darling-xnu/bsd/net/if_utun.c
2023-05-16 21:41:14 -07:00

3514 lines
94 KiB
C

/*
* Copyright (c) 2008-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* ----------------------------------------------------------------------------------
* Application of kernel control for interface creation
*
* Theory of operation:
* utun (user tunnel) acts as glue between kernel control sockets and network interfaces.
* This kernel control will register an interface for every client that connects.
* ---------------------------------------------------------------------------------- */
#include <sys/systm.h>
#include <sys/kern_control.h>
#include <net/kpi_protocol.h>
#include <net/kpi_interface.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_utun.h>
#include <sys/mbuf.h>
#include <sys/sockio.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet6/in6_var.h>
#include <netinet6/in6_var.h>
#include <sys/kauth.h>
#include <net/necp.h>
#include <kern/zalloc.h>
#include <os/log.h>
#define UTUN_NEXUS 0
#if UTUN_NEXUS
static nexus_controller_t utun_ncd;
static int utun_ncd_refcount;
static uuid_t utun_kpipe_uuid;
static uuid_t utun_nx_dom_prov;
typedef struct utun_nx {
uuid_t if_provider;
uuid_t if_instance;
uuid_t fsw_provider;
uuid_t fsw_instance;
uuid_t fsw_device;
uuid_t fsw_host;
uuid_t fsw_agent;
} *utun_nx_t;
#endif // UTUN_NEXUS
/* Control block allocated for each kernel control connection */
struct utun_pcb {
TAILQ_ENTRY(utun_pcb) utun_chain;
kern_ctl_ref utun_ctlref;
ifnet_t utun_ifp;
u_int32_t utun_unit;
u_int32_t utun_unique_id;
u_int32_t utun_flags;
int utun_ext_ifdata_stats;
u_int32_t utun_max_pending_packets;
char utun_if_xname[IFXNAMSIZ];
char utun_unique_name[IFXNAMSIZ];
// PCB lock protects state fields and rings
decl_lck_rw_data(, utun_pcb_lock);
struct mbuf * utun_input_chain;
struct mbuf * utun_input_chain_last;
u_int32_t utun_input_chain_count;
// Input chain lock protects the list of input mbufs
// The input chain lock must be taken AFTER the PCB lock if both are held
lck_mtx_t utun_input_chain_lock;
#if UTUN_NEXUS
struct utun_nx utun_nx;
int utun_kpipe_enabled;
uuid_t utun_kpipe_uuid;
void * utun_kpipe_rxring;
void * utun_kpipe_txring;
kern_pbufpool_t utun_kpipe_pp;
u_int32_t utun_kpipe_tx_ring_size;
u_int32_t utun_kpipe_rx_ring_size;
kern_nexus_t utun_netif_nexus;
kern_pbufpool_t utun_netif_pp;
void * utun_netif_rxring;
void * utun_netif_txring;
uint64_t utun_netif_txring_size;
u_int32_t utun_slot_size;
u_int32_t utun_netif_ring_size;
u_int32_t utun_tx_fsw_ring_size;
u_int32_t utun_rx_fsw_ring_size;
// Auto attach flowswitch when netif is enabled. When set to false,
// it allows userspace nexus controller to attach and own flowswitch.
bool utun_attach_fsw;
bool utun_netif_connected;
bool utun_use_netif;
bool utun_needs_netagent;
#endif // UTUN_NEXUS
};
/* Kernel Control functions */
static errno_t utun_ctl_setup(u_int32_t *unit, void **unitinfo);
static errno_t utun_ctl_bind(kern_ctl_ref kctlref, struct sockaddr_ctl *sac,
void **unitinfo);
static errno_t utun_ctl_connect(kern_ctl_ref kctlref, struct sockaddr_ctl *sac,
void **unitinfo);
static errno_t utun_ctl_disconnect(kern_ctl_ref kctlref, u_int32_t unit,
void *unitinfo);
static errno_t utun_ctl_send(kern_ctl_ref kctlref, u_int32_t unit,
void *unitinfo, mbuf_t m, int flags);
static errno_t utun_ctl_getopt(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo,
int opt, void *data, size_t *len);
static errno_t utun_ctl_setopt(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo,
int opt, void *data, size_t len);
static void utun_ctl_rcvd(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo,
int flags);
/* Network Interface functions */
static void utun_start(ifnet_t interface);
static errno_t utun_framer(ifnet_t interface, mbuf_t *packet,
const struct sockaddr *dest, const char *desk_linkaddr,
const char *frame_type, u_int32_t *prepend_len, u_int32_t *postpend_len);
static errno_t utun_output(ifnet_t interface, mbuf_t data);
static errno_t utun_demux(ifnet_t interface, mbuf_t data, char *frame_header,
protocol_family_t *protocol);
static errno_t utun_add_proto(ifnet_t interface, protocol_family_t protocol,
const struct ifnet_demux_desc *demux_array,
u_int32_t demux_count);
static errno_t utun_del_proto(ifnet_t interface, protocol_family_t protocol);
static errno_t utun_ioctl(ifnet_t interface, u_long cmd, void *data);
static void utun_detached(ifnet_t interface);
/* Protocol handlers */
static errno_t utun_attach_proto(ifnet_t interface, protocol_family_t proto);
static errno_t utun_proto_input(ifnet_t interface, protocol_family_t protocol,
mbuf_t m, char *frame_header);
static errno_t utun_proto_pre_output(ifnet_t interface, protocol_family_t protocol,
mbuf_t *packet, const struct sockaddr *dest, void *route,
char *frame_type, char *link_layer_dest);
static errno_t utun_pkt_input(struct utun_pcb *pcb, mbuf_t m);
#if UTUN_NEXUS
#define UTUN_IF_DEFAULT_SLOT_SIZE 2048
#define UTUN_IF_DEFAULT_RING_SIZE 64
#define UTUN_IF_DEFAULT_TX_FSW_RING_SIZE 64
#define UTUN_IF_DEFAULT_RX_FSW_RING_SIZE 128
#define UTUN_IF_DEFAULT_BUF_SEG_SIZE skmem_usr_buf_seg_size
#define UTUN_IF_HEADROOM_SIZE 32
#define UTUN_IF_MIN_RING_SIZE 8
#define UTUN_IF_MAX_RING_SIZE 1024
#define UTUN_IF_MIN_SLOT_SIZE 1024
#define UTUN_IF_MAX_SLOT_SIZE 4096
#define UTUN_DEFAULT_MAX_PENDING_INPUT_COUNT 512
static int if_utun_max_pending_input = UTUN_DEFAULT_MAX_PENDING_INPUT_COUNT;
static int sysctl_if_utun_ring_size SYSCTL_HANDLER_ARGS;
static int sysctl_if_utun_tx_fsw_ring_size SYSCTL_HANDLER_ARGS;
static int sysctl_if_utun_rx_fsw_ring_size SYSCTL_HANDLER_ARGS;
static int if_utun_ring_size = UTUN_IF_DEFAULT_RING_SIZE;
static int if_utun_tx_fsw_ring_size = UTUN_IF_DEFAULT_TX_FSW_RING_SIZE;
static int if_utun_rx_fsw_ring_size = UTUN_IF_DEFAULT_RX_FSW_RING_SIZE;
SYSCTL_DECL(_net_utun);
SYSCTL_NODE(_net, OID_AUTO, utun, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "UTun");
SYSCTL_INT(_net_utun, OID_AUTO, max_pending_input, CTLFLAG_LOCKED | CTLFLAG_RW, &if_utun_max_pending_input, 0, "");
SYSCTL_PROC(_net_utun, OID_AUTO, ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_utun_ring_size, UTUN_IF_DEFAULT_RING_SIZE, &sysctl_if_utun_ring_size, "I", "");
SYSCTL_PROC(_net_utun, OID_AUTO, tx_fsw_ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_utun_tx_fsw_ring_size, UTUN_IF_DEFAULT_TX_FSW_RING_SIZE, &sysctl_if_utun_tx_fsw_ring_size, "I", "");
SYSCTL_PROC(_net_utun, OID_AUTO, rx_fsw_ring_size, CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
&if_utun_rx_fsw_ring_size, UTUN_IF_DEFAULT_RX_FSW_RING_SIZE, &sysctl_if_utun_rx_fsw_ring_size, "I", "");
static errno_t
utun_register_nexus(void);
static errno_t
utun_netif_prepare(__unused kern_nexus_t nexus, ifnet_t ifp);
static errno_t
utun_nexus_pre_connect(kern_nexus_provider_t nxprov,
proc_t p, kern_nexus_t nexus,
nexus_port_t nexus_port, kern_channel_t channel, void **ch_ctx);
static errno_t
utun_nexus_connected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel);
static void
utun_netif_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel);
static void
utun_nexus_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel);
static void
utun_nexus_disconnected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel);
static errno_t
utun_kpipe_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring, boolean_t is_tx_ring,
void **ring_ctx);
static void
utun_kpipe_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring);
static errno_t
utun_kpipe_sync_tx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring, uint32_t flags);
static errno_t
utun_kpipe_sync_rx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring, uint32_t flags);
#endif // UTUN_NEXUS
#define UTUN_DEFAULT_MTU 1500
#define UTUN_HEADER_SIZE(_pcb) (sizeof(u_int32_t) + (((_pcb)->utun_flags & UTUN_FLAGS_ENABLE_PROC_UUID) ? sizeof(uuid_t) : 0))
static kern_ctl_ref utun_kctlref;
static lck_attr_t *utun_lck_attr;
static lck_grp_attr_t *utun_lck_grp_attr;
static lck_grp_t *utun_lck_grp;
static lck_mtx_t utun_lock;
TAILQ_HEAD(utun_list, utun_pcb) utun_head;
static ZONE_DECLARE(utun_pcb_zone, "net.if_utun",
sizeof(struct utun_pcb), ZC_ZFREE_CLEARMEM);
#if UTUN_NEXUS
static int
sysctl_if_utun_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_utun_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < UTUN_IF_MIN_RING_SIZE ||
value > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_utun_ring_size = value;
return 0;
}
static int
sysctl_if_utun_tx_fsw_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_utun_tx_fsw_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < UTUN_IF_MIN_RING_SIZE ||
value > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_utun_tx_fsw_ring_size = value;
return 0;
}
static int
sysctl_if_utun_rx_fsw_ring_size SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int value = if_utun_rx_fsw_ring_size;
int error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr) {
return error;
}
if (value < UTUN_IF_MIN_RING_SIZE ||
value > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
if_utun_rx_fsw_ring_size = value;
return 0;
}
static errno_t
utun_netif_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring, boolean_t is_tx_ring,
void **ring_ctx)
{
#pragma unused(nxprov)
#pragma unused(channel)
#pragma unused(ring_ctx)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
if (!is_tx_ring) {
VERIFY(pcb->utun_netif_rxring == NULL);
pcb->utun_netif_rxring = ring;
} else {
VERIFY(pcb->utun_netif_txring == NULL);
pcb->utun_netif_txring = ring;
}
return 0;
}
static void
utun_netif_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring)
{
#pragma unused(nxprov)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
if (pcb->utun_netif_rxring == ring) {
pcb->utun_netif_rxring = NULL;
} else if (pcb->utun_netif_txring == ring) {
pcb->utun_netif_txring = NULL;
}
}
static errno_t
utun_netif_sync_tx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t tx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
lck_rw_lock_shared(&pcb->utun_pcb_lock);
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
STATS_INC(nifs, NETIF_STATS_TX_SYNC);
if (tx_slot == NULL) {
// Nothing to write, don't bother signalling
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
if (pcb->utun_kpipe_enabled) {
kern_channel_ring_t rx_ring = pcb->utun_kpipe_rxring;
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
// Signal the kernel pipe ring to read
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
return 0;
}
// If we're here, we're injecting into the utun kernel control socket
while (tx_slot != NULL) {
size_t length = 0;
mbuf_t data = NULL;
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
if (tx_ph == 0) {
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
continue;
}
(void) kern_channel_slot_detach_packet(tx_ring, tx_slot, tx_ph);
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
/* tx_baddr is the absolute buffer address */
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != 0);
bpf_tap_packet_out(pcb->utun_ifp, DLT_RAW, tx_ph, NULL, 0);
uint16_t tx_offset = kern_buflet_get_data_offset(tx_buf);
uint32_t tx_length = kern_buflet_get_data_length(tx_buf);
// The offset must be large enough for the headers
VERIFY(tx_offset >= UTUN_HEADER_SIZE(pcb));
// Find family
uint32_t af = 0;
uint8_t vhl = *(uint8_t *)(tx_baddr + tx_offset);
u_int ip_version = (vhl >> 4);
switch (ip_version) {
case 4: {
af = AF_INET;
break;
}
case 6: {
af = AF_INET6;
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_tx %s: unknown ip version %u vhl %u tx_offset %u len %u header_size %zu\n",
pcb->utun_ifp->if_xname, ip_version, vhl, tx_offset, tx_length,
UTUN_HEADER_SIZE(pcb));
break;
}
}
tx_offset -= UTUN_HEADER_SIZE(pcb);
tx_length += UTUN_HEADER_SIZE(pcb);
tx_baddr += tx_offset;
length = MIN(tx_length, pcb->utun_slot_size);
// Copy in family
memcpy(tx_baddr, &af, sizeof(af));
if (pcb->utun_flags & UTUN_FLAGS_ENABLE_PROC_UUID) {
kern_packet_get_euuid(tx_ph, (void *)(tx_baddr + sizeof(af)));
}
if (length > 0) {
errno_t error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &data);
if (error == 0) {
error = mbuf_copyback(data, 0, length, tx_baddr, MBUF_DONTWAIT);
if (error == 0) {
error = utun_output(pcb->utun_ifp, data);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_tx %s - utun_output error %d\n", pcb->utun_ifp->if_xname, error);
}
} else {
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_tx %s - mbuf_copyback(%zu) error %d\n", pcb->utun_ifp->if_xname, length, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
mbuf_freem(data);
data = NULL;
}
} else {
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_tx %s - mbuf_gethdr error %d\n", pcb->utun_ifp->if_xname, error);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
}
} else {
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_tx %s - 0 length packet\n", pcb->utun_ifp->if_xname);
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF);
STATS_INC(nifs, NETIF_STATS_DROP);
}
kern_pbufpool_free(tx_ring->ckr_pp, tx_ph);
if (data == NULL) {
continue;
}
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
STATS_INC(nifs, NETIF_STATS_TX_COPY_MBUF);
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->utun_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
static errno_t
utun_netif_tx_doorbell(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring, __unused uint32_t flags)
{
#pragma unused(nxprov)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
boolean_t more = false;
errno_t rc = 0;
/*
* Refill and sync the ring; we may be racing against another thread doing
* an RX sync that also wants to do kr_enter(), and so use the blocking
* variant here.
*/
rc = kern_channel_tx_refill_canblock(ring, UINT32_MAX, UINT32_MAX, true, &more);
if (rc != 0 && rc != EAGAIN && rc != EBUSY) {
os_log_error(OS_LOG_DEFAULT, "%s, tx refill failed %d\n", __func__, rc);
}
(void) kr_enter(ring, TRUE);
lck_rw_lock_shared(&pcb->utun_pcb_lock);
if (pcb->utun_kpipe_enabled) {
uint32_t tx_available = kern_channel_available_slot_count(ring);
if (pcb->utun_netif_txring_size > 0 &&
tx_available >= pcb->utun_netif_txring_size - 1) {
// No room left in tx ring, disable output for now
errno_t error = ifnet_disable_output(pcb->utun_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_netif_tx_doorbell: ifnet_disable_output returned error %d\n", error);
}
}
}
if (pcb->utun_kpipe_enabled) {
kern_channel_ring_t rx_ring = pcb->utun_kpipe_rxring;
// Unlock while calling notify
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
// Signal the kernel pipe ring to read
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
} else {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
}
kr_exit(ring);
return 0;
}
static errno_t
utun_netif_sync_rx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats;
struct netif_stats *nifs = &NX_NETIF_PRIVATE(nexus)->nif_stats;
lck_rw_lock_shared(&pcb->utun_pcb_lock);
// Reclaim user-released slots
(void) kern_channel_reclaim(rx_ring);
STATS_INC(nifs, NETIF_STATS_RX_SYNC);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
bzero(&rx_ring_stats, sizeof(rx_ring_stats));
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
while (rx_slot != NULL) {
// Check for a waiting packet
lck_mtx_lock(&pcb->utun_input_chain_lock);
mbuf_t data = pcb->utun_input_chain;
if (data == NULL) {
lck_mtx_unlock(&pcb->utun_input_chain_lock);
break;
}
// Allocate rx packet
kern_packet_t rx_ph = 0;
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
lck_mtx_unlock(&pcb->utun_input_chain_lock);
break;
}
// Advance waiting packets
if (pcb->utun_input_chain_count > 0) {
pcb->utun_input_chain_count--;
}
pcb->utun_input_chain = data->m_nextpkt;
data->m_nextpkt = NULL;
if (pcb->utun_input_chain == NULL) {
pcb->utun_input_chain_last = NULL;
}
lck_mtx_unlock(&pcb->utun_input_chain_lock);
size_t header_offset = UTUN_HEADER_SIZE(pcb);
size_t length = mbuf_pkthdr_len(data);
if (length < header_offset) {
// mbuf is too small
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_rx %s: legacy packet length too short for header %zu < %zu\n",
pcb->utun_ifp->if_xname, length, header_offset);
continue;
}
length -= header_offset;
if (length > rx_pp->pp_buflet_size) {
// Flush data
mbuf_freem(data);
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_rx %s: legacy packet length %zu > %u\n",
pcb->utun_ifp->if_xname, length, rx_pp->pp_buflet_size);
continue;
}
mbuf_pkthdr_setrcvif(data, pcb->utun_ifp);
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, header_offset, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, length);
VERIFY(error == 0);
error = kern_packet_set_headroom(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_MBUF);
bpf_tap_packet_in(pcb->utun_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
mbuf_freem(data);
// Advance ring
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_ring_t tx_ring = pcb->utun_kpipe_txring;
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = NULL;
if (tx_ring == NULL) {
// Net-If TX ring not set up yet, nothing to read
goto done;
}
// Unlock utun before entering ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->utun_pcb_lock);
if (tx_ring != pcb->utun_kpipe_txring) {
goto done;
}
tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
goto done;
}
while (rx_slot != NULL && tx_slot != NULL) {
// Allocate rx packet
kern_packet_t rx_ph = 0;
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
/* Skip slot if packet is zero-length or marked as dropped (QUMF_DROPPED) */
if (tx_ph == 0) {
continue;
}
/* XXX We could try this alloc before advancing the slot to avoid
* dropping the packet on failure to allocate.
*/
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_PKT);
STATS_INC(nifs, NETIF_STATS_DROP);
break;
}
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != 0);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
// Check packet length
size_t header_offset = UTUN_HEADER_SIZE(pcb);
uint32_t tx_length = kern_packet_get_data_length(tx_ph);
if (tx_length < header_offset) {
// Packet is too small
kern_pbufpool_free(rx_pp, rx_ph);
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
os_log_error(OS_LOG_DEFAULT, "utun_netif_sync_rx %s: packet length too short for header %u < %zu\n",
pcb->utun_ifp->if_xname, tx_length, header_offset);
continue;
}
size_t length = MIN(tx_length - header_offset,
pcb->utun_slot_size);
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from tx to rx
memcpy((void *)rx_baddr, (void *)(tx_baddr + header_offset), length);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, length);
VERIFY(error == 0);
error = kern_packet_set_headroom(rx_ph, 0);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_RX_PACKETS);
STATS_INC(nifs, NETIF_STATS_RX_COPY_DIRECT);
bpf_tap_packet_in(pcb->utun_ifp, DLT_RAW, rx_ph, NULL, 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
done:
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->utun_ifp, &rx_ring_stats);
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->utun_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
if (tx_ring != NULL) {
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
}
return 0;
}
static errno_t
utun_nexus_ifattach(struct utun_pcb *pcb,
struct ifnet_init_eparams *init_params,
struct ifnet **ifp)
{
errno_t err;
nexus_controller_t controller = kern_nexus_shared_controller();
struct kern_nexus_net_init net_init;
struct kern_pbufpool_init pp_init;
nexus_name_t provider_name;
snprintf((char *)provider_name, sizeof(provider_name),
"com.apple.netif.%s", pcb->utun_if_xname);
struct kern_nexus_provider_init prov_init = {
.nxpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxpi_flags = NXPIF_VIRTUAL_DEVICE,
.nxpi_pre_connect = utun_nexus_pre_connect,
.nxpi_connected = utun_nexus_connected,
.nxpi_pre_disconnect = utun_netif_pre_disconnect,
.nxpi_disconnected = utun_nexus_disconnected,
.nxpi_ring_init = utun_netif_ring_init,
.nxpi_ring_fini = utun_netif_ring_fini,
.nxpi_slot_init = NULL,
.nxpi_slot_fini = NULL,
.nxpi_sync_tx = utun_netif_sync_tx,
.nxpi_sync_rx = utun_netif_sync_rx,
.nxpi_tx_doorbell = utun_netif_tx_doorbell,
};
nexus_attr_t nxa = NULL;
err = kern_nexus_attr_create(&nxa);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__func__, err);
goto failed;
}
uint64_t slot_buffer_size = pcb->utun_slot_size;
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(err == 0);
// Reset ring size for netif nexus to limit memory usage
uint64_t ring_size = pcb->utun_netif_ring_size;
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_TX_SLOTS, ring_size);
VERIFY(err == 0);
err = kern_nexus_attr_set(nxa, NEXUS_ATTR_RX_SLOTS, ring_size);
VERIFY(err == 0);
pcb->utun_netif_txring_size = ring_size;
bzero(&pp_init, sizeof(pp_init));
pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION;
pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE;
pp_init.kbi_packets = pcb->utun_netif_ring_size * 2;
pp_init.kbi_bufsize = pcb->utun_slot_size;
pp_init.kbi_buf_seg_size = UTUN_IF_DEFAULT_BUF_SEG_SIZE;
pp_init.kbi_max_frags = 1;
(void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name),
"%s", provider_name);
pp_init.kbi_ctx = NULL;
pp_init.kbi_ctx_retain = NULL;
pp_init.kbi_ctx_release = NULL;
err = kern_pbufpool_create(&pp_init, &pcb->utun_netif_pp, NULL);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s pbufbool create failed, error %d\n", __func__, err);
goto failed;
}
err = kern_nexus_controller_register_provider(controller,
utun_nx_dom_prov,
provider_name,
&prov_init,
sizeof(prov_init),
nxa,
&pcb->utun_nx.if_provider);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s register provider failed, error %d\n",
__func__, err);
goto failed;
}
bzero(&net_init, sizeof(net_init));
net_init.nxneti_version = KERN_NEXUS_NET_CURRENT_VERSION;
net_init.nxneti_flags = 0;
net_init.nxneti_eparams = init_params;
net_init.nxneti_lladdr = NULL;
net_init.nxneti_prepare = utun_netif_prepare;
net_init.nxneti_rx_pbufpool = pcb->utun_netif_pp;
net_init.nxneti_tx_pbufpool = pcb->utun_netif_pp;
err = kern_nexus_controller_alloc_net_provider_instance(controller,
pcb->utun_nx.if_provider,
pcb,
&pcb->utun_nx.if_instance,
&net_init,
ifp);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s alloc_net_provider_instance failed, %d\n",
__func__, err);
kern_nexus_controller_deregister_provider(controller,
pcb->utun_nx.if_provider);
uuid_clear(pcb->utun_nx.if_provider);
goto failed;
}
failed:
if (nxa) {
kern_nexus_attr_destroy(nxa);
}
if (err && pcb->utun_netif_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_netif_pp);
pcb->utun_netif_pp = NULL;
}
return err;
}
static void
utun_detach_provider_and_instance(uuid_t provider, uuid_t instance)
{
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err;
if (!uuid_is_null(instance)) {
err = kern_nexus_controller_free_provider_instance(controller,
instance);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s free_provider_instance failed %d\n",
__func__, err);
}
uuid_clear(instance);
}
if (!uuid_is_null(provider)) {
err = kern_nexus_controller_deregister_provider(controller,
provider);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s deregister_provider %d\n", __func__, err);
}
uuid_clear(provider);
}
return;
}
static void
utun_nexus_detach(struct utun_pcb *pcb)
{
utun_nx_t nx = &pcb->utun_nx;
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err;
if (!uuid_is_null(nx->fsw_host)) {
err = kern_nexus_ifdetach(controller,
nx->fsw_instance,
nx->fsw_host);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_ifdetach ms host failed %d\n",
__func__, err);
}
}
if (!uuid_is_null(nx->fsw_device)) {
err = kern_nexus_ifdetach(controller,
nx->fsw_instance,
nx->fsw_device);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_ifdetach ms device failed %d\n",
__func__, err);
}
}
utun_detach_provider_and_instance(nx->if_provider,
nx->if_instance);
utun_detach_provider_and_instance(nx->fsw_provider,
nx->fsw_instance);
if (pcb->utun_netif_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_netif_pp);
pcb->utun_netif_pp = NULL;
}
memset(nx, 0, sizeof(*nx));
}
static errno_t
utun_create_fs_provider_and_instance(struct utun_pcb *pcb,
const char *type_name,
const char *ifname,
uuid_t *provider, uuid_t *instance)
{
nexus_attr_t attr = NULL;
nexus_controller_t controller = kern_nexus_shared_controller();
uuid_t dom_prov;
errno_t err;
struct kern_nexus_init init;
nexus_name_t provider_name;
err = kern_nexus_get_default_domain_provider(NEXUS_TYPE_FLOW_SWITCH,
&dom_prov);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s can't get %s provider, error %d\n",
__func__, type_name, err);
goto failed;
}
err = kern_nexus_attr_create(&attr);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__func__, err);
goto failed;
}
uint64_t slot_buffer_size = pcb->utun_slot_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(err == 0);
// Reset ring size for flowswitch nexus to limit memory usage. Larger RX than netif.
uint64_t tx_ring_size = pcb->utun_tx_fsw_ring_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_TX_SLOTS, tx_ring_size);
VERIFY(err == 0);
uint64_t rx_ring_size = pcb->utun_rx_fsw_ring_size;
err = kern_nexus_attr_set(attr, NEXUS_ATTR_RX_SLOTS, rx_ring_size);
VERIFY(err == 0);
/*
* Configure flowswitch to use super-packet (multi-buflet).
* This allows flowswitch to perform intra-stack packet aggregation.
*/
err = kern_nexus_attr_set(attr, NEXUS_ATTR_MAX_FRAGS,
sk_fsw_rx_agg_tcp ? NX_PBUF_FRAGS_MAX : 1);
VERIFY(err == 0);
snprintf((char *)provider_name, sizeof(provider_name),
"com.apple.%s.%s", type_name, ifname);
err = kern_nexus_controller_register_provider(controller,
dom_prov,
provider_name,
NULL,
0,
attr,
provider);
kern_nexus_attr_destroy(attr);
attr = NULL;
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s register %s provider failed, error %d\n",
__func__, type_name, err);
goto failed;
}
bzero(&init, sizeof(init));
init.nxi_version = KERN_NEXUS_CURRENT_VERSION;
err = kern_nexus_controller_alloc_provider_instance(controller,
*provider,
NULL,
instance, &init);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s alloc_provider_instance %s failed, %d\n",
__func__, type_name, err);
kern_nexus_controller_deregister_provider(controller,
*provider);
uuid_clear(*provider);
}
failed:
return err;
}
static errno_t
utun_flowswitch_attach(struct utun_pcb *pcb)
{
nexus_controller_t controller = kern_nexus_shared_controller();
errno_t err = 0;
utun_nx_t nx = &pcb->utun_nx;
// Allocate flowswitch
err = utun_create_fs_provider_and_instance(pcb,
"flowswitch",
pcb->utun_ifp->if_xname,
&nx->fsw_provider,
&nx->fsw_instance);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: failed to create bridge provider and instance\n",
__func__);
goto failed;
}
// Attach flowswitch to device port
err = kern_nexus_ifattach(controller, nx->fsw_instance,
NULL, nx->if_instance,
FALSE, &nx->fsw_device);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s kern_nexus_ifattach ms device %d\n", __func__, err);
goto failed;
}
// Attach flowswitch to host port
err = kern_nexus_ifattach(controller, nx->fsw_instance,
NULL, nx->if_instance,
TRUE, &nx->fsw_host);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s kern_nexus_ifattach ms host %d\n", __func__, err);
goto failed;
}
// Extract the agent UUID and save for later
struct kern_nexus *flowswitch_nx = nx_find(nx->fsw_instance, false);
if (flowswitch_nx != NULL) {
struct nx_flowswitch *flowswitch = NX_FSW_PRIVATE(flowswitch_nx);
if (flowswitch != NULL) {
FSW_RLOCK(flowswitch);
uuid_copy(nx->fsw_agent, flowswitch->fsw_agent_uuid);
FSW_UNLOCK(flowswitch);
} else {
os_log_error(OS_LOG_DEFAULT, "utun_flowswitch_attach - flowswitch is NULL\n");
}
nx_release(flowswitch_nx);
} else {
os_log_error(OS_LOG_DEFAULT, "utun_flowswitch_attach - unable to find flowswitch nexus\n");
}
return 0;
failed:
utun_nexus_detach(pcb);
errno_t detach_error = 0;
if ((detach_error = ifnet_detach(pcb->utun_ifp)) != 0) {
panic("utun_flowswitch_attach - ifnet_detach failed: %d\n", detach_error);
/* NOT REACHED */
}
return err;
}
static errno_t
utun_register_kernel_pipe_nexus(struct utun_pcb *pcb)
{
nexus_attr_t nxa = NULL;
errno_t result;
lck_mtx_lock(&utun_lock);
if (utun_ncd_refcount++) {
lck_mtx_unlock(&utun_lock);
return 0;
}
result = kern_nexus_controller_create(&utun_ncd);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_controller_create failed: %d\n",
__FUNCTION__, result);
goto done;
}
uuid_t dom_prov;
result = kern_nexus_get_default_domain_provider(
NEXUS_TYPE_KERNEL_PIPE, &dom_prov);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_get_default_domain_provider failed: %d\n",
__FUNCTION__, result);
goto done;
}
struct kern_nexus_provider_init prov_init = {
.nxpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxpi_flags = NXPIF_VIRTUAL_DEVICE,
.nxpi_pre_connect = utun_nexus_pre_connect,
.nxpi_connected = utun_nexus_connected,
.nxpi_pre_disconnect = utun_nexus_pre_disconnect,
.nxpi_disconnected = utun_nexus_disconnected,
.nxpi_ring_init = utun_kpipe_ring_init,
.nxpi_ring_fini = utun_kpipe_ring_fini,
.nxpi_slot_init = NULL,
.nxpi_slot_fini = NULL,
.nxpi_sync_tx = utun_kpipe_sync_tx,
.nxpi_sync_rx = utun_kpipe_sync_rx,
.nxpi_tx_doorbell = NULL,
};
result = kern_nexus_attr_create(&nxa);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_attr_create failed: %d\n",
__FUNCTION__, result);
goto done;
}
uint64_t slot_buffer_size = UTUN_IF_DEFAULT_SLOT_SIZE;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_SLOT_BUF_SIZE, slot_buffer_size);
VERIFY(result == 0);
// Reset ring size for kernel pipe nexus to limit memory usage
uint64_t ring_size =
pcb->utun_kpipe_tx_ring_size != 0 ? pcb->utun_kpipe_tx_ring_size :
if_utun_ring_size;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_TX_SLOTS, ring_size);
VERIFY(result == 0);
ring_size =
pcb->utun_kpipe_rx_ring_size != 0 ? pcb->utun_kpipe_rx_ring_size :
if_utun_ring_size;
result = kern_nexus_attr_set(nxa, NEXUS_ATTR_RX_SLOTS, ring_size);
VERIFY(result == 0);
result = kern_nexus_controller_register_provider(utun_ncd,
dom_prov,
(const uint8_t *)"com.apple.nexus.utun.kpipe",
&prov_init,
sizeof(prov_init),
nxa,
&utun_kpipe_uuid);
if (result) {
os_log_error(OS_LOG_DEFAULT, "%s: kern_nexus_controller_register_provider failed: %d\n",
__FUNCTION__, result);
goto done;
}
done:
if (nxa) {
kern_nexus_attr_destroy(nxa);
}
if (result) {
if (utun_ncd) {
kern_nexus_controller_destroy(utun_ncd);
utun_ncd = NULL;
}
utun_ncd_refcount = 0;
}
lck_mtx_unlock(&utun_lock);
return result;
}
static void
utun_unregister_kernel_pipe_nexus(void)
{
lck_mtx_lock(&utun_lock);
VERIFY(utun_ncd_refcount > 0);
if (--utun_ncd_refcount == 0) {
kern_nexus_controller_destroy(utun_ncd);
utun_ncd = NULL;
}
lck_mtx_unlock(&utun_lock);
}
// For use by socket option, not internally
static errno_t
utun_disable_channel(struct utun_pcb *pcb)
{
errno_t result;
int enabled;
uuid_t uuid;
lck_rw_lock_exclusive(&pcb->utun_pcb_lock);
enabled = pcb->utun_kpipe_enabled;
uuid_copy(uuid, pcb->utun_kpipe_uuid);
VERIFY(uuid_is_null(pcb->utun_kpipe_uuid) == !enabled);
pcb->utun_kpipe_enabled = 0;
uuid_clear(pcb->utun_kpipe_uuid);
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
if (enabled) {
result = kern_nexus_controller_free_provider_instance(utun_ncd, uuid);
} else {
result = ENXIO;
}
if (!result) {
if (pcb->utun_kpipe_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_kpipe_pp);
pcb->utun_kpipe_pp = NULL;
}
utun_unregister_kernel_pipe_nexus();
}
return result;
}
static errno_t
utun_enable_channel(struct utun_pcb *pcb, struct proc *proc)
{
struct kern_nexus_init init;
struct kern_pbufpool_init pp_init;
errno_t result;
kauth_cred_t cred = kauth_cred_get();
result = priv_check_cred(cred, PRIV_SKYWALK_REGISTER_KERNEL_PIPE, 0);
if (result) {
return result;
}
result = utun_register_kernel_pipe_nexus(pcb);
if (result) {
return result;
}
VERIFY(utun_ncd);
lck_rw_lock_exclusive(&pcb->utun_pcb_lock);
if (pcb->utun_kpipe_enabled) {
result = EEXIST; // return success instead?
goto done;
}
/*
* Make sure we can fit packets in the channel buffers and
* Allow an extra 4 bytes for the protocol number header in the channel
*/
if (pcb->utun_ifp->if_mtu + UTUN_HEADER_SIZE(pcb) > pcb->utun_slot_size) {
result = EOPNOTSUPP;
goto done;
}
bzero(&pp_init, sizeof(pp_init));
pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION;
pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE;
pp_init.kbi_packets = pcb->utun_netif_ring_size * 2;
pp_init.kbi_bufsize = pcb->utun_slot_size;
pp_init.kbi_buf_seg_size = UTUN_IF_DEFAULT_BUF_SEG_SIZE;
pp_init.kbi_max_frags = 1;
pp_init.kbi_flags |= KBIF_QUANTUM;
(void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name),
"com.apple.kpipe.%s", pcb->utun_if_xname);
pp_init.kbi_ctx = NULL;
pp_init.kbi_ctx_retain = NULL;
pp_init.kbi_ctx_release = NULL;
result = kern_pbufpool_create(&pp_init, &pcb->utun_kpipe_pp,
NULL);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "%s pbufbool create failed, error %d\n", __func__, result);
goto done;
}
VERIFY(uuid_is_null(pcb->utun_kpipe_uuid));
bzero(&init, sizeof(init));
init.nxi_version = KERN_NEXUS_CURRENT_VERSION;
init.nxi_tx_pbufpool = pcb->utun_kpipe_pp;
result = kern_nexus_controller_alloc_provider_instance(utun_ncd,
utun_kpipe_uuid, pcb, &pcb->utun_kpipe_uuid, &init);
if (result) {
goto done;
}
nexus_port_t port = NEXUS_PORT_KERNEL_PIPE_CLIENT;
result = kern_nexus_controller_bind_provider_instance(utun_ncd,
pcb->utun_kpipe_uuid, &port,
proc_pid(proc), NULL, NULL, 0, NEXUS_BIND_PID);
if (result) {
kern_nexus_controller_free_provider_instance(utun_ncd,
pcb->utun_kpipe_uuid);
uuid_clear(pcb->utun_kpipe_uuid);
goto done;
}
pcb->utun_kpipe_enabled = 1;
done:
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
if (result) {
if (pcb->utun_kpipe_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_kpipe_pp);
pcb->utun_kpipe_pp = NULL;
}
utun_unregister_kernel_pipe_nexus();
}
return result;
}
#endif // UTUN_NEXUS
errno_t
utun_register_control(void)
{
struct kern_ctl_reg kern_ctl;
errno_t result = 0;
#if UTUN_NEXUS
utun_register_nexus();
#endif // UTUN_NEXUS
TAILQ_INIT(&utun_head);
bzero(&kern_ctl, sizeof(kern_ctl));
strlcpy(kern_ctl.ctl_name, UTUN_CONTROL_NAME, sizeof(kern_ctl.ctl_name));
kern_ctl.ctl_name[sizeof(kern_ctl.ctl_name) - 1] = 0;
kern_ctl.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_SETUP | CTL_FLAG_REG_EXTENDED; /* Require root */
kern_ctl.ctl_sendsize = 512 * 1024;
kern_ctl.ctl_recvsize = 512 * 1024;
kern_ctl.ctl_setup = utun_ctl_setup;
kern_ctl.ctl_bind = utun_ctl_bind;
kern_ctl.ctl_connect = utun_ctl_connect;
kern_ctl.ctl_disconnect = utun_ctl_disconnect;
kern_ctl.ctl_send = utun_ctl_send;
kern_ctl.ctl_setopt = utun_ctl_setopt;
kern_ctl.ctl_getopt = utun_ctl_getopt;
kern_ctl.ctl_rcvd = utun_ctl_rcvd;
result = ctl_register(&kern_ctl, &utun_kctlref);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_register_control - ctl_register failed: %d\n", result);
return result;
}
/* Register the protocol plumbers */
if ((result = proto_register_plumber(PF_INET, IFNET_FAMILY_UTUN,
utun_attach_proto, NULL)) != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_register_control - proto_register_plumber(PF_INET, IFNET_FAMILY_UTUN) failed: %d\n",
result);
ctl_deregister(utun_kctlref);
return result;
}
/* Register the protocol plumbers */
if ((result = proto_register_plumber(PF_INET6, IFNET_FAMILY_UTUN,
utun_attach_proto, NULL)) != 0) {
proto_unregister_plumber(PF_INET, IFNET_FAMILY_UTUN);
ctl_deregister(utun_kctlref);
os_log_error(OS_LOG_DEFAULT, "utun_register_control - proto_register_plumber(PF_INET6, IFNET_FAMILY_UTUN) failed: %d\n",
result);
return result;
}
utun_lck_attr = lck_attr_alloc_init();
utun_lck_grp_attr = lck_grp_attr_alloc_init();
utun_lck_grp = lck_grp_alloc_init("utun", utun_lck_grp_attr);
lck_mtx_init(&utun_lock, utun_lck_grp, utun_lck_attr);
return 0;
}
/* Kernel control functions */
static inline int
utun_find_by_unit(u_int32_t unit)
{
struct utun_pcb *next_pcb = NULL;
int found = 0;
TAILQ_FOREACH(next_pcb, &utun_head, utun_chain) {
if (next_pcb->utun_unit == unit) {
found = 1;
break;
}
}
return found;
}
static inline void
utun_free_pcb(struct utun_pcb *pcb, bool locked)
{
#if UTUN_NEXUS
mbuf_freem_list(pcb->utun_input_chain);
pcb->utun_input_chain_count = 0;
lck_mtx_destroy(&pcb->utun_input_chain_lock, utun_lck_grp);
#endif // UTUN_NEXUS
lck_rw_destroy(&pcb->utun_pcb_lock, utun_lck_grp);
if (!locked) {
lck_mtx_lock(&utun_lock);
}
TAILQ_REMOVE(&utun_head, pcb, utun_chain);
if (!locked) {
lck_mtx_unlock(&utun_lock);
}
zfree(utun_pcb_zone, pcb);
}
static errno_t
utun_ctl_setup(u_int32_t *unit, void **unitinfo)
{
if (unit == NULL || unitinfo == NULL) {
return EINVAL;
}
lck_mtx_lock(&utun_lock);
/* Find next available unit */
if (*unit == 0) {
*unit = 1;
while (*unit != ctl_maxunit) {
if (utun_find_by_unit(*unit)) {
(*unit)++;
} else {
break;
}
}
if (*unit == ctl_maxunit) {
lck_mtx_unlock(&utun_lock);
return EBUSY;
}
} else if (utun_find_by_unit(*unit)) {
lck_mtx_unlock(&utun_lock);
return EBUSY;
}
/* Find some open interface id */
u_int32_t chosen_unique_id = 1;
struct utun_pcb *next_pcb = TAILQ_LAST(&utun_head, utun_list);
if (next_pcb != NULL) {
/* List was not empty, add one to the last item */
chosen_unique_id = next_pcb->utun_unique_id + 1;
next_pcb = NULL;
/*
* If this wrapped the id number, start looking at
* the front of the list for an unused id.
*/
if (chosen_unique_id == 0) {
/* Find the next unused ID */
chosen_unique_id = 1;
TAILQ_FOREACH(next_pcb, &utun_head, utun_chain) {
if (next_pcb->utun_unique_id > chosen_unique_id) {
/* We found a gap */
break;
}
chosen_unique_id = next_pcb->utun_unique_id + 1;
}
}
}
struct utun_pcb *pcb = zalloc_flags(utun_pcb_zone, Z_WAITOK | Z_ZERO);
*unitinfo = pcb;
pcb->utun_unit = *unit;
pcb->utun_unique_id = chosen_unique_id;
if (next_pcb != NULL) {
TAILQ_INSERT_BEFORE(next_pcb, pcb, utun_chain);
} else {
TAILQ_INSERT_TAIL(&utun_head, pcb, utun_chain);
}
lck_mtx_unlock(&utun_lock);
return 0;
}
static errno_t
utun_ctl_bind(kern_ctl_ref kctlref,
struct sockaddr_ctl *sac,
void **unitinfo)
{
if (*unitinfo == NULL) {
u_int32_t unit = 0;
(void)utun_ctl_setup(&unit, unitinfo);
}
struct utun_pcb *pcb = (struct utun_pcb *)*unitinfo;
if (pcb == NULL) {
return EINVAL;
}
pcb->utun_ctlref = kctlref;
pcb->utun_unit = sac->sc_unit;
pcb->utun_max_pending_packets = 1;
#if UTUN_NEXUS
pcb->utun_use_netif = false;
pcb->utun_attach_fsw = true;
pcb->utun_netif_connected = false;
pcb->utun_slot_size = UTUN_IF_DEFAULT_SLOT_SIZE;
pcb->utun_netif_ring_size = if_utun_ring_size;
pcb->utun_tx_fsw_ring_size = if_utun_tx_fsw_ring_size;
pcb->utun_rx_fsw_ring_size = if_utun_rx_fsw_ring_size;
pcb->utun_input_chain_count = 0;
lck_mtx_init(&pcb->utun_input_chain_lock, utun_lck_grp, utun_lck_attr);
#endif // UTUN_NEXUS
lck_rw_init(&pcb->utun_pcb_lock, utun_lck_grp, utun_lck_attr);
return 0;
}
static errno_t
utun_ctl_connect(kern_ctl_ref kctlref,
struct sockaddr_ctl *sac,
void **unitinfo)
{
struct ifnet_init_eparams utun_init = {};
errno_t result = 0;
if (*unitinfo == NULL) {
(void)utun_ctl_bind(kctlref, sac, unitinfo);
}
struct utun_pcb *pcb = *unitinfo;
if (pcb == NULL) {
return EINVAL;
}
/* Handle case where utun_ctl_setup() was called, but ipsec_ctl_bind() was not */
if (pcb->utun_ctlref == NULL) {
(void)utun_ctl_bind(kctlref, sac, unitinfo);
}
snprintf(pcb->utun_if_xname, sizeof(pcb->utun_if_xname), "utun%d", pcb->utun_unit - 1);
snprintf(pcb->utun_unique_name, sizeof(pcb->utun_unique_name), "utunid%d", pcb->utun_unique_id - 1);
/* Create the interface */
bzero(&utun_init, sizeof(utun_init));
utun_init.ver = IFNET_INIT_CURRENT_VERSION;
utun_init.len = sizeof(utun_init);
#if UTUN_NEXUS
if (pcb->utun_use_netif) {
utun_init.flags = (IFNET_INIT_SKYWALK_NATIVE | IFNET_INIT_NX_NOAUTO);
utun_init.tx_headroom = UTUN_IF_HEADROOM_SIZE;
} else
#endif // UTUN_NEXUS
{
utun_init.flags = IFNET_INIT_NX_NOAUTO;
utun_init.start = utun_start;
utun_init.framer_extended = utun_framer;
}
utun_init.name = "utun";
utun_init.unit = pcb->utun_unit - 1;
utun_init.uniqueid = pcb->utun_unique_name;
utun_init.uniqueid_len = strlen(pcb->utun_unique_name);
utun_init.family = IFNET_FAMILY_UTUN;
utun_init.type = IFT_OTHER;
utun_init.demux = utun_demux;
utun_init.add_proto = utun_add_proto;
utun_init.del_proto = utun_del_proto;
utun_init.softc = pcb;
utun_init.ioctl = utun_ioctl;
utun_init.free = utun_detached;
#if UTUN_NEXUS
if (pcb->utun_use_netif) {
result = utun_nexus_ifattach(pcb, &utun_init, &pcb->utun_ifp);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_connect - utun_nexus_ifattach failed: %d\n", result);
utun_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
if (pcb->utun_attach_fsw) {
result = utun_flowswitch_attach(pcb);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_connect - utun_flowswitch_attach failed: %d\n", result);
// Do not call utun_free_pcb(). We will be attached already, and will be freed later
// in utun_detached().
*unitinfo = NULL;
return result;
}
}
/* Attach to bpf */
bpfattach(pcb->utun_ifp, DLT_RAW, 0);
} else
#endif // UTUN_NEXUS
{
/*
* Upon success, this holds an ifnet reference which we will
* release via ifnet_release() at final detach time.
*/
result = ifnet_allocate_extended(&utun_init, &pcb->utun_ifp);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_connect - ifnet_allocate failed: %d\n", result);
utun_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
/* Set flags and additional information. */
ifnet_set_mtu(pcb->utun_ifp, UTUN_DEFAULT_MTU);
ifnet_set_flags(pcb->utun_ifp, IFF_UP | IFF_MULTICAST | IFF_POINTOPOINT, 0xffff);
/* The interface must generate its own IPv6 LinkLocal address,
* if possible following the recommendation of RFC2472 to the 64bit interface ID
*/
ifnet_set_eflags(pcb->utun_ifp, IFEF_NOAUTOIPV6LL, IFEF_NOAUTOIPV6LL);
/* Reset the stats in case as the interface may have been recycled */
struct ifnet_stats_param stats;
bzero(&stats, sizeof(struct ifnet_stats_param));
ifnet_set_stat(pcb->utun_ifp, &stats);
/* Attach the interface */
result = ifnet_attach(pcb->utun_ifp, NULL);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_connect - ifnet_attach failed: %d\n", result);
/* Release reference now since attach failed */
ifnet_release(pcb->utun_ifp);
utun_free_pcb(pcb, false);
*unitinfo = NULL;
return result;
}
/* Attach to bpf */
bpfattach(pcb->utun_ifp, DLT_NULL, UTUN_HEADER_SIZE(pcb));
}
/* The interfaces resoures allocated, mark it as running */
ifnet_set_flags(pcb->utun_ifp, IFF_RUNNING, IFF_RUNNING);
return result;
}
static errno_t
utun_detach_ip(ifnet_t interface,
protocol_family_t protocol,
socket_t pf_socket)
{
errno_t result = EPROTONOSUPPORT;
/* Attempt a detach */
if (protocol == PF_INET) {
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = sock_ioctl(pf_socket, SIOCPROTODETACH, &ifr);
} else if (protocol == PF_INET6) {
struct in6_ifreq ifr6;
bzero(&ifr6, sizeof(ifr6));
snprintf(ifr6.ifr_name, sizeof(ifr6.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = sock_ioctl(pf_socket, SIOCPROTODETACH_IN6, &ifr6);
}
return result;
}
static void
utun_remove_address(ifnet_t interface,
protocol_family_t protocol,
ifaddr_t address,
socket_t pf_socket)
{
errno_t result = 0;
/* Attempt a detach */
if (protocol == PF_INET) {
struct ifreq ifr;
bzero(&ifr, sizeof(ifr));
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = ifaddr_address(address, &ifr.ifr_addr, sizeof(ifr.ifr_addr));
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_remove_address - ifaddr_address failed: %d", result);
} else {
result = sock_ioctl(pf_socket, SIOCDIFADDR, &ifr);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_remove_address - SIOCDIFADDR failed: %d", result);
}
}
} else if (protocol == PF_INET6) {
struct in6_ifreq ifr6;
bzero(&ifr6, sizeof(ifr6));
snprintf(ifr6.ifr_name, sizeof(ifr6.ifr_name), "%s%d",
ifnet_name(interface), ifnet_unit(interface));
result = ifaddr_address(address, (struct sockaddr*)&ifr6.ifr_addr,
sizeof(ifr6.ifr_addr));
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_remove_address - ifaddr_address failed (v6): %d",
result);
} else {
result = sock_ioctl(pf_socket, SIOCDIFADDR_IN6, &ifr6);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_remove_address - SIOCDIFADDR_IN6 failed: %d",
result);
}
}
}
}
static void
utun_cleanup_family(ifnet_t interface,
protocol_family_t protocol)
{
errno_t result = 0;
socket_t pf_socket = NULL;
ifaddr_t *addresses = NULL;
int i;
if (protocol != PF_INET && protocol != PF_INET6) {
os_log_error(OS_LOG_DEFAULT, "utun_cleanup_family - invalid protocol family %d\n", protocol);
return;
}
/* Create a socket for removing addresses and detaching the protocol */
result = sock_socket(protocol, SOCK_DGRAM, 0, NULL, NULL, &pf_socket);
if (result != 0) {
if (result != EAFNOSUPPORT) {
os_log_error(OS_LOG_DEFAULT, "utun_cleanup_family - failed to create %s socket: %d\n",
protocol == PF_INET ? "IP" : "IPv6", result);
}
goto cleanup;
}
/* always set SS_PRIV, we want to close and detach regardless */
sock_setpriv(pf_socket, 1);
result = utun_detach_ip(interface, protocol, pf_socket);
if (result == 0 || result == ENXIO) {
/* We are done! We either detached or weren't attached. */
goto cleanup;
} else if (result != EBUSY) {
/* Uh, not really sure what happened here... */
os_log_error(OS_LOG_DEFAULT, "utun_cleanup_family - utun_detach_ip failed: %d\n", result);
goto cleanup;
}
/*
* At this point, we received an EBUSY error. This means there are
* addresses attached. We should detach them and then try again.
*/
result = ifnet_get_address_list_family(interface, &addresses, protocol);
if (result != 0) {
os_log_error(OS_LOG_DEFAULT, "fnet_get_address_list_family(%s%d, 0xblah, %s) - failed: %d\n",
ifnet_name(interface), ifnet_unit(interface),
protocol == PF_INET ? "PF_INET" : "PF_INET6", result);
goto cleanup;
}
for (i = 0; addresses[i] != 0; i++) {
utun_remove_address(interface, protocol, addresses[i], pf_socket);
}
ifnet_free_address_list(addresses);
addresses = NULL;
/*
* The addresses should be gone, we should try the remove again.
*/
result = utun_detach_ip(interface, protocol, pf_socket);
if (result != 0 && result != ENXIO) {
os_log_error(OS_LOG_DEFAULT, "utun_cleanup_family - utun_detach_ip failed: %d\n", result);
}
cleanup:
if (pf_socket != NULL) {
sock_close(pf_socket);
}
if (addresses != NULL) {
ifnet_free_address_list(addresses);
}
}
static errno_t
utun_ctl_disconnect(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo)
{
struct utun_pcb *pcb = unitinfo;
ifnet_t ifp = NULL;
errno_t result = 0;
if (pcb == NULL) {
return EINVAL;
}
#if UTUN_NEXUS
// Tell the nexus to stop all rings
if (pcb->utun_netif_nexus != NULL && pcb->utun_netif_connected) {
kern_nexus_stop(pcb->utun_netif_nexus);
}
#endif // UTUN_NEXUS
lck_rw_lock_exclusive(&pcb->utun_pcb_lock);
#if UTUN_NEXUS
uuid_t kpipe_uuid;
uuid_copy(kpipe_uuid, pcb->utun_kpipe_uuid);
uuid_clear(pcb->utun_kpipe_uuid);
pcb->utun_kpipe_enabled = FALSE;
#endif // UTUN_NEXUS
pcb->utun_ctlref = NULL;
ifp = pcb->utun_ifp;
if (ifp != NULL) {
#if UTUN_NEXUS
// Tell the nexus to stop all rings
if (pcb->utun_netif_nexus != NULL) {
/*
* Quiesce the interface and flush any pending outbound packets.
*/
if_down(ifp);
/* Increment refcnt, but detach interface */
ifnet_incr_iorefcnt(ifp);
if ((result = ifnet_detach(ifp)) != 0) {
panic("utun_ctl_disconnect - ifnet_detach failed: %d\n", result);
}
/*
* We want to do everything in our power to ensure that the interface
* really goes away when the socket is closed. We must remove IP/IPv6
* addresses and detach the protocols. Finally, we can remove and
* release the interface.
*/
utun_cleanup_family(ifp, AF_INET);
utun_cleanup_family(ifp, AF_INET6);
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
if (!uuid_is_null(kpipe_uuid)) {
if (kern_nexus_controller_free_provider_instance(utun_ncd, kpipe_uuid) == 0) {
if (pcb->utun_kpipe_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_kpipe_pp);
pcb->utun_kpipe_pp = NULL;
}
utun_unregister_kernel_pipe_nexus();
}
}
utun_nexus_detach(pcb);
/* Decrement refcnt to finish detaching and freeing */
ifnet_decr_iorefcnt(ifp);
} else
#endif // UTUN_NEXUS
{
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
#if UTUN_NEXUS
if (!uuid_is_null(kpipe_uuid)) {
if (kern_nexus_controller_free_provider_instance(utun_ncd, kpipe_uuid) == 0) {
if (pcb->utun_kpipe_pp != NULL) {
kern_pbufpool_destroy(pcb->utun_kpipe_pp);
pcb->utun_kpipe_pp = NULL;
}
utun_unregister_kernel_pipe_nexus();
}
}
#endif // UTUN_NEXUS
/*
* We want to do everything in our power to ensure that the interface
* really goes away when the socket is closed. We must remove IP/IPv6
* addresses and detach the protocols. Finally, we can remove and
* release the interface.
*/
utun_cleanup_family(ifp, AF_INET);
utun_cleanup_family(ifp, AF_INET6);
/*
* Detach now; utun_detach() will be called asynchronously once
* the I/O reference count drops to 0. There we will invoke
* ifnet_release().
*/
if ((result = ifnet_detach(ifp)) != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_disconnect - ifnet_detach failed: %d\n", result);
}
}
} else {
// Bound, but not connected
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
utun_free_pcb(pcb, false);
}
return 0;
}
static errno_t
utun_ctl_send(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo,
mbuf_t m,
__unused int flags)
{
/*
* The userland ABI requires the first four bytes have the protocol family
* in network byte order: swap them
*/
if (m_pktlen(m) >= (int32_t)UTUN_HEADER_SIZE((struct utun_pcb *)unitinfo)) {
*(protocol_family_t *)mbuf_data(m) = ntohl(*(protocol_family_t *)mbuf_data(m));
} else {
os_log_error(OS_LOG_DEFAULT, "%s - unexpected short mbuf pkt len %d\n", __func__, m_pktlen(m));
}
return utun_pkt_input((struct utun_pcb *)unitinfo, m);
}
static errno_t
utun_ctl_setopt(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo,
int opt,
void *data,
size_t len)
{
struct utun_pcb *pcb = unitinfo;
errno_t result = 0;
/* check for privileges for privileged options */
switch (opt) {
case UTUN_OPT_FLAGS:
case UTUN_OPT_EXT_IFDATA_STATS:
case UTUN_OPT_SET_DELEGATE_INTERFACE:
if (kauth_cred_issuser(kauth_cred_get()) == 0) {
return EPERM;
}
break;
}
switch (opt) {
case UTUN_OPT_FLAGS:
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
pcb->utun_flags = *(u_int32_t *)data;
break;
case UTUN_OPT_EXT_IFDATA_STATS:
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
pcb->utun_ext_ifdata_stats = (*(int *)data) ? 1 : 0;
break;
case UTUN_OPT_INC_IFDATA_STATS_IN:
case UTUN_OPT_INC_IFDATA_STATS_OUT: {
struct utun_stats_param *utsp = (struct utun_stats_param *)data;
if (utsp == NULL || len < sizeof(struct utun_stats_param)) {
result = EINVAL;
break;
}
if (pcb->utun_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (!pcb->utun_ext_ifdata_stats) {
result = EINVAL;
break;
}
if (opt == UTUN_OPT_INC_IFDATA_STATS_IN) {
ifnet_stat_increment_in(pcb->utun_ifp, utsp->utsp_packets,
utsp->utsp_bytes, utsp->utsp_errors);
} else {
ifnet_stat_increment_out(pcb->utun_ifp, utsp->utsp_packets,
utsp->utsp_bytes, utsp->utsp_errors);
}
break;
}
case UTUN_OPT_SET_DELEGATE_INTERFACE: {
ifnet_t del_ifp = NULL;
char name[IFNAMSIZ];
if (len > IFNAMSIZ - 1) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (len != 0) { /* if len==0, del_ifp will be NULL causing the delegate to be removed */
bcopy(data, name, len);
name[len] = 0;
result = ifnet_find_by_name(name, &del_ifp);
}
if (result == 0) {
result = ifnet_set_delegate(pcb->utun_ifp, del_ifp);
if (del_ifp) {
ifnet_release(del_ifp);
}
}
break;
}
case UTUN_OPT_MAX_PENDING_PACKETS: {
u_int32_t max_pending_packets = 0;
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
max_pending_packets = *(u_int32_t *)data;
if (max_pending_packets == 0) {
result = EINVAL;
break;
}
pcb->utun_max_pending_packets = max_pending_packets;
break;
}
#if UTUN_NEXUS
case UTUN_OPT_ENABLE_CHANNEL: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (*(int *)data) {
result = utun_enable_channel(pcb, current_proc());
} else {
result = utun_disable_channel(pcb);
}
break;
}
case UTUN_OPT_ENABLE_FLOWSWITCH: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp == NULL) {
// Only can set after connecting
result = EINVAL;
break;
}
if (!if_is_fsw_transport_netagent_enabled()) {
result = ENOTSUP;
break;
}
if (uuid_is_null(pcb->utun_nx.fsw_agent)) {
result = ENOENT;
break;
}
uint32_t flags = netagent_get_flags(pcb->utun_nx.fsw_agent);
if (*(int *)data) {
pcb->utun_needs_netagent = true;
flags |= (NETAGENT_FLAG_NEXUS_PROVIDER |
NETAGENT_FLAG_NEXUS_LISTENER);
result = netagent_set_flags(pcb->utun_nx.fsw_agent, flags);
} else {
flags &= ~(NETAGENT_FLAG_NEXUS_PROVIDER |
NETAGENT_FLAG_NEXUS_LISTENER);
result = netagent_set_flags(pcb->utun_nx.fsw_agent, flags);
pcb->utun_needs_netagent = false;
}
break;
}
case UTUN_OPT_ATTACH_FLOWSWITCH: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->utun_pcb_lock);
pcb->utun_attach_fsw = !!(*(int *)data);
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
break;
}
case UTUN_OPT_ENABLE_NETIF: {
if (len != sizeof(int)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
lck_rw_lock_exclusive(&pcb->utun_pcb_lock);
pcb->utun_use_netif = !!(*(int *)data);
lck_rw_unlock_exclusive(&pcb->utun_pcb_lock);
break;
}
case UTUN_OPT_SLOT_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t slot_size = *(u_int32_t *)data;
if (slot_size < UTUN_IF_MIN_SLOT_SIZE ||
slot_size > UTUN_IF_MAX_SLOT_SIZE) {
return EINVAL;
}
pcb->utun_slot_size = slot_size;
break;
}
case UTUN_OPT_NETIF_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < UTUN_IF_MIN_RING_SIZE ||
ring_size > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->utun_netif_ring_size = ring_size;
break;
}
case UTUN_OPT_TX_FSW_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < UTUN_IF_MIN_RING_SIZE ||
ring_size > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->utun_tx_fsw_ring_size = ring_size;
break;
}
case UTUN_OPT_RX_FSW_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < UTUN_IF_MIN_RING_SIZE ||
ring_size > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->utun_rx_fsw_ring_size = ring_size;
break;
}
case UTUN_OPT_KPIPE_TX_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < UTUN_IF_MIN_RING_SIZE ||
ring_size > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->utun_kpipe_tx_ring_size = ring_size;
break;
}
case UTUN_OPT_KPIPE_RX_RING_SIZE: {
if (len != sizeof(u_int32_t)) {
result = EMSGSIZE;
break;
}
if (pcb->utun_ifp != NULL) {
// Only can set before connecting
result = EINVAL;
break;
}
u_int32_t ring_size = *(u_int32_t *)data;
if (ring_size < UTUN_IF_MIN_RING_SIZE ||
ring_size > UTUN_IF_MAX_RING_SIZE) {
return EINVAL;
}
pcb->utun_kpipe_rx_ring_size = ring_size;
break;
}
#endif // UTUN_NEXUS
default: {
result = ENOPROTOOPT;
break;
}
}
return result;
}
static errno_t
utun_ctl_getopt(__unused kern_ctl_ref kctlref,
__unused u_int32_t unit,
void *unitinfo,
int opt,
void *data,
size_t *len)
{
struct utun_pcb *pcb = unitinfo;
errno_t result = 0;
switch (opt) {
case UTUN_OPT_FLAGS:
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_flags;
}
break;
case UTUN_OPT_EXT_IFDATA_STATS:
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
*(int *)data = (pcb->utun_ext_ifdata_stats) ? 1 : 0;
}
break;
case UTUN_OPT_IFNAME:
if (*len < MIN(strlen(pcb->utun_if_xname) + 1, sizeof(pcb->utun_if_xname))) {
result = EMSGSIZE;
} else {
if (pcb->utun_ifp == NULL) {
// Only can get after connecting
result = EINVAL;
break;
}
*len = scnprintf(data, *len, "%s", pcb->utun_if_xname) + 1;
}
break;
case UTUN_OPT_MAX_PENDING_PACKETS: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*((u_int32_t *)data) = pcb->utun_max_pending_packets;
}
break;
}
#if UTUN_NEXUS
case UTUN_OPT_ENABLE_CHANNEL: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->utun_pcb_lock);
*(int *)data = pcb->utun_kpipe_enabled;
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
}
break;
}
case UTUN_OPT_ENABLE_FLOWSWITCH: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
*(int *)data = if_check_netagent(pcb->utun_ifp, pcb->utun_nx.fsw_agent);
}
break;
}
case UTUN_OPT_ENABLE_NETIF: {
if (*len != sizeof(int)) {
result = EMSGSIZE;
} else {
lck_rw_lock_shared(&pcb->utun_pcb_lock);
*(int *)data = !!pcb->utun_use_netif;
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
}
break;
}
case UTUN_OPT_GET_CHANNEL_UUID: {
lck_rw_lock_shared(&pcb->utun_pcb_lock);
if (uuid_is_null(pcb->utun_kpipe_uuid)) {
result = ENXIO;
} else if (*len != sizeof(uuid_t)) {
result = EMSGSIZE;
} else {
uuid_copy(data, pcb->utun_kpipe_uuid);
}
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
break;
}
case UTUN_OPT_SLOT_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_slot_size;
}
break;
}
case UTUN_OPT_NETIF_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_netif_ring_size;
}
break;
}
case UTUN_OPT_TX_FSW_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_tx_fsw_ring_size;
}
break;
}
case UTUN_OPT_RX_FSW_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_rx_fsw_ring_size;
}
break;
}
case UTUN_OPT_KPIPE_TX_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_kpipe_tx_ring_size;
}
break;
}
case UTUN_OPT_KPIPE_RX_RING_SIZE: {
if (*len != sizeof(u_int32_t)) {
result = EMSGSIZE;
} else {
*(u_int32_t *)data = pcb->utun_kpipe_rx_ring_size;
}
break;
}
#endif // UTUN_NEXUS
default:
result = ENOPROTOOPT;
break;
}
return result;
}
static void
utun_ctl_rcvd(kern_ctl_ref kctlref, u_int32_t unit, void *unitinfo, int flags)
{
#pragma unused(flags)
bool reenable_output = false;
struct utun_pcb *pcb = unitinfo;
if (pcb == NULL) {
return;
}
ifnet_lock_exclusive(pcb->utun_ifp);
u_int32_t utun_packet_cnt;
errno_t error_pc = ctl_getenqueuepacketcount(kctlref, unit, &utun_packet_cnt);
if (error_pc != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_rcvd: ctl_getenqueuepacketcount returned error %d\n", error_pc);
utun_packet_cnt = 0;
}
if (utun_packet_cnt < pcb->utun_max_pending_packets) {
reenable_output = true;
}
if (reenable_output) {
errno_t error = ifnet_enable_output(pcb->utun_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_ctl_rcvd: ifnet_enable_output returned error %d\n", error);
}
}
ifnet_lock_done(pcb->utun_ifp);
}
/* Network Interface functions */
static void
utun_start(ifnet_t interface)
{
mbuf_t data;
struct utun_pcb *pcb = ifnet_softc(interface);
VERIFY(pcb != NULL);
#if UTUN_NEXUS
lck_rw_lock_shared(&pcb->utun_pcb_lock);
if (pcb->utun_kpipe_enabled) {
/* It's possible to have channels enabled, but not yet have the channel opened,
* in which case the rxring will not be set
*/
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
if (pcb->utun_kpipe_rxring != NULL) {
kern_channel_notify(pcb->utun_kpipe_rxring, 0);
}
return;
}
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
#endif // UTUN_NEXUS
for (;;) {
bool can_accept_packets = true;
ifnet_lock_shared(pcb->utun_ifp);
u_int32_t utun_packet_cnt;
errno_t error_pc = ctl_getenqueuepacketcount(pcb->utun_ctlref, pcb->utun_unit, &utun_packet_cnt);
if (error_pc != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_start: ctl_getenqueuepacketcount returned error %d\n", error_pc);
utun_packet_cnt = 0;
}
can_accept_packets = (utun_packet_cnt < pcb->utun_max_pending_packets);
if (!can_accept_packets && pcb->utun_ctlref) {
u_int32_t difference = 0;
if (ctl_getenqueuereadable(pcb->utun_ctlref, pcb->utun_unit, &difference) == 0) {
if (difference > 0) {
// If the low-water mark has not yet been reached, we still need to enqueue data
// into the buffer
can_accept_packets = true;
}
}
}
if (!can_accept_packets) {
errno_t error = ifnet_disable_output(interface);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_start: ifnet_disable_output returned error %d\n", error);
}
ifnet_lock_done(pcb->utun_ifp);
break;
}
ifnet_lock_done(pcb->utun_ifp);
if (ifnet_dequeue(interface, &data) != 0) {
break;
}
if (utun_output(interface, data) != 0) {
break;
}
}
}
static errno_t
utun_output(ifnet_t interface,
mbuf_t data)
{
struct utun_pcb *pcb = ifnet_softc(interface);
errno_t result;
VERIFY(interface == pcb->utun_ifp);
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
if (m_pktlen(data) >= (int32_t)UTUN_HEADER_SIZE(pcb)) {
bpf_tap_out(pcb->utun_ifp, DLT_NULL, data, 0, 0);
}
}
if (pcb->utun_flags & UTUN_FLAGS_NO_OUTPUT) {
/* flush data */
mbuf_freem(data);
return 0;
}
// otherwise, fall thru to ctl_enqueumbuf
if (pcb->utun_ctlref) {
int length;
/*
* The ABI requires the protocol in network byte order
*/
if (m_pktlen(data) >= (int32_t)UTUN_HEADER_SIZE(pcb)) {
*(u_int32_t *)mbuf_data(data) = htonl(*(u_int32_t *)mbuf_data(data));
}
length = mbuf_pkthdr_len(data);
result = ctl_enqueuembuf(pcb->utun_ctlref, pcb->utun_unit, data, CTL_DATA_EOR);
if (result != 0) {
mbuf_freem(data);
os_log_error(OS_LOG_DEFAULT, "utun_output - ctl_enqueuembuf failed: %d\n", result);
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
ifnet_stat_increment_out(interface, 0, 0, 1);
}
} else {
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
if (!pcb->utun_ext_ifdata_stats) {
ifnet_stat_increment_out(interface, 1, length, 0);
}
}
}
} else {
mbuf_freem(data);
}
return 0;
}
static errno_t
utun_demux(__unused ifnet_t interface,
mbuf_t data,
__unused char *frame_header,
protocol_family_t *protocol)
{
#if UTUN_NEXUS
struct utun_pcb *pcb = ifnet_softc(interface);
struct ip *ip;
u_int ip_version;
#endif
while (data != NULL && mbuf_len(data) < 1) {
data = mbuf_next(data);
}
if (data == NULL) {
return ENOENT;
}
#if UTUN_NEXUS
if (pcb->utun_use_netif) {
ip = mtod(data, struct ip *);
ip_version = ip->ip_v;
switch (ip_version) {
case 4:
*protocol = PF_INET;
return 0;
case 6:
*protocol = PF_INET6;
return 0;
default:
*protocol = 0;
break;
}
} else
#endif // UTUN_NEXUS
{
*protocol = *(u_int32_t *)mbuf_data(data);
}
return 0;
}
static errno_t
utun_framer(ifnet_t interface,
mbuf_t *packet,
__unused const struct sockaddr *dest,
__unused const char *desk_linkaddr,
const char *frame_type,
u_int32_t *prepend_len,
u_int32_t *postpend_len)
{
struct utun_pcb *pcb = ifnet_softc(interface);
VERIFY(interface == pcb->utun_ifp);
u_int32_t header_length = UTUN_HEADER_SIZE(pcb);
if (mbuf_prepend(packet, header_length, MBUF_DONTWAIT) != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_framer - ifnet_output prepend failed\n");
ifnet_stat_increment_out(interface, 0, 0, 1);
// just return, because the buffer was freed in mbuf_prepend
return EJUSTRETURN;
}
if (prepend_len != NULL) {
*prepend_len = header_length;
}
if (postpend_len != NULL) {
*postpend_len = 0;
}
// place protocol number at the beginning of the mbuf
*(protocol_family_t *)mbuf_data(*packet) = *(protocol_family_t *)(uintptr_t)(size_t)frame_type;
return 0;
}
static errno_t
utun_add_proto(__unused ifnet_t interface,
protocol_family_t protocol,
__unused const struct ifnet_demux_desc *demux_array,
__unused u_int32_t demux_count)
{
switch (protocol) {
case PF_INET:
return 0;
case PF_INET6:
return 0;
default:
break;
}
return ENOPROTOOPT;
}
static errno_t
utun_del_proto(__unused ifnet_t interface,
__unused protocol_family_t protocol)
{
return 0;
}
static errno_t
utun_ioctl(ifnet_t interface,
u_long command,
void *data)
{
#if UTUN_NEXUS
struct utun_pcb *pcb = ifnet_softc(interface);
#endif
errno_t result = 0;
switch (command) {
case SIOCSIFMTU: {
#if UTUN_NEXUS
if (pcb->utun_use_netif) {
// Make sure we can fit packets in the channel buffers
// Allow for the headroom in the slot
if (((uint64_t)((struct ifreq*)data)->ifr_mtu) + UTUN_IF_HEADROOM_SIZE > pcb->utun_slot_size) {
result = EINVAL;
} else {
ifnet_set_mtu(interface, (uint32_t)((struct ifreq*)data)->ifr_mtu);
}
} else
#endif // UTUN_NEXUS
{
ifnet_set_mtu(interface, ((struct ifreq*)data)->ifr_mtu);
}
break;
}
case SIOCSIFFLAGS:
/* ifioctl() takes care of it */
break;
default:
result = EOPNOTSUPP;
}
return result;
}
static void
utun_detached(ifnet_t interface)
{
struct utun_pcb *pcb = ifnet_softc(interface);
(void)ifnet_release(interface);
lck_mtx_lock(&utun_lock);
utun_free_pcb(pcb, true);
(void)ifnet_dispose(interface);
lck_mtx_unlock(&utun_lock);
}
/* Protocol Handlers */
static errno_t
utun_proto_input(__unused ifnet_t interface,
protocol_family_t protocol,
mbuf_t m,
__unused char *frame_header)
{
struct utun_pcb *pcb = ifnet_softc(interface);
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
mbuf_adj(m, UTUN_HEADER_SIZE(pcb));
}
int32_t pktlen = m->m_pkthdr.len;
if (proto_input(protocol, m) != 0) {
m_freem(m);
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
ifnet_stat_increment_in(interface, 0, 0, 1);
}
} else {
#if UTUN_NEXUS
if (!pcb->utun_use_netif)
#endif // UTUN_NEXUS
{
ifnet_stat_increment_in(interface, 1, pktlen, 0);
}
}
return 0;
}
static errno_t
utun_proto_pre_output(__unused ifnet_t interface,
protocol_family_t protocol,
__unused mbuf_t *packet,
__unused const struct sockaddr *dest,
__unused void *route,
char *frame_type,
__unused char *link_layer_dest)
{
*(protocol_family_t *)(void *)frame_type = protocol;
return 0;
}
static errno_t
utun_attach_proto(ifnet_t interface,
protocol_family_t protocol)
{
struct ifnet_attach_proto_param proto;
bzero(&proto, sizeof(proto));
proto.input = utun_proto_input;
proto.pre_output = utun_proto_pre_output;
errno_t result = ifnet_attach_protocol(interface, protocol, &proto);
if (result != 0 && result != EEXIST) {
os_log_error(OS_LOG_DEFAULT, "utun_attach_inet - ifnet_attach_protocol %d failed: %d\n",
protocol, result);
}
return result;
}
static errno_t
utun_pkt_input(struct utun_pcb *pcb, mbuf_t packet)
{
#if UTUN_NEXUS
if (pcb->utun_use_netif) {
lck_rw_lock_shared(&pcb->utun_pcb_lock);
lck_mtx_lock(&pcb->utun_input_chain_lock);
if (pcb->utun_input_chain_count > (u_int32_t)if_utun_max_pending_input) {
lck_mtx_unlock(&pcb->utun_input_chain_lock);
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return ENOSPC;
}
if (pcb->utun_input_chain != NULL) {
pcb->utun_input_chain_last->m_nextpkt = packet;
} else {
pcb->utun_input_chain = packet;
}
pcb->utun_input_chain_count++;
while (packet->m_nextpkt) {
VERIFY(packet != packet->m_nextpkt);
packet = packet->m_nextpkt;
pcb->utun_input_chain_count++;
}
pcb->utun_input_chain_last = packet;
lck_mtx_unlock(&pcb->utun_input_chain_lock);
kern_channel_ring_t rx_ring = pcb->utun_netif_rxring;
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
return 0;
} else
#endif // UTUN_NEXUS
{
mbuf_pkthdr_setrcvif(packet, pcb->utun_ifp);
if (m_pktlen(packet) >= (int32_t)UTUN_HEADER_SIZE(pcb)) {
bpf_tap_in(pcb->utun_ifp, DLT_NULL, packet, 0, 0);
}
if (pcb->utun_flags & UTUN_FLAGS_NO_INPUT) {
/* flush data */
mbuf_freem(packet);
return 0;
}
errno_t result = 0;
if (!pcb->utun_ext_ifdata_stats) {
struct ifnet_stat_increment_param incs = {};
incs.packets_in = 1;
incs.bytes_in = mbuf_pkthdr_len(packet);
result = ifnet_input(pcb->utun_ifp, packet, &incs);
} else {
result = ifnet_input(pcb->utun_ifp, packet, NULL);
}
if (result != 0) {
ifnet_stat_increment_in(pcb->utun_ifp, 0, 0, 1);
os_log_error(OS_LOG_DEFAULT, "%s - ifnet_input failed: %d\n", __FUNCTION__, result);
mbuf_freem(packet);
}
return 0;
}
}
#if UTUN_NEXUS
static errno_t
utun_nxdp_init(__unused kern_nexus_domain_provider_t domprov)
{
return 0;
}
static void
utun_nxdp_fini(__unused kern_nexus_domain_provider_t domprov)
{
// Ignore
}
static errno_t
utun_register_nexus(void)
{
const struct kern_nexus_domain_provider_init dp_init = {
.nxdpi_version = KERN_NEXUS_DOMAIN_PROVIDER_CURRENT_VERSION,
.nxdpi_flags = 0,
.nxdpi_init = utun_nxdp_init,
.nxdpi_fini = utun_nxdp_fini
};
errno_t err = 0;
/* utun_nxdp_init() is called before this function returns */
err = kern_nexus_register_domain_provider(NEXUS_TYPE_NET_IF,
(const uint8_t *) "com.apple.utun",
&dp_init, sizeof(dp_init),
&utun_nx_dom_prov);
if (err != 0) {
os_log_error(OS_LOG_DEFAULT, "%s: failed to register domain provider\n", __func__);
return err;
}
return 0;
}
boolean_t
utun_interface_needs_netagent(ifnet_t interface)
{
struct utun_pcb *pcb = NULL;
if (interface == NULL) {
return FALSE;
}
pcb = ifnet_softc(interface);
if (pcb == NULL) {
return FALSE;
}
return pcb->utun_needs_netagent == true;
}
static errno_t
utun_ifnet_set_attrs(ifnet_t ifp)
{
/* Set flags and additional information. */
ifnet_set_mtu(ifp, 1500);
ifnet_set_flags(ifp, IFF_UP | IFF_MULTICAST | IFF_POINTOPOINT, 0xffff);
/* The interface must generate its own IPv6 LinkLocal address,
* if possible following the recommendation of RFC2472 to the 64bit interface ID
*/
ifnet_set_eflags(ifp, IFEF_NOAUTOIPV6LL, IFEF_NOAUTOIPV6LL);
return 0;
}
static errno_t
utun_netif_prepare(kern_nexus_t nexus, ifnet_t ifp)
{
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
pcb->utun_netif_nexus = nexus;
return utun_ifnet_set_attrs(ifp);
}
static errno_t
utun_nexus_pre_connect(kern_nexus_provider_t nxprov,
proc_t p, kern_nexus_t nexus,
nexus_port_t nexus_port, kern_channel_t channel, void **ch_ctx)
{
#pragma unused(nxprov, p)
#pragma unused(nexus, nexus_port, channel, ch_ctx)
return 0;
}
static errno_t
utun_nexus_connected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
boolean_t ok = ifnet_is_attached(pcb->utun_ifp, 1);
if (pcb->utun_netif_nexus == nexus) {
pcb->utun_netif_connected = true;
}
return ok ? 0 : ENXIO;
}
static void
utun_nexus_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, nexus, channel)
}
static void
utun_netif_pre_disconnect(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, nexus, channel)
}
static void
utun_nexus_disconnected(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel)
{
#pragma unused(nxprov, channel)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
if (pcb->utun_netif_nexus == nexus) {
pcb->utun_netif_connected = false;
if (pcb->utun_attach_fsw) {
// disconnected by flowswitch that was attached by us
pcb->utun_netif_nexus = NULL;
}
}
ifnet_decr_iorefcnt(pcb->utun_ifp);
}
static errno_t
utun_kpipe_ring_init(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_t channel, kern_channel_ring_t ring,
boolean_t is_tx_ring, void **ring_ctx)
{
#pragma unused(nxprov)
#pragma unused(channel)
#pragma unused(ring_ctx)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
if (!is_tx_ring) {
VERIFY(pcb->utun_kpipe_rxring == NULL);
pcb->utun_kpipe_rxring = ring;
} else {
VERIFY(pcb->utun_kpipe_txring == NULL);
pcb->utun_kpipe_txring = ring;
}
return 0;
}
static void
utun_kpipe_ring_fini(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t ring)
{
#pragma unused(nxprov)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
if (pcb->utun_kpipe_rxring == ring) {
pcb->utun_kpipe_rxring = NULL;
} else if (pcb->utun_kpipe_txring == ring) {
pcb->utun_kpipe_txring = NULL;
}
}
static errno_t
utun_kpipe_sync_tx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t tx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
lck_rw_lock_shared(&pcb->utun_pcb_lock);
int channel_enabled = pcb->utun_kpipe_enabled;
if (!channel_enabled) {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
if (pcb->utun_use_netif) {
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to write, bail
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
// Signal the netif ring to read
kern_channel_ring_t rx_ring = pcb->utun_netif_rxring;
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
if (rx_ring != NULL) {
kern_channel_notify(rx_ring, 0);
}
} else {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
struct ifnet_stat_increment_param incs = {};
struct kern_channel_ring_stat_increment tx_ring_stats = {};
MBUFQ_HEAD(mbufq) mbq;
MBUFQ_INIT(&mbq);
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
while (tx_slot != NULL) {
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
if (tx_ph == 0) {
continue;
}
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != 0);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
size_t length = MIN(kern_packet_get_data_length(tx_ph),
pcb->utun_slot_size);
mbuf_t data = NULL;
if (length >= UTUN_HEADER_SIZE(pcb) &&
!(pcb->utun_flags & UTUN_FLAGS_NO_INPUT)) {
errno_t error = mbuf_gethdr(MBUF_WAITOK, MBUF_TYPE_HEADER, &data);
VERIFY(0 == error);
error = mbuf_copyback(data, 0, length, tx_baddr, MBUF_WAITOK);
VERIFY(0 == error);
/*
* The userland ABI requires the first four bytes have
* the protocol family in network byte order: swap them
*/
*(uint32_t *)mbuf_data(data) = ntohl(*(uint32_t *)mbuf_data(data));
mbuf_pkthdr_setrcvif(data, pcb->utun_ifp);
bpf_tap_in(pcb->utun_ifp, DLT_NULL, data, 0, 0);
incs.packets_in++;
incs.bytes_in += length;
MBUFQ_ENQUEUE(&mbq, data);
}
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
tx_ring_stats.kcrsi_slots_transferred = incs.packets_in;
tx_ring_stats.kcrsi_bytes_transferred = incs.bytes_in;
kern_channel_increment_ring_net_stats(tx_ring, pcb->utun_ifp, &tx_ring_stats);
(void) kern_channel_reclaim(tx_ring);
}
if (!MBUFQ_EMPTY(&mbq)) {
(void) ifnet_input_extended(pcb->utun_ifp, MBUFQ_FIRST(&mbq),
MBUFQ_LAST(&mbq), &incs);
MBUFQ_INIT(&mbq);
}
}
return 0;
}
static errno_t
utun_kpipe_sync_rx(kern_nexus_provider_t nxprov, kern_nexus_t nexus,
kern_channel_ring_t rx_ring, uint32_t flags)
{
#pragma unused(nxprov)
#pragma unused(flags)
struct utun_pcb *pcb = kern_nexus_get_context(nexus);
struct kern_channel_ring_stat_increment rx_ring_stats = {};
lck_rw_lock_shared(&pcb->utun_pcb_lock);
int channel_enabled = pcb->utun_kpipe_enabled;
if (!channel_enabled) {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
/* reclaim user-released slots */
(void) kern_channel_reclaim(rx_ring);
uint32_t avail = kern_channel_available_slot_count(rx_ring);
if (avail == 0) {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
if (pcb->utun_use_netif) {
kern_channel_ring_t tx_ring = pcb->utun_netif_txring;
if (tx_ring == NULL ||
pcb->utun_netif_nexus == NULL) {
// Net-If TX ring not set up yet, nothing to read
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
return 0;
}
struct netif_stats *nifs = &NX_NETIF_PRIVATE(pcb->utun_netif_nexus)->nif_stats;
// Unlock utun before entering ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
(void)kr_enter(tx_ring, TRUE);
// Lock again after entering and validate
lck_rw_lock_shared(&pcb->utun_pcb_lock);
if (tx_ring != pcb->utun_netif_txring) {
// Ring no longer valid
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
kr_exit(tx_ring);
return 0;
}
struct kern_channel_ring_stat_increment tx_ring_stats;
bzero(&tx_ring_stats, sizeof(tx_ring_stats));
kern_channel_slot_t tx_pslot = NULL;
kern_channel_slot_t tx_slot = kern_channel_get_next_slot(tx_ring, NULL, NULL);
if (tx_slot == NULL) {
// Nothing to read, don't bother signalling
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
kr_exit(tx_ring);
return 0;
}
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
while (rx_slot != NULL && tx_slot != NULL) {
size_t length;
kern_buflet_t rx_buf;
void *rx_baddr;
kern_packet_t tx_ph = kern_channel_slot_get_packet(tx_ring, tx_slot);
// Advance TX ring
tx_pslot = tx_slot;
tx_slot = kern_channel_get_next_slot(tx_ring, tx_slot, NULL);
/* Skip slot if packet is zero-length or marked as dropped (QUMF_DROPPED) */
if (tx_ph == 0) {
continue;
}
// Allocate rx packet
kern_packet_t rx_ph = 0;
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
os_log_error(OS_LOG_DEFAULT, "utun_kpipe_sync_rx %s: failed to allocate packet\n",
pcb->utun_ifp->if_xname);
break;
}
kern_buflet_t tx_buf = kern_packet_get_next_buflet(tx_ph, NULL);
VERIFY(tx_buf != NULL);
uint8_t *tx_baddr = kern_buflet_get_data_address(tx_buf);
VERIFY(tx_baddr != NULL);
tx_baddr += kern_buflet_get_data_offset(tx_buf);
bpf_tap_packet_out(pcb->utun_ifp, DLT_RAW, tx_ph, NULL, 0);
length = MIN(kern_packet_get_data_length(tx_ph) + UTUN_HEADER_SIZE(pcb),
pcb->utun_slot_size);
tx_ring_stats.kcrsi_slots_transferred++;
tx_ring_stats.kcrsi_bytes_transferred += length;
if (length < UTUN_HEADER_SIZE(pcb) ||
length > pcb->utun_slot_size ||
length > rx_pp->pp_buflet_size ||
(pcb->utun_flags & UTUN_FLAGS_NO_OUTPUT)) {
/* flush data */
kern_pbufpool_free(rx_pp, rx_ph);
os_log_error(OS_LOG_DEFAULT, "utun_kpipe_sync_rx %s: invalid length %zu header_size %zu\n",
pcb->utun_ifp->if_xname, length, UTUN_HEADER_SIZE(pcb));
STATS_INC(nifs, NETIF_STATS_DROP_BADLEN);
STATS_INC(nifs, NETIF_STATS_DROP);
continue;
}
/* fillout packet */
rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Find family
uint32_t af = 0;
uint8_t vhl = *(uint8_t *)(tx_baddr);
u_int ip_version = (vhl >> 4);
switch (ip_version) {
case 4: {
af = AF_INET;
break;
}
case 6: {
af = AF_INET6;
break;
}
default: {
os_log_error(OS_LOG_DEFAULT, "utun_kpipe_sync_rx %s: unknown ip version %u vhl %u header_size %zu\n",
pcb->utun_ifp->if_xname, ip_version, vhl, UTUN_HEADER_SIZE(pcb));
break;
}
}
// Copy header
af = htonl(af);
memcpy((void *)rx_baddr, &af, sizeof(af));
if (pcb->utun_flags & UTUN_FLAGS_ENABLE_PROC_UUID) {
kern_packet_get_euuid(tx_ph, (void *)(rx_baddr + sizeof(af)));
}
// Copy data from tx to rx
memcpy((void *)(rx_baddr + UTUN_HEADER_SIZE(pcb)), (void *)tx_baddr, length - UTUN_HEADER_SIZE(pcb));
kern_packet_clear_flow_uuid(rx_ph); // zero flow id
/* finalize and attach the packet */
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, length);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
STATS_INC(nifs, NETIF_STATS_TX_PACKETS);
STATS_INC(nifs, NETIF_STATS_TX_COPY_DIRECT);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_net_stats(rx_ring, pcb->utun_ifp, &rx_ring_stats);
}
if (tx_pslot) {
kern_channel_advance_slot(tx_ring, tx_pslot);
kern_channel_increment_ring_net_stats(tx_ring, pcb->utun_ifp, &tx_ring_stats);
(void)kern_channel_reclaim(tx_ring);
}
/* just like utun_ctl_rcvd(), always reenable output */
errno_t error = ifnet_enable_output(pcb->utun_ifp);
if (error != 0) {
os_log_error(OS_LOG_DEFAULT, "utun_kpipe_sync_rx: ifnet_enable_output returned error %d\n", error);
}
// Unlock first, then exit ring
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
if (tx_pslot != NULL) {
kern_channel_notify(tx_ring, 0);
}
kr_exit(tx_ring);
} else {
lck_rw_unlock_shared(&pcb->utun_pcb_lock);
uint32_t mb_cnt = 0;
uint32_t mb_len = 0;
struct mbuf *mb_head = NULL;
struct mbuf *mb_tail = NULL;
if (ifnet_dequeue_multi(pcb->utun_ifp, avail, &mb_head,
&mb_tail, &mb_cnt, &mb_len) != 0) {
return 0;
}
VERIFY(mb_cnt <= avail);
struct kern_pbufpool *rx_pp = rx_ring->ckr_pp;
VERIFY(rx_pp != NULL);
kern_channel_slot_t rx_pslot = NULL;
kern_channel_slot_t rx_slot = kern_channel_get_next_slot(rx_ring, NULL, NULL);
while (rx_slot) {
size_t length = 0;
mbuf_t data = NULL;
if ((data = mb_head) == NULL) {
VERIFY(mb_cnt == 0);
break;
}
mb_head = mbuf_nextpkt(mb_head);
mbuf_setnextpkt(data, NULL);
VERIFY(mb_cnt != 0);
--mb_cnt;
length = mbuf_pkthdr_len(data);
if (length < UTUN_HEADER_SIZE(pcb) ||
length > pcb->utun_slot_size ||
(pcb->utun_flags & UTUN_FLAGS_NO_OUTPUT)) {
/* flush data */
mbuf_freem(data);
continue;
}
bpf_tap_out(pcb->utun_ifp, DLT_NULL, data, 0, 0);
// Allocate rx packet
kern_packet_t rx_ph = 0;
errno_t error = kern_pbufpool_alloc_nosleep(rx_pp, 1, &rx_ph);
if (__improbable(error != 0)) {
os_log_error(OS_LOG_DEFAULT, "utun_kpipe_sync_rx %s: failed to allocate packet\n",
pcb->utun_ifp->if_xname);
break;
}
/*
* The ABI requires the protocol in network byte order
*/
*(u_int32_t *)mbuf_data(data) = htonl(*(u_int32_t *)mbuf_data(data));
// Fillout rx packet
kern_buflet_t rx_buf = kern_packet_get_next_buflet(rx_ph, NULL);
VERIFY(rx_buf != NULL);
void *rx_baddr = kern_buflet_get_data_address(rx_buf);
VERIFY(rx_baddr != NULL);
// Copy-in data from mbuf to buflet
mbuf_copydata(data, 0, length, (void *)rx_baddr);
kern_packet_clear_flow_uuid(rx_ph); // Zero flow id
// Finalize and attach the packet
error = kern_buflet_set_data_offset(rx_buf, 0);
VERIFY(error == 0);
error = kern_buflet_set_data_length(rx_buf, length);
VERIFY(error == 0);
error = kern_packet_finalize(rx_ph);
VERIFY(error == 0);
error = kern_channel_slot_attach_packet(rx_ring, rx_slot, rx_ph);
VERIFY(error == 0);
rx_ring_stats.kcrsi_slots_transferred++;
rx_ring_stats.kcrsi_bytes_transferred += length;
if (!pcb->utun_ext_ifdata_stats) {
ifnet_stat_increment_out(pcb->utun_ifp, 1, length, 0);
}
mbuf_freem(data);
rx_pslot = rx_slot;
rx_slot = kern_channel_get_next_slot(rx_ring, rx_slot, NULL);
}
if (rx_pslot) {
kern_channel_advance_slot(rx_ring, rx_pslot);
kern_channel_increment_ring_stats(rx_ring, &rx_ring_stats);
}
if (mb_head != NULL) {
VERIFY(mb_cnt != 0);
mbuf_freem_list(mb_head);
}
}
return 0;
}
#endif // UTUN_NEXUS
/*
* These are place holders until coreTLS kext stops calling them
*/
errno_t utun_ctl_register_dtls(void *reg);
int utun_pkt_dtls_input(struct utun_pcb *pcb, mbuf_t *pkt, protocol_family_t family);
void utun_ctl_disable_crypto_dtls(struct utun_pcb *pcb);
errno_t
utun_ctl_register_dtls(void *reg)
{
#pragma unused(reg)
return 0;
}
int
utun_pkt_dtls_input(struct utun_pcb *pcb, mbuf_t *pkt, protocol_family_t family)
{
#pragma unused(pcb)
#pragma unused(pkt)
#pragma unused(family)
return 0;
}
void
utun_ctl_disable_crypto_dtls(struct utun_pcb *pcb)
{
#pragma unused(pcb)
}