darling-xnu/bsd/netinet6/frag6.c
2023-05-16 21:41:14 -07:00

1330 lines
36 KiB
C

/*
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
/* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mcache.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <kern/queue.h>
#include <kern/locks.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <net/net_osdep.h>
#include <dev/random/randomdev.h>
/*
* Define it to get a correct behavior on per-interface statistics.
*/
#define IN6_IFSTAT_STRICT
struct ip6asfrag {
struct ip6asfrag *ip6af_down;
struct ip6asfrag *ip6af_up;
struct mbuf *ip6af_m;
int ip6af_offset; /* offset in ip6af_m to next header */
int ip6af_frglen; /* fragmentable part length */
int ip6af_off; /* fragment offset */
u_int16_t ip6af_mff; /* more fragment bit in frag off */
};
#define IP6_REASS_MBUF(ip6af) ((ip6af)->ip6af_m)
MBUFQ_HEAD(fq6_head);
static void frag6_save_context(struct mbuf *, int);
static void frag6_scrub_context(struct mbuf *);
static int frag6_restore_context(struct mbuf *);
static void frag6_icmp6_paramprob_error(struct fq6_head *);
static void frag6_icmp6_timeex_error(struct fq6_head *);
static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
static void frag6_deq(struct ip6asfrag *);
static void frag6_insque(struct ip6q *, struct ip6q *);
static void frag6_remque(struct ip6q *);
static void frag6_purgef(struct ip6q *, struct fq6_head *, struct fq6_head *);
static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *);
static int frag6_timeout_run; /* frag6 timer is scheduled to run */
static void frag6_timeout(void *);
static void frag6_sched_timeout(void);
static struct ip6q *ip6q_alloc(int);
static void ip6q_free(struct ip6q *);
static void ip6q_updateparams(void);
static struct ip6asfrag *ip6af_alloc(int);
static void ip6af_free(struct ip6asfrag *);
decl_lck_mtx_data(static, ip6qlock);
static lck_attr_t *ip6qlock_attr;
static lck_grp_t *ip6qlock_grp;
static lck_grp_attr_t *ip6qlock_grp_attr;
/* IPv6 fragment reassembly queues (protected by ip6qlock) */
static struct ip6q ip6q; /* ip6 reassembly queues */
static int ip6_maxfragpackets; /* max packets in reass queues */
static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */
static int ip6_maxfrags; /* max fragments in reass queues */
static u_int32_t frag6_nfrags; /* # of fragments in reass queues */
static u_int32_t ip6q_limit; /* ip6q allocation limit */
static u_int32_t ip6q_count; /* current # of allocated ip6q's */
static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */
static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */
static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS;
static int sysctl_maxfrags SYSCTL_HANDLER_ARGS;
SYSCTL_DECL(_net_inet6_ip6);
SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0,
sysctl_maxfragpackets, "I",
"Maximum number of IPv6 fragment reassembly queue entries");
SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets,
CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0,
"Current number of IPv6 fragment reassembly queue entries");
SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0,
sysctl_maxfrags, "I", "Maximum number of IPv6 fragments allowed");
/*
* Initialise reassembly queue and fragment identifier.
*/
void
frag6_init(void)
{
/* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
_CASSERT(sizeof(struct ip6q) <= _MLEN);
/* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
_CASSERT(sizeof(struct ip6asfrag) <= _MLEN);
/* IPv6 fragment reassembly queue lock */
ip6qlock_grp_attr = lck_grp_attr_alloc_init();
ip6qlock_grp = lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr);
ip6qlock_attr = lck_attr_alloc_init();
lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr);
lck_mtx_lock(&ip6qlock);
/* Initialize IPv6 reassembly queue. */
ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
/* same limits as IPv4 */
ip6_maxfragpackets = nmbclusters / 32;
ip6_maxfrags = ip6_maxfragpackets * 2;
ip6q_updateparams();
lck_mtx_unlock(&ip6qlock);
}
static void
frag6_save_context(struct mbuf *m, int val)
{
m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val;
}
static void
frag6_scrub_context(struct mbuf *m)
{
m->m_pkthdr.pkt_hdr = NULL;
}
static int
frag6_restore_context(struct mbuf *m)
{
return (int)m->m_pkthdr.pkt_hdr;
}
/*
* Send any deferred ICMP param problem error messages; caller must not be
* holding ip6qlock and is expected to have saved the per-packet parameter
* value via frag6_save_context().
*/
static void
frag6_icmp6_paramprob_error(struct fq6_head *diq6)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
if (!MBUFQ_EMPTY(diq6)) {
struct mbuf *merr, *merr_tmp;
int param;
MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) {
MBUFQ_REMOVE(diq6, merr);
MBUFQ_NEXT(merr) = NULL;
param = frag6_restore_context(merr);
frag6_scrub_context(merr);
icmp6_error(merr, ICMP6_PARAM_PROB,
ICMP6_PARAMPROB_HEADER, param);
}
}
}
/*
* Send any deferred ICMP time exceeded error messages;
* caller must not be holding ip6qlock.
*/
static void
frag6_icmp6_timeex_error(struct fq6_head *diq6)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
if (!MBUFQ_EMPTY(diq6)) {
struct mbuf *m, *m_tmp;
MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) {
MBUFQ_REMOVE(diq6, m);
MBUFQ_NEXT(m) = NULL;
icmp6_error_flag(m, ICMP6_TIME_EXCEEDED,
ICMP6_TIME_EXCEED_REASSEMBLY, 0, 0);
}
}
}
/*
* In RFC2460, fragment and reassembly rule do not agree with each other,
* in terms of next header field handling in fragment header.
* While the sender will use the same value for all of the fragmented packets,
* receiver is suggested not to check the consistency.
*
* fragment rule (p20):
* (2) A Fragment header containing:
* The Next Header value that identifies the first header of
* the Fragmentable Part of the original packet.
* -> next header field is same for all fragments
*
* reassembly rule (p21):
* The Next Header field of the last header of the Unfragmentable
* Part is obtained from the Next Header field of the first
* fragment's Fragment header.
* -> should grab it from the first fragment only
*
* The following note also contradicts with fragment rule - noone is going to
* send different fragment with different next header field.
*
* additional note (p22):
* The Next Header values in the Fragment headers of different
* fragments of the same original packet may differ. Only the value
* from the Offset zero fragment packet is used for reassembly.
* -> should grab it from the first fragment only
*
* There is no explicit reason given in the RFC. Historical reason maybe?
*/
/*
* Fragment input
*/
int
frag6_input(struct mbuf **mp, int *offp, int proto)
{
#pragma unused(proto)
struct mbuf *m = *mp, *t = NULL;
struct ip6_hdr *ip6 = NULL;
struct ip6_frag *ip6f = NULL;
struct ip6q *q6 = NULL;
struct ip6asfrag *af6 = NULL, *ip6af = NULL, *af6dwn = NULL;
int offset = *offp, i = 0, next = 0;
u_int8_t nxt = 0;
int first_frag = 0;
int fragoff = 0, frgpartlen = 0; /* must be larger than u_int16_t */
struct ifnet *dstifp = NULL;
u_int8_t ecn = 0, ecn0 = 0;
uint32_t csum = 0, csum_flags = 0;
struct fq6_head diq6 = {};
int locked = 0;
boolean_t drop_fragq = FALSE;
VERIFY(m->m_flags & M_PKTHDR);
MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */
/* Expect 32-bit aligned data pointer on strict-align platforms */
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done);
ip6 = mtod(m, struct ip6_hdr *);
ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
#ifdef IN6_IFSTAT_STRICT
/* find the destination interface of the packet. */
if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
uint32_t idx;
if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) {
if (idx > 0 && idx <= if_index) {
ifnet_head_lock_shared();
dstifp = ifindex2ifnet[idx];
ifnet_head_done();
}
}
}
#endif /* IN6_IFSTAT_STRICT */
/* we are violating the spec, this may not be the dst interface */
if (dstifp == NULL) {
dstifp = m->m_pkthdr.rcvif;
}
/* jumbo payload can't contain a fragment header */
if (ip6->ip6_plen == 0) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
in6_ifstat_inc(dstifp, ifs6_reass_fail);
m = NULL;
goto done;
}
/*
* check whether fragment packet's fragment length is
* multiple of 8 octets.
* sizeof(struct ip6_frag) == 8
* sizeof(struct ip6_hdr) = 40
*/
if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
(((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offsetof(struct ip6_hdr, ip6_plen));
in6_ifstat_inc(dstifp, ifs6_reass_fail);
m = NULL;
goto done;
}
/* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) {
ip6stat.ip6s_fragments++;
ip6stat.ip6s_fragdropped++;
in6_ifstat_inc(dstifp, ifs6_reass_fail);
m_freem(m);
m = NULL;
goto done;
}
/* offset now points to data portion */
offset += sizeof(struct ip6_frag);
/*
* RFC 6946: Handle "atomic" fragments (offset and m bit set to 0)
* upfront, unrelated to any reassembly. Just skip the fragment header.
*/
if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) {
/*
* Mark packet as reassembled.
* In ICMPv6 processing, we drop certain
* NDP messages that are not expected to
* have fragment header based on recommendations
* against security vulnerability as described in
* RFC 6980.
* Treat atomic fragments as re-assembled packets as well.
*/
m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
ip6stat.ip6s_atmfrag_rcvd++;
in6_ifstat_inc(dstifp, ifs6_atmfrag_rcvd);
*mp = m;
*offp = offset;
return ip6f->ip6f_nxt;
}
/*
* Leverage partial checksum offload for simple UDP/IP fragments,
* as that is the most common case.
*
* Perform 1's complement adjustment of octets that got included/
* excluded in the hardware-calculated checksum value. Also take
* care of any trailing bytes and subtract out their partial sum.
*/
if (ip6f->ip6f_nxt == IPPROTO_UDP &&
offset == (sizeof(*ip6) + sizeof(*ip6f)) &&
(m->m_pkthdr.csum_flags &
(CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PARTIAL)) {
uint32_t start = m->m_pkthdr.csum_rx_start;
uint32_t ip_len = (sizeof(*ip6) + ntohs(ip6->ip6_plen));
int32_t trailer = (m_pktlen(m) - ip_len);
uint32_t swbytes = (uint32_t)trailer;
csum = m->m_pkthdr.csum_rx_val;
ASSERT(trailer >= 0);
if (start != offset || trailer != 0) {
uint16_t s = 0, d = 0;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
s = ip6->ip6_src.s6_addr16[1];
ip6->ip6_src.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
d = ip6->ip6_dst.s6_addr16[1];
ip6->ip6_dst.s6_addr16[1] = 0;
}
/* callee folds in sum */
csum = m_adj_sum16(m, start, offset,
(ip_len - offset), csum);
if (offset > start) {
swbytes += (offset - start);
} else {
swbytes += (start - offset);
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = s;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = d;
}
}
csum_flags = m->m_pkthdr.csum_flags;
if (swbytes != 0) {
udp_in6_cksum_stats(swbytes);
}
if (trailer != 0) {
m_adj(m, -trailer);
}
} else {
csum = 0;
csum_flags = 0;
}
/* Invalidate checksum */
m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
ip6stat.ip6s_fragments++;
in6_ifstat_inc(dstifp, ifs6_reass_reqd);
lck_mtx_lock(&ip6qlock);
locked = 1;
for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) {
if (ip6f->ip6f_ident == q6->ip6q_ident &&
IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)) {
break;
}
}
if (q6 == &ip6q) {
/*
* Create a reassembly queue as this is the first fragment to
* arrive.
* By first frag, we don't mean the one with offset 0, but
* any of the fragments of the fragmented packet that has
* reached us first.
*/
first_frag = 1;
q6 = ip6q_alloc(M_DONTWAIT);
if (q6 == NULL) {
goto dropfrag;
}
frag6_insque(q6, &ip6q);
frag6_nfragpackets++;
/* ip6q_nxt will be filled afterwards, from 1st fragment */
q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
#ifdef notyet
q6->ip6q_nxtp = (u_char *)nxtp;
#endif
q6->ip6q_ident = ip6f->ip6f_ident;
q6->ip6q_ttl = IPV6_FRAGTTL;
q6->ip6q_src = ip6->ip6_src;
q6->ip6q_dst = ip6->ip6_dst;
q6->ip6q_ecn =
(ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
q6->ip6q_nfrag = 0;
q6->ip6q_flags = 0;
/*
* If the first fragment has valid checksum offload
* info, the rest of fragments are eligible as well.
*/
if (csum_flags != 0) {
q6->ip6q_csum = csum;
q6->ip6q_csum_flags = csum_flags;
}
}
if (q6->ip6q_flags & IP6QF_DIRTY) {
goto dropfrag;
}
/*
* If it's the 1st fragment, record the length of the
* unfragmentable part and the next header of the fragment header.
*/
fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
if (fragoff == 0) {
q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
sizeof(struct ip6_frag);
q6->ip6q_nxt = ip6f->ip6f_nxt;
}
/*
* Check that the reassembled packet would not exceed 65535 bytes
* in size.
* If it would exceed, discard the fragment and return an ICMP error.
*/
frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
if (q6->ip6q_unfrglen >= 0) {
/* The 1st fragment has already arrived. */
if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
lck_mtx_unlock(&ip6qlock);
locked = 0;
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offset - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
m = NULL;
goto done;
}
} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
lck_mtx_unlock(&ip6qlock);
locked = 0;
icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
offset - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
m = NULL;
goto done;
}
/*
* If it's the first fragment, do the above check for each
* fragment already stored in the reassembly queue.
*/
if (fragoff == 0) {
/*
* https://tools.ietf.org/html/rfc8200#page-20
* If the first fragment does not include all headers through an
* Upper-Layer header, then that fragment should be discarded and
* an ICMP Parameter Problem, Code 3, message should be sent to
* the source of the fragment, with the Pointer field set to zero.
*/
if (!ip6_pkt_has_ulp(m)) {
lck_mtx_unlock(&ip6qlock);
locked = 0;
icmp6_error(m, ICMP6_PARAM_PROB,
ICMP6_PARAMPROB_FIRSTFRAG_INCOMP_HDR, 0);
m = NULL;
goto done;
}
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6dwn) {
af6dwn = af6->ip6af_down;
if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
IPV6_MAXPACKET) {
struct mbuf *merr = IP6_REASS_MBUF(af6);
struct ip6_hdr *ip6err;
int erroff = af6->ip6af_offset;
/* dequeue the fragment. */
frag6_deq(af6);
ip6af_free(af6);
/* adjust pointer. */
ip6err = mtod(merr, struct ip6_hdr *);
/*
* Restore source and destination addresses
* in the erroneous IPv6 header.
*/
ip6err->ip6_src = q6->ip6q_src;
ip6err->ip6_dst = q6->ip6q_dst;
frag6_save_context(merr,
erroff - sizeof(struct ip6_frag) +
offsetof(struct ip6_frag, ip6f_offlg));
MBUFQ_ENQUEUE(&diq6, merr);
}
}
}
ip6af = ip6af_alloc(M_DONTWAIT);
if (ip6af == NULL) {
goto dropfrag;
}
ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
ip6af->ip6af_off = fragoff;
ip6af->ip6af_frglen = frgpartlen;
ip6af->ip6af_offset = offset;
IP6_REASS_MBUF(ip6af) = m;
if (first_frag) {
af6 = (struct ip6asfrag *)q6;
goto insert;
}
/*
* Handle ECN by comparing this segment with the first one;
* if CE is set, do not lose CE.
* drop if CE and not-ECT are mixed for the same packet.
*/
ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
ecn0 = q6->ip6q_ecn;
if (ecn == IPTOS_ECN_CE) {
if (ecn0 == IPTOS_ECN_NOTECT) {
ip6af_free(ip6af);
goto dropfrag;
}
if (ecn0 != IPTOS_ECN_CE) {
q6->ip6q_ecn = IPTOS_ECN_CE;
}
}
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
ip6af_free(ip6af);
goto dropfrag;
}
/*
* Find a segment which begins after this one does.
*/
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6->ip6af_down) {
if (af6->ip6af_off > ip6af->ip6af_off) {
break;
}
}
/*
* As per RFC 8200 reassembly rules, we MUST drop the entire
* chain of fragments for a packet to be assembled, if we receive
* any overlapping fragments.
* https://tools.ietf.org/html/rfc8200#page-20
*
* To avoid more conditional code, just reuse frag6_freef and defer
* its call to post fragment insertion in the queue.
*/
if (af6->ip6af_up != (struct ip6asfrag *)q6) {
if (af6->ip6af_up->ip6af_off == ip6af->ip6af_off) {
if (af6->ip6af_up->ip6af_frglen != ip6af->ip6af_frglen) {
drop_fragq = TRUE;
} else {
/*
* XXX Ideally we should be comparing the entire
* packet here but for now just use off and fraglen
* to ignore a duplicate fragment.
*/
ip6af_free(ip6af);
goto dropfrag;
}
} else {
i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
- ip6af->ip6af_off;
if (i > 0) {
drop_fragq = TRUE;
}
}
}
if (af6 != (struct ip6asfrag *)q6) {
/*
* Given that we break when af6->ip6af_off > ip6af->ip6af_off,
* we shouldn't need a check for duplicate fragment here.
* For now just assert.
*/
VERIFY(af6->ip6af_off != ip6af->ip6af_off);
i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
if (i > 0) {
drop_fragq = TRUE;
}
}
/*
* If this fragment contains similar checksum offload info
* as that of the existing ones, accumulate checksum. Otherwise,
* invalidate checksum offload info for the entire datagram.
*/
if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags) {
q6->ip6q_csum += csum;
} else if (q6->ip6q_csum_flags != 0) {
q6->ip6q_csum_flags = 0;
}
insert:
/*
* Stick new segment in its place;
* check for complete reassembly.
* Move to front of packet queue, as we are
* the most recently active fragmented packet.
*/
frag6_enq(ip6af, af6->ip6af_up);
frag6_nfrags++;
q6->ip6q_nfrag++;
/*
* This holds true, when we receive overlapping fragments.
* We must silently drop all the fragments we have received
* so far.
* Also mark q6 as dirty, so as to not add any new fragments to it.
* Make sure even q6 marked dirty is kept till timer expires for
* reassembly and when that happens, silenty get rid of q6
*/
if (drop_fragq) {
struct fq6_head dfq6 = {0};
MBUFQ_INIT(&dfq6); /* for deferred frees */
q6->ip6q_flags |= IP6QF_DIRTY;
/* Purge all the fragments but do not free q6 */
frag6_purgef(q6, &dfq6, NULL);
af6 = NULL;
/* free fragments that need to be freed */
if (!MBUFQ_EMPTY(&dfq6)) {
MBUFQ_DRAIN(&dfq6);
}
VERIFY(MBUFQ_EMPTY(&dfq6));
/*
* Just in case the above logic got anything added
* to diq6, drain it.
* Please note that these mbufs are not present in the
* fragment queue and are added to diq6 for sending
* ICMPv6 error.
* Given that the current fragment was an overlapping
* fragment and the RFC requires us to not send any
* ICMPv6 errors while purging the entire queue.
* Just empty it out.
*/
if (!MBUFQ_EMPTY(&diq6)) {
MBUFQ_DRAIN(&diq6);
}
VERIFY(MBUFQ_EMPTY(&diq6));
/*
* MBUFQ_DRAIN would have drained all the mbufs
* in the fragment queue.
* This shouldn't be needed as we are returning IPPROTO_DONE
* from here but change the passed mbuf pointer to NULL.
*/
*mp = NULL;
lck_mtx_unlock(&ip6qlock);
return IPPROTO_DONE;
}
next = 0;
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = af6->ip6af_down) {
if (af6->ip6af_off != next) {
lck_mtx_unlock(&ip6qlock);
locked = 0;
m = NULL;
goto done;
}
next += af6->ip6af_frglen;
}
if (af6->ip6af_up->ip6af_mff) {
lck_mtx_unlock(&ip6qlock);
locked = 0;
m = NULL;
goto done;
}
/*
* Reassembly is complete; concatenate fragments.
*/
ip6af = q6->ip6q_down;
t = m = IP6_REASS_MBUF(ip6af);
af6 = ip6af->ip6af_down;
frag6_deq(ip6af);
while (af6 != (struct ip6asfrag *)q6) {
af6dwn = af6->ip6af_down;
frag6_deq(af6);
while (t->m_next) {
t = t->m_next;
}
t->m_next = IP6_REASS_MBUF(af6);
m_adj(t->m_next, af6->ip6af_offset);
ip6af_free(af6);
af6 = af6dwn;
}
/*
* Store partial hardware checksum info from the fragment queue;
* the receive start offset is set to 40 bytes (see code at the
* top of this routine.)
*/
if (q6->ip6q_csum_flags != 0) {
csum = q6->ip6q_csum;
ADDCARRY(csum);
m->m_pkthdr.csum_rx_val = (u_int16_t)csum;
m->m_pkthdr.csum_rx_start = sizeof(struct ip6_hdr);
m->m_pkthdr.csum_flags = q6->ip6q_csum_flags;
} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
/* loopback checksums are always OK */
m->m_pkthdr.csum_data = 0xffff;
m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
}
/* adjust offset to point where the original next header starts */
offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
ip6af_free(ip6af);
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_plen = htons((uint16_t)(next + offset - sizeof(struct ip6_hdr)));
ip6->ip6_src = q6->ip6q_src;
ip6->ip6_dst = q6->ip6q_dst;
if (q6->ip6q_ecn == IPTOS_ECN_CE) {
ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
}
nxt = q6->ip6q_nxt;
#ifdef notyet
*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
#endif
/* Delete frag6 header */
if (m->m_len >= offset + sizeof(struct ip6_frag)) {
/* This is the only possible case with !PULLDOWN_TEST */
ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
offset);
m->m_data += sizeof(struct ip6_frag);
m->m_len -= sizeof(struct ip6_frag);
} else {
/* this comes with no copy if the boundary is on cluster */
if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
frag6_remque(q6);
frag6_nfragpackets--;
frag6_nfrags -= q6->ip6q_nfrag;
ip6q_free(q6);
goto dropfrag;
}
m_adj(t, sizeof(struct ip6_frag));
m_cat(m, t);
}
/*
* Store NXT to the original.
*/
{
char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
*prvnxtp = nxt;
}
frag6_remque(q6);
frag6_nfragpackets--;
frag6_nfrags -= q6->ip6q_nfrag;
ip6q_free(q6);
if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
m_fixhdr(m);
/*
* Mark packet as reassembled
* In ICMPv6 processing, we drop certain
* NDP messages that are not expected to
* have fragment header based on recommendations
* against security vulnerability as described in
* RFC 6980.
*/
m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
}
ip6stat.ip6s_reassembled++;
/*
* Tell launch routine the next header
*/
*mp = m;
*offp = offset;
/* arm the purge timer if not already and if there's work to do */
frag6_sched_timeout();
lck_mtx_unlock(&ip6qlock);
in6_ifstat_inc(dstifp, ifs6_reass_ok);
frag6_icmp6_paramprob_error(&diq6);
VERIFY(MBUFQ_EMPTY(&diq6));
return nxt;
done:
VERIFY(m == NULL);
*mp = m;
if (!locked) {
if (frag6_nfragpackets == 0) {
frag6_icmp6_paramprob_error(&diq6);
VERIFY(MBUFQ_EMPTY(&diq6));
return IPPROTO_DONE;
}
lck_mtx_lock(&ip6qlock);
}
/* arm the purge timer if not already and if there's work to do */
frag6_sched_timeout();
lck_mtx_unlock(&ip6qlock);
frag6_icmp6_paramprob_error(&diq6);
VERIFY(MBUFQ_EMPTY(&diq6));
return IPPROTO_DONE;
dropfrag:
ip6stat.ip6s_fragdropped++;
/* arm the purge timer if not already and if there's work to do */
frag6_sched_timeout();
lck_mtx_unlock(&ip6qlock);
in6_ifstat_inc(dstifp, ifs6_reass_fail);
m_freem(m);
*mp = NULL;
frag6_icmp6_paramprob_error(&diq6);
VERIFY(MBUFQ_EMPTY(&diq6));
return IPPROTO_DONE;
}
/*
* This routine removes the enqueued frames from the passed fragment
* header and enqueues those to dfq6 which is an out-arg for the dequeued
* fragments.
* If the caller also provides diq6, this routine also enqueues the 0 offset
* fragment to that list as it potentially gets used by the caller
* to prepare the relevant ICMPv6 error message (time exceeded or
* param problem).
* It leaves the fragment header object (q6) intact.
*/
static void
frag6_purgef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
{
struct ip6asfrag *af6 = NULL;
struct ip6asfrag *down6 = NULL;
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
af6 = down6) {
struct mbuf *m = IP6_REASS_MBUF(af6);
down6 = af6->ip6af_down;
frag6_deq(af6);
/*
* If caller wants to generate ICMP time-exceeded,
* as indicated by the argument diq6, return it for
* the first fragment and add others to the fragment
* free queue.
*/
if (af6->ip6af_off == 0 && diq6 != NULL) {
struct ip6_hdr *ip6;
/* adjust pointer */
ip6 = mtod(m, struct ip6_hdr *);
/* restore source and destination addresses */
ip6->ip6_src = q6->ip6q_src;
ip6->ip6_dst = q6->ip6q_dst;
MBUFQ_ENQUEUE(diq6, m);
} else {
MBUFQ_ENQUEUE(dfq6, m);
}
ip6af_free(af6);
}
}
/*
* This routine removes the enqueued frames from the passed fragment
* header and enqueues those to dfq6 which is an out-arg for the dequeued
* fragments.
* If the caller also provides diq6, this routine also enqueues the 0 offset
* fragment to that list as it potentially gets used by the caller
* to prepare the relevant ICMPv6 error message (time exceeded or
* param problem).
* It also remove the fragment header object from the queue and frees it.
*/
static void
frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
{
frag6_purgef(q6, dfq6, diq6);
frag6_remque(q6);
frag6_nfragpackets--;
frag6_nfrags -= q6->ip6q_nfrag;
ip6q_free(q6);
}
/*
* Put an ip fragment on a reassembly chain.
* Like insque, but pointers in middle of structure.
*/
void
frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
af6->ip6af_up = up6;
af6->ip6af_down = up6->ip6af_down;
up6->ip6af_down->ip6af_up = af6;
up6->ip6af_down = af6;
}
/*
* To frag6_enq as remque is to insque.
*/
void
frag6_deq(struct ip6asfrag *af6)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
af6->ip6af_up->ip6af_down = af6->ip6af_down;
af6->ip6af_down->ip6af_up = af6->ip6af_up;
}
void
frag6_insque(struct ip6q *new, struct ip6q *old)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
new->ip6q_prev = old;
new->ip6q_next = old->ip6q_next;
old->ip6q_next->ip6q_prev = new;
old->ip6q_next = new;
}
void
frag6_remque(struct ip6q *p6)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
p6->ip6q_prev->ip6q_next = p6->ip6q_next;
p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
}
/*
* IPv6 reassembling timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
static void
frag6_timeout(void *arg)
{
#pragma unused(arg)
struct fq6_head dfq6, diq6;
struct fq6_head *diq6_tmp = NULL;
struct ip6q *q6;
MBUFQ_INIT(&dfq6); /* for deferred frees */
MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
/*
* Update coarse-grained networking timestamp (in sec.); the idea
* is to piggy-back on the timeout callout to update the counter
* returnable via net_uptime().
*/
net_update_uptime();
lck_mtx_lock(&ip6qlock);
q6 = ip6q.ip6q_next;
if (q6) {
while (q6 != &ip6q) {
--q6->ip6q_ttl;
q6 = q6->ip6q_next;
if (q6->ip6q_prev->ip6q_ttl == 0) {
ip6stat.ip6s_fragtimeout++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
/*
* Avoid sending ICMPv6 Time Exceeded for fragment headers
* that are marked dirty.
*/
diq6_tmp = (q6->ip6q_prev->ip6q_flags & IP6QF_DIRTY) ?
NULL : &diq6;
frag6_freef(q6->ip6q_prev, &dfq6, diq6_tmp);
}
}
}
/*
* If we are over the maximum number of fragments
* (due to the limit being lowered), drain off
* enough to get down to the new limit.
*/
if (ip6_maxfragpackets >= 0) {
while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets &&
ip6q.ip6q_prev) {
ip6stat.ip6s_fragoverflow++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
/*
* Avoid sending ICMPv6 Time Exceeded for fragment headers
* that are marked dirty.
*/
diq6_tmp = (ip6q.ip6q_prev->ip6q_flags & IP6QF_DIRTY) ?
NULL : &diq6;
frag6_freef(ip6q.ip6q_prev, &dfq6, diq6_tmp);
}
}
/* re-arm the purge timer if there's work to do */
frag6_timeout_run = 0;
frag6_sched_timeout();
lck_mtx_unlock(&ip6qlock);
/* free fragments that need to be freed */
if (!MBUFQ_EMPTY(&dfq6)) {
MBUFQ_DRAIN(&dfq6);
}
frag6_icmp6_timeex_error(&diq6);
VERIFY(MBUFQ_EMPTY(&dfq6));
VERIFY(MBUFQ_EMPTY(&diq6));
}
static void
frag6_sched_timeout(void)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
if (!frag6_timeout_run && frag6_nfragpackets > 0) {
frag6_timeout_run = 1;
timeout(frag6_timeout, NULL, hz);
}
}
/*
* Drain off all datagram fragments.
*/
void
frag6_drain(void)
{
struct fq6_head dfq6, diq6;
struct fq6_head *diq6_tmp = NULL;
MBUFQ_INIT(&dfq6); /* for deferred frees */
MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
lck_mtx_lock(&ip6qlock);
while (ip6q.ip6q_next != &ip6q) {
ip6stat.ip6s_fragdropped++;
/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
/*
* Avoid sending ICMPv6 Time Exceeded for fragment headers
* that are marked dirty.
*/
diq6_tmp = (ip6q.ip6q_next->ip6q_flags & IP6QF_DIRTY) ?
NULL : &diq6;
frag6_freef(ip6q.ip6q_next, &dfq6, diq6_tmp);
}
lck_mtx_unlock(&ip6qlock);
/* free fragments that need to be freed */
if (!MBUFQ_EMPTY(&dfq6)) {
MBUFQ_DRAIN(&dfq6);
}
frag6_icmp6_timeex_error(&diq6);
VERIFY(MBUFQ_EMPTY(&dfq6));
VERIFY(MBUFQ_EMPTY(&diq6));
}
static struct ip6q *
ip6q_alloc(int how)
{
struct mbuf *t;
struct ip6q *q6;
/*
* See comments in ip6q_updateparams(). Keep the count separate
* from frag6_nfragpackets since the latter represents the elements
* already in the reassembly queues.
*/
if (ip6q_limit > 0 && ip6q_count > ip6q_limit) {
return NULL;
}
t = m_get(how, MT_FTABLE);
if (t != NULL) {
atomic_add_32(&ip6q_count, 1);
q6 = mtod(t, struct ip6q *);
bzero(q6, sizeof(*q6));
} else {
q6 = NULL;
}
return q6;
}
static void
ip6q_free(struct ip6q *q6)
{
(void) m_free(dtom(q6));
atomic_add_32(&ip6q_count, -1);
}
static struct ip6asfrag *
ip6af_alloc(int how)
{
struct mbuf *t;
struct ip6asfrag *af6;
/*
* See comments in ip6q_updateparams(). Keep the count separate
* from frag6_nfrags since the latter represents the elements
* already in the reassembly queues.
*/
if (ip6af_limit > 0 && ip6af_count > ip6af_limit) {
return NULL;
}
t = m_get(how, MT_FTABLE);
if (t != NULL) {
atomic_add_32(&ip6af_count, 1);
af6 = mtod(t, struct ip6asfrag *);
bzero(af6, sizeof(*af6));
} else {
af6 = NULL;
}
return af6;
}
static void
ip6af_free(struct ip6asfrag *af6)
{
(void) m_free(dtom(af6));
atomic_add_32(&ip6af_count, -1);
}
static void
ip6q_updateparams(void)
{
LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
/*
* -1 for unlimited allocation.
*/
if (ip6_maxfragpackets < 0) {
ip6q_limit = 0;
}
if (ip6_maxfrags < 0) {
ip6af_limit = 0;
}
/*
* Positive number for specific bound.
*/
if (ip6_maxfragpackets > 0) {
ip6q_limit = ip6_maxfragpackets;
}
if (ip6_maxfrags > 0) {
ip6af_limit = ip6_maxfrags;
}
/*
* Zero specifies no further fragment queue allocation -- set the
* bound very low, but rely on implementation elsewhere to actually
* prevent allocation and reclaim current queues.
*/
if (ip6_maxfragpackets == 0) {
ip6q_limit = 1;
}
if (ip6_maxfrags == 0) {
ip6af_limit = 1;
}
/*
* Arm the purge timer if not already and if there's work to do
*/
frag6_sched_timeout();
}
static int
sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, i;
lck_mtx_lock(&ip6qlock);
i = ip6_maxfragpackets;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error || req->newptr == USER_ADDR_NULL) {
goto done;
}
/* impose bounds */
if (i < -1 || i > (nmbclusters / 4)) {
error = EINVAL;
goto done;
}
ip6_maxfragpackets = i;
ip6q_updateparams();
done:
lck_mtx_unlock(&ip6qlock);
return error;
}
static int
sysctl_maxfrags SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, i;
lck_mtx_lock(&ip6qlock);
i = ip6_maxfrags;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error || req->newptr == USER_ADDR_NULL) {
goto done;
}
/* impose bounds */
if (i < -1 || i > (nmbclusters / 4)) {
error = EINVAL;
goto done;
}
ip6_maxfrags = i;
ip6q_updateparams(); /* see if we need to arm timer */
done:
lck_mtx_unlock(&ip6qlock);
return error;
}