mirror of
https://github.com/darlinghq/darling-xnu.git
synced 2024-11-23 04:29:53 +00:00
1330 lines
36 KiB
C
1330 lines
36 KiB
C
/*
|
|
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
|
|
/* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mcache.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
#include <kern/queue.h>
|
|
#include <kern/locks.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet/icmp6.h>
|
|
|
|
#include <net/net_osdep.h>
|
|
#include <dev/random/randomdev.h>
|
|
|
|
/*
|
|
* Define it to get a correct behavior on per-interface statistics.
|
|
*/
|
|
#define IN6_IFSTAT_STRICT
|
|
struct ip6asfrag {
|
|
struct ip6asfrag *ip6af_down;
|
|
struct ip6asfrag *ip6af_up;
|
|
struct mbuf *ip6af_m;
|
|
int ip6af_offset; /* offset in ip6af_m to next header */
|
|
int ip6af_frglen; /* fragmentable part length */
|
|
int ip6af_off; /* fragment offset */
|
|
u_int16_t ip6af_mff; /* more fragment bit in frag off */
|
|
};
|
|
|
|
#define IP6_REASS_MBUF(ip6af) ((ip6af)->ip6af_m)
|
|
|
|
MBUFQ_HEAD(fq6_head);
|
|
|
|
static void frag6_save_context(struct mbuf *, int);
|
|
static void frag6_scrub_context(struct mbuf *);
|
|
static int frag6_restore_context(struct mbuf *);
|
|
|
|
static void frag6_icmp6_paramprob_error(struct fq6_head *);
|
|
static void frag6_icmp6_timeex_error(struct fq6_head *);
|
|
|
|
static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
|
|
static void frag6_deq(struct ip6asfrag *);
|
|
static void frag6_insque(struct ip6q *, struct ip6q *);
|
|
static void frag6_remque(struct ip6q *);
|
|
static void frag6_purgef(struct ip6q *, struct fq6_head *, struct fq6_head *);
|
|
static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *);
|
|
|
|
static int frag6_timeout_run; /* frag6 timer is scheduled to run */
|
|
static void frag6_timeout(void *);
|
|
static void frag6_sched_timeout(void);
|
|
|
|
static struct ip6q *ip6q_alloc(int);
|
|
static void ip6q_free(struct ip6q *);
|
|
static void ip6q_updateparams(void);
|
|
static struct ip6asfrag *ip6af_alloc(int);
|
|
static void ip6af_free(struct ip6asfrag *);
|
|
|
|
decl_lck_mtx_data(static, ip6qlock);
|
|
static lck_attr_t *ip6qlock_attr;
|
|
static lck_grp_t *ip6qlock_grp;
|
|
static lck_grp_attr_t *ip6qlock_grp_attr;
|
|
|
|
/* IPv6 fragment reassembly queues (protected by ip6qlock) */
|
|
static struct ip6q ip6q; /* ip6 reassembly queues */
|
|
static int ip6_maxfragpackets; /* max packets in reass queues */
|
|
static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */
|
|
static int ip6_maxfrags; /* max fragments in reass queues */
|
|
static u_int32_t frag6_nfrags; /* # of fragments in reass queues */
|
|
static u_int32_t ip6q_limit; /* ip6q allocation limit */
|
|
static u_int32_t ip6q_count; /* current # of allocated ip6q's */
|
|
static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */
|
|
static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */
|
|
|
|
static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS;
|
|
static int sysctl_maxfrags SYSCTL_HANDLER_ARGS;
|
|
|
|
SYSCTL_DECL(_net_inet6_ip6);
|
|
|
|
SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0,
|
|
sysctl_maxfragpackets, "I",
|
|
"Maximum number of IPv6 fragment reassembly queue entries");
|
|
|
|
SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets,
|
|
CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0,
|
|
"Current number of IPv6 fragment reassembly queue entries");
|
|
|
|
SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0,
|
|
sysctl_maxfrags, "I", "Maximum number of IPv6 fragments allowed");
|
|
|
|
/*
|
|
* Initialise reassembly queue and fragment identifier.
|
|
*/
|
|
void
|
|
frag6_init(void)
|
|
{
|
|
/* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
|
|
_CASSERT(sizeof(struct ip6q) <= _MLEN);
|
|
/* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
|
|
_CASSERT(sizeof(struct ip6asfrag) <= _MLEN);
|
|
|
|
/* IPv6 fragment reassembly queue lock */
|
|
ip6qlock_grp_attr = lck_grp_attr_alloc_init();
|
|
ip6qlock_grp = lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr);
|
|
ip6qlock_attr = lck_attr_alloc_init();
|
|
lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr);
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
/* Initialize IPv6 reassembly queue. */
|
|
ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
|
|
|
|
/* same limits as IPv4 */
|
|
ip6_maxfragpackets = nmbclusters / 32;
|
|
ip6_maxfrags = ip6_maxfragpackets * 2;
|
|
ip6q_updateparams();
|
|
lck_mtx_unlock(&ip6qlock);
|
|
}
|
|
|
|
static void
|
|
frag6_save_context(struct mbuf *m, int val)
|
|
{
|
|
m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val;
|
|
}
|
|
|
|
static void
|
|
frag6_scrub_context(struct mbuf *m)
|
|
{
|
|
m->m_pkthdr.pkt_hdr = NULL;
|
|
}
|
|
|
|
static int
|
|
frag6_restore_context(struct mbuf *m)
|
|
{
|
|
return (int)m->m_pkthdr.pkt_hdr;
|
|
}
|
|
|
|
/*
|
|
* Send any deferred ICMP param problem error messages; caller must not be
|
|
* holding ip6qlock and is expected to have saved the per-packet parameter
|
|
* value via frag6_save_context().
|
|
*/
|
|
static void
|
|
frag6_icmp6_paramprob_error(struct fq6_head *diq6)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
|
|
|
|
if (!MBUFQ_EMPTY(diq6)) {
|
|
struct mbuf *merr, *merr_tmp;
|
|
int param;
|
|
MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) {
|
|
MBUFQ_REMOVE(diq6, merr);
|
|
MBUFQ_NEXT(merr) = NULL;
|
|
param = frag6_restore_context(merr);
|
|
frag6_scrub_context(merr);
|
|
icmp6_error(merr, ICMP6_PARAM_PROB,
|
|
ICMP6_PARAMPROB_HEADER, param);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send any deferred ICMP time exceeded error messages;
|
|
* caller must not be holding ip6qlock.
|
|
*/
|
|
static void
|
|
frag6_icmp6_timeex_error(struct fq6_head *diq6)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
|
|
|
|
if (!MBUFQ_EMPTY(diq6)) {
|
|
struct mbuf *m, *m_tmp;
|
|
MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) {
|
|
MBUFQ_REMOVE(diq6, m);
|
|
MBUFQ_NEXT(m) = NULL;
|
|
icmp6_error_flag(m, ICMP6_TIME_EXCEEDED,
|
|
ICMP6_TIME_EXCEED_REASSEMBLY, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In RFC2460, fragment and reassembly rule do not agree with each other,
|
|
* in terms of next header field handling in fragment header.
|
|
* While the sender will use the same value for all of the fragmented packets,
|
|
* receiver is suggested not to check the consistency.
|
|
*
|
|
* fragment rule (p20):
|
|
* (2) A Fragment header containing:
|
|
* The Next Header value that identifies the first header of
|
|
* the Fragmentable Part of the original packet.
|
|
* -> next header field is same for all fragments
|
|
*
|
|
* reassembly rule (p21):
|
|
* The Next Header field of the last header of the Unfragmentable
|
|
* Part is obtained from the Next Header field of the first
|
|
* fragment's Fragment header.
|
|
* -> should grab it from the first fragment only
|
|
*
|
|
* The following note also contradicts with fragment rule - noone is going to
|
|
* send different fragment with different next header field.
|
|
*
|
|
* additional note (p22):
|
|
* The Next Header values in the Fragment headers of different
|
|
* fragments of the same original packet may differ. Only the value
|
|
* from the Offset zero fragment packet is used for reassembly.
|
|
* -> should grab it from the first fragment only
|
|
*
|
|
* There is no explicit reason given in the RFC. Historical reason maybe?
|
|
*/
|
|
/*
|
|
* Fragment input
|
|
*/
|
|
int
|
|
frag6_input(struct mbuf **mp, int *offp, int proto)
|
|
{
|
|
#pragma unused(proto)
|
|
struct mbuf *m = *mp, *t = NULL;
|
|
struct ip6_hdr *ip6 = NULL;
|
|
struct ip6_frag *ip6f = NULL;
|
|
struct ip6q *q6 = NULL;
|
|
struct ip6asfrag *af6 = NULL, *ip6af = NULL, *af6dwn = NULL;
|
|
int offset = *offp, i = 0, next = 0;
|
|
u_int8_t nxt = 0;
|
|
int first_frag = 0;
|
|
int fragoff = 0, frgpartlen = 0; /* must be larger than u_int16_t */
|
|
struct ifnet *dstifp = NULL;
|
|
u_int8_t ecn = 0, ecn0 = 0;
|
|
uint32_t csum = 0, csum_flags = 0;
|
|
struct fq6_head diq6 = {};
|
|
int locked = 0;
|
|
boolean_t drop_fragq = FALSE;
|
|
|
|
VERIFY(m->m_flags & M_PKTHDR);
|
|
|
|
MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */
|
|
|
|
/* Expect 32-bit aligned data pointer on strict-align platforms */
|
|
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
|
|
|
|
IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done);
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
|
|
|
|
#ifdef IN6_IFSTAT_STRICT
|
|
/* find the destination interface of the packet. */
|
|
if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
|
|
uint32_t idx;
|
|
|
|
if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) {
|
|
if (idx > 0 && idx <= if_index) {
|
|
ifnet_head_lock_shared();
|
|
dstifp = ifindex2ifnet[idx];
|
|
ifnet_head_done();
|
|
}
|
|
}
|
|
}
|
|
#endif /* IN6_IFSTAT_STRICT */
|
|
|
|
/* we are violating the spec, this may not be the dst interface */
|
|
if (dstifp == NULL) {
|
|
dstifp = m->m_pkthdr.rcvif;
|
|
}
|
|
|
|
/* jumbo payload can't contain a fragment header */
|
|
if (ip6->ip6_plen == 0) {
|
|
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
|
|
in6_ifstat_inc(dstifp, ifs6_reass_fail);
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* check whether fragment packet's fragment length is
|
|
* multiple of 8 octets.
|
|
* sizeof(struct ip6_frag) == 8
|
|
* sizeof(struct ip6_hdr) = 40
|
|
*/
|
|
if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
|
|
(((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
|
|
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
|
|
offsetof(struct ip6_hdr, ip6_plen));
|
|
in6_ifstat_inc(dstifp, ifs6_reass_fail);
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
|
|
if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) {
|
|
ip6stat.ip6s_fragments++;
|
|
ip6stat.ip6s_fragdropped++;
|
|
in6_ifstat_inc(dstifp, ifs6_reass_fail);
|
|
m_freem(m);
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/* offset now points to data portion */
|
|
offset += sizeof(struct ip6_frag);
|
|
|
|
/*
|
|
* RFC 6946: Handle "atomic" fragments (offset and m bit set to 0)
|
|
* upfront, unrelated to any reassembly. Just skip the fragment header.
|
|
*/
|
|
if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) {
|
|
/*
|
|
* Mark packet as reassembled.
|
|
* In ICMPv6 processing, we drop certain
|
|
* NDP messages that are not expected to
|
|
* have fragment header based on recommendations
|
|
* against security vulnerability as described in
|
|
* RFC 6980.
|
|
* Treat atomic fragments as re-assembled packets as well.
|
|
*/
|
|
m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
|
|
ip6stat.ip6s_atmfrag_rcvd++;
|
|
in6_ifstat_inc(dstifp, ifs6_atmfrag_rcvd);
|
|
*mp = m;
|
|
*offp = offset;
|
|
return ip6f->ip6f_nxt;
|
|
}
|
|
|
|
/*
|
|
* Leverage partial checksum offload for simple UDP/IP fragments,
|
|
* as that is the most common case.
|
|
*
|
|
* Perform 1's complement adjustment of octets that got included/
|
|
* excluded in the hardware-calculated checksum value. Also take
|
|
* care of any trailing bytes and subtract out their partial sum.
|
|
*/
|
|
if (ip6f->ip6f_nxt == IPPROTO_UDP &&
|
|
offset == (sizeof(*ip6) + sizeof(*ip6f)) &&
|
|
(m->m_pkthdr.csum_flags &
|
|
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
|
|
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
|
|
uint32_t start = m->m_pkthdr.csum_rx_start;
|
|
uint32_t ip_len = (sizeof(*ip6) + ntohs(ip6->ip6_plen));
|
|
int32_t trailer = (m_pktlen(m) - ip_len);
|
|
uint32_t swbytes = (uint32_t)trailer;
|
|
|
|
csum = m->m_pkthdr.csum_rx_val;
|
|
|
|
ASSERT(trailer >= 0);
|
|
if (start != offset || trailer != 0) {
|
|
uint16_t s = 0, d = 0;
|
|
|
|
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
|
|
s = ip6->ip6_src.s6_addr16[1];
|
|
ip6->ip6_src.s6_addr16[1] = 0;
|
|
}
|
|
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
|
|
d = ip6->ip6_dst.s6_addr16[1];
|
|
ip6->ip6_dst.s6_addr16[1] = 0;
|
|
}
|
|
|
|
/* callee folds in sum */
|
|
csum = m_adj_sum16(m, start, offset,
|
|
(ip_len - offset), csum);
|
|
if (offset > start) {
|
|
swbytes += (offset - start);
|
|
} else {
|
|
swbytes += (start - offset);
|
|
}
|
|
|
|
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
|
|
ip6->ip6_src.s6_addr16[1] = s;
|
|
}
|
|
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
|
|
ip6->ip6_dst.s6_addr16[1] = d;
|
|
}
|
|
}
|
|
csum_flags = m->m_pkthdr.csum_flags;
|
|
|
|
if (swbytes != 0) {
|
|
udp_in6_cksum_stats(swbytes);
|
|
}
|
|
if (trailer != 0) {
|
|
m_adj(m, -trailer);
|
|
}
|
|
} else {
|
|
csum = 0;
|
|
csum_flags = 0;
|
|
}
|
|
|
|
/* Invalidate checksum */
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
|
|
|
|
ip6stat.ip6s_fragments++;
|
|
in6_ifstat_inc(dstifp, ifs6_reass_reqd);
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
locked = 1;
|
|
|
|
for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) {
|
|
if (ip6f->ip6f_ident == q6->ip6q_ident &&
|
|
IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
|
|
IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (q6 == &ip6q) {
|
|
/*
|
|
* Create a reassembly queue as this is the first fragment to
|
|
* arrive.
|
|
* By first frag, we don't mean the one with offset 0, but
|
|
* any of the fragments of the fragmented packet that has
|
|
* reached us first.
|
|
*/
|
|
first_frag = 1;
|
|
|
|
q6 = ip6q_alloc(M_DONTWAIT);
|
|
if (q6 == NULL) {
|
|
goto dropfrag;
|
|
}
|
|
|
|
frag6_insque(q6, &ip6q);
|
|
frag6_nfragpackets++;
|
|
|
|
/* ip6q_nxt will be filled afterwards, from 1st fragment */
|
|
q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
|
|
#ifdef notyet
|
|
q6->ip6q_nxtp = (u_char *)nxtp;
|
|
#endif
|
|
q6->ip6q_ident = ip6f->ip6f_ident;
|
|
q6->ip6q_ttl = IPV6_FRAGTTL;
|
|
q6->ip6q_src = ip6->ip6_src;
|
|
q6->ip6q_dst = ip6->ip6_dst;
|
|
q6->ip6q_ecn =
|
|
(ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
|
|
q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
|
|
|
|
q6->ip6q_nfrag = 0;
|
|
q6->ip6q_flags = 0;
|
|
|
|
/*
|
|
* If the first fragment has valid checksum offload
|
|
* info, the rest of fragments are eligible as well.
|
|
*/
|
|
if (csum_flags != 0) {
|
|
q6->ip6q_csum = csum;
|
|
q6->ip6q_csum_flags = csum_flags;
|
|
}
|
|
}
|
|
|
|
if (q6->ip6q_flags & IP6QF_DIRTY) {
|
|
goto dropfrag;
|
|
}
|
|
|
|
/*
|
|
* If it's the 1st fragment, record the length of the
|
|
* unfragmentable part and the next header of the fragment header.
|
|
*/
|
|
fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
|
|
if (fragoff == 0) {
|
|
q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
|
|
sizeof(struct ip6_frag);
|
|
q6->ip6q_nxt = ip6f->ip6f_nxt;
|
|
}
|
|
|
|
/*
|
|
* Check that the reassembled packet would not exceed 65535 bytes
|
|
* in size.
|
|
* If it would exceed, discard the fragment and return an ICMP error.
|
|
*/
|
|
frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
|
|
if (q6->ip6q_unfrglen >= 0) {
|
|
/* The 1st fragment has already arrived. */
|
|
if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
|
|
lck_mtx_unlock(&ip6qlock);
|
|
locked = 0;
|
|
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
|
|
offset - sizeof(struct ip6_frag) +
|
|
offsetof(struct ip6_frag, ip6f_offlg));
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
|
|
lck_mtx_unlock(&ip6qlock);
|
|
locked = 0;
|
|
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
|
|
offset - sizeof(struct ip6_frag) +
|
|
offsetof(struct ip6_frag, ip6f_offlg));
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
/*
|
|
* If it's the first fragment, do the above check for each
|
|
* fragment already stored in the reassembly queue.
|
|
*/
|
|
if (fragoff == 0) {
|
|
/*
|
|
* https://tools.ietf.org/html/rfc8200#page-20
|
|
* If the first fragment does not include all headers through an
|
|
* Upper-Layer header, then that fragment should be discarded and
|
|
* an ICMP Parameter Problem, Code 3, message should be sent to
|
|
* the source of the fragment, with the Pointer field set to zero.
|
|
*/
|
|
if (!ip6_pkt_has_ulp(m)) {
|
|
lck_mtx_unlock(&ip6qlock);
|
|
locked = 0;
|
|
icmp6_error(m, ICMP6_PARAM_PROB,
|
|
ICMP6_PARAMPROB_FIRSTFRAG_INCOMP_HDR, 0);
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
|
|
af6 = af6dwn) {
|
|
af6dwn = af6->ip6af_down;
|
|
|
|
if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
|
|
IPV6_MAXPACKET) {
|
|
struct mbuf *merr = IP6_REASS_MBUF(af6);
|
|
struct ip6_hdr *ip6err;
|
|
int erroff = af6->ip6af_offset;
|
|
|
|
/* dequeue the fragment. */
|
|
frag6_deq(af6);
|
|
ip6af_free(af6);
|
|
|
|
/* adjust pointer. */
|
|
ip6err = mtod(merr, struct ip6_hdr *);
|
|
|
|
/*
|
|
* Restore source and destination addresses
|
|
* in the erroneous IPv6 header.
|
|
*/
|
|
ip6err->ip6_src = q6->ip6q_src;
|
|
ip6err->ip6_dst = q6->ip6q_dst;
|
|
|
|
frag6_save_context(merr,
|
|
erroff - sizeof(struct ip6_frag) +
|
|
offsetof(struct ip6_frag, ip6f_offlg));
|
|
|
|
MBUFQ_ENQUEUE(&diq6, merr);
|
|
}
|
|
}
|
|
}
|
|
|
|
ip6af = ip6af_alloc(M_DONTWAIT);
|
|
if (ip6af == NULL) {
|
|
goto dropfrag;
|
|
}
|
|
|
|
ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
|
|
ip6af->ip6af_off = fragoff;
|
|
ip6af->ip6af_frglen = frgpartlen;
|
|
ip6af->ip6af_offset = offset;
|
|
IP6_REASS_MBUF(ip6af) = m;
|
|
|
|
if (first_frag) {
|
|
af6 = (struct ip6asfrag *)q6;
|
|
goto insert;
|
|
}
|
|
|
|
/*
|
|
* Handle ECN by comparing this segment with the first one;
|
|
* if CE is set, do not lose CE.
|
|
* drop if CE and not-ECT are mixed for the same packet.
|
|
*/
|
|
ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
|
|
ecn0 = q6->ip6q_ecn;
|
|
if (ecn == IPTOS_ECN_CE) {
|
|
if (ecn0 == IPTOS_ECN_NOTECT) {
|
|
ip6af_free(ip6af);
|
|
goto dropfrag;
|
|
}
|
|
if (ecn0 != IPTOS_ECN_CE) {
|
|
q6->ip6q_ecn = IPTOS_ECN_CE;
|
|
}
|
|
}
|
|
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
|
|
ip6af_free(ip6af);
|
|
goto dropfrag;
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
|
|
af6 = af6->ip6af_down) {
|
|
if (af6->ip6af_off > ip6af->ip6af_off) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* As per RFC 8200 reassembly rules, we MUST drop the entire
|
|
* chain of fragments for a packet to be assembled, if we receive
|
|
* any overlapping fragments.
|
|
* https://tools.ietf.org/html/rfc8200#page-20
|
|
*
|
|
* To avoid more conditional code, just reuse frag6_freef and defer
|
|
* its call to post fragment insertion in the queue.
|
|
*/
|
|
if (af6->ip6af_up != (struct ip6asfrag *)q6) {
|
|
if (af6->ip6af_up->ip6af_off == ip6af->ip6af_off) {
|
|
if (af6->ip6af_up->ip6af_frglen != ip6af->ip6af_frglen) {
|
|
drop_fragq = TRUE;
|
|
} else {
|
|
/*
|
|
* XXX Ideally we should be comparing the entire
|
|
* packet here but for now just use off and fraglen
|
|
* to ignore a duplicate fragment.
|
|
*/
|
|
ip6af_free(ip6af);
|
|
goto dropfrag;
|
|
}
|
|
} else {
|
|
i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
|
|
- ip6af->ip6af_off;
|
|
if (i > 0) {
|
|
drop_fragq = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (af6 != (struct ip6asfrag *)q6) {
|
|
/*
|
|
* Given that we break when af6->ip6af_off > ip6af->ip6af_off,
|
|
* we shouldn't need a check for duplicate fragment here.
|
|
* For now just assert.
|
|
*/
|
|
VERIFY(af6->ip6af_off != ip6af->ip6af_off);
|
|
i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
|
|
if (i > 0) {
|
|
drop_fragq = TRUE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this fragment contains similar checksum offload info
|
|
* as that of the existing ones, accumulate checksum. Otherwise,
|
|
* invalidate checksum offload info for the entire datagram.
|
|
*/
|
|
if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags) {
|
|
q6->ip6q_csum += csum;
|
|
} else if (q6->ip6q_csum_flags != 0) {
|
|
q6->ip6q_csum_flags = 0;
|
|
}
|
|
|
|
insert:
|
|
/*
|
|
* Stick new segment in its place;
|
|
* check for complete reassembly.
|
|
* Move to front of packet queue, as we are
|
|
* the most recently active fragmented packet.
|
|
*/
|
|
frag6_enq(ip6af, af6->ip6af_up);
|
|
frag6_nfrags++;
|
|
q6->ip6q_nfrag++;
|
|
|
|
/*
|
|
* This holds true, when we receive overlapping fragments.
|
|
* We must silently drop all the fragments we have received
|
|
* so far.
|
|
* Also mark q6 as dirty, so as to not add any new fragments to it.
|
|
* Make sure even q6 marked dirty is kept till timer expires for
|
|
* reassembly and when that happens, silenty get rid of q6
|
|
*/
|
|
if (drop_fragq) {
|
|
struct fq6_head dfq6 = {0};
|
|
MBUFQ_INIT(&dfq6); /* for deferred frees */
|
|
q6->ip6q_flags |= IP6QF_DIRTY;
|
|
/* Purge all the fragments but do not free q6 */
|
|
frag6_purgef(q6, &dfq6, NULL);
|
|
af6 = NULL;
|
|
|
|
/* free fragments that need to be freed */
|
|
if (!MBUFQ_EMPTY(&dfq6)) {
|
|
MBUFQ_DRAIN(&dfq6);
|
|
}
|
|
VERIFY(MBUFQ_EMPTY(&dfq6));
|
|
/*
|
|
* Just in case the above logic got anything added
|
|
* to diq6, drain it.
|
|
* Please note that these mbufs are not present in the
|
|
* fragment queue and are added to diq6 for sending
|
|
* ICMPv6 error.
|
|
* Given that the current fragment was an overlapping
|
|
* fragment and the RFC requires us to not send any
|
|
* ICMPv6 errors while purging the entire queue.
|
|
* Just empty it out.
|
|
*/
|
|
if (!MBUFQ_EMPTY(&diq6)) {
|
|
MBUFQ_DRAIN(&diq6);
|
|
}
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
/*
|
|
* MBUFQ_DRAIN would have drained all the mbufs
|
|
* in the fragment queue.
|
|
* This shouldn't be needed as we are returning IPPROTO_DONE
|
|
* from here but change the passed mbuf pointer to NULL.
|
|
*/
|
|
*mp = NULL;
|
|
lck_mtx_unlock(&ip6qlock);
|
|
return IPPROTO_DONE;
|
|
}
|
|
next = 0;
|
|
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
|
|
af6 = af6->ip6af_down) {
|
|
if (af6->ip6af_off != next) {
|
|
lck_mtx_unlock(&ip6qlock);
|
|
locked = 0;
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
next += af6->ip6af_frglen;
|
|
}
|
|
if (af6->ip6af_up->ip6af_mff) {
|
|
lck_mtx_unlock(&ip6qlock);
|
|
locked = 0;
|
|
m = NULL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Reassembly is complete; concatenate fragments.
|
|
*/
|
|
ip6af = q6->ip6q_down;
|
|
t = m = IP6_REASS_MBUF(ip6af);
|
|
af6 = ip6af->ip6af_down;
|
|
frag6_deq(ip6af);
|
|
while (af6 != (struct ip6asfrag *)q6) {
|
|
af6dwn = af6->ip6af_down;
|
|
frag6_deq(af6);
|
|
while (t->m_next) {
|
|
t = t->m_next;
|
|
}
|
|
t->m_next = IP6_REASS_MBUF(af6);
|
|
m_adj(t->m_next, af6->ip6af_offset);
|
|
ip6af_free(af6);
|
|
af6 = af6dwn;
|
|
}
|
|
|
|
/*
|
|
* Store partial hardware checksum info from the fragment queue;
|
|
* the receive start offset is set to 40 bytes (see code at the
|
|
* top of this routine.)
|
|
*/
|
|
if (q6->ip6q_csum_flags != 0) {
|
|
csum = q6->ip6q_csum;
|
|
|
|
ADDCARRY(csum);
|
|
|
|
m->m_pkthdr.csum_rx_val = (u_int16_t)csum;
|
|
m->m_pkthdr.csum_rx_start = sizeof(struct ip6_hdr);
|
|
m->m_pkthdr.csum_flags = q6->ip6q_csum_flags;
|
|
} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
|
|
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
|
|
/* loopback checksums are always OK */
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
}
|
|
|
|
/* adjust offset to point where the original next header starts */
|
|
offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
|
|
ip6af_free(ip6af);
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ip6->ip6_plen = htons((uint16_t)(next + offset - sizeof(struct ip6_hdr)));
|
|
ip6->ip6_src = q6->ip6q_src;
|
|
ip6->ip6_dst = q6->ip6q_dst;
|
|
if (q6->ip6q_ecn == IPTOS_ECN_CE) {
|
|
ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
|
|
}
|
|
|
|
nxt = q6->ip6q_nxt;
|
|
#ifdef notyet
|
|
*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
|
|
#endif
|
|
|
|
/* Delete frag6 header */
|
|
if (m->m_len >= offset + sizeof(struct ip6_frag)) {
|
|
/* This is the only possible case with !PULLDOWN_TEST */
|
|
ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
|
|
offset);
|
|
m->m_data += sizeof(struct ip6_frag);
|
|
m->m_len -= sizeof(struct ip6_frag);
|
|
} else {
|
|
/* this comes with no copy if the boundary is on cluster */
|
|
if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
|
|
frag6_remque(q6);
|
|
frag6_nfragpackets--;
|
|
frag6_nfrags -= q6->ip6q_nfrag;
|
|
ip6q_free(q6);
|
|
goto dropfrag;
|
|
}
|
|
m_adj(t, sizeof(struct ip6_frag));
|
|
m_cat(m, t);
|
|
}
|
|
|
|
/*
|
|
* Store NXT to the original.
|
|
*/
|
|
{
|
|
char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
|
|
*prvnxtp = nxt;
|
|
}
|
|
|
|
frag6_remque(q6);
|
|
frag6_nfragpackets--;
|
|
frag6_nfrags -= q6->ip6q_nfrag;
|
|
ip6q_free(q6);
|
|
|
|
if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
|
|
m_fixhdr(m);
|
|
/*
|
|
* Mark packet as reassembled
|
|
* In ICMPv6 processing, we drop certain
|
|
* NDP messages that are not expected to
|
|
* have fragment header based on recommendations
|
|
* against security vulnerability as described in
|
|
* RFC 6980.
|
|
*/
|
|
m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
|
|
}
|
|
ip6stat.ip6s_reassembled++;
|
|
|
|
/*
|
|
* Tell launch routine the next header
|
|
*/
|
|
*mp = m;
|
|
*offp = offset;
|
|
|
|
/* arm the purge timer if not already and if there's work to do */
|
|
frag6_sched_timeout();
|
|
lck_mtx_unlock(&ip6qlock);
|
|
in6_ifstat_inc(dstifp, ifs6_reass_ok);
|
|
frag6_icmp6_paramprob_error(&diq6);
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
return nxt;
|
|
|
|
done:
|
|
VERIFY(m == NULL);
|
|
*mp = m;
|
|
if (!locked) {
|
|
if (frag6_nfragpackets == 0) {
|
|
frag6_icmp6_paramprob_error(&diq6);
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
return IPPROTO_DONE;
|
|
}
|
|
lck_mtx_lock(&ip6qlock);
|
|
}
|
|
/* arm the purge timer if not already and if there's work to do */
|
|
frag6_sched_timeout();
|
|
lck_mtx_unlock(&ip6qlock);
|
|
frag6_icmp6_paramprob_error(&diq6);
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
return IPPROTO_DONE;
|
|
|
|
dropfrag:
|
|
ip6stat.ip6s_fragdropped++;
|
|
/* arm the purge timer if not already and if there's work to do */
|
|
frag6_sched_timeout();
|
|
lck_mtx_unlock(&ip6qlock);
|
|
in6_ifstat_inc(dstifp, ifs6_reass_fail);
|
|
m_freem(m);
|
|
*mp = NULL;
|
|
frag6_icmp6_paramprob_error(&diq6);
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
return IPPROTO_DONE;
|
|
}
|
|
|
|
/*
|
|
* This routine removes the enqueued frames from the passed fragment
|
|
* header and enqueues those to dfq6 which is an out-arg for the dequeued
|
|
* fragments.
|
|
* If the caller also provides diq6, this routine also enqueues the 0 offset
|
|
* fragment to that list as it potentially gets used by the caller
|
|
* to prepare the relevant ICMPv6 error message (time exceeded or
|
|
* param problem).
|
|
* It leaves the fragment header object (q6) intact.
|
|
*/
|
|
static void
|
|
frag6_purgef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
|
|
{
|
|
struct ip6asfrag *af6 = NULL;
|
|
struct ip6asfrag *down6 = NULL;
|
|
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
|
|
af6 = down6) {
|
|
struct mbuf *m = IP6_REASS_MBUF(af6);
|
|
|
|
down6 = af6->ip6af_down;
|
|
frag6_deq(af6);
|
|
|
|
/*
|
|
* If caller wants to generate ICMP time-exceeded,
|
|
* as indicated by the argument diq6, return it for
|
|
* the first fragment and add others to the fragment
|
|
* free queue.
|
|
*/
|
|
if (af6->ip6af_off == 0 && diq6 != NULL) {
|
|
struct ip6_hdr *ip6;
|
|
|
|
/* adjust pointer */
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
|
|
/* restore source and destination addresses */
|
|
ip6->ip6_src = q6->ip6q_src;
|
|
ip6->ip6_dst = q6->ip6q_dst;
|
|
MBUFQ_ENQUEUE(diq6, m);
|
|
} else {
|
|
MBUFQ_ENQUEUE(dfq6, m);
|
|
}
|
|
ip6af_free(af6);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine removes the enqueued frames from the passed fragment
|
|
* header and enqueues those to dfq6 which is an out-arg for the dequeued
|
|
* fragments.
|
|
* If the caller also provides diq6, this routine also enqueues the 0 offset
|
|
* fragment to that list as it potentially gets used by the caller
|
|
* to prepare the relevant ICMPv6 error message (time exceeded or
|
|
* param problem).
|
|
* It also remove the fragment header object from the queue and frees it.
|
|
*/
|
|
static void
|
|
frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
|
|
{
|
|
frag6_purgef(q6, dfq6, diq6);
|
|
frag6_remque(q6);
|
|
frag6_nfragpackets--;
|
|
frag6_nfrags -= q6->ip6q_nfrag;
|
|
ip6q_free(q6);
|
|
}
|
|
|
|
/*
|
|
* Put an ip fragment on a reassembly chain.
|
|
* Like insque, but pointers in middle of structure.
|
|
*/
|
|
void
|
|
frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
af6->ip6af_up = up6;
|
|
af6->ip6af_down = up6->ip6af_down;
|
|
up6->ip6af_down->ip6af_up = af6;
|
|
up6->ip6af_down = af6;
|
|
}
|
|
|
|
/*
|
|
* To frag6_enq as remque is to insque.
|
|
*/
|
|
void
|
|
frag6_deq(struct ip6asfrag *af6)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
af6->ip6af_up->ip6af_down = af6->ip6af_down;
|
|
af6->ip6af_down->ip6af_up = af6->ip6af_up;
|
|
}
|
|
|
|
void
|
|
frag6_insque(struct ip6q *new, struct ip6q *old)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
new->ip6q_prev = old;
|
|
new->ip6q_next = old->ip6q_next;
|
|
old->ip6q_next->ip6q_prev = new;
|
|
old->ip6q_next = new;
|
|
}
|
|
|
|
void
|
|
frag6_remque(struct ip6q *p6)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
p6->ip6q_prev->ip6q_next = p6->ip6q_next;
|
|
p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
|
|
}
|
|
|
|
/*
|
|
* IPv6 reassembling timer processing;
|
|
* if a timer expires on a reassembly
|
|
* queue, discard it.
|
|
*/
|
|
static void
|
|
frag6_timeout(void *arg)
|
|
{
|
|
#pragma unused(arg)
|
|
struct fq6_head dfq6, diq6;
|
|
struct fq6_head *diq6_tmp = NULL;
|
|
struct ip6q *q6;
|
|
|
|
MBUFQ_INIT(&dfq6); /* for deferred frees */
|
|
MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
|
|
|
|
/*
|
|
* Update coarse-grained networking timestamp (in sec.); the idea
|
|
* is to piggy-back on the timeout callout to update the counter
|
|
* returnable via net_uptime().
|
|
*/
|
|
net_update_uptime();
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
q6 = ip6q.ip6q_next;
|
|
if (q6) {
|
|
while (q6 != &ip6q) {
|
|
--q6->ip6q_ttl;
|
|
q6 = q6->ip6q_next;
|
|
if (q6->ip6q_prev->ip6q_ttl == 0) {
|
|
ip6stat.ip6s_fragtimeout++;
|
|
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
|
|
/*
|
|
* Avoid sending ICMPv6 Time Exceeded for fragment headers
|
|
* that are marked dirty.
|
|
*/
|
|
diq6_tmp = (q6->ip6q_prev->ip6q_flags & IP6QF_DIRTY) ?
|
|
NULL : &diq6;
|
|
frag6_freef(q6->ip6q_prev, &dfq6, diq6_tmp);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* If we are over the maximum number of fragments
|
|
* (due to the limit being lowered), drain off
|
|
* enough to get down to the new limit.
|
|
*/
|
|
if (ip6_maxfragpackets >= 0) {
|
|
while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets &&
|
|
ip6q.ip6q_prev) {
|
|
ip6stat.ip6s_fragoverflow++;
|
|
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
|
|
/*
|
|
* Avoid sending ICMPv6 Time Exceeded for fragment headers
|
|
* that are marked dirty.
|
|
*/
|
|
diq6_tmp = (ip6q.ip6q_prev->ip6q_flags & IP6QF_DIRTY) ?
|
|
NULL : &diq6;
|
|
frag6_freef(ip6q.ip6q_prev, &dfq6, diq6_tmp);
|
|
}
|
|
}
|
|
/* re-arm the purge timer if there's work to do */
|
|
frag6_timeout_run = 0;
|
|
frag6_sched_timeout();
|
|
lck_mtx_unlock(&ip6qlock);
|
|
|
|
/* free fragments that need to be freed */
|
|
if (!MBUFQ_EMPTY(&dfq6)) {
|
|
MBUFQ_DRAIN(&dfq6);
|
|
}
|
|
|
|
frag6_icmp6_timeex_error(&diq6);
|
|
|
|
VERIFY(MBUFQ_EMPTY(&dfq6));
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
}
|
|
|
|
static void
|
|
frag6_sched_timeout(void)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
|
|
if (!frag6_timeout_run && frag6_nfragpackets > 0) {
|
|
frag6_timeout_run = 1;
|
|
timeout(frag6_timeout, NULL, hz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain off all datagram fragments.
|
|
*/
|
|
void
|
|
frag6_drain(void)
|
|
{
|
|
struct fq6_head dfq6, diq6;
|
|
struct fq6_head *diq6_tmp = NULL;
|
|
|
|
MBUFQ_INIT(&dfq6); /* for deferred frees */
|
|
MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
while (ip6q.ip6q_next != &ip6q) {
|
|
ip6stat.ip6s_fragdropped++;
|
|
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
|
|
/*
|
|
* Avoid sending ICMPv6 Time Exceeded for fragment headers
|
|
* that are marked dirty.
|
|
*/
|
|
diq6_tmp = (ip6q.ip6q_next->ip6q_flags & IP6QF_DIRTY) ?
|
|
NULL : &diq6;
|
|
frag6_freef(ip6q.ip6q_next, &dfq6, diq6_tmp);
|
|
}
|
|
lck_mtx_unlock(&ip6qlock);
|
|
|
|
/* free fragments that need to be freed */
|
|
if (!MBUFQ_EMPTY(&dfq6)) {
|
|
MBUFQ_DRAIN(&dfq6);
|
|
}
|
|
|
|
frag6_icmp6_timeex_error(&diq6);
|
|
|
|
VERIFY(MBUFQ_EMPTY(&dfq6));
|
|
VERIFY(MBUFQ_EMPTY(&diq6));
|
|
}
|
|
|
|
static struct ip6q *
|
|
ip6q_alloc(int how)
|
|
{
|
|
struct mbuf *t;
|
|
struct ip6q *q6;
|
|
|
|
/*
|
|
* See comments in ip6q_updateparams(). Keep the count separate
|
|
* from frag6_nfragpackets since the latter represents the elements
|
|
* already in the reassembly queues.
|
|
*/
|
|
if (ip6q_limit > 0 && ip6q_count > ip6q_limit) {
|
|
return NULL;
|
|
}
|
|
|
|
t = m_get(how, MT_FTABLE);
|
|
if (t != NULL) {
|
|
atomic_add_32(&ip6q_count, 1);
|
|
q6 = mtod(t, struct ip6q *);
|
|
bzero(q6, sizeof(*q6));
|
|
} else {
|
|
q6 = NULL;
|
|
}
|
|
return q6;
|
|
}
|
|
|
|
static void
|
|
ip6q_free(struct ip6q *q6)
|
|
{
|
|
(void) m_free(dtom(q6));
|
|
atomic_add_32(&ip6q_count, -1);
|
|
}
|
|
|
|
static struct ip6asfrag *
|
|
ip6af_alloc(int how)
|
|
{
|
|
struct mbuf *t;
|
|
struct ip6asfrag *af6;
|
|
|
|
/*
|
|
* See comments in ip6q_updateparams(). Keep the count separate
|
|
* from frag6_nfrags since the latter represents the elements
|
|
* already in the reassembly queues.
|
|
*/
|
|
if (ip6af_limit > 0 && ip6af_count > ip6af_limit) {
|
|
return NULL;
|
|
}
|
|
|
|
t = m_get(how, MT_FTABLE);
|
|
if (t != NULL) {
|
|
atomic_add_32(&ip6af_count, 1);
|
|
af6 = mtod(t, struct ip6asfrag *);
|
|
bzero(af6, sizeof(*af6));
|
|
} else {
|
|
af6 = NULL;
|
|
}
|
|
return af6;
|
|
}
|
|
|
|
static void
|
|
ip6af_free(struct ip6asfrag *af6)
|
|
{
|
|
(void) m_free(dtom(af6));
|
|
atomic_add_32(&ip6af_count, -1);
|
|
}
|
|
|
|
static void
|
|
ip6q_updateparams(void)
|
|
{
|
|
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
|
|
/*
|
|
* -1 for unlimited allocation.
|
|
*/
|
|
if (ip6_maxfragpackets < 0) {
|
|
ip6q_limit = 0;
|
|
}
|
|
if (ip6_maxfrags < 0) {
|
|
ip6af_limit = 0;
|
|
}
|
|
/*
|
|
* Positive number for specific bound.
|
|
*/
|
|
if (ip6_maxfragpackets > 0) {
|
|
ip6q_limit = ip6_maxfragpackets;
|
|
}
|
|
if (ip6_maxfrags > 0) {
|
|
ip6af_limit = ip6_maxfrags;
|
|
}
|
|
/*
|
|
* Zero specifies no further fragment queue allocation -- set the
|
|
* bound very low, but rely on implementation elsewhere to actually
|
|
* prevent allocation and reclaim current queues.
|
|
*/
|
|
if (ip6_maxfragpackets == 0) {
|
|
ip6q_limit = 1;
|
|
}
|
|
if (ip6_maxfrags == 0) {
|
|
ip6af_limit = 1;
|
|
}
|
|
/*
|
|
* Arm the purge timer if not already and if there's work to do
|
|
*/
|
|
frag6_sched_timeout();
|
|
}
|
|
|
|
static int
|
|
sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(arg1, arg2)
|
|
int error, i;
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
i = ip6_maxfragpackets;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
if (error || req->newptr == USER_ADDR_NULL) {
|
|
goto done;
|
|
}
|
|
/* impose bounds */
|
|
if (i < -1 || i > (nmbclusters / 4)) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
ip6_maxfragpackets = i;
|
|
ip6q_updateparams();
|
|
done:
|
|
lck_mtx_unlock(&ip6qlock);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
sysctl_maxfrags SYSCTL_HANDLER_ARGS
|
|
{
|
|
#pragma unused(arg1, arg2)
|
|
int error, i;
|
|
|
|
lck_mtx_lock(&ip6qlock);
|
|
i = ip6_maxfrags;
|
|
error = sysctl_handle_int(oidp, &i, 0, req);
|
|
if (error || req->newptr == USER_ADDR_NULL) {
|
|
goto done;
|
|
}
|
|
/* impose bounds */
|
|
if (i < -1 || i > (nmbclusters / 4)) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
ip6_maxfrags = i;
|
|
ip6q_updateparams(); /* see if we need to arm timer */
|
|
done:
|
|
lck_mtx_unlock(&ip6qlock);
|
|
return error;
|
|
}
|