darling-xnu/iokit/Kernel/IOCPU.cpp
2023-05-16 21:41:14 -07:00

763 lines
18 KiB
C++

/*
* Copyright (c) 1999-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#define IOKIT_ENABLE_SHARED_PTR
extern "C" {
#include <machine/machine_routines.h>
#include <pexpert/pexpert.h>
#include <kern/cpu_number.h>
extern void kperf_kernel_configure(char *);
}
#include <IOKit/IOLib.h>
#include <IOKit/IOPlatformExpert.h>
#include <IOKit/pwr_mgt/RootDomain.h>
#include <IOKit/pwr_mgt/IOPMPrivate.h>
#include <libkern/c++/OSSharedPtr.h>
#include <IOKit/IOUserClient.h>
#include <IOKit/IOKitKeysPrivate.h>
#include <IOKit/IOCPU.h>
#include "IOKitKernelInternal.h"
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include <kern/queue.h>
#include <kern/sched_prim.h>
extern "C" void console_suspend();
extern "C" void console_resume();
extern "C" void sched_override_recommended_cores_for_sleep(void);
extern "C" void sched_restore_recommended_cores_after_sleep(void);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static IOLock *gIOCPUsLock;
static OSSharedPtr<OSArray> gIOCPUs;
static OSSharedPtr<const OSSymbol> gIOCPUStateKey;
static OSSharedPtr<OSString> gIOCPUStateNames[kIOCPUStateCount];
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#if !USE_APPLEARMSMP
void
IOCPUInitialize(void)
{
gIOCPUsLock = IOLockAlloc();
gIOCPUs = OSArray::withCapacity(1);
gIOCPUStateKey = OSSymbol::withCStringNoCopy("IOCPUState");
gIOCPUStateNames[kIOCPUStateUnregistered] =
OSString::withCStringNoCopy("Unregistered");
gIOCPUStateNames[kIOCPUStateUninitalized] =
OSString::withCStringNoCopy("Uninitalized");
gIOCPUStateNames[kIOCPUStateStopped] =
OSString::withCStringNoCopy("Stopped");
gIOCPUStateNames[kIOCPUStateRunning] =
OSString::withCStringNoCopy("Running");
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
kern_return_t
PE_cpu_start(cpu_id_t target,
vm_offset_t start_paddr, vm_offset_t arg_paddr)
{
IOCPU *targetCPU = (IOCPU *)target;
if (targetCPU == NULL) {
return KERN_FAILURE;
}
return targetCPU->startCPU(start_paddr, arg_paddr);
}
void
PE_cpu_halt(cpu_id_t target)
{
IOCPU *targetCPU = (IOCPU *)target;
targetCPU->haltCPU();
}
void
PE_cpu_signal(cpu_id_t source, cpu_id_t target)
{
IOCPU *sourceCPU = (IOCPU *)source;
IOCPU *targetCPU = (IOCPU *)target;
sourceCPU->signalCPU(targetCPU);
}
void
PE_cpu_signal_deferred(cpu_id_t source, cpu_id_t target)
{
IOCPU *sourceCPU = (IOCPU *)source;
IOCPU *targetCPU = (IOCPU *)target;
sourceCPU->signalCPUDeferred(targetCPU);
}
void
PE_cpu_signal_cancel(cpu_id_t source, cpu_id_t target)
{
IOCPU *sourceCPU = (IOCPU *)source;
IOCPU *targetCPU = (IOCPU *)target;
sourceCPU->signalCPUCancel(targetCPU);
}
void
PE_cpu_machine_init(cpu_id_t target, boolean_t bootb)
{
IOCPU *targetCPU = OSDynamicCast(IOCPU, (OSObject *)target);
if (targetCPU == NULL) {
panic("%s: invalid target CPU %p", __func__, target);
}
targetCPU->initCPU(bootb);
#if defined(__arm__) || defined(__arm64__)
if (!bootb && (targetCPU->getCPUNumber() == (UInt32)master_cpu)) {
ml_set_is_quiescing(false);
}
#endif /* defined(__arm__) || defined(__arm64__) */
}
void
PE_cpu_machine_quiesce(cpu_id_t target)
{
IOCPU *targetCPU = (IOCPU*)target;
#if defined(__arm__) || defined(__arm64__)
if (targetCPU->getCPUNumber() == (UInt32)master_cpu) {
ml_set_is_quiescing(true);
}
#endif /* defined(__arm__) || defined(__arm64__) */
targetCPU->quiesceCPU();
}
#if defined(__arm__) || defined(__arm64__)
static perfmon_interrupt_handler_func pmi_handler = NULL;
kern_return_t
PE_cpu_perfmon_interrupt_install_handler(perfmon_interrupt_handler_func handler)
{
pmi_handler = handler;
return KERN_SUCCESS;
}
void
PE_cpu_perfmon_interrupt_enable(cpu_id_t target, boolean_t enable)
{
IOCPU *targetCPU = (IOCPU*)target;
if (targetCPU == nullptr) {
return;
}
if (enable) {
targetCPU->getProvider()->registerInterrupt(1, targetCPU, (IOInterruptAction)pmi_handler, NULL);
targetCPU->getProvider()->enableInterrupt(1);
} else {
targetCPU->getProvider()->disableInterrupt(1);
}
}
#endif
#endif /* !USE_APPLEARMSMP */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#define super IOService
OSDefineMetaClassAndAbstractStructors(IOCPU, IOService);
OSMetaClassDefineReservedUnused(IOCPU, 0);
OSMetaClassDefineReservedUnused(IOCPU, 1);
OSMetaClassDefineReservedUnused(IOCPU, 2);
OSMetaClassDefineReservedUnused(IOCPU, 3);
OSMetaClassDefineReservedUnused(IOCPU, 4);
OSMetaClassDefineReservedUnused(IOCPU, 5);
OSMetaClassDefineReservedUnused(IOCPU, 6);
OSMetaClassDefineReservedUnused(IOCPU, 7);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#if !USE_APPLEARMSMP
void
IOCPUSleepKernel(void)
{
#if defined(__x86_64__)
extern IOCPU *currentShutdownTarget;
#endif
unsigned int cnt, numCPUs;
IOCPU *target;
IOCPU *bootCPU = NULL;
IOPMrootDomain *rootDomain = IOService::getPMRootDomain();
printf("IOCPUSleepKernel enter\n");
#if defined(__arm64__)
sched_override_recommended_cores_for_sleep();
#endif
rootDomain->tracePoint( kIOPMTracePointSleepPlatformActions );
IOPlatformActionsPreSleep();
rootDomain->tracePoint( kIOPMTracePointSleepCPUs );
numCPUs = gIOCPUs->getCount();
#if defined(__x86_64__)
currentShutdownTarget = NULL;
#endif
integer_t old_pri;
thread_t self = current_thread();
/*
* We need to boost this thread's priority to the maximum kernel priority to
* ensure we can urgently preempt ANY thread currently executing on the
* target CPU. Note that realtime threads have their own mechanism to eventually
* demote their priority below MAXPRI_KERNEL if they hog the CPU for too long.
*/
old_pri = thread_kern_get_pri(self);
thread_kern_set_pri(self, thread_kern_get_kernel_maxpri());
// Sleep the CPUs.
ml_set_is_quiescing(true);
cnt = numCPUs;
while (cnt--) {
target = OSDynamicCast(IOCPU, gIOCPUs->getObject(cnt));
// We make certain that the bootCPU is the last to sleep
// We'll skip it for now, and halt it after finishing the
// non-boot CPU's.
if (target->getCPUNumber() == (UInt32)master_cpu) {
bootCPU = target;
} else if (target->getCPUState() == kIOCPUStateRunning) {
#if defined(__x86_64__)
currentShutdownTarget = target;
#endif
target->haltCPU();
}
}
assert(bootCPU != NULL);
assert(cpu_number() == master_cpu);
console_suspend();
rootDomain->tracePoint( kIOPMTracePointSleepPlatformDriver );
rootDomain->stop_watchdog_timer();
/*
* Now sleep the boot CPU, including calling the kQueueQuiesce actions.
* The system sleeps here.
*/
bootCPU->haltCPU();
ml_set_is_quiescing(false);
/*
* The system is now coming back from sleep on the boot CPU.
* The kQueueActive actions have already been called.
*/
rootDomain->start_watchdog_timer();
rootDomain->tracePoint( kIOPMTracePointWakePlatformActions );
console_resume();
IOPlatformActionsPostResume();
rootDomain->tracePoint( kIOPMTracePointWakeCPUs );
// Wake the other CPUs.
for (cnt = 0; cnt < numCPUs; cnt++) {
target = OSDynamicCast(IOCPU, gIOCPUs->getObject(cnt));
// Skip the already-woken boot CPU.
if (target->getCPUNumber() != (UInt32)master_cpu) {
if (target->getCPUState() == kIOCPUStateRunning) {
panic("Spurious wakeup of cpu %u", (unsigned int)(target->getCPUNumber()));
}
if (target->getCPUState() == kIOCPUStateStopped) {
processor_start(target->getMachProcessor());
}
}
}
#if defined(__arm64__)
sched_restore_recommended_cores_after_sleep();
#endif
thread_kern_set_pri(self, old_pri);
printf("IOCPUSleepKernel exit\n");
}
static bool
is_IOCPU_disabled(void)
{
return false;
}
#else /* !USE_APPLEARMSMP */
static bool
is_IOCPU_disabled(void)
{
return true;
}
#endif /* !USE_APPLEARMSMP */
bool
IOCPU::start(IOService *provider)
{
if (is_IOCPU_disabled()) {
return false;
}
if (!super::start(provider)) {
return false;
}
_cpuGroup = gIOCPUs;
cpuNub = provider;
IOLockLock(gIOCPUsLock);
gIOCPUs->setObject(this);
IOLockUnlock(gIOCPUsLock);
// Correct the bus, cpu and timebase frequencies in the device tree.
if (gPEClockFrequencyInfo.bus_frequency_hz < 0x100000000ULL) {
OSSharedPtr<OSData> busFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.bus_clock_rate_hz, 4);
provider->setProperty("bus-frequency", busFrequency.get());
} else {
OSSharedPtr<OSData> busFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.bus_frequency_hz, 8);
provider->setProperty("bus-frequency", busFrequency.get());
}
if (gPEClockFrequencyInfo.cpu_frequency_hz < 0x100000000ULL) {
OSSharedPtr<OSData> cpuFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.cpu_clock_rate_hz, 4);
provider->setProperty("clock-frequency", cpuFrequency.get());
} else {
OSSharedPtr<OSData> cpuFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.cpu_frequency_hz, 8);
provider->setProperty("clock-frequency", cpuFrequency.get());
}
OSSharedPtr<OSData> timebaseFrequency = OSData::withBytesNoCopy((void *)&gPEClockFrequencyInfo.timebase_frequency_hz, 4);
provider->setProperty("timebase-frequency", timebaseFrequency.get());
super::setProperty("IOCPUID", getRegistryEntryID(), sizeof(uint64_t) * 8);
setCPUNumber(0);
setCPUState(kIOCPUStateUnregistered);
return true;
}
void
IOCPU::detach(IOService *provider)
{
if (is_IOCPU_disabled()) {
return;
}
super::detach(provider);
IOLockLock(gIOCPUsLock);
unsigned int index = gIOCPUs->getNextIndexOfObject(this, 0);
if (index != (unsigned int)-1) {
gIOCPUs->removeObject(index);
}
IOLockUnlock(gIOCPUsLock);
}
OSObject *
IOCPU::getProperty(const OSSymbol *aKey) const
{
if (aKey == gIOCPUStateKey) {
return gIOCPUStateNames[_cpuState].get();
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
return super::getProperty(aKey);
#pragma clang diagnostic pop
}
bool
IOCPU::setProperty(const OSSymbol *aKey, OSObject *anObject)
{
if (aKey == gIOCPUStateKey) {
return false;
}
return super::setProperty(aKey, anObject);
}
bool
IOCPU::serializeProperties(OSSerialize *serialize) const
{
bool result;
OSSharedPtr<OSDictionary> dict = dictionaryWithProperties();
if (!dict) {
return false;
}
dict->setObject(gIOCPUStateKey.get(), gIOCPUStateNames[_cpuState].get());
result = dict->serialize(serialize);
return result;
}
IOReturn
IOCPU::setProperties(OSObject *properties)
{
OSDictionary *dict = OSDynamicCast(OSDictionary, properties);
OSString *stateStr;
IOReturn result;
if (dict == NULL) {
return kIOReturnUnsupported;
}
stateStr = OSDynamicCast(OSString, dict->getObject(gIOCPUStateKey.get()));
if (stateStr != NULL) {
result = IOUserClient::clientHasPrivilege(current_task(), kIOClientPrivilegeAdministrator);
if (result != kIOReturnSuccess) {
return result;
}
if (setProperty(gIOCPUStateKey.get(), stateStr)) {
return kIOReturnSuccess;
}
return kIOReturnUnsupported;
}
return kIOReturnUnsupported;
}
void
IOCPU::signalCPU(IOCPU */*target*/)
{
}
void
IOCPU::signalCPUDeferred(IOCPU *target)
{
// Our CPU may not support deferred IPIs,
// so send a regular IPI by default
signalCPU(target);
}
void
IOCPU::signalCPUCancel(IOCPU */*target*/)
{
// Meant to cancel signals sent by
// signalCPUDeferred; unsupported
// by default
}
void
IOCPU::enableCPUTimeBase(bool /*enable*/)
{
}
UInt32
IOCPU::getCPUNumber(void)
{
return _cpuNumber;
}
void
IOCPU::setCPUNumber(UInt32 cpuNumber)
{
_cpuNumber = cpuNumber;
super::setProperty("IOCPUNumber", _cpuNumber, 32);
}
UInt32
IOCPU::getCPUState(void)
{
return _cpuState;
}
void
IOCPU::setCPUState(UInt32 cpuState)
{
if (cpuState < kIOCPUStateCount) {
_cpuState = cpuState;
}
}
OSArray *
IOCPU::getCPUGroup(void)
{
return _cpuGroup.get();
}
UInt32
IOCPU::getCPUGroupSize(void)
{
return _cpuGroup->getCount();
}
processor_t
IOCPU::getMachProcessor(void)
{
return machProcessor;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#undef super
#define super IOInterruptController
OSDefineMetaClassAndStructors(IOCPUInterruptController, IOInterruptController);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 1);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 2);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 3);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 4);
OSMetaClassDefineReservedUnused(IOCPUInterruptController, 5);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
IOReturn
IOCPUInterruptController::initCPUInterruptController(int sources)
{
return initCPUInterruptController(sources, sources);
}
IOReturn
IOCPUInterruptController::initCPUInterruptController(int sources, int cpus)
{
int cnt;
if (!super::init()) {
return kIOReturnInvalid;
}
numSources = sources;
numCPUs = cpus;
vectors = (IOInterruptVector *)IOMalloc(numSources * sizeof(IOInterruptVector));
if (vectors == NULL) {
return kIOReturnNoMemory;
}
bzero(vectors, numSources * sizeof(IOInterruptVector));
// Allocate a lock for each vector
for (cnt = 0; cnt < numSources; cnt++) {
vectors[cnt].interruptLock = IOLockAlloc();
if (vectors[cnt].interruptLock == NULL) {
for (cnt = 0; cnt < numSources; cnt++) {
if (vectors[cnt].interruptLock != NULL) {
IOLockFree(vectors[cnt].interruptLock);
}
}
return kIOReturnNoResources;
}
}
ml_set_max_cpus(numSources);
return kIOReturnSuccess;
}
void
IOCPUInterruptController::registerCPUInterruptController(void)
{
setProperty(gPlatformInterruptControllerName, kOSBooleanTrue);
registerService();
getPlatform()->registerInterruptController(gPlatformInterruptControllerName,
this);
}
void
IOCPUInterruptController::setCPUInterruptProperties(IOService *service)
{
int cnt;
OSSharedPtr<OSArray> specifier;
OSSharedPtr<OSArray> controller;
long tmpLong;
if ((service->propertyExists(gIOInterruptControllersKey)) &&
(service->propertyExists(gIOInterruptSpecifiersKey))) {
return;
}
// Create the interrupt specifer array.
specifier = OSArray::withCapacity(numSources);
for (cnt = 0; cnt < numSources; cnt++) {
tmpLong = cnt;
OSSharedPtr<OSData> tmpData = OSData::withBytes(&tmpLong, sizeof(tmpLong));
specifier->setObject(tmpData.get());
}
// Create the interrupt controller array.
controller = OSArray::withCapacity(numSources);
for (cnt = 0; cnt < numSources; cnt++) {
controller->setObject(gPlatformInterruptControllerName);
}
// Put the two arrays into the property table.
service->setProperty(gIOInterruptControllersKey, controller.get());
service->setProperty(gIOInterruptSpecifiersKey, specifier.get());
}
void
IOCPUInterruptController::enableCPUInterrupt(IOCPU *cpu)
{
IOInterruptHandler handler = OSMemberFunctionCast(
IOInterruptHandler, this, &IOCPUInterruptController::handleInterrupt);
assert(numCPUs > 0);
ml_install_interrupt_handler(cpu, cpu->getCPUNumber(), this, handler, NULL);
IOTakeLock(vectors[0].interruptLock);
++enabledCPUs;
if (enabledCPUs == numCPUs) {
IOService::cpusRunning();
thread_wakeup(this);
}
IOUnlock(vectors[0].interruptLock);
}
IOReturn
IOCPUInterruptController::registerInterrupt(IOService *nub,
int source,
void *target,
IOInterruptHandler handler,
void *refCon)
{
IOInterruptVector *vector;
// Interrupts must be enabled, as this can allocate memory.
assert(ml_get_interrupts_enabled() == TRUE);
if (source >= numSources) {
return kIOReturnNoResources;
}
vector = &vectors[source];
// Get the lock for this vector.
IOTakeLock(vector->interruptLock);
// Make sure the vector is not in use.
if (vector->interruptRegistered) {
IOUnlock(vector->interruptLock);
return kIOReturnNoResources;
}
// Fill in vector with the client's info.
vector->handler = handler;
vector->nub = nub;
vector->source = source;
vector->target = target;
vector->refCon = refCon;
// Get the vector ready. It starts hard disabled.
vector->interruptDisabledHard = 1;
vector->interruptDisabledSoft = 1;
vector->interruptRegistered = 1;
IOUnlock(vector->interruptLock);
IOTakeLock(vectors[0].interruptLock);
if (enabledCPUs != numCPUs) {
assert_wait(this, THREAD_UNINT);
IOUnlock(vectors[0].interruptLock);
thread_block(THREAD_CONTINUE_NULL);
} else {
IOUnlock(vectors[0].interruptLock);
}
return kIOReturnSuccess;
}
IOReturn
IOCPUInterruptController::getInterruptType(IOService */*nub*/,
int /*source*/,
int *interruptType)
{
if (interruptType == NULL) {
return kIOReturnBadArgument;
}
*interruptType = kIOInterruptTypeLevel;
return kIOReturnSuccess;
}
IOReturn
IOCPUInterruptController::enableInterrupt(IOService */*nub*/,
int /*source*/)
{
// ml_set_interrupts_enabled(true);
return kIOReturnSuccess;
}
IOReturn
IOCPUInterruptController::disableInterrupt(IOService */*nub*/,
int /*source*/)
{
// ml_set_interrupts_enabled(false);
return kIOReturnSuccess;
}
IOReturn
IOCPUInterruptController::causeInterrupt(IOService */*nub*/,
int /*source*/)
{
ml_cause_interrupt();
return kIOReturnSuccess;
}
IOReturn
IOCPUInterruptController::handleInterrupt(void */*refCon*/,
IOService */*nub*/,
int source)
{
IOInterruptVector *vector;
vector = &vectors[source];
if (!vector->interruptRegistered) {
return kIOReturnInvalid;
}
vector->handler(vector->target, vector->refCon,
vector->nub, vector->source);
return kIOReturnSuccess;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */