;
}
error = ifp->if_set_bpf_tap(ifp, mode, callback);
ifnet_decr_iorefcnt(ifp);
}
return error;
}
errno_t
dlil_resolve_multi(struct ifnet *ifp, const struct sockaddr *proto_addr,
struct sockaddr *ll_addr, size_t ll_len)
{
errno_t result = EOPNOTSUPP;
struct if_proto *proto;
const struct sockaddr *verify;
proto_media_resolve_multi resolvep;
if (!ifnet_is_attached(ifp, 1)) {
return result;
}
bzero(ll_addr, ll_len);
/* Call the protocol first; callee holds a proto refcnt upon success */
ifnet_lock_shared(ifp);
proto = find_attached_proto(ifp, proto_addr->sa_family);
ifnet_lock_done(ifp);
if (proto != NULL) {
resolvep = (proto->proto_kpi == kProtoKPI_v1 ?
proto->kpi.v1.resolve_multi : proto->kpi.v2.resolve_multi);
if (resolvep != NULL) {
result = resolvep(ifp, proto_addr,
(struct sockaddr_dl *)(void *)ll_addr, ll_len);
}
if_proto_free(proto);
}
/* Let the interface verify the multicast address */
if ((result == EOPNOTSUPP || result == 0) && ifp->if_check_multi) {
if (result == 0) {
verify = ll_addr;
} else {
verify = proto_addr;
}
result = ifp->if_check_multi(ifp, verify);
}
ifnet_decr_iorefcnt(ifp);
return result;
}
__private_extern__ errno_t
dlil_send_arp_internal(ifnet_t ifp, u_short arpop,
const struct sockaddr_dl *sender_hw, const struct sockaddr *sender_proto,
const struct sockaddr_dl *target_hw, const struct sockaddr *target_proto)
{
struct if_proto *proto;
errno_t result = 0;
/* callee holds a proto refcnt upon success */
ifnet_lock_shared(ifp);
proto = find_attached_proto(ifp, target_proto->sa_family);
ifnet_lock_done(ifp);
if (proto == NULL) {
result = ENOTSUP;
} else {
proto_media_send_arp arpp;
arpp = (proto->proto_kpi == kProtoKPI_v1 ?
proto->kpi.v1.send_arp : proto->kpi.v2.send_arp);
if (arpp == NULL) {
result = ENOTSUP;
} else {
switch (arpop) {
case ARPOP_REQUEST:
arpstat.txrequests++;
if (target_hw != NULL) {
arpstat.txurequests++;
}
break;
case ARPOP_REPLY:
arpstat.txreplies++;
break;
}
result = arpp(ifp, arpop, sender_hw, sender_proto,
target_hw, target_proto);
}
if_proto_free(proto);
}
return result;
}
struct net_thread_marks { };
static const struct net_thread_marks net_thread_marks_base = { };
__private_extern__ const net_thread_marks_t net_thread_marks_none =
&net_thread_marks_base;
__private_extern__ net_thread_marks_t
net_thread_marks_push(u_int32_t push)
{
static const char *const base = (const void*)&net_thread_marks_base;
u_int32_t pop = 0;
if (push != 0) {
struct uthread *uth = get_bsdthread_info(current_thread());
pop = push & ~uth->uu_network_marks;
if (pop != 0) {
uth->uu_network_marks |= pop;
}
}
return (net_thread_marks_t)&base[pop];
}
__private_extern__ net_thread_marks_t
net_thread_unmarks_push(u_int32_t unpush)
{
static const char *const base = (const void*)&net_thread_marks_base;
u_int32_t unpop = 0;
if (unpush != 0) {
struct uthread *uth = get_bsdthread_info(current_thread());
unpop = unpush & uth->uu_network_marks;
if (unpop != 0) {
uth->uu_network_marks &= ~unpop;
}
}
return (net_thread_marks_t)&base[unpop];
}
__private_extern__ void
net_thread_marks_pop(net_thread_marks_t popx)
{
static const char *const base = (const void*)&net_thread_marks_base;
const ptrdiff_t pop = (const char *)popx - (const char *)base;
if (pop != 0) {
static const ptrdiff_t ones = (ptrdiff_t)(u_int32_t)~0U;
struct uthread *uth = get_bsdthread_info(current_thread());
VERIFY((pop & ones) == pop);
VERIFY((ptrdiff_t)(uth->uu_network_marks & pop) == pop);
uth->uu_network_marks &= ~pop;
}
}
__private_extern__ void
net_thread_unmarks_pop(net_thread_marks_t unpopx)
{
static const char *const base = (const void*)&net_thread_marks_base;
ptrdiff_t unpop = (const char *)unpopx - (const char *)base;
if (unpop != 0) {
static const ptrdiff_t ones = (ptrdiff_t)(u_int32_t)~0U;
struct uthread *uth = get_bsdthread_info(current_thread());
VERIFY((unpop & ones) == unpop);
VERIFY((ptrdiff_t)(uth->uu_network_marks & unpop) == 0);
uth->uu_network_marks |= unpop;
}
}
__private_extern__ u_int32_t
net_thread_is_marked(u_int32_t check)
{
if (check != 0) {
struct uthread *uth = get_bsdthread_info(current_thread());
return uth->uu_network_marks & check;
} else {
return 0;
}
}
__private_extern__ u_int32_t
net_thread_is_unmarked(u_int32_t check)
{
if (check != 0) {
struct uthread *uth = get_bsdthread_info(current_thread());
return ~uth->uu_network_marks & check;
} else {
return 0;
}
}
static __inline__ int
_is_announcement(const struct sockaddr_in * sender_sin,
const struct sockaddr_in * target_sin)
{
if (target_sin == NULL || sender_sin == NULL) {
return FALSE;
}
return sender_sin->sin_addr.s_addr == target_sin->sin_addr.s_addr;
}
__private_extern__ errno_t
dlil_send_arp(ifnet_t ifp, u_short arpop, const struct sockaddr_dl *sender_hw,
const struct sockaddr *sender_proto, const struct sockaddr_dl *target_hw,
const struct sockaddr *target_proto0, u_int32_t rtflags)
{
errno_t result = 0;
const struct sockaddr_in * sender_sin;
const struct sockaddr_in * target_sin;
struct sockaddr_inarp target_proto_sinarp;
struct sockaddr *target_proto = (void *)(uintptr_t)target_proto0;
if (target_proto == NULL || sender_proto == NULL) {
return EINVAL;
}
if (sender_proto->sa_family != target_proto->sa_family) {
return EINVAL;
}
/*
* If the target is a (default) router, provide that
* information to the send_arp callback routine.
*/
if (rtflags & RTF_ROUTER) {
bcopy(target_proto, &target_proto_sinarp,
sizeof(struct sockaddr_in));
target_proto_sinarp.sin_other |= SIN_ROUTER;
target_proto = (struct sockaddr *)&target_proto_sinarp;
}
/*
* If this is an ARP request and the target IP is IPv4LL,
* send the request on all interfaces. The exception is
* an announcement, which must only appear on the specific
* interface.
*/
sender_sin = (struct sockaddr_in *)(void *)(uintptr_t)sender_proto;
target_sin = (struct sockaddr_in *)(void *)(uintptr_t)target_proto;
if (target_proto->sa_family == AF_INET &&
IN_LINKLOCAL(ntohl(target_sin->sin_addr.s_addr)) &&
ipv4_ll_arp_aware != 0 && arpop == ARPOP_REQUEST &&
!_is_announcement(sender_sin, target_sin)) {
ifnet_t *ifp_list;
u_int32_t count;
u_int32_t ifp_on;
result = ENOTSUP;
if (ifnet_list_get(IFNET_FAMILY_ANY, &ifp_list, &count) == 0) {
for (ifp_on = 0; ifp_on < count; ifp_on++) {
errno_t new_result;
ifaddr_t source_hw = NULL;
ifaddr_t source_ip = NULL;
struct sockaddr_in source_ip_copy;
struct ifnet *cur_ifp = ifp_list[ifp_on];
/*
* Only arp on interfaces marked for IPv4LL
* ARPing. This may mean that we don't ARP on
* the interface the subnet route points to.
*/
if (!(cur_ifp->if_eflags & IFEF_ARPLL)) {
continue;
}
/* Find the source IP address */
ifnet_lock_shared(cur_ifp);
source_hw = cur_ifp->if_lladdr;
TAILQ_FOREACH(source_ip, &cur_ifp->if_addrhead,
ifa_link) {
IFA_LOCK(source_ip);
if (source_ip->ifa_addr != NULL &&
source_ip->ifa_addr->sa_family ==
AF_INET) {
/* Copy the source IP address */
source_ip_copy =
*(struct sockaddr_in *)
(void *)source_ip->ifa_addr;
IFA_UNLOCK(source_ip);
break;
}
IFA_UNLOCK(source_ip);
}
/* No IP Source, don't arp */
if (source_ip == NULL) {
ifnet_lock_done(cur_ifp);
continue;
}
IFA_ADDREF(source_hw);
ifnet_lock_done(cur_ifp);
/* Send the ARP */
new_result = dlil_send_arp_internal(cur_ifp,
arpop, (struct sockaddr_dl *)(void *)
source_hw->ifa_addr,
(struct sockaddr *)&source_ip_copy, NULL,
target_proto);
IFA_REMREF(source_hw);
if (result == ENOTSUP) {
result = new_result;
}
}
ifnet_list_free(ifp_list);
}
} else {
result = dlil_send_arp_internal(ifp, arpop, sender_hw,
sender_proto, target_hw, target_proto);
}
return result;
}
/*
* Caller must hold ifnet head lock.
*/
static int
ifnet_lookup(struct ifnet *ifp)
{
struct ifnet *_ifp;
LCK_RW_ASSERT(&ifnet_head_lock, LCK_RW_ASSERT_HELD);
TAILQ_FOREACH(_ifp, &ifnet_head, if_link) {
if (_ifp == ifp) {
break;
}
}
return _ifp != NULL;
}
/*
* Caller has to pass a non-zero refio argument to get a
* IO reference count. This will prevent ifnet_detach from
* being called when there are outstanding io reference counts.
*/
int
ifnet_is_attached(struct ifnet *ifp, int refio)
{
int ret;
lck_mtx_lock_spin(&ifp->if_ref_lock);
if ((ret = IF_FULLY_ATTACHED(ifp))) {
if (refio > 0) {
ifp->if_refio++;
}
}
lck_mtx_unlock(&ifp->if_ref_lock);
return ret;
}
void
ifnet_incr_pending_thread_count(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
ifp->if_threads_pending++;
lck_mtx_unlock(&ifp->if_ref_lock);
}
void
ifnet_decr_pending_thread_count(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
VERIFY(ifp->if_threads_pending > 0);
ifp->if_threads_pending--;
if (ifp->if_threads_pending == 0) {
wakeup(&ifp->if_threads_pending);
}
lck_mtx_unlock(&ifp->if_ref_lock);
}
/*
* Caller must ensure the interface is attached; the assumption is that
* there is at least an outstanding IO reference count held already.
* Most callers would call ifnet_is_{attached,data_ready}() instead.
*/
void
ifnet_incr_iorefcnt(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
VERIFY(IF_FULLY_ATTACHED(ifp));
VERIFY(ifp->if_refio > 0);
ifp->if_refio++;
lck_mtx_unlock(&ifp->if_ref_lock);
}
__attribute__((always_inline))
static void
ifnet_decr_iorefcnt_locked(struct ifnet *ifp)
{
LCK_MTX_ASSERT(&ifp->if_ref_lock, LCK_MTX_ASSERT_OWNED);
VERIFY(ifp->if_refio > 0);
VERIFY(ifp->if_refflags & (IFRF_ATTACHED | IFRF_DETACHING));
ifp->if_refio--;
VERIFY(ifp->if_refio != 0 || ifp->if_datamov == 0);
/*
* if there are no more outstanding io references, wakeup the
* ifnet_detach thread if detaching flag is set.
*/
if (ifp->if_refio == 0 && (ifp->if_refflags & IFRF_DETACHING)) {
wakeup(&(ifp->if_refio));
}
}
void
ifnet_decr_iorefcnt(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
ifnet_decr_iorefcnt_locked(ifp);
lck_mtx_unlock(&ifp->if_ref_lock);
}
boolean_t
ifnet_datamov_begin(struct ifnet *ifp)
{
boolean_t ret;
lck_mtx_lock_spin(&ifp->if_ref_lock);
if ((ret = IF_FULLY_ATTACHED_AND_READY(ifp))) {
ifp->if_refio++;
ifp->if_datamov++;
}
lck_mtx_unlock(&ifp->if_ref_lock);
return ret;
}
void
ifnet_datamov_end(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
VERIFY(ifp->if_datamov > 0);
/*
* if there's no more thread moving data, wakeup any
* drainers that's blocked waiting for this.
*/
if (--ifp->if_datamov == 0 && ifp->if_drainers > 0) {
wakeup(&(ifp->if_datamov));
}
ifnet_decr_iorefcnt_locked(ifp);
lck_mtx_unlock(&ifp->if_ref_lock);
}
void
ifnet_datamov_suspend(struct ifnet *ifp)
{
lck_mtx_lock_spin(&ifp->if_ref_lock);
VERIFY(ifp->if_refflags & (IFRF_ATTACHED | IFRF_DETACHING));
ifp->if_refio++;
if (ifp->if_suspend++ == 0) {
VERIFY(ifp->if_refflags & IFRF_READY);
ifp->if_refflags &= ~IFRF_READY;
}
lck_mtx_unlock(&ifp->if_ref_lock);
}
void
ifnet_datamov_drain(struct ifnet *ifp)
{
lck_mtx_lock(&ifp->if_ref_lock);
VERIFY(ifp->if_refflags & (IFRF_ATTACHED | IFRF_DETACHING));
/* data movement must already be suspended */
VERIFY(ifp->if_suspend > 0);
VERIFY(!(ifp->if_refflags & IFRF_READY));
ifp->if_drainers++;
while (ifp->if_datamov != 0) {
(void) msleep(&(ifp->if_datamov), &ifp->if_ref_lock,
(PZERO - 1), __func__, NULL);
}
VERIFY(!(ifp->if_refflags & IFRF_READY));
VERIFY(ifp->if_drainers > 0);
ifp->if_drainers--;
lck_mtx_unlock(&ifp->if_ref_lock);
/* purge the interface queues */
if ((ifp->if_eflags & IFEF_TXSTART) != 0) {
if_qflush(ifp, 0);
}
}
void
ifnet_datamov_resume(struct ifnet *ifp)
{
lck_mtx_lock(&ifp->if_ref_lock);
/* data movement must already be suspended */
VERIFY(ifp->if_suspend > 0);
if (--ifp->if_suspend == 0) {
VERIFY(!(ifp->if_refflags & IFRF_READY));
ifp->if_refflags |= IFRF_READY;
}
ifnet_decr_iorefcnt_locked(ifp);
lck_mtx_unlock(&ifp->if_ref_lock);
}
static void
dlil_if_trace(struct dlil_ifnet *dl_if, int refhold)
{
struct dlil_ifnet_dbg *dl_if_dbg = (struct dlil_ifnet_dbg *)dl_if;
ctrace_t *tr;
u_int32_t idx;
u_int16_t *cnt;
if (!(dl_if->dl_if_flags & DLIF_DEBUG)) {
panic("%s: dl_if %p has no debug structure", __func__, dl_if);
/* NOTREACHED */
}
if (refhold) {
cnt = &dl_if_dbg->dldbg_if_refhold_cnt;
tr = dl_if_dbg->dldbg_if_refhold;
} else {
cnt = &dl_if_dbg->dldbg_if_refrele_cnt;
tr = dl_if_dbg->dldbg_if_refrele;
}
idx = atomic_add_16_ov(cnt, 1) % IF_REF_TRACE_HIST_SIZE;
ctrace_record(&tr[idx]);
}
errno_t
dlil_if_ref(struct ifnet *ifp)
{
struct dlil_ifnet *dl_if = (struct dlil_ifnet *)ifp;
if (dl_if == NULL) {
return EINVAL;
}
lck_mtx_lock_spin(&dl_if->dl_if_lock);
++dl_if->dl_if_refcnt;
if (dl_if->dl_if_refcnt == 0) {
panic("%s: wraparound refcnt for ifp=%p", __func__, ifp);
/* NOTREACHED */
}
if (dl_if->dl_if_trace != NULL) {
(*dl_if->dl_if_trace)(dl_if, TRUE);
}
lck_mtx_unlock(&dl_if->dl_if_lock);
return 0;
}
errno_t
dlil_if_free(struct ifnet *ifp)
{
struct dlil_ifnet *dl_if = (struct dlil_ifnet *)ifp;
bool need_release = FALSE;
if (dl_if == NULL) {
return EINVAL;
}
lck_mtx_lock_spin(&dl_if->dl_if_lock);
switch (dl_if->dl_if_refcnt) {
case 0:
panic("%s: negative refcnt for ifp=%p", __func__, ifp);
/* NOTREACHED */
break;
case 1:
if ((ifp->if_refflags & IFRF_EMBRYONIC) != 0) {
need_release = TRUE;
}
break;
default:
break;
}
--dl_if->dl_if_refcnt;
if (dl_if->dl_if_trace != NULL) {
(*dl_if->dl_if_trace)(dl_if, FALSE);
}
lck_mtx_unlock(&dl_if->dl_if_lock);
if (need_release) {
dlil_if_release(ifp);
}
return 0;
}
static errno_t
dlil_attach_protocol_internal(struct if_proto *proto,
const struct ifnet_demux_desc *demux_list, u_int32_t demux_count,
uint32_t * proto_count)
{
struct kev_dl_proto_data ev_pr_data;
struct ifnet *ifp = proto->ifp;
int retval = 0;
u_int32_t hash_value = proto_hash_value(proto->protocol_family);
struct if_proto *prev_proto;
struct if_proto *_proto;
/* callee holds a proto refcnt upon success */
ifnet_lock_exclusive(ifp);
_proto = find_attached_proto(ifp, proto->protocol_family);
if (_proto != NULL) {
ifnet_lock_done(ifp);
if_proto_free(_proto);
return EEXIST;
}
/*
* Call family module add_proto routine so it can refine the
* demux descriptors as it wishes.
*/
retval = ifp->if_add_proto(ifp, proto->protocol_family, demux_list,
demux_count);
if (retval) {
ifnet_lock_done(ifp);
return retval;
}
/*
* Insert the protocol in the hash
*/
prev_proto = SLIST_FIRST(&ifp->if_proto_hash[hash_value]);
while (prev_proto != NULL && SLIST_NEXT(prev_proto, next_hash) != NULL) {
prev_proto = SLIST_NEXT(prev_proto, next_hash);
}
if (prev_proto) {
SLIST_INSERT_AFTER(prev_proto, proto, next_hash);
} else {
SLIST_INSERT_HEAD(&ifp->if_proto_hash[hash_value],
proto, next_hash);
}
/* hold a proto refcnt for attach */
if_proto_ref(proto);
/*
* The reserved field carries the number of protocol still attached
* (subject to change)
*/
ev_pr_data.proto_family = proto->protocol_family;
ev_pr_data.proto_remaining_count = dlil_ifp_protolist(ifp, NULL, 0);
ifnet_lock_done(ifp);
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_PROTO_ATTACHED,
(struct net_event_data *)&ev_pr_data,
sizeof(struct kev_dl_proto_data));
if (proto_count != NULL) {
*proto_count = ev_pr_data.proto_remaining_count;
}
return retval;
}
errno_t
ifnet_attach_protocol(ifnet_t ifp, protocol_family_t protocol,
const struct ifnet_attach_proto_param *proto_details)
{
int retval = 0;
struct if_proto *ifproto = NULL;
uint32_t proto_count = 0;
ifnet_head_lock_shared();
if (ifp == NULL || protocol == 0 || proto_details == NULL) {
retval = EINVAL;
goto end;
}
/* Check that the interface is in the global list */
if (!ifnet_lookup(ifp)) {
retval = ENXIO;
goto end;
}
ifproto = zalloc_flags(dlif_proto_zone, Z_WAITOK | Z_ZERO);
if (ifproto == NULL) {
retval = ENOMEM;
goto end;
}
/* refcnt held above during lookup */
ifproto->ifp = ifp;
ifproto->protocol_family = protocol;
ifproto->proto_kpi = kProtoKPI_v1;
ifproto->kpi.v1.input = proto_details->input;
ifproto->kpi.v1.pre_output = proto_details->pre_output;
ifproto->kpi.v1.event = proto_details->event;
ifproto->kpi.v1.ioctl = proto_details->ioctl;
ifproto->kpi.v1.detached = proto_details->detached;
ifproto->kpi.v1.resolve_multi = proto_details->resolve;
ifproto->kpi.v1.send_arp = proto_details->send_arp;
retval = dlil_attach_protocol_internal(ifproto,
proto_details->demux_list, proto_details->demux_count,
&proto_count);
end:
if (retval != 0 && retval != EEXIST) {
DLIL_PRINTF("%s: failed to attach v1 protocol %d (err=%d)\n",
ifp != NULL ? if_name(ifp) : "N/A", protocol, retval);
} else {
if (dlil_verbose) {
DLIL_PRINTF("%s: attached v1 protocol %d (count = %d)\n",
ifp != NULL ? if_name(ifp) : "N/A",
protocol, proto_count);
}
}
ifnet_head_done();
if (retval == 0) {
/*
* A protocol has been attached, mark the interface up.
* This used to be done by configd.KernelEventMonitor, but that
* is inherently prone to races (rdar://problem/30810208).
*/
(void) ifnet_set_flags(ifp, IFF_UP, IFF_UP);
(void) ifnet_ioctl(ifp, 0, SIOCSIFFLAGS, NULL);
dlil_post_sifflags_msg(ifp);
} else if (ifproto != NULL) {
zfree(dlif_proto_zone, ifproto);
}
return retval;
}
errno_t
ifnet_attach_protocol_v2(ifnet_t ifp, protocol_family_t protocol,
const struct ifnet_attach_proto_param_v2 *proto_details)
{
int retval = 0;
struct if_proto *ifproto = NULL;
uint32_t proto_count = 0;
ifnet_head_lock_shared();
if (ifp == NULL || protocol == 0 || proto_details == NULL) {
retval = EINVAL;
goto end;
}
/* Check that the interface is in the global list */
if (!ifnet_lookup(ifp)) {
retval = ENXIO;
goto end;
}
ifproto = zalloc(dlif_proto_zone);
if (ifproto == NULL) {
retval = ENOMEM;
goto end;
}
bzero(ifproto, sizeof(*ifproto));
/* refcnt held above during lookup */
ifproto->ifp = ifp;
ifproto->protocol_family = protocol;
ifproto->proto_kpi = kProtoKPI_v2;
ifproto->kpi.v2.input = proto_details->input;
ifproto->kpi.v2.pre_output = proto_details->pre_output;
ifproto->kpi.v2.event = proto_details->event;
ifproto->kpi.v2.ioctl = proto_details->ioctl;
ifproto->kpi.v2.detached = proto_details->detached;
ifproto->kpi.v2.resolve_multi = proto_details->resolve;
ifproto->kpi.v2.send_arp = proto_details->send_arp;
retval = dlil_attach_protocol_internal(ifproto,
proto_details->demux_list, proto_details->demux_count,
&proto_count);
end:
if (retval != 0 && retval != EEXIST) {
DLIL_PRINTF("%s: failed to attach v2 protocol %d (err=%d)\n",
ifp != NULL ? if_name(ifp) : "N/A", protocol, retval);
} else {
if (dlil_verbose) {
DLIL_PRINTF("%s: attached v2 protocol %d (count = %d)\n",
ifp != NULL ? if_name(ifp) : "N/A",
protocol, proto_count);
}
}
ifnet_head_done();
if (retval == 0) {
/*
* A protocol has been attached, mark the interface up.
* This used to be done by configd.KernelEventMonitor, but that
* is inherently prone to races (rdar://problem/30810208).
*/
(void) ifnet_set_flags(ifp, IFF_UP, IFF_UP);
(void) ifnet_ioctl(ifp, 0, SIOCSIFFLAGS, NULL);
dlil_post_sifflags_msg(ifp);
} else if (ifproto != NULL) {
zfree(dlif_proto_zone, ifproto);
}
return retval;
}
errno_t
ifnet_detach_protocol(ifnet_t ifp, protocol_family_t proto_family)
{
struct if_proto *proto = NULL;
int retval = 0;
if (ifp == NULL || proto_family == 0) {
retval = EINVAL;
goto end;
}
ifnet_lock_exclusive(ifp);
/* callee holds a proto refcnt upon success */
proto = find_attached_proto(ifp, proto_family);
if (proto == NULL) {
retval = ENXIO;
ifnet_lock_done(ifp);
goto end;
}
/* call family module del_proto */
if (ifp->if_del_proto) {
ifp->if_del_proto(ifp, proto->protocol_family);
}
SLIST_REMOVE(&ifp->if_proto_hash[proto_hash_value(proto_family)],
proto, if_proto, next_hash);
if (proto->proto_kpi == kProtoKPI_v1) {
proto->kpi.v1.input = ifproto_media_input_v1;
proto->kpi.v1.pre_output = ifproto_media_preout;
proto->kpi.v1.event = ifproto_media_event;
proto->kpi.v1.ioctl = ifproto_media_ioctl;
proto->kpi.v1.resolve_multi = ifproto_media_resolve_multi;
proto->kpi.v1.send_arp = ifproto_media_send_arp;
} else {
proto->kpi.v2.input = ifproto_media_input_v2;
proto->kpi.v2.pre_output = ifproto_media_preout;
proto->kpi.v2.event = ifproto_media_event;
proto->kpi.v2.ioctl = ifproto_media_ioctl;
proto->kpi.v2.resolve_multi = ifproto_media_resolve_multi;
proto->kpi.v2.send_arp = ifproto_media_send_arp;
}
proto->detached = 1;
ifnet_lock_done(ifp);
if (dlil_verbose) {
DLIL_PRINTF("%s: detached %s protocol %d\n", if_name(ifp),
(proto->proto_kpi == kProtoKPI_v1) ?
"v1" : "v2", proto_family);
}
/* release proto refcnt held during protocol attach */
if_proto_free(proto);
/*
* Release proto refcnt held during lookup; the rest of
* protocol detach steps will happen when the last proto
* reference is released.
*/
if_proto_free(proto);
end:
return retval;
}
static errno_t
ifproto_media_input_v1(struct ifnet *ifp, protocol_family_t protocol,
struct mbuf *packet, char *header)
{
#pragma unused(ifp, protocol, packet, header)
return ENXIO;
}
static errno_t
ifproto_media_input_v2(struct ifnet *ifp, protocol_family_t protocol,
struct mbuf *packet)
{
#pragma unused(ifp, protocol, packet)
return ENXIO;
}
static errno_t
ifproto_media_preout(struct ifnet *ifp, protocol_family_t protocol,
mbuf_t *packet, const struct sockaddr *dest, void *route, char *frame_type,
char *link_layer_dest)
{
#pragma unused(ifp, protocol, packet, dest, route, frame_type, link_layer_dest)
return ENXIO;
}
static void
ifproto_media_event(struct ifnet *ifp, protocol_family_t protocol,
const struct kev_msg *event)
{
#pragma unused(ifp, protocol, event)
}
static errno_t
ifproto_media_ioctl(struct ifnet *ifp, protocol_family_t protocol,
unsigned long command, void *argument)
{
#pragma unused(ifp, protocol, command, argument)
return ENXIO;
}
static errno_t
ifproto_media_resolve_multi(ifnet_t ifp, const struct sockaddr *proto_addr,
struct sockaddr_dl *out_ll, size_t ll_len)
{
#pragma unused(ifp, proto_addr, out_ll, ll_len)
return ENXIO;
}
static errno_t
ifproto_media_send_arp(struct ifnet *ifp, u_short arpop,
const struct sockaddr_dl *sender_hw, const struct sockaddr *sender_proto,
const struct sockaddr_dl *target_hw, const struct sockaddr *target_proto)
{
#pragma unused(ifp, arpop, sender_hw, sender_proto, target_hw, target_proto)
return ENXIO;
}
extern int if_next_index(void);
extern int tcp_ecn_outbound;
errno_t
ifnet_attach(ifnet_t ifp, const struct sockaddr_dl *ll_addr)
{
struct ifnet *tmp_if;
struct ifaddr *ifa;
struct if_data_internal if_data_saved;
struct dlil_ifnet *dl_if = (struct dlil_ifnet *)ifp;
struct dlil_threading_info *dl_inp;
thread_continue_t thfunc = NULL;
u_int32_t sflags = 0;
int err;
if (ifp == NULL) {
return EINVAL;
}
/*
* Serialize ifnet attach using dlil_ifnet_lock, in order to
* prevent the interface from being configured while it is
* embryonic, as ifnet_head_lock is dropped and reacquired
* below prior to marking the ifnet with IFRF_ATTACHED.
*/
dlil_if_lock();
ifnet_head_lock_exclusive();
/* Verify we aren't already on the list */
TAILQ_FOREACH(tmp_if, &ifnet_head, if_link) {
if (tmp_if == ifp) {
ifnet_head_done();
dlil_if_unlock();
return EEXIST;
}
}
lck_mtx_lock_spin(&ifp->if_ref_lock);
if (!(ifp->if_refflags & IFRF_EMBRYONIC)) {
panic_plain("%s: flags mismatch (embryonic not set) ifp=%p",
__func__, ifp);
/* NOTREACHED */
}
lck_mtx_unlock(&ifp->if_ref_lock);
ifnet_lock_exclusive(ifp);
/* Sanity check */
VERIFY(ifp->if_detaching_link.tqe_next == NULL);
VERIFY(ifp->if_detaching_link.tqe_prev == NULL);
VERIFY(ifp->if_threads_pending == 0);
if (ll_addr != NULL) {
if (ifp->if_addrlen == 0) {
ifp->if_addrlen = ll_addr->sdl_alen;
} else if (ll_addr->sdl_alen != ifp->if_addrlen) {
ifnet_lock_done(ifp);
ifnet_head_done();
dlil_if_unlock();
return EINVAL;
}
}
/*
* Allow interfaces without protocol families to attach
* only if they have the necessary fields filled out.
*/
if (ifp->if_add_proto == NULL || ifp->if_del_proto == NULL) {
DLIL_PRINTF("%s: Attempt to attach interface without "
"family module - %d\n", __func__, ifp->if_family);
ifnet_lock_done(ifp);
ifnet_head_done();
dlil_if_unlock();
return ENODEV;
}
/* Allocate protocol hash table */
VERIFY(ifp->if_proto_hash == NULL);
ifp->if_proto_hash = zalloc_flags(dlif_phash_zone, Z_WAITOK | Z_ZERO);
if (ifp->if_proto_hash == NULL) {
ifnet_lock_done(ifp);
ifnet_head_done();
dlil_if_unlock();
return ENOBUFS;
}
lck_mtx_lock_spin(&ifp->if_flt_lock);
VERIFY(TAILQ_EMPTY(&ifp->if_flt_head));
TAILQ_INIT(&ifp->if_flt_head);
VERIFY(ifp->if_flt_busy == 0);
VERIFY(ifp->if_flt_waiters == 0);
lck_mtx_unlock(&ifp->if_flt_lock);
if (!(dl_if->dl_if_flags & DLIF_REUSE)) {
VERIFY(LIST_EMPTY(&ifp->if_multiaddrs));
LIST_INIT(&ifp->if_multiaddrs);
}
VERIFY(ifp->if_allhostsinm == NULL);
VERIFY(TAILQ_EMPTY(&ifp->if_addrhead));
TAILQ_INIT(&ifp->if_addrhead);
if (ifp->if_index == 0) {
int idx = if_next_index();
if (idx == -1) {
ifp->if_index = 0;
ifnet_lock_done(ifp);
ifnet_head_done();
dlil_if_unlock();
return ENOBUFS;
}
ifp->if_index = (uint16_t)idx;
/* the lladdr passed at attach time is the permanent address */
if (ll_addr != NULL && ifp->if_type == IFT_ETHER &&
ll_addr->sdl_alen == ETHER_ADDR_LEN) {
bcopy(CONST_LLADDR(ll_addr),
dl_if->dl_if_permanent_ether,
ETHER_ADDR_LEN);
dl_if->dl_if_permanent_ether_is_set = 1;
}
}
/* There should not be anything occupying this slot */
VERIFY(ifindex2ifnet[ifp->if_index] == NULL);
/* allocate (if needed) and initialize a link address */
ifa = dlil_alloc_lladdr(ifp, ll_addr);
if (ifa == NULL) {
ifnet_lock_done(ifp);
ifnet_head_done();
dlil_if_unlock();
return ENOBUFS;
}
VERIFY(ifnet_addrs[ifp->if_index - 1] == NULL);
ifnet_addrs[ifp->if_index - 1] = ifa;
/* make this address the first on the list */
IFA_LOCK(ifa);
/* hold a reference for ifnet_addrs[] */
IFA_ADDREF_LOCKED(ifa);
/* if_attach_link_ifa() holds a reference for ifa_link */
if_attach_link_ifa(ifp, ifa);
IFA_UNLOCK(ifa);
TAILQ_INSERT_TAIL(&ifnet_head, ifp, if_link);
ifindex2ifnet[ifp->if_index] = ifp;
/* Hold a reference to the underlying dlil_ifnet */
ifnet_reference(ifp);
/* Clear stats (save and restore other fields that we care) */
if_data_saved = ifp->if_data;
bzero(&ifp->if_data, sizeof(ifp->if_data));
ifp->if_data.ifi_type = if_data_saved.ifi_type;
ifp->if_data.ifi_typelen = if_data_saved.ifi_typelen;
ifp->if_data.ifi_physical = if_data_saved.ifi_physical;
ifp->if_data.ifi_addrlen = if_data_saved.ifi_addrlen;
ifp->if_data.ifi_hdrlen = if_data_saved.ifi_hdrlen;
ifp->if_data.ifi_mtu = if_data_saved.ifi_mtu;
ifp->if_data.ifi_baudrate = if_data_saved.ifi_baudrate;
ifp->if_data.ifi_hwassist = if_data_saved.ifi_hwassist;
ifp->if_data.ifi_tso_v4_mtu = if_data_saved.ifi_tso_v4_mtu;
ifp->if_data.ifi_tso_v6_mtu = if_data_saved.ifi_tso_v6_mtu;
ifnet_touch_lastchange(ifp);
VERIFY(ifp->if_output_sched_model == IFNET_SCHED_MODEL_NORMAL ||
ifp->if_output_sched_model == IFNET_SCHED_MODEL_DRIVER_MANAGED ||
ifp->if_output_sched_model == IFNET_SCHED_MODEL_FQ_CODEL);
/* By default, use SFB and enable flow advisory */
sflags = PKTSCHEDF_QALG_SFB;
if (if_flowadv) {
sflags |= PKTSCHEDF_QALG_FLOWCTL;
}
if (if_delaybased_queue) {
sflags |= PKTSCHEDF_QALG_DELAYBASED;
}
if (ifp->if_output_sched_model ==
IFNET_SCHED_MODEL_DRIVER_MANAGED) {
sflags |= PKTSCHEDF_QALG_DRIVER_MANAGED;
}
/* Initialize transmit queue(s) */
err = ifclassq_setup(ifp, sflags, (dl_if->dl_if_flags & DLIF_REUSE));
if (err != 0) {
panic_plain("%s: ifp=%p couldn't initialize transmit queue; "
"err=%d", __func__, ifp, err);
/* NOTREACHED */
}
/* Sanity checks on the input thread storage */
dl_inp = &dl_if->dl_if_inpstorage;
bzero(&dl_inp->dlth_stats, sizeof(dl_inp->dlth_stats));
VERIFY(dl_inp->dlth_flags == 0);
VERIFY(dl_inp->dlth_wtot == 0);
VERIFY(dl_inp->dlth_ifp == NULL);
VERIFY(qhead(&dl_inp->dlth_pkts) == NULL && qempty(&dl_inp->dlth_pkts));
VERIFY(qlimit(&dl_inp->dlth_pkts) == 0);
VERIFY(!dl_inp->dlth_affinity);
VERIFY(ifp->if_inp == NULL);
VERIFY(dl_inp->dlth_thread == THREAD_NULL);
VERIFY(dl_inp->dlth_strategy == NULL);
VERIFY(dl_inp->dlth_driver_thread == THREAD_NULL);
VERIFY(dl_inp->dlth_poller_thread == THREAD_NULL);
VERIFY(dl_inp->dlth_affinity_tag == 0);
#if IFNET_INPUT_SANITY_CHK
VERIFY(dl_inp->dlth_pkts_cnt == 0);
#endif /* IFNET_INPUT_SANITY_CHK */
VERIFY(ifp->if_poll_thread == THREAD_NULL);
dlil_reset_rxpoll_params(ifp);
/*
* A specific DLIL input thread is created per non-loopback interface.
*/
if (ifp->if_family != IFNET_FAMILY_LOOPBACK) {
ifp->if_inp = dl_inp;
ifnet_incr_pending_thread_count(ifp);
err = dlil_create_input_thread(ifp, ifp->if_inp, &thfunc);
if (err == ENODEV) {
VERIFY(thfunc == NULL);
ifnet_decr_pending_thread_count(ifp);
} else if (err != 0) {
panic_plain("%s: ifp=%p couldn't get an input thread; "
"err=%d", __func__, ifp, err);
/* NOTREACHED */
}
}
/*
* If the driver supports the new transmit model, calculate flow hash
* and create a workloop starter thread to invoke the if_start callback
* where the packets may be dequeued and transmitted.
*/
if (ifp->if_eflags & IFEF_TXSTART) {
thread_precedence_policy_data_t info;
__unused kern_return_t kret;
ifp->if_flowhash = ifnet_calc_flowhash(ifp);
VERIFY(ifp->if_flowhash != 0);
VERIFY(ifp->if_start_thread == THREAD_NULL);
ifnet_set_start_cycle(ifp, NULL);
ifp->if_start_active = 0;
ifp->if_start_req = 0;
ifp->if_start_flags = 0;
VERIFY(ifp->if_start != NULL);
ifnet_incr_pending_thread_count(ifp);
if ((err = kernel_thread_start(ifnet_start_thread_func,
ifp, &ifp->if_start_thread)) != KERN_SUCCESS) {
panic_plain("%s: "
"ifp=%p couldn't get a start thread; "
"err=%d", __func__, ifp, err);
/* NOTREACHED */
}
bzero(&info, sizeof(info));
info.importance = 1;
kret = thread_policy_set(ifp->if_start_thread,
THREAD_PRECEDENCE_POLICY, (thread_policy_t)&info,
THREAD_PRECEDENCE_POLICY_COUNT);
ASSERT(kret == KERN_SUCCESS);
} else {
ifp->if_flowhash = 0;
}
/* Reset polling parameters */
ifnet_set_poll_cycle(ifp, NULL);
ifp->if_poll_update = 0;
ifp->if_poll_flags = 0;
ifp->if_poll_req = 0;
VERIFY(ifp->if_poll_thread == THREAD_NULL);
/*
* If the driver supports the new receive model, create a poller
* thread to invoke if_input_poll callback where the packets may
* be dequeued from the driver and processed for reception.
* if the interface is netif compat then the poller thread is
* managed by netif.
*/
if (thfunc == dlil_rxpoll_input_thread_func) {
thread_precedence_policy_data_t info;
__unused kern_return_t kret;
VERIFY(ifp->if_input_poll != NULL);
VERIFY(ifp->if_input_ctl != NULL);
ifnet_incr_pending_thread_count(ifp);
if ((err = kernel_thread_start(ifnet_poll_thread_func, ifp,
&ifp->if_poll_thread)) != KERN_SUCCESS) {
panic_plain("%s: ifp=%p couldn't get a poll thread; "
"err=%d", __func__, ifp, err);
/* NOTREACHED */
}
bzero(&info, sizeof(info));
info.importance = 1;
kret = thread_policy_set(ifp->if_poll_thread,
THREAD_PRECEDENCE_POLICY, (thread_policy_t)&info,
THREAD_PRECEDENCE_POLICY_COUNT);
ASSERT(kret == KERN_SUCCESS);
}
VERIFY(ifp->if_desc.ifd_maxlen == IF_DESCSIZE);
VERIFY(ifp->if_desc.ifd_len == 0);
VERIFY(ifp->if_desc.ifd_desc != NULL);
/* Record attach PC stacktrace */
ctrace_record(&((struct dlil_ifnet *)ifp)->dl_if_attach);
ifp->if_updatemcasts = 0;
if (!LIST_EMPTY(&ifp->if_multiaddrs)) {
struct ifmultiaddr *ifma;
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
IFMA_LOCK(ifma);
if (ifma->ifma_addr->sa_family == AF_LINK ||
ifma->ifma_addr->sa_family == AF_UNSPEC) {
ifp->if_updatemcasts++;
}
IFMA_UNLOCK(ifma);
}
DLIL_PRINTF("%s: attached with %d suspended link-layer multicast "
"membership(s)\n", if_name(ifp),
ifp->if_updatemcasts);
}
/* Clear logging parameters */
bzero(&ifp->if_log, sizeof(ifp->if_log));
/* Clear foreground/realtime activity timestamps */
ifp->if_fg_sendts = 0;
ifp->if_rt_sendts = 0;
VERIFY(ifp->if_delegated.ifp == NULL);
VERIFY(ifp->if_delegated.type == 0);
VERIFY(ifp->if_delegated.family == 0);
VERIFY(ifp->if_delegated.subfamily == 0);
VERIFY(ifp->if_delegated.expensive == 0);
VERIFY(ifp->if_delegated.constrained == 0);
VERIFY(ifp->if_agentids == NULL);
VERIFY(ifp->if_agentcount == 0);
/* Reset interface state */
bzero(&ifp->if_interface_state, sizeof(ifp->if_interface_state));
ifp->if_interface_state.valid_bitmask |=
IF_INTERFACE_STATE_INTERFACE_AVAILABILITY_VALID;
ifp->if_interface_state.interface_availability =
IF_INTERFACE_STATE_INTERFACE_AVAILABLE;
/* Initialize Link Quality Metric (loopback [lo0] is always good) */
if (ifp == lo_ifp) {
ifp->if_interface_state.lqm_state = IFNET_LQM_THRESH_GOOD;
ifp->if_interface_state.valid_bitmask |=
IF_INTERFACE_STATE_LQM_STATE_VALID;
} else {
ifp->if_interface_state.lqm_state = IFNET_LQM_THRESH_UNKNOWN;
}
/*
* Enable ECN capability on this interface depending on the
* value of ECN global setting
*/
if (tcp_ecn_outbound == 2 && !IFNET_IS_CELLULAR(ifp)) {
if_set_eflags(ifp, IFEF_ECN_ENABLE);
if_clear_eflags(ifp, IFEF_ECN_DISABLE);
}
/*
* Built-in Cyclops always on policy for WiFi infra
*/
if (IFNET_IS_WIFI_INFRA(ifp) && net_qos_policy_wifi_enabled != 0) {
errno_t error;
error = if_set_qosmarking_mode(ifp,
IFRTYPE_QOSMARKING_FASTLANE);
if (error != 0) {
DLIL_PRINTF("%s if_set_qosmarking_mode(%s) error %d\n",
__func__, ifp->if_xname, error);
} else {
if_set_eflags(ifp, IFEF_QOSMARKING_ENABLED);
#if (DEVELOPMENT || DEBUG)
DLIL_PRINTF("%s fastlane enabled on %s\n",
__func__, ifp->if_xname);
#endif /* (DEVELOPMENT || DEBUG) */
}
}
ifnet_lock_done(ifp);
ifnet_head_done();
lck_mtx_lock(&ifp->if_cached_route_lock);
/* Enable forwarding cached route */
ifp->if_fwd_cacheok = 1;
/* Clean up any existing cached routes */
ROUTE_RELEASE(&ifp->if_fwd_route);
bzero(&ifp->if_fwd_route, sizeof(ifp->if_fwd_route));
ROUTE_RELEASE(&ifp->if_src_route);
bzero(&ifp->if_src_route, sizeof(ifp->if_src_route));
ROUTE_RELEASE(&ifp->if_src_route6);
bzero(&ifp->if_src_route6, sizeof(ifp->if_src_route6));
lck_mtx_unlock(&ifp->if_cached_route_lock);
ifnet_llreach_ifattach(ifp, (dl_if->dl_if_flags & DLIF_REUSE));
/*
* Allocate and attach IGMPv3/MLDv2 interface specific variables
* and trees; do this before the ifnet is marked as attached.
* The ifnet keeps the reference to the info structures even after
* the ifnet is detached, since the network-layer records still
* refer to the info structures even after that. This also
* makes it possible for them to still function after the ifnet
* is recycled or reattached.
*/
#if INET
if (IGMP_IFINFO(ifp) == NULL) {
IGMP_IFINFO(ifp) = igmp_domifattach(ifp, Z_WAITOK);
VERIFY(IGMP_IFINFO(ifp) != NULL);
} else {
VERIFY(IGMP_IFINFO(ifp)->igi_ifp == ifp);
igmp_domifreattach(IGMP_IFINFO(ifp));
}
#endif /* INET */
if (MLD_IFINFO(ifp) == NULL) {
MLD_IFINFO(ifp) = mld_domifattach(ifp, Z_WAITOK);
VERIFY(MLD_IFINFO(ifp) != NULL);
} else {
VERIFY(MLD_IFINFO(ifp)->mli_ifp == ifp);
mld_domifreattach(MLD_IFINFO(ifp));
}
VERIFY(ifp->if_data_threshold == 0);
VERIFY(ifp->if_dt_tcall != NULL);
/*
* Wait for the created kernel threads for I/O to get
* scheduled and run at least once before we proceed
* to mark interface as attached.
*/
lck_mtx_lock(&ifp->if_ref_lock);
while (ifp->if_threads_pending != 0) {
DLIL_PRINTF("%s: Waiting for all kernel threads created for "
"interface %s to get scheduled at least once.\n",
__func__, ifp->if_xname);
(void) msleep(&ifp->if_threads_pending, &ifp->if_ref_lock, (PZERO - 1),
__func__, NULL);
LCK_MTX_ASSERT(&ifp->if_ref_lock, LCK_ASSERT_OWNED);
}
lck_mtx_unlock(&ifp->if_ref_lock);
DLIL_PRINTF("%s: All kernel threads created for interface %s have been scheduled "
"at least once. Proceeding.\n", __func__, ifp->if_xname);
/* Final mark this ifnet as attached. */
lck_mtx_lock(rnh_lock);
ifnet_lock_exclusive(ifp);
lck_mtx_lock_spin(&ifp->if_ref_lock);
ifp->if_refflags = (IFRF_ATTACHED | IFRF_READY); /* clears embryonic */
lck_mtx_unlock(&ifp->if_ref_lock);
if (net_rtref) {
/* boot-args override; enable idle notification */
(void) ifnet_set_idle_flags_locked(ifp, IFRF_IDLE_NOTIFY,
IFRF_IDLE_NOTIFY);
} else {
/* apply previous request(s) to set the idle flags, if any */
(void) ifnet_set_idle_flags_locked(ifp, ifp->if_idle_new_flags,
ifp->if_idle_new_flags_mask);
}
ifnet_lock_done(ifp);
lck_mtx_unlock(rnh_lock);
dlil_if_unlock();
#if PF
/*
* Attach packet filter to this interface, if enabled.
*/
pf_ifnet_hook(ifp, 1);
#endif /* PF */
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_IF_ATTACHED, NULL, 0);
if (dlil_verbose) {
DLIL_PRINTF("%s: attached%s\n", if_name(ifp),
(dl_if->dl_if_flags & DLIF_REUSE) ? " (recycled)" : "");
}
return 0;
}
/*
* Prepare the storage for the first/permanent link address, which must
* must have the same lifetime as the ifnet itself. Although the link
* address gets removed from if_addrhead and ifnet_addrs[] at detach time,
* its location in memory must never change as it may still be referred
* to by some parts of the system afterwards (unfortunate implementation
* artifacts inherited from BSD.)
*
* Caller must hold ifnet lock as writer.
*/
static struct ifaddr *
dlil_alloc_lladdr(struct ifnet *ifp, const struct sockaddr_dl *ll_addr)
{
struct ifaddr *ifa, *oifa;
struct sockaddr_dl *asdl, *msdl;
char workbuf[IFNAMSIZ * 2];
int namelen, masklen, socksize;
struct dlil_ifnet *dl_if = (struct dlil_ifnet *)ifp;
ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_EXCLUSIVE);
VERIFY(ll_addr == NULL || ll_addr->sdl_alen == ifp->if_addrlen);
namelen = scnprintf(workbuf, sizeof(workbuf), "%s",
if_name(ifp));
masklen = offsetof(struct sockaddr_dl, sdl_data[0])
+ ((namelen > 0) ? namelen : 0);
socksize = masklen + ifp->if_addrlen;
#define ROUNDUP(a) (1 + (((a) - 1) | (sizeof (u_int32_t) - 1)))
if ((u_int32_t)socksize < sizeof(struct sockaddr_dl)) {
socksize = sizeof(struct sockaddr_dl);
}
socksize = ROUNDUP(socksize);
#undef ROUNDUP
ifa = ifp->if_lladdr;
if (socksize > DLIL_SDLMAXLEN ||
(ifa != NULL && ifa != &dl_if->dl_if_lladdr.ifa)) {
/*
* Rare, but in the event that the link address requires
* more storage space than DLIL_SDLMAXLEN, allocate the
* largest possible storages for address and mask, such
* that we can reuse the same space when if_addrlen grows.
* This same space will be used when if_addrlen shrinks.
*/
if (ifa == NULL || ifa == &dl_if->dl_if_lladdr.ifa) {
int ifasize = sizeof(*ifa) + 2 * SOCK_MAXADDRLEN;
ifa = _MALLOC(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
if (ifa == NULL) {
return NULL;
}
ifa_lock_init(ifa);
/* Don't set IFD_ALLOC, as this is permanent */
ifa->ifa_debug = IFD_LINK;
}
IFA_LOCK(ifa);
/* address and mask sockaddr_dl locations */
asdl = (struct sockaddr_dl *)(ifa + 1);
bzero(asdl, SOCK_MAXADDRLEN);
msdl = (struct sockaddr_dl *)(void *)
((char *)asdl + SOCK_MAXADDRLEN);
bzero(msdl, SOCK_MAXADDRLEN);
} else {
VERIFY(ifa == NULL || ifa == &dl_if->dl_if_lladdr.ifa);
/*
* Use the storage areas for address and mask within the
* dlil_ifnet structure. This is the most common case.
*/
if (ifa == NULL) {
ifa = &dl_if->dl_if_lladdr.ifa;
ifa_lock_init(ifa);
/* Don't set IFD_ALLOC, as this is permanent */
ifa->ifa_debug = IFD_LINK;
}
IFA_LOCK(ifa);
/* address and mask sockaddr_dl locations */
asdl = (struct sockaddr_dl *)(void *)&dl_if->dl_if_lladdr.asdl;
bzero(asdl, sizeof(dl_if->dl_if_lladdr.asdl));
msdl = (struct sockaddr_dl *)(void *)&dl_if->dl_if_lladdr.msdl;
bzero(msdl, sizeof(dl_if->dl_if_lladdr.msdl));
}
/* hold a permanent reference for the ifnet itself */
IFA_ADDREF_LOCKED(ifa);
oifa = ifp->if_lladdr;
ifp->if_lladdr = ifa;
VERIFY(ifa->ifa_debug == IFD_LINK);
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)asdl;
asdl->sdl_len = (u_char)socksize;
asdl->sdl_family = AF_LINK;
if (namelen > 0) {
bcopy(workbuf, asdl->sdl_data, min(namelen,
sizeof(asdl->sdl_data)));
asdl->sdl_nlen = (u_char)namelen;
} else {
asdl->sdl_nlen = 0;
}
asdl->sdl_index = ifp->if_index;
asdl->sdl_type = ifp->if_type;
if (ll_addr != NULL) {
asdl->sdl_alen = ll_addr->sdl_alen;
bcopy(CONST_LLADDR(ll_addr), LLADDR(asdl), asdl->sdl_alen);
} else {
asdl->sdl_alen = 0;
}
ifa->ifa_netmask = (struct sockaddr *)msdl;
msdl->sdl_len = (u_char)masklen;
while (namelen > 0) {
msdl->sdl_data[--namelen] = 0xff;
}
IFA_UNLOCK(ifa);
if (oifa != NULL) {
IFA_REMREF(oifa);
}
return ifa;
}
static void
if_purgeaddrs(struct ifnet *ifp)
{
#if INET
in_purgeaddrs(ifp);
#endif /* INET */
in6_purgeaddrs(ifp);
}
errno_t
ifnet_detach(ifnet_t ifp)
{
struct ifnet *delegated_ifp;
struct nd_ifinfo *ndi = NULL;
if (ifp == NULL) {
return EINVAL;
}
ndi = ND_IFINFO(ifp);
if (NULL != ndi) {
ndi->cga_initialized = FALSE;
}
lck_mtx_lock(rnh_lock);
ifnet_head_lock_exclusive();
ifnet_lock_exclusive(ifp);
if (ifp->if_output_netem != NULL) {
netem_destroy(ifp->if_output_netem);
ifp->if_output_netem = NULL;
}
/*
* Check to see if this interface has previously triggered
* aggressive protocol draining; if so, decrement the global
* refcnt and clear PR_AGGDRAIN on the route domain if
* there are no more of such an interface around.
*/
(void) ifnet_set_idle_flags_locked(ifp, 0, ~0);
lck_mtx_lock_spin(&ifp->if_ref_lock);
if (!(ifp->if_refflags & IFRF_ATTACHED)) {
lck_mtx_unlock(&ifp->if_ref_lock);
ifnet_lock_done(ifp);
ifnet_head_done();
lck_mtx_unlock(rnh_lock);
return EINVAL;
} else if (ifp->if_refflags & IFRF_DETACHING) {
/* Interface has already been detached */
lck_mtx_unlock(&ifp->if_ref_lock);
ifnet_lock_done(ifp);
ifnet_head_done();
lck_mtx_unlock(rnh_lock);
return ENXIO;
}
VERIFY(!(ifp->if_refflags & IFRF_EMBRYONIC));
/* Indicate this interface is being detached */
ifp->if_refflags &= ~IFRF_ATTACHED;
ifp->if_refflags |= IFRF_DETACHING;
lck_mtx_unlock(&ifp->if_ref_lock);
if (dlil_verbose) {
DLIL_PRINTF("%s: detaching\n", if_name(ifp));
}
/* clean up flow control entry object if there's any */
if (ifp->if_eflags & IFEF_TXSTART) {
ifnet_flowadv(ifp->if_flowhash);
}
/* Reset ECN enable/disable flags */
/* Reset CLAT46 flag */
if_clear_eflags(ifp, IFEF_ECN_ENABLE | IFEF_ECN_DISABLE | IFEF_CLAT46);
/*
* We do not reset the TCP keep alive counters in case
* a TCP connection stays connection after the interface
* went down
*/
if (ifp->if_tcp_kao_cnt > 0) {
os_log(OS_LOG_DEFAULT, "%s %s tcp_kao_cnt %u not zero",
__func__, if_name(ifp), ifp->if_tcp_kao_cnt);
}
ifp->if_tcp_kao_max = 0;
/*
* Remove ifnet from the ifnet_head, ifindex2ifnet[]; it will
* no longer be visible during lookups from this point.
*/
VERIFY(ifindex2ifnet[ifp->if_index] == ifp);
TAILQ_REMOVE(&ifnet_head, ifp, if_link);
ifp->if_link.tqe_next = NULL;
ifp->if_link.tqe_prev = NULL;
if (ifp->if_ordered_link.tqe_next != NULL ||
ifp->if_ordered_link.tqe_prev != NULL) {
ifnet_remove_from_ordered_list(ifp);
}
ifindex2ifnet[ifp->if_index] = NULL;
/* 18717626 - reset router mode */
if_clear_eflags(ifp, IFEF_IPV4_ROUTER);
ifp->if_ipv6_router_mode = IPV6_ROUTER_MODE_DISABLED;
/* Record detach PC stacktrace */
ctrace_record(&((struct dlil_ifnet *)ifp)->dl_if_detach);
/* Clear logging parameters */
bzero(&ifp->if_log, sizeof(ifp->if_log));
/* Clear delegated interface info (reference released below) */
delegated_ifp = ifp->if_delegated.ifp;
bzero(&ifp->if_delegated, sizeof(ifp->if_delegated));
/* Reset interface state */
bzero(&ifp->if_interface_state, sizeof(ifp->if_interface_state));
ifnet_lock_done(ifp);
ifnet_head_done();
lck_mtx_unlock(rnh_lock);
/* Release reference held on the delegated interface */
if (delegated_ifp != NULL) {
ifnet_release(delegated_ifp);
}
/* Reset Link Quality Metric (unless loopback [lo0]) */
if (ifp != lo_ifp) {
if_lqm_update(ifp, IFNET_LQM_THRESH_OFF, 0);
}
/* Reset TCP local statistics */
if (ifp->if_tcp_stat != NULL) {
bzero(ifp->if_tcp_stat, sizeof(*ifp->if_tcp_stat));
}
/* Reset UDP local statistics */
if (ifp->if_udp_stat != NULL) {
bzero(ifp->if_udp_stat, sizeof(*ifp->if_udp_stat));
}
/* Reset ifnet IPv4 stats */
if (ifp->if_ipv4_stat != NULL) {
bzero(ifp->if_ipv4_stat, sizeof(*ifp->if_ipv4_stat));
}
/* Reset ifnet IPv6 stats */
if (ifp->if_ipv6_stat != NULL) {
bzero(ifp->if_ipv6_stat, sizeof(*ifp->if_ipv6_stat));
}
/* Release memory held for interface link status report */
if (ifp->if_link_status != NULL) {
FREE(ifp->if_link_status, M_TEMP);
ifp->if_link_status = NULL;
}
/* Clear agent IDs */
if (ifp->if_agentids != NULL) {
FREE(ifp->if_agentids, M_NETAGENT);
ifp->if_agentids = NULL;
}
ifp->if_agentcount = 0;
/* Let BPF know we're detaching */
bpfdetach(ifp);
/* Mark the interface as DOWN */
if_down(ifp);
/* Disable forwarding cached route */
lck_mtx_lock(&ifp->if_cached_route_lock);
ifp->if_fwd_cacheok = 0;
lck_mtx_unlock(&ifp->if_cached_route_lock);
/* Disable data threshold and wait for any pending event posting */
ifp->if_data_threshold = 0;
VERIFY(ifp->if_dt_tcall != NULL);
(void) thread_call_cancel_wait(ifp->if_dt_tcall);
/*
* Drain any deferred IGMPv3/MLDv2 query responses, but keep the
* references to the info structures and leave them attached to
* this ifnet.
*/
#if INET
igmp_domifdetach(ifp);
#endif /* INET */
mld_domifdetach(ifp);
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_IF_DETACHING, NULL, 0);
/* Let worker thread take care of the rest, to avoid reentrancy */
dlil_if_lock();
ifnet_detaching_enqueue(ifp);
dlil_if_unlock();
return 0;
}
static void
ifnet_detaching_enqueue(struct ifnet *ifp)
{
dlil_if_lock_assert();
++ifnet_detaching_cnt;
VERIFY(ifnet_detaching_cnt != 0);
TAILQ_INSERT_TAIL(&ifnet_detaching_head, ifp, if_detaching_link);
wakeup((caddr_t)&ifnet_delayed_run);
}
static struct ifnet *
ifnet_detaching_dequeue(void)
{
struct ifnet *ifp;
dlil_if_lock_assert();
ifp = TAILQ_FIRST(&ifnet_detaching_head);
VERIFY(ifnet_detaching_cnt != 0 || ifp == NULL);
if (ifp != NULL) {
VERIFY(ifnet_detaching_cnt != 0);
--ifnet_detaching_cnt;
TAILQ_REMOVE(&ifnet_detaching_head, ifp, if_detaching_link);
ifp->if_detaching_link.tqe_next = NULL;
ifp->if_detaching_link.tqe_prev = NULL;
}
return ifp;
}
__attribute__((noreturn))
static void
ifnet_detacher_thread_cont(void *v, wait_result_t wres)
{
#pragma unused(v, wres)
struct ifnet *ifp;
dlil_if_lock();
if (__improbable(ifnet_detaching_embryonic)) {
ifnet_detaching_embryonic = FALSE;
/* there's no lock ordering constrain so OK to do this here */
dlil_decr_pending_thread_count();
}
for (;;) {
dlil_if_lock_assert();
if (ifnet_detaching_cnt == 0) {
break;
}
net_update_uptime();
VERIFY(TAILQ_FIRST(&ifnet_detaching_head) != NULL);
/* Take care of detaching ifnet */
ifp = ifnet_detaching_dequeue();
if (ifp != NULL) {
dlil_if_unlock();
ifnet_detach_final(ifp);
dlil_if_lock();
}
}
(void) assert_wait(&ifnet_delayed_run, THREAD_UNINT);
dlil_if_unlock();
(void) thread_block(ifnet_detacher_thread_cont);
VERIFY(0); /* we should never get here */
/* NOTREACHED */
__builtin_unreachable();
}
__dead2
static void
ifnet_detacher_thread_func(void *v, wait_result_t w)
{
#pragma unused(v, w)
dlil_if_lock();
(void) assert_wait(&ifnet_delayed_run, THREAD_UNINT);
ifnet_detaching_embryonic = TRUE;
/* wake up once to get out of embryonic state */
wakeup((caddr_t)&ifnet_delayed_run);
dlil_if_unlock();
(void) thread_block(ifnet_detacher_thread_cont);
VERIFY(0);
/* NOTREACHED */
__builtin_unreachable();
}
static void
ifnet_detach_final(struct ifnet *ifp)
{
struct ifnet_filter *filter, *filter_next;
struct ifnet_filter_head fhead;
struct dlil_threading_info *inp;
struct ifaddr *ifa;
ifnet_detached_func if_free;
int i;
lck_mtx_lock(&ifp->if_ref_lock);
if (!(ifp->if_refflags & IFRF_DETACHING)) {
panic("%s: flags mismatch (detaching not set) ifp=%p",
__func__, ifp);
/* NOTREACHED */
}
/*
* Wait until the existing IO references get released
* before we proceed with ifnet_detach. This is not a
* common case, so block without using a continuation.
*/
while (ifp->if_refio > 0) {
DLIL_PRINTF("%s: Waiting for IO references on %s interface "
"to be released\n", __func__, if_name(ifp));
(void) msleep(&(ifp->if_refio), &ifp->if_ref_lock,
(PZERO - 1), "ifnet_ioref_wait", NULL);
}
VERIFY(ifp->if_datamov == 0);
VERIFY(ifp->if_drainers == 0);
VERIFY(ifp->if_suspend == 0);
ifp->if_refflags &= ~IFRF_READY;
lck_mtx_unlock(&ifp->if_ref_lock);
/* Drain and destroy send queue */
ifclassq_teardown(ifp);
/* Detach interface filters */
lck_mtx_lock(&ifp->if_flt_lock);
if_flt_monitor_enter(ifp);
LCK_MTX_ASSERT(&ifp->if_flt_lock, LCK_MTX_ASSERT_OWNED);
fhead = ifp->if_flt_head;
TAILQ_INIT(&ifp->if_flt_head);
for (filter = TAILQ_FIRST(&fhead); filter; filter = filter_next) {
filter_next = TAILQ_NEXT(filter, filt_next);
lck_mtx_unlock(&ifp->if_flt_lock);
dlil_detach_filter_internal(filter, 1);
lck_mtx_lock(&ifp->if_flt_lock);
}
if_flt_monitor_leave(ifp);
lck_mtx_unlock(&ifp->if_flt_lock);
/* Tell upper layers to drop their network addresses */
if_purgeaddrs(ifp);
ifnet_lock_exclusive(ifp);
/* Unplumb all protocols */
for (i = 0; i < PROTO_HASH_SLOTS; i++) {
struct if_proto *proto;
proto = SLIST_FIRST(&ifp->if_proto_hash[i]);
while (proto != NULL) {
protocol_family_t family = proto->protocol_family;
ifnet_lock_done(ifp);
proto_unplumb(family, ifp);
ifnet_lock_exclusive(ifp);
proto = SLIST_FIRST(&ifp->if_proto_hash[i]);
}
/* There should not be any protocols left */
VERIFY(SLIST_EMPTY(&ifp->if_proto_hash[i]));
}
zfree(dlif_phash_zone, ifp->if_proto_hash);
ifp->if_proto_hash = NULL;
/* Detach (permanent) link address from if_addrhead */
ifa = TAILQ_FIRST(&ifp->if_addrhead);
VERIFY(ifnet_addrs[ifp->if_index - 1] == ifa);
IFA_LOCK(ifa);
if_detach_link_ifa(ifp, ifa);
IFA_UNLOCK(ifa);
/* Remove (permanent) link address from ifnet_addrs[] */
IFA_REMREF(ifa);
ifnet_addrs[ifp->if_index - 1] = NULL;
/* This interface should not be on {ifnet_head,detaching} */
VERIFY(ifp->if_link.tqe_next == NULL);
VERIFY(ifp->if_link.tqe_prev == NULL);
VERIFY(ifp->if_detaching_link.tqe_next == NULL);
VERIFY(ifp->if_detaching_link.tqe_prev == NULL);
VERIFY(ifp->if_ordered_link.tqe_next == NULL);
VERIFY(ifp->if_ordered_link.tqe_prev == NULL);
/* The slot should have been emptied */
VERIFY(ifindex2ifnet[ifp->if_index] == NULL);
/* There should not be any addresses left */
VERIFY(TAILQ_EMPTY(&ifp->if_addrhead));
/*
* Signal the starter thread to terminate itself.
*/
if (ifp->if_start_thread != THREAD_NULL) {
lck_mtx_lock_spin(&ifp->if_start_lock);
ifp->if_start_flags = 0;
ifp->if_start_thread = THREAD_NULL;
wakeup_one((caddr_t)&ifp->if_start_thread);
lck_mtx_unlock(&ifp->if_start_lock);
}
/*
* Signal the poller thread to terminate itself.
*/
if (ifp->if_poll_thread != THREAD_NULL) {
lck_mtx_lock_spin(&ifp->if_poll_lock);
ifp->if_poll_thread = THREAD_NULL;
wakeup_one((caddr_t)&ifp->if_poll_thread);
lck_mtx_unlock(&ifp->if_poll_lock);
}
/*
* If thread affinity was set for the workloop thread, we will need
* to tear down the affinity and release the extra reference count
* taken at attach time. Does not apply to lo0 or other interfaces
* without dedicated input threads.
*/
if ((inp = ifp->if_inp) != NULL) {
VERIFY(inp != dlil_main_input_thread);
if (inp->dlth_affinity) {
struct thread *tp, *wtp, *ptp;
lck_mtx_lock_spin(&inp->dlth_lock);
wtp = inp->dlth_driver_thread;
inp->dlth_driver_thread = THREAD_NULL;
ptp = inp->dlth_poller_thread;
inp->dlth_poller_thread = THREAD_NULL;
ASSERT(inp->dlth_thread != THREAD_NULL);
tp = inp->dlth_thread; /* don't nullify now */
inp->dlth_affinity_tag = 0;
inp->dlth_affinity = FALSE;
lck_mtx_unlock(&inp->dlth_lock);
/* Tear down poll thread affinity */
if (ptp != NULL) {
VERIFY(ifp->if_eflags & IFEF_RXPOLL);
VERIFY(ifp->if_xflags & IFXF_LEGACY);
(void) dlil_affinity_set(ptp,
THREAD_AFFINITY_TAG_NULL);
thread_deallocate(ptp);
}
/* Tear down workloop thread affinity */
if (wtp != NULL) {
(void) dlil_affinity_set(wtp,
THREAD_AFFINITY_TAG_NULL);
thread_deallocate(wtp);
}
/* Tear down DLIL input thread affinity */
(void) dlil_affinity_set(tp, THREAD_AFFINITY_TAG_NULL);
thread_deallocate(tp);
}
/* disassociate ifp DLIL input thread */
ifp->if_inp = NULL;
/* if the worker thread was created, tell it to terminate */
if (inp->dlth_thread != THREAD_NULL) {
lck_mtx_lock_spin(&inp->dlth_lock);
inp->dlth_flags |= DLIL_INPUT_TERMINATE;
if (!(inp->dlth_flags & DLIL_INPUT_RUNNING)) {
wakeup_one((caddr_t)&inp->dlth_flags);
}
lck_mtx_unlock(&inp->dlth_lock);
ifnet_lock_done(ifp);
/* wait for the input thread to terminate */
lck_mtx_lock_spin(&inp->dlth_lock);
while ((inp->dlth_flags & DLIL_INPUT_TERMINATE_COMPLETE)
== 0) {
(void) msleep(&inp->dlth_flags, &inp->dlth_lock,
(PZERO - 1) | PSPIN, inp->dlth_name, NULL);
}
lck_mtx_unlock(&inp->dlth_lock);
ifnet_lock_exclusive(ifp);
}
/* clean-up input thread state */
dlil_clean_threading_info(inp);
/* clean-up poll parameters */
VERIFY(ifp->if_poll_thread == THREAD_NULL);
dlil_reset_rxpoll_params(ifp);
}
/* The driver might unload, so point these to ourselves */
if_free = ifp->if_free;
ifp->if_output_dlil = ifp_if_output;
ifp->if_output = ifp_if_output;
ifp->if_pre_enqueue = ifp_if_output;
ifp->if_start = ifp_if_start;
ifp->if_output_ctl = ifp_if_ctl;
ifp->if_input_dlil = ifp_if_input;
ifp->if_input_poll = ifp_if_input_poll;
ifp->if_input_ctl = ifp_if_ctl;
ifp->if_ioctl = ifp_if_ioctl;
ifp->if_set_bpf_tap = ifp_if_set_bpf_tap;
ifp->if_free = ifp_if_free;
ifp->if_demux = ifp_if_demux;
ifp->if_event = ifp_if_event;
ifp->if_framer_legacy = ifp_if_framer;
ifp->if_framer = ifp_if_framer_extended;
ifp->if_add_proto = ifp_if_add_proto;
ifp->if_del_proto = ifp_if_del_proto;
ifp->if_check_multi = ifp_if_check_multi;
/* wipe out interface description */
VERIFY(ifp->if_desc.ifd_maxlen == IF_DESCSIZE);
ifp->if_desc.ifd_len = 0;
VERIFY(ifp->if_desc.ifd_desc != NULL);
bzero(ifp->if_desc.ifd_desc, IF_DESCSIZE);
/* there shouldn't be any delegation by now */
VERIFY(ifp->if_delegated.ifp == NULL);
VERIFY(ifp->if_delegated.type == 0);
VERIFY(ifp->if_delegated.family == 0);
VERIFY(ifp->if_delegated.subfamily == 0);
VERIFY(ifp->if_delegated.expensive == 0);
VERIFY(ifp->if_delegated.constrained == 0);
/* QoS marking get cleared */
if_clear_eflags(ifp, IFEF_QOSMARKING_ENABLED);
if_set_qosmarking_mode(ifp, IFRTYPE_QOSMARKING_MODE_NONE);
ifnet_lock_done(ifp);
#if PF
/*
* Detach this interface from packet filter, if enabled.
*/
pf_ifnet_hook(ifp, 0);
#endif /* PF */
/* Filter list should be empty */
lck_mtx_lock_spin(&ifp->if_flt_lock);
VERIFY(TAILQ_EMPTY(&ifp->if_flt_head));
VERIFY(ifp->if_flt_busy == 0);
VERIFY(ifp->if_flt_waiters == 0);
lck_mtx_unlock(&ifp->if_flt_lock);
/* Last chance to drain send queue */
if_qflush(ifp, 0);
/* Last chance to cleanup any cached route */
lck_mtx_lock(&ifp->if_cached_route_lock);
VERIFY(!ifp->if_fwd_cacheok);
ROUTE_RELEASE(&ifp->if_fwd_route);
bzero(&ifp->if_fwd_route, sizeof(ifp->if_fwd_route));
ROUTE_RELEASE(&ifp->if_src_route);
bzero(&ifp->if_src_route, sizeof(ifp->if_src_route));
ROUTE_RELEASE(&ifp->if_src_route6);
bzero(&ifp->if_src_route6, sizeof(ifp->if_src_route6));
lck_mtx_unlock(&ifp->if_cached_route_lock);
VERIFY(ifp->if_data_threshold == 0);
VERIFY(ifp->if_dt_tcall != NULL);
VERIFY(!thread_call_isactive(ifp->if_dt_tcall));
ifnet_llreach_ifdetach(ifp);
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_IF_DETACHED, NULL, 0);
/*
* Finally, mark this ifnet as detached.
*/
lck_mtx_lock_spin(&ifp->if_ref_lock);
if (!(ifp->if_refflags & IFRF_DETACHING)) {
panic("%s: flags mismatch (detaching not set) ifp=%p",
__func__, ifp);
/* NOTREACHED */
}
ifp->if_refflags &= ~IFRF_DETACHING;
lck_mtx_unlock(&ifp->if_ref_lock);
if (if_free != NULL) {
if_free(ifp);
}
if (dlil_verbose) {
DLIL_PRINTF("%s: detached\n", if_name(ifp));
}
/* Release reference held during ifnet attach */
ifnet_release(ifp);
}
errno_t
ifp_if_output(struct ifnet *ifp, struct mbuf *m)
{
#pragma unused(ifp)
m_freem_list(m);
return 0;
}
void
ifp_if_start(struct ifnet *ifp)
{
ifnet_purge(ifp);
}
static errno_t
ifp_if_input(struct ifnet *ifp, struct mbuf *m_head,
struct mbuf *m_tail, const struct ifnet_stat_increment_param *s,
boolean_t poll, struct thread *tp)
{
#pragma unused(ifp, m_tail, s, poll, tp)
m_freem_list(m_head);
return ENXIO;
}
static void
ifp_if_input_poll(struct ifnet *ifp, u_int32_t flags, u_int32_t max_cnt,
struct mbuf **m_head, struct mbuf **m_tail, u_int32_t *cnt, u_int32_t *len)
{
#pragma unused(ifp, flags, max_cnt)
if (m_head != NULL) {
*m_head = NULL;
}
if (m_tail != NULL) {
*m_tail = NULL;
}
if (cnt != NULL) {
*cnt = 0;
}
if (len != NULL) {
*len = 0;
}
}
static errno_t
ifp_if_ctl(struct ifnet *ifp, ifnet_ctl_cmd_t cmd, u_int32_t arglen, void *arg)
{
#pragma unused(ifp, cmd, arglen, arg)
return EOPNOTSUPP;
}
static errno_t
ifp_if_demux(struct ifnet *ifp, struct mbuf *m, char *fh, protocol_family_t *pf)
{
#pragma unused(ifp, fh, pf)
m_freem(m);
return EJUSTRETURN;
}
static errno_t
ifp_if_add_proto(struct ifnet *ifp, protocol_family_t pf,
const struct ifnet_demux_desc *da, u_int32_t dc)
{
#pragma unused(ifp, pf, da, dc)
return EINVAL;
}
static errno_t
ifp_if_del_proto(struct ifnet *ifp, protocol_family_t pf)
{
#pragma unused(ifp, pf)
return EINVAL;
}
static errno_t
ifp_if_check_multi(struct ifnet *ifp, const struct sockaddr *sa)
{
#pragma unused(ifp, sa)
return EOPNOTSUPP;
}
#if !XNU_TARGET_OS_OSX
static errno_t
ifp_if_framer(struct ifnet *ifp, struct mbuf **m,
const struct sockaddr *sa, const char *ll, const char *t,
u_int32_t *pre, u_int32_t *post)
#else /* XNU_TARGET_OS_OSX */
static errno_t
ifp_if_framer(struct ifnet *ifp, struct mbuf **m,
const struct sockaddr *sa, const char *ll, const char *t)
#endif /* XNU_TARGET_OS_OSX */
{
#pragma unused(ifp, m, sa, ll, t)
#if !XNU_TARGET_OS_OSX
return ifp_if_framer_extended(ifp, m, sa, ll, t, pre, post);
#else /* XNU_TARGET_OS_OSX */
return ifp_if_framer_extended(ifp, m, sa, ll, t, NULL, NULL);
#endif /* XNU_TARGET_OS_OSX */
}
static errno_t
ifp_if_framer_extended(struct ifnet *ifp, struct mbuf **m,
const struct sockaddr *sa, const char *ll, const char *t,
u_int32_t *pre, u_int32_t *post)
{
#pragma unused(ifp, sa, ll, t)
m_freem(*m);
*m = NULL;
if (pre != NULL) {
*pre = 0;
}
if (post != NULL) {
*post = 0;
}
return EJUSTRETURN;
}
errno_t
ifp_if_ioctl(struct ifnet *ifp, unsigned long cmd, void *arg)
{
#pragma unused(ifp, cmd, arg)
return EOPNOTSUPP;
}
static errno_t
ifp_if_set_bpf_tap(struct ifnet *ifp, bpf_tap_mode tm, bpf_packet_func f)
{
#pragma unused(ifp, tm, f)
/* XXX not sure what to do here */
return 0;
}
static void
ifp_if_free(struct ifnet *ifp)
{
#pragma unused(ifp)
}
static void
ifp_if_event(struct ifnet *ifp, const struct kev_msg *e)
{
#pragma unused(ifp, e)
}
int
dlil_if_acquire(u_int32_t family, const void *uniqueid,
size_t uniqueid_len, const char *ifxname, struct ifnet **ifp)
{
struct ifnet *ifp1 = NULL;
struct dlil_ifnet *dlifp1 = NULL;
struct dlil_ifnet *dlifp1_saved = NULL;
void *buf, *base, **pbuf;
int ret = 0;
VERIFY(*ifp == NULL);
dlil_if_lock();
/*
* We absolutely can't have an interface with the same name
* in in-use state.
* To make sure of that list has to be traversed completely
*/
TAILQ_FOREACH(dlifp1, &dlil_ifnet_head, dl_if_link) {
ifp1 = (struct ifnet *)dlifp1;
if (ifp1->if_family != family) {
continue;
}
/*
* If interface is in use, return EBUSY if either unique id
* or interface extended names are the same
*/
lck_mtx_lock(&dlifp1->dl_if_lock);
if (strncmp(ifxname, ifp1->if_xname, IFXNAMSIZ) == 0) {
if (dlifp1->dl_if_flags & DLIF_INUSE) {
lck_mtx_unlock(&dlifp1->dl_if_lock);
ret = EBUSY;
goto end;
}
}
if (uniqueid_len) {
if (uniqueid_len == dlifp1->dl_if_uniqueid_len &&
bcmp(uniqueid, dlifp1->dl_if_uniqueid, uniqueid_len) == 0) {
if (dlifp1->dl_if_flags & DLIF_INUSE) {
lck_mtx_unlock(&dlifp1->dl_if_lock);
ret = EBUSY;
goto end;
} else {
/* Cache the first interface that can be recycled */
if (*ifp == NULL) {
*ifp = ifp1;
dlifp1_saved = dlifp1;
}
/*
* XXX Do not break or jump to end as we have to traverse
* the whole list to ensure there are no name collisions
*/
}
}
}
lck_mtx_unlock(&dlifp1->dl_if_lock);
}
/* If there's an interface that can be recycled, use that */
if (*ifp != NULL) {
if (dlifp1_saved != NULL) {
lck_mtx_lock(&dlifp1_saved->dl_if_lock);
dlifp1_saved->dl_if_flags |= (DLIF_INUSE | DLIF_REUSE);
lck_mtx_unlock(&dlifp1_saved->dl_if_lock);
dlifp1_saved = NULL;
}
goto end;
}
/* no interface found, allocate a new one */
buf = zalloc_flags(dlif_zone, Z_WAITOK | Z_ZERO);
if (buf == NULL) {
ret = ENOMEM;
goto end;
}
/* Get the 64-bit aligned base address for this object */
base = (void *)P2ROUNDUP((intptr_t)buf + sizeof(u_int64_t),
sizeof(u_int64_t));
VERIFY(((intptr_t)base + dlif_size) <= ((intptr_t)buf + dlif_bufsize));
/*
* Wind back a pointer size from the aligned base and
* save the original address so we can free it later.
*/
pbuf = (void **)((intptr_t)base - sizeof(void *));
*pbuf = buf;
dlifp1 = base;
if (uniqueid_len) {
MALLOC(dlifp1->dl_if_uniqueid, void *, uniqueid_len,
M_NKE, M_WAITOK);
if (dlifp1->dl_if_uniqueid == NULL) {
zfree(dlif_zone, buf);
ret = ENOMEM;
goto end;
}
bcopy(uniqueid, dlifp1->dl_if_uniqueid, uniqueid_len);
dlifp1->dl_if_uniqueid_len = uniqueid_len;
}
ifp1 = (struct ifnet *)dlifp1;
dlifp1->dl_if_flags = DLIF_INUSE;
if (ifnet_debug) {
dlifp1->dl_if_flags |= DLIF_DEBUG;
dlifp1->dl_if_trace = dlil_if_trace;
}
ifp1->if_name = dlifp1->dl_if_namestorage;
ifp1->if_xname = dlifp1->dl_if_xnamestorage;
/* initialize interface description */
ifp1->if_desc.ifd_maxlen = IF_DESCSIZE;
ifp1->if_desc.ifd_len = 0;
ifp1->if_desc.ifd_desc = dlifp1->dl_if_descstorage;
if ((ret = dlil_alloc_local_stats(ifp1)) != 0) {
DLIL_PRINTF("%s: failed to allocate if local stats, "
"error: %d\n", __func__, ret);
/* This probably shouldn't be fatal */
ret = 0;
}
lck_mtx_init(&dlifp1->dl_if_lock, ifnet_lock_group, ifnet_lock_attr);
lck_rw_init(&ifp1->if_lock, ifnet_lock_group, ifnet_lock_attr);
lck_mtx_init(&ifp1->if_ref_lock, ifnet_lock_group, ifnet_lock_attr);
lck_mtx_init(&ifp1->if_flt_lock, ifnet_lock_group, ifnet_lock_attr);
lck_mtx_init(&ifp1->if_addrconfig_lock, ifnet_lock_group,
ifnet_lock_attr);
lck_rw_init(&ifp1->if_llreach_lock, ifnet_lock_group, ifnet_lock_attr);
#if INET
lck_rw_init(&ifp1->if_inetdata_lock, ifnet_lock_group,
ifnet_lock_attr);
ifp1->if_inetdata = NULL;
#endif
lck_rw_init(&ifp1->if_inet6data_lock, ifnet_lock_group,
ifnet_lock_attr);
ifp1->if_inet6data = NULL;
lck_rw_init(&ifp1->if_link_status_lock, ifnet_lock_group,
ifnet_lock_attr);
ifp1->if_link_status = NULL;
/* for send data paths */
lck_mtx_init(&ifp1->if_start_lock, ifnet_snd_lock_group,
ifnet_lock_attr);
lck_mtx_init(&ifp1->if_cached_route_lock, ifnet_snd_lock_group,
ifnet_lock_attr);
lck_mtx_init(&ifp1->if_snd.ifcq_lock, ifnet_snd_lock_group,
ifnet_lock_attr);
/* for receive data paths */
lck_mtx_init(&ifp1->if_poll_lock, ifnet_rcv_lock_group,
ifnet_lock_attr);
/* thread call allocation is done with sleeping zalloc */
ifp1->if_dt_tcall = thread_call_allocate_with_options(dlil_dt_tcall_fn,
ifp1, THREAD_CALL_PRIORITY_KERNEL, THREAD_CALL_OPTIONS_ONCE);
if (ifp1->if_dt_tcall == NULL) {
panic_plain("%s: couldn't create if_dt_tcall", __func__);
/* NOTREACHED */
}
TAILQ_INSERT_TAIL(&dlil_ifnet_head, dlifp1, dl_if_link);
*ifp = ifp1;
end:
dlil_if_unlock();
VERIFY(dlifp1 == NULL || (IS_P2ALIGNED(dlifp1, sizeof(u_int64_t)) &&
IS_P2ALIGNED(&ifp1->if_data, sizeof(u_int64_t))));
return ret;
}
__private_extern__ void
dlil_if_release(ifnet_t ifp)
{
struct dlil_ifnet *dlifp = (struct dlil_ifnet *)ifp;
VERIFY(OSDecrementAtomic64(&net_api_stats.nas_ifnet_alloc_count) > 0);
if (!(ifp->if_xflags & IFXF_ALLOC_KPI)) {
VERIFY(OSDecrementAtomic64(&net_api_stats.nas_ifnet_alloc_os_count) > 0);
}
ifnet_lock_exclusive(ifp);
lck_mtx_lock(&dlifp->dl_if_lock);
dlifp->dl_if_flags &= ~DLIF_INUSE;
strlcpy(dlifp->dl_if_namestorage, ifp->if_name, IFNAMSIZ);
ifp->if_name = dlifp->dl_if_namestorage;
/* Reset external name (name + unit) */
ifp->if_xname = dlifp->dl_if_xnamestorage;
snprintf(__DECONST(char *, ifp->if_xname), IFXNAMSIZ,
"%s?", ifp->if_name);
lck_mtx_unlock(&dlifp->dl_if_lock);
ifnet_lock_done(ifp);
}
__private_extern__ void
dlil_if_lock(void)
{
lck_mtx_lock(&dlil_ifnet_lock);
}
__private_extern__ void
dlil_if_unlock(void)
{
lck_mtx_unlock(&dlil_ifnet_lock);
}
__private_extern__ void
dlil_if_lock_assert(void)
{
LCK_MTX_ASSERT(&dlil_ifnet_lock, LCK_MTX_ASSERT_OWNED);
}
__private_extern__ void
dlil_proto_unplumb_all(struct ifnet *ifp)
{
/*
* if_proto_hash[0-2] are for PF_INET, PF_INET6 and PF_VLAN, where
* each bucket contains exactly one entry; PF_VLAN does not need an
* explicit unplumb.
*
* if_proto_hash[3] is for other protocols; we expect anything
* in this bucket to respond to the DETACHING event (which would
* have happened by now) and do the unplumb then.
*/
(void) proto_unplumb(PF_INET, ifp);
(void) proto_unplumb(PF_INET6, ifp);
}
static void
ifp_src_route_copyout(struct ifnet *ifp, struct route *dst)
{
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
route_copyout(dst, &ifp->if_src_route, sizeof(*dst));
lck_mtx_unlock(&ifp->if_cached_route_lock);
}
static void
ifp_src_route_copyin(struct ifnet *ifp, struct route *src)
{
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
if (ifp->if_fwd_cacheok) {
route_copyin(src, &ifp->if_src_route, sizeof(*src));
} else {
ROUTE_RELEASE(src);
}
lck_mtx_unlock(&ifp->if_cached_route_lock);
}
static void
ifp_src_route6_copyout(struct ifnet *ifp, struct route_in6 *dst)
{
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
route_copyout((struct route *)dst, (struct route *)&ifp->if_src_route6,
sizeof(*dst));
lck_mtx_unlock(&ifp->if_cached_route_lock);
}
static void
ifp_src_route6_copyin(struct ifnet *ifp, struct route_in6 *src)
{
lck_mtx_lock_spin(&ifp->if_cached_route_lock);
lck_mtx_convert_spin(&ifp->if_cached_route_lock);
if (ifp->if_fwd_cacheok) {
route_copyin((struct route *)src,
(struct route *)&ifp->if_src_route6, sizeof(*src));
} else {
ROUTE_RELEASE(src);
}
lck_mtx_unlock(&ifp->if_cached_route_lock);
}
struct rtentry *
ifnet_cached_rtlookup_inet(struct ifnet *ifp, struct in_addr src_ip)
{
struct route src_rt;
struct sockaddr_in *dst;
dst = (struct sockaddr_in *)(void *)(&src_rt.ro_dst);
ifp_src_route_copyout(ifp, &src_rt);
if (ROUTE_UNUSABLE(&src_rt) || src_ip.s_addr != dst->sin_addr.s_addr) {
ROUTE_RELEASE(&src_rt);
if (dst->sin_family != AF_INET) {
bzero(&src_rt.ro_dst, sizeof(src_rt.ro_dst));
dst->sin_len = sizeof(src_rt.ro_dst);
dst->sin_family = AF_INET;
}
dst->sin_addr = src_ip;
VERIFY(src_rt.ro_rt == NULL);
src_rt.ro_rt = rtalloc1_scoped((struct sockaddr *)dst,
0, 0, ifp->if_index);
if (src_rt.ro_rt != NULL) {
/* retain a ref, copyin consumes one */
struct rtentry *rte = src_rt.ro_rt;
RT_ADDREF(rte);
ifp_src_route_copyin(ifp, &src_rt);
src_rt.ro_rt = rte;
}
}
return src_rt.ro_rt;
}
struct rtentry *
ifnet_cached_rtlookup_inet6(struct ifnet *ifp, struct in6_addr *src_ip6)
{
struct route_in6 src_rt;
ifp_src_route6_copyout(ifp, &src_rt);
if (ROUTE_UNUSABLE(&src_rt) ||
!IN6_ARE_ADDR_EQUAL(src_ip6, &src_rt.ro_dst.sin6_addr)) {
ROUTE_RELEASE(&src_rt);
if (src_rt.ro_dst.sin6_family != AF_INET6) {
bzero(&src_rt.ro_dst, sizeof(src_rt.ro_dst));
src_rt.ro_dst.sin6_len = sizeof(src_rt.ro_dst);
src_rt.ro_dst.sin6_family = AF_INET6;
}
src_rt.ro_dst.sin6_scope_id = in6_addr2scopeid(ifp, src_ip6);
bcopy(src_ip6, &src_rt.ro_dst.sin6_addr,
sizeof(src_rt.ro_dst.sin6_addr));
if (src_rt.ro_rt == NULL) {
src_rt.ro_rt = rtalloc1_scoped(
(struct sockaddr *)&src_rt.ro_dst, 0, 0,
ifp->if_index);
if (src_rt.ro_rt != NULL) {
/* retain a ref, copyin consumes one */
struct rtentry *rte = src_rt.ro_rt;
RT_ADDREF(rte);
ifp_src_route6_copyin(ifp, &src_rt);
src_rt.ro_rt = rte;
}
}
}
return src_rt.ro_rt;
}
void
if_lqm_update(struct ifnet *ifp, int lqm, int locked)
{
struct kev_dl_link_quality_metric_data ev_lqm_data;
VERIFY(lqm >= IFNET_LQM_MIN && lqm <= IFNET_LQM_MAX);
/* Normalize to edge */
if (lqm >= 0 && lqm <= IFNET_LQM_THRESH_ABORT) {
lqm = IFNET_LQM_THRESH_ABORT;
atomic_bitset_32(&tcbinfo.ipi_flags,
INPCBINFO_HANDLE_LQM_ABORT);
inpcb_timer_sched(&tcbinfo, INPCB_TIMER_FAST);
} else if (lqm > IFNET_LQM_THRESH_ABORT &&
lqm <= IFNET_LQM_THRESH_MINIMALLY_VIABLE) {
lqm = IFNET_LQM_THRESH_MINIMALLY_VIABLE;
} else if (lqm > IFNET_LQM_THRESH_MINIMALLY_VIABLE &&
lqm <= IFNET_LQM_THRESH_POOR) {
lqm = IFNET_LQM_THRESH_POOR;
} else if (lqm > IFNET_LQM_THRESH_POOR &&
lqm <= IFNET_LQM_THRESH_GOOD) {
lqm = IFNET_LQM_THRESH_GOOD;
}
/*
* Take the lock if needed
*/
if (!locked) {
ifnet_lock_exclusive(ifp);
}
if (lqm == ifp->if_interface_state.lqm_state &&
(ifp->if_interface_state.valid_bitmask &
IF_INTERFACE_STATE_LQM_STATE_VALID)) {
/*
* Release the lock if was not held by the caller
*/
if (!locked) {
ifnet_lock_done(ifp);
}
return; /* nothing to update */
}
ifp->if_interface_state.valid_bitmask |=
IF_INTERFACE_STATE_LQM_STATE_VALID;
ifp->if_interface_state.lqm_state = (int8_t)lqm;
/*
* Don't want to hold the lock when issuing kernel events
*/
ifnet_lock_done(ifp);
bzero(&ev_lqm_data, sizeof(ev_lqm_data));
ev_lqm_data.link_quality_metric = lqm;
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_LINK_QUALITY_METRIC_CHANGED,
(struct net_event_data *)&ev_lqm_data, sizeof(ev_lqm_data));
/*
* Reacquire the lock for the caller
*/
if (locked) {
ifnet_lock_exclusive(ifp);
}
}
static void
if_rrc_state_update(struct ifnet *ifp, unsigned int rrc_state)
{
struct kev_dl_rrc_state kev;
if (rrc_state == ifp->if_interface_state.rrc_state &&
(ifp->if_interface_state.valid_bitmask &
IF_INTERFACE_STATE_RRC_STATE_VALID)) {
return;
}
ifp->if_interface_state.valid_bitmask |=
IF_INTERFACE_STATE_RRC_STATE_VALID;
ifp->if_interface_state.rrc_state = (uint8_t)rrc_state;
/*
* Don't want to hold the lock when issuing kernel events
*/
ifnet_lock_done(ifp);
bzero(&kev, sizeof(struct kev_dl_rrc_state));
kev.rrc_state = rrc_state;
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_RRC_STATE_CHANGED,
(struct net_event_data *)&kev, sizeof(struct kev_dl_rrc_state));
ifnet_lock_exclusive(ifp);
}
errno_t
if_state_update(struct ifnet *ifp,
struct if_interface_state *if_interface_state)
{
u_short if_index_available = 0;
ifnet_lock_exclusive(ifp);
if ((ifp->if_type != IFT_CELLULAR) &&
(if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_RRC_STATE_VALID)) {
ifnet_lock_done(ifp);
return ENOTSUP;
}
if ((if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_LQM_STATE_VALID) &&
(if_interface_state->lqm_state < IFNET_LQM_MIN ||
if_interface_state->lqm_state > IFNET_LQM_MAX)) {
ifnet_lock_done(ifp);
return EINVAL;
}
if ((if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_RRC_STATE_VALID) &&
if_interface_state->rrc_state !=
IF_INTERFACE_STATE_RRC_STATE_IDLE &&
if_interface_state->rrc_state !=
IF_INTERFACE_STATE_RRC_STATE_CONNECTED) {
ifnet_lock_done(ifp);
return EINVAL;
}
if (if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_LQM_STATE_VALID) {
if_lqm_update(ifp, if_interface_state->lqm_state, 1);
}
if (if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_RRC_STATE_VALID) {
if_rrc_state_update(ifp, if_interface_state->rrc_state);
}
if (if_interface_state->valid_bitmask &
IF_INTERFACE_STATE_INTERFACE_AVAILABILITY_VALID) {
ifp->if_interface_state.valid_bitmask |=
IF_INTERFACE_STATE_INTERFACE_AVAILABILITY_VALID;
ifp->if_interface_state.interface_availability =
if_interface_state->interface_availability;
if (ifp->if_interface_state.interface_availability ==
IF_INTERFACE_STATE_INTERFACE_AVAILABLE) {
os_log(OS_LOG_DEFAULT, "%s: interface %s (%u) available\n",
__func__, if_name(ifp), ifp->if_index);
if_index_available = ifp->if_index;
} else {
os_log(OS_LOG_DEFAULT, "%s: interface %s (%u) unavailable)\n",
__func__, if_name(ifp), ifp->if_index);
}
}
ifnet_lock_done(ifp);
/*
* Check if the TCP connections going on this interface should be
* forced to send probe packets instead of waiting for TCP timers
* to fire. This is done on an explicit notification such as
* SIOCSIFINTERFACESTATE which marks the interface as available.
*/
if (if_index_available > 0) {
tcp_interface_send_probe(if_index_available);
}
return 0;
}
void
if_get_state(struct ifnet *ifp,
struct if_interface_state *if_interface_state)
{
ifnet_lock_shared(ifp);
if_interface_state->valid_bitmask = 0;
if (ifp->if_interface_state.valid_bitmask &
IF_INTERFACE_STATE_RRC_STATE_VALID) {
if_interface_state->valid_bitmask |=
IF_INTERFACE_STATE_RRC_STATE_VALID;
if_interface_state->rrc_state =
ifp->if_interface_state.rrc_state;
}
if (ifp->if_interface_state.valid_bitmask &
IF_INTERFACE_STATE_LQM_STATE_VALID) {
if_interface_state->valid_bitmask |=
IF_INTERFACE_STATE_LQM_STATE_VALID;
if_interface_state->lqm_state =
ifp->if_interface_state.lqm_state;
}
if (ifp->if_interface_state.valid_bitmask &
IF_INTERFACE_STATE_INTERFACE_AVAILABILITY_VALID) {
if_interface_state->valid_bitmask |=
IF_INTERFACE_STATE_INTERFACE_AVAILABILITY_VALID;
if_interface_state->interface_availability =
ifp->if_interface_state.interface_availability;
}
ifnet_lock_done(ifp);
}
errno_t
if_probe_connectivity(struct ifnet *ifp, u_int32_t conn_probe)
{
if (conn_probe > 1) {
return EINVAL;
}
if (conn_probe == 0) {
if_clear_eflags(ifp, IFEF_PROBE_CONNECTIVITY);
} else {
if_set_eflags(ifp, IFEF_PROBE_CONNECTIVITY);
}
#if NECP
necp_update_all_clients();
#endif /* NECP */
tcp_probe_connectivity(ifp, conn_probe);
return 0;
}
/* for uuid.c */
static int
get_ether_index(int * ret_other_index)
{
struct ifnet *ifp;
int en0_index = 0;
int other_en_index = 0;
int any_ether_index = 0;
short best_unit = 0;
*ret_other_index = 0;
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
/*
* find en0, or if not en0, the lowest unit en*, and if not
* that, any ethernet
*/
ifnet_lock_shared(ifp);
if (strcmp(ifp->if_name, "en") == 0) {
if (ifp->if_unit == 0) {
/* found en0, we're done */
en0_index = ifp->if_index;
ifnet_lock_done(ifp);
break;
}
if (other_en_index == 0 || ifp->if_unit < best_unit) {
other_en_index = ifp->if_index;
best_unit = ifp->if_unit;
}
} else if (ifp->if_type == IFT_ETHER && any_ether_index == 0) {
any_ether_index = ifp->if_index;
}
ifnet_lock_done(ifp);
}
if (en0_index == 0) {
if (other_en_index != 0) {
*ret_other_index = other_en_index;
} else if (any_ether_index != 0) {
*ret_other_index = any_ether_index;
}
}
return en0_index;
}
int
uuid_get_ethernet(u_int8_t *node)
{
static int en0_index;
struct ifnet *ifp;
int other_index = 0;
int the_index = 0;
int ret;
ifnet_head_lock_shared();
if (en0_index == 0 || ifindex2ifnet[en0_index] == NULL) {
en0_index = get_ether_index(&other_index);
}
if (en0_index != 0) {
the_index = en0_index;
} else if (other_index != 0) {
the_index = other_index;
}
if (the_index != 0) {
struct dlil_ifnet *dl_if;
ifp = ifindex2ifnet[the_index];
VERIFY(ifp != NULL);
dl_if = (struct dlil_ifnet *)ifp;
if (dl_if->dl_if_permanent_ether_is_set != 0) {
/*
* Use the permanent ethernet address if it is
* available because it will never change.
*/
memcpy(node, dl_if->dl_if_permanent_ether,
ETHER_ADDR_LEN);
} else {
memcpy(node, IF_LLADDR(ifp), ETHER_ADDR_LEN);
}
ret = 0;
} else {
ret = -1;
}
ifnet_head_done();
return ret;
}
static int
sysctl_rxpoll SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint32_t i;
int err;
i = if_rxpoll;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (net_rxpoll == 0) {
return ENXIO;
}
if_rxpoll = i;
return err;
}
static int
sysctl_rxpoll_mode_holdtime SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint64_t q;
int err;
q = if_rxpoll_mode_holdtime;
err = sysctl_handle_quad(oidp, &q, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (q < IF_RXPOLL_MODE_HOLDTIME_MIN) {
q = IF_RXPOLL_MODE_HOLDTIME_MIN;
}
if_rxpoll_mode_holdtime = q;
return err;
}
static int
sysctl_rxpoll_sample_holdtime SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint64_t q;
int err;
q = if_rxpoll_sample_holdtime;
err = sysctl_handle_quad(oidp, &q, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (q < IF_RXPOLL_SAMPLETIME_MIN) {
q = IF_RXPOLL_SAMPLETIME_MIN;
}
if_rxpoll_sample_holdtime = q;
return err;
}
static int
sysctl_rxpoll_interval_time SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint64_t q;
int err;
q = if_rxpoll_interval_time;
err = sysctl_handle_quad(oidp, &q, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (q < IF_RXPOLL_INTERVALTIME_MIN) {
q = IF_RXPOLL_INTERVALTIME_MIN;
}
if_rxpoll_interval_time = q;
return err;
}
static int
sysctl_rxpoll_wlowat SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint32_t i;
int err;
i = if_sysctl_rxpoll_wlowat;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (i == 0 || i >= if_sysctl_rxpoll_whiwat) {
return EINVAL;
}
if_sysctl_rxpoll_wlowat = i;
return err;
}
static int
sysctl_rxpoll_whiwat SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint32_t i;
int err;
i = if_sysctl_rxpoll_whiwat;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (i <= if_sysctl_rxpoll_wlowat) {
return EINVAL;
}
if_sysctl_rxpoll_whiwat = i;
return err;
}
static int
sysctl_sndq_maxlen SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int i, err;
i = if_sndq_maxlen;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (i < IF_SNDQ_MINLEN) {
i = IF_SNDQ_MINLEN;
}
if_sndq_maxlen = i;
return err;
}
static int
sysctl_rcvq_maxlen SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int i, err;
i = if_rcvq_maxlen;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (i < IF_RCVQ_MINLEN) {
i = IF_RCVQ_MINLEN;
}
if_rcvq_maxlen = i;
return err;
}
int
dlil_node_present(struct ifnet *ifp, struct sockaddr *sa,
int32_t rssi, int lqm, int npm, u_int8_t srvinfo[48])
{
struct kev_dl_node_presence kev;
struct sockaddr_dl *sdl;
struct sockaddr_in6 *sin6;
int ret = 0;
VERIFY(ifp);
VERIFY(sa);
VERIFY(sa->sa_family == AF_LINK || sa->sa_family == AF_INET6);
bzero(&kev, sizeof(kev));
sin6 = &kev.sin6_node_address;
sdl = &kev.sdl_node_address;
nd6_alt_node_addr_decompose(ifp, sa, sdl, sin6);
kev.rssi = rssi;
kev.link_quality_metric = lqm;
kev.node_proximity_metric = npm;
bcopy(srvinfo, kev.node_service_info, sizeof(kev.node_service_info));
ret = nd6_alt_node_present(ifp, sin6, sdl, rssi, lqm, npm);
if (ret == 0) {
int err = dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_NODE_PRESENCE,
&kev.link_data, sizeof(kev));
if (err != 0) {
log(LOG_ERR, "%s: Post DL_NODE_PRESENCE failed with"
"error %d\n", __func__, err);
}
}
return ret;
}
void
dlil_node_absent(struct ifnet *ifp, struct sockaddr *sa)
{
struct kev_dl_node_absence kev = {};
struct sockaddr_in6 *kev_sin6 = NULL;
struct sockaddr_dl *kev_sdl = NULL;
VERIFY(ifp != NULL);
VERIFY(sa != NULL);
VERIFY(sa->sa_family == AF_LINK || sa->sa_family == AF_INET6);
kev_sin6 = &kev.sin6_node_address;
kev_sdl = &kev.sdl_node_address;
if (sa->sa_family == AF_INET6) {
/*
* If IPv6 address is given, get the link layer
* address from what was cached in the neighbor cache
*/
VERIFY(sa->sa_len <= sizeof(*kev_sin6));
bcopy(sa, kev_sin6, sa->sa_len);
nd6_alt_node_absent(ifp, kev_sin6, kev_sdl);
} else {
/*
* If passed address is AF_LINK type, derive the address
* based on the link address.
*/
nd6_alt_node_addr_decompose(ifp, sa, kev_sdl, kev_sin6);
nd6_alt_node_absent(ifp, kev_sin6, NULL);
}
kev_sdl->sdl_type = ifp->if_type;
kev_sdl->sdl_index = ifp->if_index;
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_NODE_ABSENCE,
&kev.link_data, sizeof(kev));
}
int
dlil_node_present_v2(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr_dl *sdl,
int32_t rssi, int lqm, int npm, u_int8_t srvinfo[48])
{
struct kev_dl_node_presence kev = {};
struct sockaddr_dl *kev_sdl = NULL;
struct sockaddr_in6 *kev_sin6 = NULL;
int ret = 0;
VERIFY(ifp != NULL);
VERIFY(sa != NULL && sdl != NULL);
VERIFY(sa->sa_family == AF_INET6 && sdl->sdl_family == AF_LINK);
kev_sin6 = &kev.sin6_node_address;
kev_sdl = &kev.sdl_node_address;
VERIFY(sdl->sdl_len <= sizeof(*kev_sdl));
bcopy(sdl, kev_sdl, sdl->sdl_len);
kev_sdl->sdl_type = ifp->if_type;
kev_sdl->sdl_index = ifp->if_index;
VERIFY(sa->sa_len <= sizeof(*kev_sin6));
bcopy(sa, kev_sin6, sa->sa_len);
kev.rssi = rssi;
kev.link_quality_metric = lqm;
kev.node_proximity_metric = npm;
bcopy(srvinfo, kev.node_service_info, sizeof(kev.node_service_info));
ret = nd6_alt_node_present(ifp, SIN6(sa), sdl, rssi, lqm, npm);
if (ret == 0) {
int err = dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_NODE_PRESENCE,
&kev.link_data, sizeof(kev));
if (err != 0) {
log(LOG_ERR, "%s: Post DL_NODE_PRESENCE failed with error %d\n", __func__, err);
}
}
return ret;
}
const void *
dlil_ifaddr_bytes(const struct sockaddr_dl *sdl, size_t *sizep,
kauth_cred_t *credp)
{
const u_int8_t *bytes;
size_t size;
bytes = CONST_LLADDR(sdl);
size = sdl->sdl_alen;
#if CONFIG_MACF
if (dlil_lladdr_ckreq) {
switch (sdl->sdl_type) {
case IFT_ETHER:
case IFT_IEEE1394:
break;
default:
credp = NULL;
break;
}
;
if (credp && mac_system_check_info(*credp, "net.link.addr")) {
static const u_int8_t unspec[FIREWIRE_EUI64_LEN] = {
[0] = 2
};
bytes = unspec;
}
}
#else
#pragma unused(credp)
#endif
if (sizep != NULL) {
*sizep = size;
}
return bytes;
}
void
dlil_report_issues(struct ifnet *ifp, u_int8_t modid[DLIL_MODIDLEN],
u_int8_t info[DLIL_MODARGLEN])
{
struct kev_dl_issues kev;
struct timeval tv;
VERIFY(ifp != NULL);
VERIFY(modid != NULL);
_CASSERT(sizeof(kev.modid) == DLIL_MODIDLEN);
_CASSERT(sizeof(kev.info) == DLIL_MODARGLEN);
bzero(&kev, sizeof(kev));
microtime(&tv);
kev.timestamp = tv.tv_sec;
bcopy(modid, &kev.modid, DLIL_MODIDLEN);
if (info != NULL) {
bcopy(info, &kev.info, DLIL_MODARGLEN);
}
dlil_post_msg(ifp, KEV_DL_SUBCLASS, KEV_DL_ISSUES,
&kev.link_data, sizeof(kev));
}
errno_t
ifnet_getset_opportunistic(ifnet_t ifp, u_long cmd, struct ifreq *ifr,
struct proc *p)
{
u_int32_t level = IFNET_THROTTLE_OFF;
errno_t result = 0;
VERIFY(cmd == SIOCSIFOPPORTUNISTIC || cmd == SIOCGIFOPPORTUNISTIC);
if (cmd == SIOCSIFOPPORTUNISTIC) {
/*
* XXX: Use priv_check_cred() instead of root check?
*/
if ((result = proc_suser(p)) != 0) {
return result;
}
if (ifr->ifr_opportunistic.ifo_flags ==
IFRIFOF_BLOCK_OPPORTUNISTIC) {
level = IFNET_THROTTLE_OPPORTUNISTIC;
} else if (ifr->ifr_opportunistic.ifo_flags == 0) {
level = IFNET_THROTTLE_OFF;
} else {
result = EINVAL;
}
if (result == 0) {
result = ifnet_set_throttle(ifp, level);
}
} else if ((result = ifnet_get_throttle(ifp, &level)) == 0) {
ifr->ifr_opportunistic.ifo_flags = 0;
if (level == IFNET_THROTTLE_OPPORTUNISTIC) {
ifr->ifr_opportunistic.ifo_flags |=
IFRIFOF_BLOCK_OPPORTUNISTIC;
}
}
/*
* Return the count of current opportunistic connections
* over the interface.
*/
if (result == 0) {
uint32_t flags = 0;
flags |= (cmd == SIOCSIFOPPORTUNISTIC) ?
INPCB_OPPORTUNISTIC_SETCMD : 0;
flags |= (level == IFNET_THROTTLE_OPPORTUNISTIC) ?
INPCB_OPPORTUNISTIC_THROTTLEON : 0;
ifr->ifr_opportunistic.ifo_inuse =
udp_count_opportunistic(ifp->if_index, flags) +
tcp_count_opportunistic(ifp->if_index, flags);
}
if (result == EALREADY) {
result = 0;
}
return result;
}
int
ifnet_get_throttle(struct ifnet *ifp, u_int32_t *level)
{
struct ifclassq *ifq;
int err = 0;
if (!(ifp->if_eflags & IFEF_TXSTART)) {
return ENXIO;
}
*level = IFNET_THROTTLE_OFF;
ifq = &ifp->if_snd;
IFCQ_LOCK(ifq);
/* Throttling works only for IFCQ, not ALTQ instances */
if (IFCQ_IS_ENABLED(ifq)) {
cqrq_throttle_t req = { 0, IFNET_THROTTLE_OFF };
err = fq_if_request_classq(ifq, CLASSQRQ_THROTTLE, &req);
*level = req.level;
}
IFCQ_UNLOCK(ifq);
return err;
}
int
ifnet_set_throttle(struct ifnet *ifp, u_int32_t level)
{
struct ifclassq *ifq;
int err = 0;
if (!(ifp->if_eflags & IFEF_TXSTART)) {
return ENXIO;
}
ifq = &ifp->if_snd;
switch (level) {
case IFNET_THROTTLE_OFF:
case IFNET_THROTTLE_OPPORTUNISTIC:
break;
default:
return EINVAL;
}
IFCQ_LOCK(ifq);
if (IFCQ_IS_ENABLED(ifq)) {
cqrq_throttle_t req = { 1, level };
err = fq_if_request_classq(ifq, CLASSQRQ_THROTTLE, &req);
}
IFCQ_UNLOCK(ifq);
if (err == 0) {
DLIL_PRINTF("%s: throttling level set to %d\n", if_name(ifp),
level);
#if NECP
necp_update_all_clients();
#endif /* NECP */
if (level == IFNET_THROTTLE_OFF) {
ifnet_start(ifp);
}
}
return err;
}
errno_t
ifnet_getset_log(ifnet_t ifp, u_long cmd, struct ifreq *ifr,
struct proc *p)
{
#pragma unused(p)
errno_t result = 0;
uint32_t flags;
int level, category, subcategory;
VERIFY(cmd == SIOCSIFLOG || cmd == SIOCGIFLOG);
if (cmd == SIOCSIFLOG) {
if ((result = priv_check_cred(kauth_cred_get(),
PRIV_NET_INTERFACE_CONTROL, 0)) != 0) {
return result;
}
level = ifr->ifr_log.ifl_level;
if (level < IFNET_LOG_MIN || level > IFNET_LOG_MAX) {
result = EINVAL;
}
flags = ifr->ifr_log.ifl_flags;
if ((flags &= IFNET_LOGF_MASK) == 0) {
result = EINVAL;
}
category = ifr->ifr_log.ifl_category;
subcategory = ifr->ifr_log.ifl_subcategory;
if (result == 0) {
result = ifnet_set_log(ifp, level, flags,
category, subcategory);
}
} else {
result = ifnet_get_log(ifp, &level, &flags, &category,
&subcategory);
if (result == 0) {
ifr->ifr_log.ifl_level = level;
ifr->ifr_log.ifl_flags = flags;
ifr->ifr_log.ifl_category = category;
ifr->ifr_log.ifl_subcategory = subcategory;
}
}
return result;
}
int
ifnet_set_log(struct ifnet *ifp, int32_t level, uint32_t flags,
int32_t category, int32_t subcategory)
{
int err = 0;
VERIFY(level >= IFNET_LOG_MIN && level <= IFNET_LOG_MAX);
VERIFY(flags & IFNET_LOGF_MASK);
/*
* The logging level applies to all facilities; make sure to
* update them all with the most current level.
*/
flags |= ifp->if_log.flags;
if (ifp->if_output_ctl != NULL) {
struct ifnet_log_params l;
bzero(&l, sizeof(l));
l.level = level;
l.flags = flags;
l.flags &= ~IFNET_LOGF_DLIL;
l.category = category;
l.subcategory = subcategory;
/* Send this request to lower layers */
if (l.flags != 0) {
err = ifp->if_output_ctl(ifp, IFNET_CTL_SET_LOG,
sizeof(l), &l);
}
} else if ((flags & ~IFNET_LOGF_DLIL) && ifp->if_output_ctl == NULL) {
/*
* If targeted to the lower layers without an output
* control callback registered on the interface, just
* silently ignore facilities other than ours.
*/
flags &= IFNET_LOGF_DLIL;
if (flags == 0 && (!(ifp->if_log.flags & IFNET_LOGF_DLIL))) {
level = 0;
}
}
if (err == 0) {
if ((ifp->if_log.level = level) == IFNET_LOG_DEFAULT) {
ifp->if_log.flags = 0;
} else {
ifp->if_log.flags |= flags;
}
log(LOG_INFO, "%s: logging level set to %d flags=%b "
"arg=%b, category=%d subcategory=%d\n", if_name(ifp),
ifp->if_log.level, ifp->if_log.flags,
IFNET_LOGF_BITS, flags, IFNET_LOGF_BITS,
category, subcategory);
}
return err;
}
int
ifnet_get_log(struct ifnet *ifp, int32_t *level, uint32_t *flags,
int32_t *category, int32_t *subcategory)
{
if (level != NULL) {
*level = ifp->if_log.level;
}
if (flags != NULL) {
*flags = ifp->if_log.flags;
}
if (category != NULL) {
*category = ifp->if_log.category;
}
if (subcategory != NULL) {
*subcategory = ifp->if_log.subcategory;
}
return 0;
}
int
ifnet_notify_address(struct ifnet *ifp, int af)
{
struct ifnet_notify_address_params na;
#if PF
(void) pf_ifaddr_hook(ifp);
#endif /* PF */
if (ifp->if_output_ctl == NULL) {
return EOPNOTSUPP;
}
bzero(&na, sizeof(na));
na.address_family = (sa_family_t)af;
return ifp->if_output_ctl(ifp, IFNET_CTL_NOTIFY_ADDRESS,
sizeof(na), &na);
}
errno_t
ifnet_flowid(struct ifnet *ifp, uint32_t *flowid)
{
if (ifp == NULL || flowid == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
!IF_FULLY_ATTACHED(ifp)) {
return ENXIO;
}
*flowid = ifp->if_flowhash;
return 0;
}
errno_t
ifnet_disable_output(struct ifnet *ifp)
{
int err;
if (ifp == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
!IF_FULLY_ATTACHED(ifp)) {
return ENXIO;
}
if ((err = ifnet_fc_add(ifp)) == 0) {
lck_mtx_lock_spin(&ifp->if_start_lock);
ifp->if_start_flags |= IFSF_FLOW_CONTROLLED;
lck_mtx_unlock(&ifp->if_start_lock);
}
return err;
}
errno_t
ifnet_enable_output(struct ifnet *ifp)
{
if (ifp == NULL) {
return EINVAL;
} else if (!(ifp->if_eflags & IFEF_TXSTART) ||
!IF_FULLY_ATTACHED(ifp)) {
return ENXIO;
}
ifnet_start_common(ifp, TRUE);
return 0;
}
void
ifnet_flowadv(uint32_t flowhash)
{
struct ifnet_fc_entry *ifce;
struct ifnet *ifp;
ifce = ifnet_fc_get(flowhash);
if (ifce == NULL) {
return;
}
VERIFY(ifce->ifce_ifp != NULL);
ifp = ifce->ifce_ifp;
/* flow hash gets recalculated per attach, so check */
if (ifnet_is_attached(ifp, 1)) {
if (ifp->if_flowhash == flowhash) {
(void) ifnet_enable_output(ifp);
}
ifnet_decr_iorefcnt(ifp);
}
ifnet_fc_entry_free(ifce);
}
/*
* Function to compare ifnet_fc_entries in ifnet flow control tree
*/
static inline int
ifce_cmp(const struct ifnet_fc_entry *fc1, const struct ifnet_fc_entry *fc2)
{
return fc1->ifce_flowhash - fc2->ifce_flowhash;
}
static int
ifnet_fc_add(struct ifnet *ifp)
{
struct ifnet_fc_entry keyfc, *ifce;
uint32_t flowhash;
VERIFY(ifp != NULL && (ifp->if_eflags & IFEF_TXSTART));
VERIFY(ifp->if_flowhash != 0);
flowhash = ifp->if_flowhash;
bzero(&keyfc, sizeof(keyfc));
keyfc.ifce_flowhash = flowhash;
lck_mtx_lock_spin(&ifnet_fc_lock);
ifce = RB_FIND(ifnet_fc_tree, &ifnet_fc_tree, &keyfc);
if (ifce != NULL && ifce->ifce_ifp == ifp) {
/* Entry is already in ifnet_fc_tree, return */
lck_mtx_unlock(&ifnet_fc_lock);
return 0;
}
if (ifce != NULL) {
/*
* There is a different fc entry with the same flow hash
* but different ifp pointer. There can be a collision
* on flow hash but the probability is low. Let's just
* avoid adding a second one when there is a collision.
*/
lck_mtx_unlock(&ifnet_fc_lock);
return EAGAIN;
}
/* become regular mutex */
lck_mtx_convert_spin(&ifnet_fc_lock);
ifce = zalloc_flags(ifnet_fc_zone, Z_WAITOK | Z_ZERO);
ifce->ifce_flowhash = flowhash;
ifce->ifce_ifp = ifp;
RB_INSERT(ifnet_fc_tree, &ifnet_fc_tree, ifce);
lck_mtx_unlock(&ifnet_fc_lock);
return 0;
}
static struct ifnet_fc_entry *
ifnet_fc_get(uint32_t flowhash)
{
struct ifnet_fc_entry keyfc, *ifce;
struct ifnet *ifp;
bzero(&keyfc, sizeof(keyfc));
keyfc.ifce_flowhash = flowhash;
lck_mtx_lock_spin(&ifnet_fc_lock);
ifce = RB_FIND(ifnet_fc_tree, &ifnet_fc_tree, &keyfc);
if (ifce == NULL) {
/* Entry is not present in ifnet_fc_tree, return */
lck_mtx_unlock(&ifnet_fc_lock);
return NULL;
}
RB_REMOVE(ifnet_fc_tree, &ifnet_fc_tree, ifce);
VERIFY(ifce->ifce_ifp != NULL);
ifp = ifce->ifce_ifp;
/* become regular mutex */
lck_mtx_convert_spin(&ifnet_fc_lock);
if (!ifnet_is_attached(ifp, 0)) {
/*
* This ifp is not attached or in the process of being
* detached; just don't process it.
*/
ifnet_fc_entry_free(ifce);
ifce = NULL;
}
lck_mtx_unlock(&ifnet_fc_lock);
return ifce;
}
static void
ifnet_fc_entry_free(struct ifnet_fc_entry *ifce)
{
zfree(ifnet_fc_zone, ifce);
}
static uint32_t
ifnet_calc_flowhash(struct ifnet *ifp)
{
struct ifnet_flowhash_key fh __attribute__((aligned(8)));
uint32_t flowhash = 0;
if (ifnet_flowhash_seed == 0) {
ifnet_flowhash_seed = RandomULong();
}
bzero(&fh, sizeof(fh));
(void) snprintf(fh.ifk_name, sizeof(fh.ifk_name), "%s", ifp->if_name);
fh.ifk_unit = ifp->if_unit;
fh.ifk_flags = ifp->if_flags;
fh.ifk_eflags = ifp->if_eflags;
fh.ifk_capabilities = ifp->if_capabilities;
fh.ifk_capenable = ifp->if_capenable;
fh.ifk_output_sched_model = ifp->if_output_sched_model;
fh.ifk_rand1 = RandomULong();
fh.ifk_rand2 = RandomULong();
try_again:
flowhash = net_flowhash(&fh, sizeof(fh), ifnet_flowhash_seed);
if (flowhash == 0) {
/* try to get a non-zero flowhash */
ifnet_flowhash_seed = RandomULong();
goto try_again;
}
return flowhash;
}
int
ifnet_set_netsignature(struct ifnet *ifp, uint8_t family, uint8_t len,
uint16_t flags, uint8_t *data)
{
#pragma unused(flags)
int error = 0;
switch (family) {
case AF_INET:
if_inetdata_lock_exclusive(ifp);
if (IN_IFEXTRA(ifp) != NULL) {
if (len == 0) {
/* Allow clearing the signature */
IN_IFEXTRA(ifp)->netsig_len = 0;
bzero(IN_IFEXTRA(ifp)->netsig,
sizeof(IN_IFEXTRA(ifp)->netsig));
if_inetdata_lock_done(ifp);
break;
} else if (len > sizeof(IN_IFEXTRA(ifp)->netsig)) {
error = EINVAL;
if_inetdata_lock_done(ifp);
break;
}
IN_IFEXTRA(ifp)->netsig_len = len;
bcopy(data, IN_IFEXTRA(ifp)->netsig, len);
} else {
error = ENOMEM;
}
if_inetdata_lock_done(ifp);
break;
case AF_INET6:
if_inet6data_lock_exclusive(ifp);
if (IN6_IFEXTRA(ifp) != NULL) {
if (len == 0) {
/* Allow clearing the signature */
IN6_IFEXTRA(ifp)->netsig_len = 0;
bzero(IN6_IFEXTRA(ifp)->netsig,
sizeof(IN6_IFEXTRA(ifp)->netsig));
if_inet6data_lock_done(ifp);
break;
} else if (len > sizeof(IN6_IFEXTRA(ifp)->netsig)) {
error = EINVAL;
if_inet6data_lock_done(ifp);
break;
}
IN6_IFEXTRA(ifp)->netsig_len = len;
bcopy(data, IN6_IFEXTRA(ifp)->netsig, len);
} else {
error = ENOMEM;
}
if_inet6data_lock_done(ifp);
break;
default:
error = EINVAL;
break;
}
return error;
}
int
ifnet_get_netsignature(struct ifnet *ifp, uint8_t family, uint8_t *len,
uint16_t *flags, uint8_t *data)
{
int error = 0;
if (ifp == NULL || len == NULL || data == NULL) {
return EINVAL;
}
switch (family) {
case AF_INET:
if_inetdata_lock_shared(ifp);
if (IN_IFEXTRA(ifp) != NULL) {
if (*len == 0 || *len < IN_IFEXTRA(ifp)->netsig_len) {
error = EINVAL;
if_inetdata_lock_done(ifp);
break;
}
if ((*len = (uint8_t)IN_IFEXTRA(ifp)->netsig_len) > 0) {
bcopy(IN_IFEXTRA(ifp)->netsig, data, *len);
} else {
error = ENOENT;
}
} else {
error = ENOMEM;
}
if_inetdata_lock_done(ifp);
break;
case AF_INET6:
if_inet6data_lock_shared(ifp);
if (IN6_IFEXTRA(ifp) != NULL) {
if (*len == 0 || *len < IN6_IFEXTRA(ifp)->netsig_len) {
error = EINVAL;
if_inet6data_lock_done(ifp);
break;
}
if ((*len = (uint8_t)IN6_IFEXTRA(ifp)->netsig_len) > 0) {
bcopy(IN6_IFEXTRA(ifp)->netsig, data, *len);
} else {
error = ENOENT;
}
} else {
error = ENOMEM;
}
if_inet6data_lock_done(ifp);
break;
default:
error = EINVAL;
break;
}
if (error == 0 && flags != NULL) {
*flags = 0;
}
return error;
}
int
ifnet_set_nat64prefix(struct ifnet *ifp, struct ipv6_prefix *prefixes)
{
int i, error = 0, one_set = 0;
if_inet6data_lock_exclusive(ifp);
if (IN6_IFEXTRA(ifp) == NULL) {
error = ENOMEM;
goto out;
}
for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) {
uint32_t prefix_len =
prefixes[i].prefix_len;
struct in6_addr *prefix =
&prefixes[i].ipv6_prefix;
if (prefix_len == 0) {
clat_log0((LOG_DEBUG,
"NAT64 prefixes purged from Interface %s\n",
if_name(ifp)));
/* Allow clearing the signature */
IN6_IFEXTRA(ifp)->nat64_prefixes[i].prefix_len = 0;
bzero(&IN6_IFEXTRA(ifp)->nat64_prefixes[i].ipv6_prefix,
sizeof(struct in6_addr));
continue;
} else if (prefix_len != NAT64_PREFIX_LEN_32 &&
prefix_len != NAT64_PREFIX_LEN_40 &&
prefix_len != NAT64_PREFIX_LEN_48 &&
prefix_len != NAT64_PREFIX_LEN_56 &&
prefix_len != NAT64_PREFIX_LEN_64 &&
prefix_len != NAT64_PREFIX_LEN_96) {
clat_log0((LOG_DEBUG,
"NAT64 prefixlen is incorrect %d\n", prefix_len));
error = EINVAL;
goto out;
}
if (IN6_IS_SCOPE_EMBED(prefix)) {
clat_log0((LOG_DEBUG,
"NAT64 prefix has interface/link local scope.\n"));
error = EINVAL;
goto out;
}
IN6_IFEXTRA(ifp)->nat64_prefixes[i].prefix_len = prefix_len;
bcopy(prefix, &IN6_IFEXTRA(ifp)->nat64_prefixes[i].ipv6_prefix,
sizeof(struct in6_addr));
clat_log0((LOG_DEBUG,
"NAT64 prefix set to %s with prefixlen: %d\n",
ip6_sprintf(prefix), prefix_len));
one_set = 1;
}
out:
if_inet6data_lock_done(ifp);
if (error == 0 && one_set != 0) {
necp_update_all_clients();
}
return error;
}
int
ifnet_get_nat64prefix(struct ifnet *ifp, struct ipv6_prefix *prefixes)
{
int i, found_one = 0, error = 0;
if (ifp == NULL) {
return EINVAL;
}
if_inet6data_lock_shared(ifp);
if (IN6_IFEXTRA(ifp) == NULL) {
error = ENOMEM;
goto out;
}
for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) {
if (IN6_IFEXTRA(ifp)->nat64_prefixes[i].prefix_len != 0) {
found_one = 1;
}
}
if (found_one == 0) {
error = ENOENT;
goto out;
}
if (prefixes) {
bcopy(IN6_IFEXTRA(ifp)->nat64_prefixes, prefixes,
sizeof(IN6_IFEXTRA(ifp)->nat64_prefixes));
}
out:
if_inet6data_lock_done(ifp);
return error;
}
static void
dlil_output_cksum_dbg(struct ifnet *ifp, struct mbuf *m, uint32_t hoff,
protocol_family_t pf)
{
#pragma unused(ifp)
uint32_t did_sw;
if (!(hwcksum_dbg_mode & HWCKSUM_DBG_FINALIZE_FORCED) ||
(m->m_pkthdr.csum_flags & (CSUM_TSO_IPV4 | CSUM_TSO_IPV6))) {
return;
}
switch (pf) {
case PF_INET:
did_sw = in_finalize_cksum(m, hoff, m->m_pkthdr.csum_flags);
if (did_sw & CSUM_DELAY_IP) {
hwcksum_dbg_finalized_hdr++;
}
if (did_sw & CSUM_DELAY_DATA) {
hwcksum_dbg_finalized_data++;
}
break;
case PF_INET6:
/*
* Checksum offload should not have been enabled when
* extension headers exist; that also means that we
* cannot force-finalize packets with extension headers.
* Indicate to the callee should it skip such case by
* setting optlen to -1.
*/
did_sw = in6_finalize_cksum(m, hoff, -1, -1,
m->m_pkthdr.csum_flags);
if (did_sw & CSUM_DELAY_IPV6_DATA) {
hwcksum_dbg_finalized_data++;
}
break;
default:
return;
}
}
static void
dlil_input_cksum_dbg(struct ifnet *ifp, struct mbuf *m, char *frame_header,
protocol_family_t pf)
{
uint16_t sum = 0;
uint32_t hlen;
if (frame_header == NULL ||
frame_header < (char *)mbuf_datastart(m) ||
frame_header > (char *)m->m_data) {
DLIL_PRINTF("%s: frame header pointer 0x%llx out of range "
"[0x%llx,0x%llx] for mbuf 0x%llx\n", if_name(ifp),
(uint64_t)VM_KERNEL_ADDRPERM(frame_header),
(uint64_t)VM_KERNEL_ADDRPERM(mbuf_datastart(m)),
(uint64_t)VM_KERNEL_ADDRPERM(m->m_data),
(uint64_t)VM_KERNEL_ADDRPERM(m));
return;
}
hlen = (uint32_t)(m->m_data - frame_header);
switch (pf) {
case PF_INET:
case PF_INET6:
break;
default:
return;
}
/*
* Force partial checksum offload; useful to simulate cases
* where the hardware does not support partial checksum offload,
* in order to validate correctness throughout the layers above.
*/
if (hwcksum_dbg_mode & HWCKSUM_DBG_PARTIAL_FORCED) {
uint32_t foff = hwcksum_dbg_partial_rxoff_forced;
if (foff > (uint32_t)m->m_pkthdr.len) {
return;
}
m->m_pkthdr.csum_flags &= ~CSUM_RX_FLAGS;
/* Compute 16-bit 1's complement sum from forced offset */
sum = m_sum16(m, foff, (m->m_pkthdr.len - foff));
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PARTIAL);
m->m_pkthdr.csum_rx_val = sum;
m->m_pkthdr.csum_rx_start = (uint16_t)(foff + hlen);
hwcksum_dbg_partial_forced++;
hwcksum_dbg_partial_forced_bytes += m->m_pkthdr.len;
}
/*
* Partial checksum offload verification (and adjustment);
* useful to validate and test cases where the hardware
* supports partial checksum offload.
*/
if ((m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
uint32_t rxoff;
/* Start offset must begin after frame header */
rxoff = m->m_pkthdr.csum_rx_start;
if (hlen > rxoff) {
hwcksum_dbg_bad_rxoff++;
if (dlil_verbose) {
DLIL_PRINTF("%s: partial cksum start offset %d "
"is less than frame header length %d for "
"mbuf 0x%llx\n", if_name(ifp), rxoff, hlen,
(uint64_t)VM_KERNEL_ADDRPERM(m));
}
return;
}
rxoff -= hlen;
if (!(hwcksum_dbg_mode & HWCKSUM_DBG_PARTIAL_FORCED)) {
/*
* Compute the expected 16-bit 1's complement sum;
* skip this if we've already computed it above
* when partial checksum offload is forced.
*/
sum = m_sum16(m, rxoff, (m->m_pkthdr.len - rxoff));
/* Hardware or driver is buggy */
if (sum != m->m_pkthdr.csum_rx_val) {
hwcksum_dbg_bad_cksum++;
if (dlil_verbose) {
DLIL_PRINTF("%s: bad partial cksum value "
"0x%x (expected 0x%x) for mbuf "
"0x%llx [rx_start %d]\n",
if_name(ifp),
m->m_pkthdr.csum_rx_val, sum,
(uint64_t)VM_KERNEL_ADDRPERM(m),
m->m_pkthdr.csum_rx_start);
}
return;
}
}
hwcksum_dbg_verified++;
/*
* This code allows us to emulate various hardwares that
* perform 16-bit 1's complement sum beginning at various
* start offset values.
*/
if (hwcksum_dbg_mode & HWCKSUM_DBG_PARTIAL_RXOFF_ADJ) {
uint32_t aoff = hwcksum_dbg_partial_rxoff_adj;
if (aoff == rxoff || aoff > (uint32_t)m->m_pkthdr.len) {
return;
}
sum = m_adj_sum16(m, rxoff, aoff,
m_pktlen(m) - aoff, sum);
m->m_pkthdr.csum_rx_val = sum;
m->m_pkthdr.csum_rx_start = (uint16_t)(aoff + hlen);
hwcksum_dbg_adjusted++;
}
}
}
static int
sysctl_hwcksum_dbg_mode SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
u_int32_t i;
int err;
i = hwcksum_dbg_mode;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (hwcksum_dbg == 0) {
return ENODEV;
}
if ((i & ~HWCKSUM_DBG_MASK) != 0) {
return EINVAL;
}
hwcksum_dbg_mode = (i & HWCKSUM_DBG_MASK);
return err;
}
static int
sysctl_hwcksum_dbg_partial_rxoff_forced SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
u_int32_t i;
int err;
i = hwcksum_dbg_partial_rxoff_forced;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (!(hwcksum_dbg_mode & HWCKSUM_DBG_PARTIAL_FORCED)) {
return ENODEV;
}
hwcksum_dbg_partial_rxoff_forced = i;
return err;
}
static int
sysctl_hwcksum_dbg_partial_rxoff_adj SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
u_int32_t i;
int err;
i = hwcksum_dbg_partial_rxoff_adj;
err = sysctl_handle_int(oidp, &i, 0, req);
if (err != 0 || req->newptr == USER_ADDR_NULL) {
return err;
}
if (!(hwcksum_dbg_mode & HWCKSUM_DBG_PARTIAL_RXOFF_ADJ)) {
return ENODEV;
}
hwcksum_dbg_partial_rxoff_adj = i;
return err;
}
static int
sysctl_tx_chain_len_stats SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int err;
if (req->oldptr == USER_ADDR_NULL) {
}
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
err = SYSCTL_OUT(req, &tx_chain_len_stats,
sizeof(struct chain_len_stats));
return err;
}
#if DEBUG || DEVELOPMENT
/* Blob for sum16 verification */
static uint8_t sumdata[] = {
0x1f, 0x8b, 0x08, 0x08, 0x4c, 0xe5, 0x9a, 0x4f, 0x00, 0x03,
0x5f, 0x00, 0x5d, 0x91, 0x41, 0x4e, 0xc4, 0x30, 0x0c, 0x45,
0xf7, 0x9c, 0xc2, 0x07, 0x18, 0xf5, 0x0e, 0xb0, 0xe2, 0x00,
0x48, 0x88, 0xa5, 0xdb, 0xba, 0x49, 0x34, 0x69, 0xdc, 0x71,
0x92, 0xa9, 0xc2, 0x8a, 0x6b, 0x70, 0x3d, 0x4e, 0x82, 0x93,
0xb4, 0x08, 0xd8, 0xc5, 0xb1, 0xfd, 0xff, 0xb3, 0xfd, 0x4c,
0x42, 0x5f, 0x1f, 0x9f, 0x11, 0x12, 0x43, 0xb2, 0x04, 0x93,
0xe0, 0x7b, 0x01, 0x0e, 0x14, 0x07, 0x78, 0xd1, 0x78, 0x75,
0x71, 0x71, 0xe9, 0x08, 0x84, 0x46, 0xf2, 0xc7, 0x3b, 0x09,
0xe7, 0xd1, 0xd3, 0x8a, 0x57, 0x92, 0x33, 0xcd, 0x39, 0xcc,
0xb0, 0x91, 0x89, 0xe0, 0x42, 0x53, 0x8b, 0xb7, 0x8c, 0x42,
0x60, 0xd9, 0x9f, 0x7a, 0x55, 0x19, 0x76, 0xcb, 0x10, 0x49,
0x35, 0xac, 0x0b, 0x5a, 0x3c, 0xbb, 0x65, 0x51, 0x8c, 0x90,
0x7c, 0x69, 0x45, 0x45, 0x81, 0xb4, 0x2b, 0x70, 0x82, 0x85,
0x55, 0x91, 0x17, 0x90, 0xdc, 0x14, 0x1e, 0x35, 0x52, 0xdd,
0x02, 0x16, 0xef, 0xb5, 0x40, 0x89, 0xe2, 0x46, 0x53, 0xad,
0x93, 0x6e, 0x98, 0x30, 0xe5, 0x08, 0xb7, 0xcc, 0x03, 0xbc,
0x71, 0x86, 0x09, 0x43, 0x0d, 0x52, 0xf5, 0xa2, 0xf5, 0xa2,
0x56, 0x11, 0x8d, 0xa8, 0xf5, 0xee, 0x92, 0x3d, 0xfe, 0x8c,
0x67, 0x71, 0x8b, 0x0e, 0x2d, 0x70, 0x77, 0xbe, 0xbe, 0xea,
0xbf, 0x9a, 0x8d, 0x9c, 0x53, 0x53, 0xe5, 0xe0, 0x4b, 0x87,
0x85, 0xd2, 0x45, 0x95, 0x30, 0xc1, 0xcc, 0xe0, 0x74, 0x54,
0x13, 0x58, 0xe8, 0xe8, 0x79, 0xa2, 0x09, 0x73, 0xa4, 0x0e,
0x39, 0x59, 0x0c, 0xe6, 0x9c, 0xb2, 0x4f, 0x06, 0x5b, 0x8e,
0xcd, 0x17, 0x6c, 0x5e, 0x95, 0x4d, 0x70, 0xa2, 0x0a, 0xbf,
0xa3, 0xcc, 0x03, 0xbc, 0x5a, 0xe7, 0x75, 0x06, 0x5e, 0x75,
0xef, 0x58, 0x8e, 0x15, 0xd1, 0x0a, 0x18, 0xff, 0xdd, 0xe6,
0x02, 0x3b, 0xb5, 0xb4, 0xa1, 0xe0, 0x72, 0xfc, 0xe3, 0xab,
0x07, 0xe0, 0x4d, 0x65, 0xea, 0x92, 0xeb, 0xf2, 0x7b, 0x17,
0x05, 0xce, 0xc6, 0xf6, 0x2b, 0xbb, 0x70, 0x3d, 0x00, 0x95,
0xe0, 0x07, 0x52, 0x3b, 0x58, 0xfc, 0x7c, 0x69, 0x4d, 0xe9,
0xf7, 0xa9, 0x66, 0x1e, 0x1e, 0xbe, 0x01, 0x69, 0x98, 0xfe,
0xc8, 0x28, 0x02, 0x00, 0x00
};
/* Precomputed 16-bit 1's complement sums for various spans of the above data */
static struct {
boolean_t init;
uint16_t len;
uint16_t sumr; /* reference */
uint16_t sumrp; /* reference, precomputed */
} sumtbl[] = {
{ FALSE, 0, 0, 0x0000 },
{ FALSE, 1, 0, 0x001f },
{ FALSE, 2, 0, 0x8b1f },
{ FALSE, 3, 0, 0x8b27 },
{ FALSE, 7, 0, 0x790e },
{ FALSE, 11, 0, 0xcb6d },
{ FALSE, 20, 0, 0x20dd },
{ FALSE, 27, 0, 0xbabd },
{ FALSE, 32, 0, 0xf3e8 },
{ FALSE, 37, 0, 0x197d },
{ FALSE, 43, 0, 0x9eae },
{ FALSE, 64, 0, 0x4678 },
{ FALSE, 127, 0, 0x9399 },
{ FALSE, 256, 0, 0xd147 },
{ FALSE, 325, 0, 0x0358 },
};
#define SUMTBL_MAX ((int)sizeof (sumtbl) / (int)sizeof (sumtbl[0]))
static void
dlil_verify_sum16(void)
{
struct mbuf *m;
uint8_t *buf;
int n;
/* Make sure test data plus extra room for alignment fits in cluster */
_CASSERT((sizeof(sumdata) + (sizeof(uint64_t) * 2)) <= MCLBYTES);
kprintf("DLIL: running SUM16 self-tests ... ");
m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
m_align(m, sizeof(sumdata) + (sizeof(uint64_t) * 2));
buf = mtod(m, uint8_t *); /* base address */
for (n = 0; n < SUMTBL_MAX; n++) {
uint16_t len = sumtbl[n].len;
int i;
/* Verify for all possible alignments */
for (i = 0; i < (int)sizeof(uint64_t); i++) {
uint16_t sum, sumr;
uint8_t *c;
/* Copy over test data to mbuf */
VERIFY(len <= sizeof(sumdata));
c = buf + i;
bcopy(sumdata, c, len);
/* Zero-offset test (align by data pointer) */
m->m_data = (caddr_t)c;
m->m_len = len;
sum = m_sum16(m, 0, len);
if (!sumtbl[n].init) {
sumr = (uint16_t)in_cksum_mbuf_ref(m, len, 0, 0);
sumtbl[n].sumr = sumr;
sumtbl[n].init = TRUE;
} else {
sumr = sumtbl[n].sumr;
}
/* Something is horribly broken; stop now */
if (sumr != sumtbl[n].sumrp) {
panic_plain("\n%s: broken in_cksum_mbuf_ref() "
"for len=%d align=%d sum=0x%04x "
"[expected=0x%04x]\n", __func__,
len, i, sum, sumr);
/* NOTREACHED */
} else if (sum != sumr) {
panic_plain("\n%s: broken m_sum16() for len=%d "
"align=%d sum=0x%04x [expected=0x%04x]\n",
__func__, len, i, sum, sumr);
/* NOTREACHED */
}
/* Alignment test by offset (fixed data pointer) */
m->m_data = (caddr_t)buf;
m->m_len = i + len;
sum = m_sum16(m, i, len);
/* Something is horribly broken; stop now */
if (sum != sumr) {
panic_plain("\n%s: broken m_sum16() for len=%d "
"offset=%d sum=0x%04x [expected=0x%04x]\n",
__func__, len, i, sum, sumr);
/* NOTREACHED */
}
#if INET
/* Simple sum16 contiguous buffer test by aligment */
sum = b_sum16(c, len);
/* Something is horribly broken; stop now */
if (sum != sumr) {
panic_plain("\n%s: broken b_sum16() for len=%d "
"align=%d sum=0x%04x [expected=0x%04x]\n",
__func__, len, i, sum, sumr);
/* NOTREACHED */
}
#endif /* INET */
}
}
m_freem(m);
kprintf("PASSED\n");
}
#endif /* DEBUG || DEVELOPMENT */
#define CASE_STRINGIFY(x) case x: return #x
__private_extern__ const char *
dlil_kev_dl_code_str(u_int32_t event_code)
{
switch (event_code) {
CASE_STRINGIFY(KEV_DL_SIFFLAGS);
CASE_STRINGIFY(KEV_DL_SIFMETRICS);
CASE_STRINGIFY(KEV_DL_SIFMTU);
CASE_STRINGIFY(KEV_DL_SIFPHYS);
CASE_STRINGIFY(KEV_DL_SIFMEDIA);
CASE_STRINGIFY(KEV_DL_SIFGENERIC);
CASE_STRINGIFY(KEV_DL_ADDMULTI);
CASE_STRINGIFY(KEV_DL_DELMULTI);
CASE_STRINGIFY(KEV_DL_IF_ATTACHED);
CASE_STRINGIFY(KEV_DL_IF_DETACHING);
CASE_STRINGIFY(KEV_DL_IF_DETACHED);
CASE_STRINGIFY(KEV_DL_LINK_OFF);
CASE_STRINGIFY(KEV_DL_LINK_ON);
CASE_STRINGIFY(KEV_DL_PROTO_ATTACHED);
CASE_STRINGIFY(KEV_DL_PROTO_DETACHED);
CASE_STRINGIFY(KEV_DL_LINK_ADDRESS_CHANGED);
CASE_STRINGIFY(KEV_DL_WAKEFLAGS_CHANGED);
CASE_STRINGIFY(KEV_DL_IF_IDLE_ROUTE_REFCNT);
CASE_STRINGIFY(KEV_DL_IFCAP_CHANGED);
CASE_STRINGIFY(KEV_DL_LINK_QUALITY_METRIC_CHANGED);
CASE_STRINGIFY(KEV_DL_NODE_PRESENCE);
CASE_STRINGIFY(KEV_DL_NODE_ABSENCE);
CASE_STRINGIFY(KEV_DL_MASTER_ELECTED);
CASE_STRINGIFY(KEV_DL_ISSUES);
CASE_STRINGIFY(KEV_DL_IFDELEGATE_CHANGED);
default:
break;
}
return "";
}
static void
dlil_dt_tcall_fn(thread_call_param_t arg0, thread_call_param_t arg1)
{
#pragma unused(arg1)
struct ifnet *ifp = arg0;
if (ifnet_is_attached(ifp, 1)) {
nstat_ifnet_threshold_reached(ifp->if_index);
ifnet_decr_iorefcnt(ifp);
}
}
void
ifnet_notify_data_threshold(struct ifnet *ifp)
{
uint64_t bytes = (ifp->if_ibytes + ifp->if_obytes);
uint64_t oldbytes = ifp->if_dt_bytes;
ASSERT(ifp->if_dt_tcall != NULL);
/*
* If we went over the threshold, notify NetworkStatistics.
* We rate-limit it based on the threshold interval value.
*/
if (threshold_notify && (bytes - oldbytes) > ifp->if_data_threshold &&
OSCompareAndSwap64(oldbytes, bytes, &ifp->if_dt_bytes) &&
!thread_call_isactive(ifp->if_dt_tcall)) {
uint64_t tival = (threshold_interval * NSEC_PER_SEC);
uint64_t now = mach_absolute_time(), deadline = now;
uint64_t ival;
if (tival != 0) {
nanoseconds_to_absolutetime(tival, &ival);
clock_deadline_for_periodic_event(ival, now, &deadline);
(void) thread_call_enter_delayed(ifp->if_dt_tcall,
deadline);
} else {
(void) thread_call_enter(ifp->if_dt_tcall);
}
}
}
#if (DEVELOPMENT || DEBUG)
/*
* The sysctl variable name contains the input parameters of
* ifnet_get_keepalive_offload_frames()
* ifp (interface index): name[0]
* frames_array_count: name[1]
* frame_data_offset: name[2]
* The return length gives used_frames_count
*/
static int
sysctl_get_kao_frames SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
int *name = (int *)arg1;
u_int namelen = arg2;
int idx;
ifnet_t ifp = NULL;
u_int32_t frames_array_count;
size_t frame_data_offset;
u_int32_t used_frames_count;
struct ifnet_keepalive_offload_frame *frames_array = NULL;
int error = 0;
u_int32_t i;
/*
* Only root can get look at other people TCP frames
*/
error = proc_suser(current_proc());
if (error != 0) {
goto done;
}
/*
* Validate the input parameters
*/
if (req->newptr != USER_ADDR_NULL) {
error = EPERM;
goto done;
}
if (namelen != 3) {
error = EINVAL;
goto done;
}
if (req->oldptr == USER_ADDR_NULL) {
error = EINVAL;
goto done;
}
if (req->oldlen == 0) {
error = EINVAL;
goto done;
}
idx = name[0];
frames_array_count = name[1];
frame_data_offset = name[2];
/* Make sure the passed buffer is large enough */
if (frames_array_count * sizeof(struct ifnet_keepalive_offload_frame) >
req->oldlen) {
error = ENOMEM;
goto done;
}
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(idx)) {
ifnet_head_done();
error = ENOENT;
goto done;
}
ifp = ifindex2ifnet[idx];
ifnet_head_done();
frames_array = _MALLOC(frames_array_count *
sizeof(struct ifnet_keepalive_offload_frame), M_TEMP, M_WAITOK);
if (frames_array == NULL) {
error = ENOMEM;
goto done;
}
error = ifnet_get_keepalive_offload_frames(ifp, frames_array,
frames_array_count, frame_data_offset, &used_frames_count);
if (error != 0) {
DLIL_PRINTF("%s: ifnet_get_keepalive_offload_frames error %d\n",
__func__, error);
goto done;
}
for (i = 0; i < used_frames_count; i++) {
error = SYSCTL_OUT(req, frames_array + i,
sizeof(struct ifnet_keepalive_offload_frame));
if (error != 0) {
goto done;
}
}
done:
if (frames_array != NULL) {
_FREE(frames_array, M_TEMP);
}
return error;
}
#endif /* DEVELOPMENT || DEBUG */
void
ifnet_update_stats_per_flow(struct ifnet_stats_per_flow *ifs,
struct ifnet *ifp)
{
tcp_update_stats_per_flow(ifs, ifp);
}
static inline u_int32_t
_set_flags(u_int32_t *flags_p, u_int32_t set_flags)
{
return (u_int32_t)OSBitOrAtomic(set_flags, flags_p);
}
static inline void
_clear_flags(u_int32_t *flags_p, u_int32_t clear_flags)
{
OSBitAndAtomic(~clear_flags, flags_p);
}
__private_extern__ u_int32_t
if_set_eflags(ifnet_t interface, u_int32_t set_flags)
{
return _set_flags(&interface->if_eflags, set_flags);
}
__private_extern__ void
if_clear_eflags(ifnet_t interface, u_int32_t clear_flags)
{
_clear_flags(&interface->if_eflags, clear_flags);
}
__private_extern__ u_int32_t
if_set_xflags(ifnet_t interface, u_int32_t set_flags)
{
return _set_flags(&interface->if_xflags, set_flags);
}
__private_extern__ void
if_clear_xflags(ifnet_t interface, u_int32_t clear_flags)
{
_clear_flags(&interface->if_xflags, clear_flags);
}