darling-xnu/iokit/Kernel/IODMACommand.cpp
2023-05-16 21:41:14 -07:00

1720 lines
48 KiB
C++

/*
* Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#define IOKIT_ENABLE_SHARED_PTR
#include <IOKit/assert.h>
#include <libkern/OSTypes.h>
#include <libkern/OSByteOrder.h>
#include <libkern/OSDebug.h>
#include <IOKit/IOReturn.h>
#include <IOKit/IOLib.h>
#include <IOKit/IODMACommand.h>
#include <IOKit/IOMapper.h>
#include <IOKit/IOMemoryDescriptor.h>
#include <IOKit/IOBufferMemoryDescriptor.h>
#include "IOKitKernelInternal.h"
#define MAPTYPE(type) ((UInt) (type) & kTypeMask)
#define IS_NONCOHERENT(type) (MAPTYPE(type) == kNonCoherent)
enum{
kWalkSyncIn = 0x01,// bounce -> md
kWalkSyncOut = 0x02,// bounce <- md
kWalkSyncAlways = 0x04,
kWalkPreflight = 0x08,
kWalkDoubleBuffer = 0x10,
kWalkPrepare = 0x20,
kWalkComplete = 0x40,
kWalkClient = 0x80
};
#define fInternalState reserved
#define fState reserved->fState
#define fMDSummary reserved->fMDSummary
#if 1
// no direction => OutIn
#define SHOULD_COPY_DIR(op, direction) \
((kIODirectionNone == (direction)) \
|| (kWalkSyncAlways & (op)) \
|| (((kWalkSyncIn & (op)) ? kIODirectionIn : kIODirectionOut) \
& (direction)))
#else
#define SHOULD_COPY_DIR(state, direction) (true)
#endif
#if 0
#define DEBG(fmt, args...) { IOLog(fmt, ## args); kprintf(fmt, ## args); }
#else
#define DEBG(fmt, args...) {}
#endif
#if 0
#define LOGTAG 0x87654321
#endif
/**************************** class IODMACommand ***************************/
#undef super
#define super IOCommand
OSDefineMetaClassAndStructorsWithZone(IODMACommand, IOCommand, ZC_NONE);
OSMetaClassDefineReservedUsedX86(IODMACommand, 0);
OSMetaClassDefineReservedUsedX86(IODMACommand, 1);
OSMetaClassDefineReservedUsedX86(IODMACommand, 2);
OSMetaClassDefineReservedUsedX86(IODMACommand, 3);
OSMetaClassDefineReservedUsedX86(IODMACommand, 4);
OSMetaClassDefineReservedUsedX86(IODMACommand, 5);
OSMetaClassDefineReservedUsedX86(IODMACommand, 6);
OSMetaClassDefineReservedUnused(IODMACommand, 7);
OSMetaClassDefineReservedUnused(IODMACommand, 8);
OSMetaClassDefineReservedUnused(IODMACommand, 9);
OSMetaClassDefineReservedUnused(IODMACommand, 10);
OSMetaClassDefineReservedUnused(IODMACommand, 11);
OSMetaClassDefineReservedUnused(IODMACommand, 12);
OSMetaClassDefineReservedUnused(IODMACommand, 13);
OSMetaClassDefineReservedUnused(IODMACommand, 14);
OSMetaClassDefineReservedUnused(IODMACommand, 15);
OSSharedPtr<IODMACommand>
IODMACommand::withRefCon(void * refCon)
{
OSSharedPtr<IODMACommand> me = OSMakeShared<IODMACommand>();
if (me && !me->initWithRefCon(refCon)) {
return nullptr;
}
return me;
}
OSSharedPtr<IODMACommand>
IODMACommand::withSpecification(SegmentFunction outSegFunc,
const SegmentOptions * segmentOptions,
uint32_t mappingOptions,
IOMapper * mapper,
void * refCon)
{
OSSharedPtr<IODMACommand> me = OSMakeShared<IODMACommand>();
if (me && !me->initWithSpecification(outSegFunc, segmentOptions, mappingOptions,
mapper, refCon)) {
return nullptr;
}
return me;
}
OSSharedPtr<IODMACommand>
IODMACommand::withSpecification(SegmentFunction outSegFunc,
UInt8 numAddressBits,
UInt64 maxSegmentSize,
MappingOptions mappingOptions,
UInt64 maxTransferSize,
UInt32 alignment,
IOMapper *mapper,
void *refCon)
{
OSSharedPtr<IODMACommand> me = OSMakeShared<IODMACommand>();
if (me && !me->initWithSpecification(outSegFunc,
numAddressBits, maxSegmentSize,
mappingOptions, maxTransferSize,
alignment, mapper, refCon)) {
return nullptr;
}
return me;
}
OSSharedPtr<IODMACommand>
IODMACommand::cloneCommand(void *refCon)
{
SegmentOptions segmentOptions =
{
.fStructSize = sizeof(segmentOptions),
.fNumAddressBits = (uint8_t)fNumAddressBits,
.fMaxSegmentSize = fMaxSegmentSize,
.fMaxTransferSize = fMaxTransferSize,
.fAlignment = fAlignMask + 1,
.fAlignmentLength = fAlignMaskInternalSegments + 1,
.fAlignmentInternalSegments = fAlignMaskLength + 1
};
return IODMACommand::withSpecification(fOutSeg, &segmentOptions,
fMappingOptions, fMapper.get(), refCon);
}
#define kLastOutputFunction ((SegmentFunction) kLastOutputFunction)
bool
IODMACommand::initWithRefCon(void * refCon)
{
if (!super::init()) {
return false;
}
if (!reserved) {
reserved = IONew(IODMACommandInternal, 1);
if (!reserved) {
return false;
}
}
bzero(reserved, sizeof(IODMACommandInternal));
fRefCon = refCon;
return true;
}
bool
IODMACommand::initWithSpecification(SegmentFunction outSegFunc,
const SegmentOptions * segmentOptions,
uint32_t mappingOptions,
IOMapper * mapper,
void * refCon)
{
if (!initWithRefCon(refCon)) {
return false;
}
if (kIOReturnSuccess != setSpecification(outSegFunc, segmentOptions,
mappingOptions, mapper)) {
return false;
}
return true;
}
bool
IODMACommand::initWithSpecification(SegmentFunction outSegFunc,
UInt8 numAddressBits,
UInt64 maxSegmentSize,
MappingOptions mappingOptions,
UInt64 maxTransferSize,
UInt32 alignment,
IOMapper *mapper,
void *refCon)
{
SegmentOptions segmentOptions =
{
.fStructSize = sizeof(segmentOptions),
.fNumAddressBits = numAddressBits,
.fMaxSegmentSize = maxSegmentSize,
.fMaxTransferSize = maxTransferSize,
.fAlignment = alignment,
.fAlignmentLength = 1,
.fAlignmentInternalSegments = alignment
};
return initWithSpecification(outSegFunc, &segmentOptions, mappingOptions, mapper, refCon);
}
IOReturn
IODMACommand::setSpecification(SegmentFunction outSegFunc,
const SegmentOptions * segmentOptions,
uint32_t mappingOptions,
IOMapper * mapper)
{
IOService * device = NULL;
UInt8 numAddressBits;
UInt64 maxSegmentSize;
UInt64 maxTransferSize;
UInt32 alignment;
bool is32Bit;
if (!outSegFunc || !segmentOptions) {
return kIOReturnBadArgument;
}
is32Bit = ((OutputHost32 == outSegFunc)
|| (OutputBig32 == outSegFunc)
|| (OutputLittle32 == outSegFunc));
numAddressBits = segmentOptions->fNumAddressBits;
maxSegmentSize = segmentOptions->fMaxSegmentSize;
maxTransferSize = segmentOptions->fMaxTransferSize;
alignment = segmentOptions->fAlignment;
if (is32Bit) {
if (!numAddressBits) {
numAddressBits = 32;
} else if (numAddressBits > 32) {
return kIOReturnBadArgument; // Wrong output function for bits
}
}
if (numAddressBits && (numAddressBits < PAGE_SHIFT)) {
return kIOReturnBadArgument;
}
if (!maxSegmentSize) {
maxSegmentSize--; // Set Max segment to -1
}
if (!maxTransferSize) {
maxTransferSize--; // Set Max transfer to -1
}
if (mapper && !OSDynamicCast(IOMapper, mapper)) {
device = mapper;
mapper = NULL;
}
if (!mapper && (kUnmapped != MAPTYPE(mappingOptions))) {
IOMapper::checkForSystemMapper();
mapper = IOMapper::gSystem;
}
fNumSegments = 0;
fOutSeg = outSegFunc;
fNumAddressBits = numAddressBits;
fMaxSegmentSize = maxSegmentSize;
fMappingOptions = mappingOptions;
fMaxTransferSize = maxTransferSize;
if (!alignment) {
alignment = 1;
}
fAlignMask = alignment - 1;
alignment = segmentOptions->fAlignmentLength;
if (!alignment) {
alignment = 1;
}
fAlignMaskLength = alignment - 1;
alignment = segmentOptions->fAlignmentInternalSegments;
if (!alignment) {
alignment = (fAlignMask + 1);
}
fAlignMaskInternalSegments = alignment - 1;
switch (MAPTYPE(mappingOptions)) {
case kMapped: break;
case kUnmapped: break;
case kNonCoherent: break;
case kBypassed:
if (!mapper) {
break;
}
return kIOReturnBadArgument;
default:
return kIOReturnBadArgument;
}
;
if (mapper != fMapper) {
fMapper.reset(mapper, OSRetain);
}
fInternalState->fIterateOnly = (0 != (kIterateOnly & mappingOptions));
fInternalState->fDevice = device;
return kIOReturnSuccess;
}
void
IODMACommand::free()
{
if (reserved) {
IODelete(reserved, IODMACommandInternal, 1);
}
fMapper.reset();
// Correct use of this class when setting an IOMemoryDescriptor
// in fMemory via setMemoryDescriptor(desc) is, for the caller, to
// have a matching call to clearMemoryDescriptor() before releasing
// the object. The matching call has also the effect of releasing
// the ref taken on the IOMemoryDescriptor in setMemoryDescriptor().
//
// A number of "misbehaving" drivers has been found during testing,
// whereby a matching call to clearMemoryDescriptor() is missing:
//
// rdar://59947343
// rdar://59946968
//
// Both the approaches taken in said drivers are wrong, but have gone
// basically silent with fMemory being a regular pointer. With fMemory
// becoming a OSSharedPtr, the IODMACommand destructor expects to find
// either fMemory reset (through the call to clearMemoryDescriptor()) or
// a reference hold for the release.
//
// For this reason, this workaround of detaching fMemory is put in
// place here, choosing the leak over the panic for misbehaving
// drivers. Once all instances are fixed, this workaround will be
// removed.
//
// Note: all well behaving drivers that have matching calls for
// setMemoryDescriptor() and clearMemoryDescriptor() are unaffected
// since fMemory will be null at this point.
fMemory.detach();
super::free();
}
IOReturn
IODMACommand::setMemoryDescriptor(const IOMemoryDescriptor *mem, bool autoPrepare)
{
IOReturn err = kIOReturnSuccess;
if (mem == fMemory) {
if (!autoPrepare) {
while (fActive) {
complete();
}
}
return kIOReturnSuccess;
}
if (fMemory) {
// As we are almost certainly being called from a work loop thread
// if fActive is true it is probably not a good time to potentially
// block. Just test for it and return an error
if (fActive) {
return kIOReturnBusy;
}
clearMemoryDescriptor();
}
if (mem) {
bzero(&fMDSummary, sizeof(fMDSummary));
err = mem->dmaCommandOperation(kIOMDGetCharacteristics | (kMapped == MAPTYPE(fMappingOptions)),
&fMDSummary, sizeof(fMDSummary));
if (err) {
return err;
}
ppnum_t highPage = fMDSummary.fHighestPage ? fMDSummary.fHighestPage : gIOLastPage;
if ((kMapped == MAPTYPE(fMappingOptions))
&& fMapper) {
fInternalState->fCheckAddressing = false;
} else {
fInternalState->fCheckAddressing = (fNumAddressBits && (highPage >= (1UL << (fNumAddressBits - PAGE_SHIFT))));
}
fInternalState->fNewMD = true;
fMemory.reset(const_cast<IOMemoryDescriptor *>(mem), OSRetain);
fInternalState->fSetActiveNoMapper = (!fMapper);
if (fInternalState->fSetActiveNoMapper) {
mem->dmaCommandOperation(kIOMDSetDMAActive, this, 0);
}
if (autoPrepare) {
err = prepare();
if (err) {
clearMemoryDescriptor();
}
}
}
return err;
}
IOReturn
IODMACommand::clearMemoryDescriptor(bool autoComplete)
{
if (fActive && !autoComplete) {
return kIOReturnNotReady;
}
if (fMemory) {
while (fActive) {
complete();
}
if (fInternalState->fSetActiveNoMapper) {
fMemory->dmaCommandOperation(kIOMDSetDMAInactive, this, 0);
}
fMemory.reset();
}
return kIOReturnSuccess;
}
const IOMemoryDescriptor *
IODMACommand::getMemoryDescriptor() const
{
return fMemory.get();
}
IOMemoryDescriptor *
IODMACommand::getIOMemoryDescriptor() const
{
OSSharedPtr<IOMemoryDescriptor> mem;
mem = reserved->fCopyMD;
if (!mem) {
mem = fMemory;
}
return mem.get();
}
IOReturn
IODMACommand::segmentOp(
void *reference,
IODMACommand *target,
Segment64 segment,
void *segments,
UInt32 segmentIndex)
{
IOOptionBits op = (IOOptionBits)(uintptr_t) reference;
addr64_t maxPhys, address;
uint64_t length;
uint32_t numPages;
uint32_t mask;
IODMACommandInternal * state = target->reserved;
if (target->fNumAddressBits && (target->fNumAddressBits < 64) && (state->fLocalMapperAllocValid || !target->fMapper)) {
maxPhys = (1ULL << target->fNumAddressBits);
} else {
maxPhys = 0;
}
maxPhys--;
address = segment.fIOVMAddr;
length = segment.fLength;
assert(length);
if (!state->fMisaligned) {
mask = (segmentIndex ? target->fAlignMaskInternalSegments : state->fSourceAlignMask);
state->fMisaligned |= (0 != (mask & address));
if (state->fMisaligned) {
DEBG("misaligned address %qx:%qx, %x\n", address, length, mask);
}
}
if (!state->fMisaligned) {
mask = target->fAlignMaskLength;
state->fMisaligned |= (0 != (mask & length));
if (state->fMisaligned) {
DEBG("misaligned length %qx:%qx, %x\n", address, length, mask);
}
}
if (state->fMisaligned && (kWalkPreflight & op)) {
return kIOReturnNotAligned;
}
if (!state->fDoubleBuffer) {
if ((address + length - 1) <= maxPhys) {
length = 0;
} else if (address <= maxPhys) {
DEBG("tail %qx, %qx", address, length);
length = (address + length - maxPhys - 1);
address = maxPhys + 1;
DEBG("-> %qx, %qx\n", address, length);
}
}
if (!length) {
return kIOReturnSuccess;
}
uint64_t numPages64 = atop_64(round_page_64((address & PAGE_MASK) + length));
if (numPages64 > UINT_MAX) {
return kIOReturnVMError;
}
numPages = (typeof(numPages))numPages64;
if (kWalkPreflight & op) {
state->fCopyPageCount += numPages;
} else {
vm_page_t lastPage;
lastPage = NULL;
if (kWalkPrepare & op) {
lastPage = state->fCopyNext;
for (IOItemCount idx = 0; idx < numPages; idx++) {
vm_page_set_offset(lastPage, atop_64(address) + idx);
lastPage = vm_page_get_next(lastPage);
}
}
if (!lastPage || SHOULD_COPY_DIR(op, target->fMDSummary.fDirection)) {
lastPage = state->fCopyNext;
for (IOItemCount idx = 0; idx < numPages; idx++) {
if (SHOULD_COPY_DIR(op, target->fMDSummary.fDirection)) {
addr64_t cpuAddr = address;
addr64_t remapAddr;
uint64_t chunk;
if ((kMapped == MAPTYPE(target->fMappingOptions))
&& target->fMapper) {
cpuAddr = target->fMapper->mapToPhysicalAddress(address);
}
remapAddr = ptoa_64(vm_page_get_phys_page(lastPage));
if (!state->fDoubleBuffer) {
remapAddr += (address & PAGE_MASK);
}
chunk = PAGE_SIZE - (address & PAGE_MASK);
if (chunk > length) {
chunk = length;
}
if (chunk > (UINT_MAX - PAGE_SIZE + 1)) {
chunk = (UINT_MAX - PAGE_SIZE + 1);
}
DEBG("cpv: 0x%qx %s 0x%qx, 0x%qx, 0x%02lx\n", remapAddr,
(kWalkSyncIn & op) ? "->" : "<-",
address, chunk, op);
if (kWalkSyncIn & op) { // cppvNoModSnk
copypv(remapAddr, cpuAddr, (unsigned int) chunk,
cppvPsnk | cppvFsnk | cppvPsrc | cppvNoRefSrc );
} else {
copypv(cpuAddr, remapAddr, (unsigned int) chunk,
cppvPsnk | cppvFsnk | cppvPsrc | cppvNoRefSrc );
}
address += chunk;
length -= chunk;
}
lastPage = vm_page_get_next(lastPage);
}
}
state->fCopyNext = lastPage;
}
return kIOReturnSuccess;
}
OSSharedPtr<IOBufferMemoryDescriptor>
IODMACommand::createCopyBuffer(IODirection direction, UInt64 length)
{
mach_vm_address_t mask = 0xFFFFF000; //state->fSourceAlignMask
return IOBufferMemoryDescriptor::inTaskWithPhysicalMask(kernel_task,
direction, length, mask);
}
IOReturn
IODMACommand::walkAll(uint32_t op)
{
IODMACommandInternal * state = fInternalState;
IOReturn ret = kIOReturnSuccess;
UInt32 numSegments;
UInt64 offset;
if (kWalkPreflight & op) {
state->fMisaligned = false;
state->fDoubleBuffer = false;
state->fPrepared = false;
state->fCopyNext = NULL;
state->fCopyPageAlloc = NULL;
state->fCopyPageCount = 0;
state->fNextRemapPage = NULL;
state->fCopyMD = NULL;
if (!(kWalkDoubleBuffer & op)) {
offset = 0;
numSegments = 0 - 1;
ret = genIOVMSegments(op, segmentOp, (void *)(uintptr_t) op, &offset, state, &numSegments);
}
op &= ~kWalkPreflight;
state->fDoubleBuffer = (state->fMisaligned || state->fForceDoubleBuffer);
state->fForceDoubleBuffer = false;
if (state->fDoubleBuffer) {
state->fCopyPageCount = (typeof(state->fCopyPageCount))(atop_64(round_page(state->fPreparedLength)));
}
if (state->fCopyPageCount) {
vm_page_t mapBase = NULL;
DEBG("preflight fCopyPageCount %d\n", state->fCopyPageCount);
if (!fMapper && !state->fDoubleBuffer) {
kern_return_t kr;
if (fMapper) {
panic("fMapper copying");
}
kr = vm_page_alloc_list(state->fCopyPageCount,
(kma_flags_t)(KMA_LOMEM | KMA_NOPAGEWAIT), &mapBase);
if (KERN_SUCCESS != kr) {
DEBG("vm_page_alloc_list(%d) failed (%d)\n", state->fCopyPageCount, kr);
mapBase = NULL;
}
}
if (mapBase) {
state->fCopyPageAlloc = mapBase;
state->fCopyNext = state->fCopyPageAlloc;
offset = 0;
numSegments = 0 - 1;
ret = genIOVMSegments(op, segmentOp, (void *)(uintptr_t) op, &offset, state, &numSegments);
state->fPrepared = true;
op &= ~(kWalkSyncIn | kWalkSyncOut);
} else {
DEBG("alloc IOBMD\n");
state->fCopyMD = createCopyBuffer(fMDSummary.fDirection, state->fPreparedLength);
if (state->fCopyMD) {
ret = kIOReturnSuccess;
state->fPrepared = true;
} else {
DEBG("IODMACommand !alloc IOBMD");
return kIOReturnNoResources;
}
}
}
}
if (state->fPrepared && ((kWalkSyncIn | kWalkSyncOut) & op)) {
if (state->fCopyPageCount) {
DEBG("sync fCopyPageCount %d\n", state->fCopyPageCount);
if (state->fCopyPageAlloc) {
state->fCopyNext = state->fCopyPageAlloc;
offset = 0;
numSegments = 0 - 1;
ret = genIOVMSegments(op, segmentOp, (void *)(uintptr_t) op, &offset, state, &numSegments);
} else if (state->fCopyMD) {
DEBG("sync IOBMD\n");
if (SHOULD_COPY_DIR(op, fMDSummary.fDirection)) {
OSSharedPtr<IOMemoryDescriptor> poMD = fMemory;
IOByteCount bytes;
if (kWalkSyncIn & op) {
bytes = poMD->writeBytes(state->fPreparedOffset,
state->fCopyMD->getBytesNoCopy(),
state->fPreparedLength);
} else {
bytes = poMD->readBytes(state->fPreparedOffset,
state->fCopyMD->getBytesNoCopy(),
state->fPreparedLength);
}
DEBG("fCopyMD %s %lx bytes\n", (kWalkSyncIn & op) ? "wrote" : "read", bytes);
ret = (bytes == state->fPreparedLength) ? kIOReturnSuccess : kIOReturnUnderrun;
} else {
ret = kIOReturnSuccess;
}
}
}
}
if (kWalkComplete & op) {
if (state->fCopyPageAlloc) {
vm_page_free_list(state->fCopyPageAlloc, FALSE);
state->fCopyPageAlloc = NULL;
state->fCopyPageCount = 0;
}
if (state->fCopyMD) {
state->fCopyMD.reset();
}
state->fPrepared = false;
}
return ret;
}
UInt8
IODMACommand::getNumAddressBits(void)
{
return (UInt8) fNumAddressBits;
}
UInt32
IODMACommand::getAlignment(void)
{
return fAlignMask + 1;
}
uint32_t
IODMACommand::getAlignmentLength(void)
{
return fAlignMaskLength + 1;
}
uint32_t
IODMACommand::getAlignmentInternalSegments(void)
{
return fAlignMaskInternalSegments + 1;
}
IOReturn
IODMACommand::prepareWithSpecification(SegmentFunction outSegFunc,
const SegmentOptions * segmentOptions,
uint32_t mappingOptions,
IOMapper * mapper,
UInt64 offset,
UInt64 length,
bool flushCache,
bool synchronize)
{
IOReturn ret;
if (fActive) {
return kIOReturnNotPermitted;
}
ret = setSpecification(outSegFunc, segmentOptions, mappingOptions, mapper);
if (kIOReturnSuccess != ret) {
return ret;
}
ret = prepare(offset, length, flushCache, synchronize);
return ret;
}
IOReturn
IODMACommand::prepareWithSpecification(SegmentFunction outSegFunc,
UInt8 numAddressBits,
UInt64 maxSegmentSize,
MappingOptions mappingOptions,
UInt64 maxTransferSize,
UInt32 alignment,
IOMapper *mapper,
UInt64 offset,
UInt64 length,
bool flushCache,
bool synchronize)
{
SegmentOptions segmentOptions =
{
.fStructSize = sizeof(segmentOptions),
.fNumAddressBits = numAddressBits,
.fMaxSegmentSize = maxSegmentSize,
.fMaxTransferSize = maxTransferSize,
.fAlignment = alignment,
.fAlignmentLength = 1,
.fAlignmentInternalSegments = alignment
};
return prepareWithSpecification(outSegFunc, &segmentOptions, mappingOptions, mapper,
offset, length, flushCache, synchronize);
}
IOReturn
IODMACommand::prepare(UInt64 offset, UInt64 length, bool flushCache, bool synchronize)
{
IODMACommandInternal * state = fInternalState;
IOReturn ret = kIOReturnSuccess;
uint32_t mappingOptions = fMappingOptions;
// check specification has been set
if (!fOutSeg) {
return kIOReturnNotReady;
}
if (!length) {
length = fMDSummary.fLength;
}
if (length > fMaxTransferSize) {
return kIOReturnNoSpace;
}
if (fActive++) {
if ((state->fPreparedOffset != offset)
|| (state->fPreparedLength != length)) {
ret = kIOReturnNotReady;
}
} else {
if (fAlignMaskLength & length) {
return kIOReturnNotAligned;
}
if (atop_64(state->fPreparedLength) > UINT_MAX) {
return kIOReturnVMError;
}
state->fPreparedOffset = offset;
state->fPreparedLength = length;
state->fMisaligned = false;
state->fDoubleBuffer = false;
state->fPrepared = false;
state->fCopyNext = NULL;
state->fCopyPageAlloc = NULL;
state->fCopyPageCount = 0;
state->fNextRemapPage = NULL;
state->fCopyMD = NULL;
state->fLocalMapperAlloc = 0;
state->fLocalMapperAllocValid = false;
state->fLocalMapperAllocLength = 0;
state->fSourceAlignMask = fAlignMask;
if (fMapper) {
state->fSourceAlignMask &= page_mask;
}
state->fCursor = state->fIterateOnly
|| (!state->fCheckAddressing
&& (!state->fSourceAlignMask
|| ((fMDSummary.fPageAlign & (1 << 31)) && (0 == (fMDSummary.fPageAlign & state->fSourceAlignMask)))));
if (!state->fCursor) {
IOOptionBits op = kWalkPrepare | kWalkPreflight;
if (synchronize) {
op |= kWalkSyncOut;
}
ret = walkAll(op);
}
if (IS_NONCOHERENT(mappingOptions) && flushCache) {
if (state->fCopyMD) {
state->fCopyMD->performOperation(kIOMemoryIncoherentIOStore, 0, length);
} else {
fMemory->performOperation(kIOMemoryIncoherentIOStore, offset, length);
}
}
if (fMapper) {
IOMDDMAMapArgs mapArgs;
bzero(&mapArgs, sizeof(mapArgs));
mapArgs.fMapper = fMapper.get();
mapArgs.fCommand = this;
mapArgs.fMapSpec.device = state->fDevice;
mapArgs.fMapSpec.alignment = fAlignMask + 1;
mapArgs.fMapSpec.numAddressBits = fNumAddressBits ? ((UInt8) fNumAddressBits) : 64;
mapArgs.fLength = state->fPreparedLength;
OSSharedPtr<IOMemoryDescriptor> md = state->fCopyMD;
if (md) {
mapArgs.fOffset = 0;
} else {
md = fMemory;
mapArgs.fOffset = state->fPreparedOffset;
}
ret = md->dmaCommandOperation(kIOMDDMAMap, &mapArgs, sizeof(mapArgs));
if ((kIOReturnSuccess == ret)
&& mapArgs.fAllocLength
&& (mapArgs.fAllocLength != mapArgs.fLength)) {
do {
// multisegment case
IOMDDMAWalkSegmentState walkState;
IOMDDMAWalkSegmentArgs * walkArgs = (IOMDDMAWalkSegmentArgs *) (void *)&walkState;
IOOptionBits mdOp;
uint64_t index;
IOPhysicalLength segLen;
uint32_t segCount;
uint64_t phys, align;
uint64_t mapperPageMask;
uint64_t mapperPageShift;
uint64_t insertOffset;
uint32_t mapOptions;
uint64_t length;
assert(mapArgs.fAllocLength > mapArgs.fLength);
mapperPageMask = fMapper->getPageSize();
assert(mapperPageMask);
mapperPageMask -= 1;
mapperPageShift = (64 - __builtin_clzll(mapperPageMask));
walkArgs->fMapped = false;
length = state->fPreparedLength;
mdOp = kIOMDFirstSegment;
segCount = 0;
for (index = 0; index < length; segCount++) {
walkArgs->fOffset = state->fPreparedOffset + index;
ret = md->dmaCommandOperation(mdOp, &walkState, sizeof(walkState));
mdOp = kIOMDWalkSegments;
assert(kIOReturnSuccess == ret);
if (ret != kIOReturnSuccess) {
panic("dmaCommandOperation");
}
segLen = walkArgs->fLength;
index += segLen;
}
if (ret != kIOReturnSuccess) {
break;
}
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("DMA[%p] alloc 0x%qx, 0x%qx\n", this, mapArgs.fAlloc, mapArgs.fAllocLength);
}
#endif /* defined(LOGTAG) */
state->fMapSegments = IONewZero(IODMACommandMapSegment, segCount);
if (!state->fMapSegments) {
ret = kIOReturnNoMemory;
break;
}
state->fMapSegmentsCount = segCount;
switch (kIODirectionOutIn & fMDSummary.fDirection) {
case kIODirectionOut:
mapOptions = kIODMAMapReadAccess;
break;
case kIODirectionIn:
mapOptions = kIODMAMapWriteAccess;
break;
default:
mapOptions = kIODMAMapReadAccess | kIODMAMapWriteAccess;
break;
}
mdOp = kIOMDFirstSegment;
segCount = 0;
for (insertOffset = 0, index = 0; index < length; segCount++) {
walkArgs->fOffset = state->fPreparedOffset + index;
ret = md->dmaCommandOperation(mdOp, &walkState, sizeof(walkState));
mdOp = kIOMDWalkSegments;
if (ret != kIOReturnSuccess) {
panic("dmaCommandOperation 0x%x", ret);
}
phys = walkArgs->fIOVMAddr;
segLen = walkArgs->fLength;
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("DMA[%p] phys[%d] 0x%qx, 0x%qx\n", this, segCount, (uint64_t) phys, (uint64_t) segLen);
}
#endif /* defined(LOGTAG) */
align = (phys & mapperPageMask);
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("DMA[%p] runs[%d] dmaoff 0x%qx, mapoff 0x%qx, align 0x%qx\n", this, segCount, index, insertOffset, align);
}
#endif /* defined(LOGTAG) */
assert(segCount < state->fMapSegmentsCount);
state->fMapSegments[segCount].fDMAOffset = state->fPreparedOffset + index;
state->fMapSegments[segCount].fMapOffset = insertOffset;
state->fMapSegments[segCount].fPageOffset = align;
index += segLen;
// segment page align
segLen = ((phys + segLen + mapperPageMask) & ~mapperPageMask);
phys -= align;
segLen -= phys;
insertOffset += segLen;
}
state->fLocalMapperAllocBase = (mapArgs.fAlloc & ~mapperPageMask);
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("IODMACommand fMapSegmentsCount %d\n", state->fMapSegmentsCount);
}
#endif /* defined(LOGTAG) */
} while (false);
}
if (kIOReturnSuccess == ret) {
state->fLocalMapperAlloc = mapArgs.fAlloc;
state->fLocalMapperAllocValid = true;
state->fLocalMapperAllocLength = mapArgs.fAllocLength;
}
}
if (kIOReturnSuccess == ret) {
state->fPrepared = true;
}
}
return ret;
}
IOReturn
IODMACommand::complete(bool invalidateCache, bool synchronize)
{
IODMACommandInternal * state = fInternalState;
IOReturn ret = kIOReturnSuccess;
OSSharedPtr<IOMemoryDescriptor> copyMD;
if (fActive < 1) {
return kIOReturnNotReady;
}
if (!--fActive) {
copyMD = state->fCopyMD;
if (IS_NONCOHERENT(fMappingOptions) && invalidateCache) {
if (copyMD) {
copyMD->performOperation(kIOMemoryIncoherentIOFlush, 0, state->fPreparedLength);
} else {
OSSharedPtr<IOMemoryDescriptor> md = fMemory;
md->performOperation(kIOMemoryIncoherentIOFlush, state->fPreparedOffset, state->fPreparedLength);
}
}
if (!state->fCursor) {
IOOptionBits op = kWalkComplete;
if (synchronize) {
op |= kWalkSyncIn;
}
ret = walkAll(op);
}
if (state->fLocalMapperAllocValid) {
IOMDDMAMapArgs mapArgs;
bzero(&mapArgs, sizeof(mapArgs));
mapArgs.fMapper = fMapper.get();
mapArgs.fCommand = this;
mapArgs.fAlloc = state->fLocalMapperAlloc;
mapArgs.fAllocLength = state->fLocalMapperAllocLength;
OSSharedPtr<IOMemoryDescriptor> md = copyMD;
if (md) {
mapArgs.fOffset = 0;
} else {
md = fMemory;
mapArgs.fOffset = state->fPreparedOffset;
}
ret = md->dmaCommandOperation(kIOMDDMAUnmap, &mapArgs, sizeof(mapArgs));
state->fLocalMapperAlloc = 0;
state->fLocalMapperAllocValid = false;
state->fLocalMapperAllocLength = 0;
if (state->fMapSegments) {
IODelete(state->fMapSegments, IODMACommandMapSegment, state->fMapSegmentsCount);
state->fMapSegments = NULL;
state->fMapSegmentsCount = 0;
}
}
state->fPrepared = false;
}
return ret;
}
IOReturn
IODMACommand::getPreparedOffsetAndLength(UInt64 * offset, UInt64 * length)
{
IODMACommandInternal * state = fInternalState;
if (fActive < 1) {
return kIOReturnNotReady;
}
if (offset) {
*offset = state->fPreparedOffset;
}
if (length) {
*length = state->fPreparedLength;
}
return kIOReturnSuccess;
}
IOReturn
IODMACommand::synchronize(IOOptionBits options)
{
IODMACommandInternal * state = fInternalState;
IOReturn ret = kIOReturnSuccess;
IOOptionBits op;
if (kIODirectionOutIn == (kIODirectionOutIn & options)) {
return kIOReturnBadArgument;
}
if (fActive < 1) {
return kIOReturnNotReady;
}
op = 0;
if (kForceDoubleBuffer & options) {
if (state->fDoubleBuffer) {
return kIOReturnSuccess;
}
ret = complete(false /* invalidateCache */, true /* synchronize */);
state->fCursor = false;
state->fForceDoubleBuffer = true;
ret = prepare(state->fPreparedOffset, state->fPreparedLength, false /* flushCache */, true /* synchronize */);
return ret;
} else if (state->fCursor) {
return kIOReturnSuccess;
}
if (kIODirectionIn & options) {
op |= kWalkSyncIn | kWalkSyncAlways;
} else if (kIODirectionOut & options) {
op |= kWalkSyncOut | kWalkSyncAlways;
}
ret = walkAll(op);
return ret;
}
struct IODMACommandTransferContext {
void * buffer;
UInt64 bufferOffset;
UInt64 remaining;
UInt32 op;
};
enum{
kIODMACommandTransferOpReadBytes = 1,
kIODMACommandTransferOpWriteBytes = 2
};
IOReturn
IODMACommand::transferSegment(void *reference,
IODMACommand *target,
Segment64 segment,
void *segments,
UInt32 segmentIndex)
{
IODMACommandTransferContext * context = (IODMACommandTransferContext *) reference;
UInt64 length = min(segment.fLength, context->remaining);
addr64_t ioAddr = segment.fIOVMAddr;
addr64_t cpuAddr = ioAddr;
context->remaining -= length;
while (length) {
UInt64 copyLen = length;
if ((kMapped == MAPTYPE(target->fMappingOptions))
&& target->fMapper) {
cpuAddr = target->fMapper->mapToPhysicalAddress(ioAddr);
copyLen = min(copyLen, page_size - (ioAddr & (page_size - 1)));
ioAddr += copyLen;
}
if (copyLen > (UINT_MAX - PAGE_SIZE + 1)) {
copyLen = (UINT_MAX - PAGE_SIZE + 1);
}
switch (context->op) {
case kIODMACommandTransferOpReadBytes:
copypv(cpuAddr, context->bufferOffset + (addr64_t) context->buffer, (unsigned int) copyLen,
cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap);
break;
case kIODMACommandTransferOpWriteBytes:
copypv(context->bufferOffset + (addr64_t) context->buffer, cpuAddr, (unsigned int) copyLen,
cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap);
break;
}
length -= copyLen;
context->bufferOffset += copyLen;
}
return context->remaining ? kIOReturnSuccess : kIOReturnOverrun;
}
UInt64
IODMACommand::transfer(IOOptionBits transferOp, UInt64 offset, void * buffer, UInt64 length)
{
IODMACommandInternal * state = fInternalState;
IODMACommandTransferContext context;
Segment64 segments[1];
UInt32 numSegments = 0 - 1;
if (fActive < 1) {
return 0;
}
if (offset >= state->fPreparedLength) {
return 0;
}
length = min(length, state->fPreparedLength - offset);
context.buffer = buffer;
context.bufferOffset = 0;
context.remaining = length;
context.op = transferOp;
(void) genIOVMSegments(kWalkClient, transferSegment, &context, &offset, &segments[0], &numSegments);
return length - context.remaining;
}
UInt64
IODMACommand::readBytes(UInt64 offset, void *bytes, UInt64 length)
{
return transfer(kIODMACommandTransferOpReadBytes, offset, bytes, length);
}
UInt64
IODMACommand::writeBytes(UInt64 offset, const void *bytes, UInt64 length)
{
return transfer(kIODMACommandTransferOpWriteBytes, offset, const_cast<void *>(bytes), length);
}
IOReturn
IODMACommand::genIOVMSegments(UInt64 *offsetP,
void *segmentsP,
UInt32 *numSegmentsP)
{
return genIOVMSegments(kWalkClient, clientOutputSegment, (void *) fOutSeg,
offsetP, segmentsP, numSegmentsP);
}
IOReturn
IODMACommand::genIOVMSegments(uint32_t op,
InternalSegmentFunction outSegFunc,
void *reference,
UInt64 *offsetP,
void *segmentsP,
UInt32 *numSegmentsP)
{
IODMACommandInternal * internalState = fInternalState;
IOOptionBits mdOp = kIOMDWalkSegments;
IOReturn ret = kIOReturnSuccess;
if (!(kWalkComplete & op) && !fActive) {
return kIOReturnNotReady;
}
if (!offsetP || !segmentsP || !numSegmentsP || !*numSegmentsP) {
return kIOReturnBadArgument;
}
IOMDDMAWalkSegmentArgs *state =
(IOMDDMAWalkSegmentArgs *)(void *) fState;
UInt64 offset = *offsetP + internalState->fPreparedOffset;
UInt64 memLength = internalState->fPreparedOffset + internalState->fPreparedLength;
if (offset >= memLength) {
return kIOReturnOverrun;
}
if ((offset == internalState->fPreparedOffset) || (offset != state->fOffset) || internalState->fNewMD) {
state->fOffset = 0;
internalState->fIOVMAddrValid = state->fIOVMAddr = 0;
internalState->fNextRemapPage = NULL;
internalState->fNewMD = false;
mdOp = kIOMDFirstSegment;
if (fMapper) {
if (internalState->fLocalMapperAllocValid) {
state->fMapped = true;
state->fMappedBase = internalState->fLocalMapperAlloc;
} else {
state->fMapped = false;
}
}
}
UInt32 segIndex = 0;
UInt32 numSegments = *numSegmentsP;
Segment64 curSeg = { 0, 0 };
bool curSegValid = false;
addr64_t maxPhys;
if (fNumAddressBits && (fNumAddressBits < 64)) {
maxPhys = (1ULL << fNumAddressBits);
} else {
maxPhys = 0;
}
maxPhys--;
while (internalState->fIOVMAddrValid || (state->fOffset < memLength)) {
// state = next seg
if (!internalState->fIOVMAddrValid) {
IOReturn rtn;
state->fOffset = offset;
state->fLength = memLength - offset;
bool done = false;
bool check = false;
if (internalState->fLocalMapperAllocValid) {
if (!internalState->fMapSegmentsCount) {
state->fIOVMAddr = internalState->fLocalMapperAlloc + offset - internalState->fPreparedOffset;
rtn = kIOReturnSuccess;
done = true;
check = true;
} else {
uint64_t address;
uint64_t length;
uint64_t runOffset;
uint64_t ind;
uint64_t off2Ind = internalState->fOffset2Index;
// Validate the previous offset
if (offset
&& (offset == internalState->fNextOffset || off2Ind <= offset)) {
ind = internalState->fIndex;
} else {
ind = off2Ind = 0; // Start from beginning
}
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("DMA[%p] offsets 0x%qx, 0x%qx, 0x%qx ind %qd\n", this, offset, internalState->fPreparedOffset, internalState->fNextOffset, ind);
}
#endif /* defined(LOGTAG) */
// Scan through iopl info blocks looking for block containing offset
while (ind < internalState->fMapSegmentsCount && offset >= internalState->fMapSegments[ind].fDMAOffset) {
ind++;
}
if (ind < internalState->fMapSegmentsCount) {
length = internalState->fMapSegments[ind].fDMAOffset;
} else {
length = memLength;
}
length -= offset; // Remainder within iopl
// Go back to actual range as search goes past it
ind--;
off2Ind = internalState->fMapSegments[ind].fDMAOffset;
// Subtract offset till this iopl in total list
runOffset = offset - off2Ind;
// Compute an offset relative to the mapped base
runOffset += internalState->fMapSegments[ind].fPageOffset;
address = internalState->fLocalMapperAllocBase + internalState->fMapSegments[ind].fMapOffset + runOffset;
#if defined(LOGTAG)
if (LOGTAG == fMemory->getTag()) {
IOLog("DMA[%p] addrlen 0x%qx, 0x%qx\n", this, address, length);
}
#endif /* defined(LOGTAG) */
state->fIOVMAddr = address;
state->fLength = length;
internalState->fIndex = ind;
internalState->fOffset2Index = off2Ind;
internalState->fNextOffset = state->fOffset + length;
rtn = kIOReturnSuccess;
done = true;
check = true;
}
}
if (!done) {
IOMemoryDescriptor * memory =
internalState->fCopyMD ? internalState->fCopyMD.get() : fMemory.get();
rtn = memory->dmaCommandOperation(mdOp, fState, sizeof(fState));
mdOp = kIOMDWalkSegments;
}
#if 0
if (check
&& !ml_at_interrupt_context()
&& (rtn == kIOReturnSuccess)
&& fMapper
&& strcmp("AppleNVMeMMU", fMapper->getName())) {
uint64_t checkOffset;
IOPhysicalLength segLen;
IOMemoryDescriptor * memory =
internalState->fCopyMD ? internalState->fCopyMD.get() : fMemory.get();
for (checkOffset = 0; checkOffset < state->fLength;) {
addr64_t phys = memory->getPhysicalSegment(offset + checkOffset, &segLen, kIOMemoryMapperNone);
addr64_t mapperPhys;
mapperPhys = fMapper->mapToPhysicalAddress(state->fIOVMAddr + checkOffset);
mapperPhys |= (phys & (fMapper->getPageSize() - 1));
if (mapperPhys != phys) {
panic("DMA[%p] mismatch at offset %llx + %llx, dma %llx mapperPhys %llx != %llx, len %llx\n",
this, offset, checkOffset,
state->fIOVMAddr + checkOffset, mapperPhys, phys, state->fLength);
}
checkOffset += page_size - (phys & page_mask);
}
}
#endif
if (rtn == kIOReturnSuccess) {
internalState->fIOVMAddrValid = true;
assert(state->fLength);
if (curSegValid && ((curSeg.fIOVMAddr + curSeg.fLength) == state->fIOVMAddr)) {
UInt64 length = state->fLength;
offset += length;
curSeg.fLength += length;
internalState->fIOVMAddrValid = state->fIOVMAddr = 0;
}
} else if (rtn == kIOReturnOverrun) {
internalState->fIOVMAddrValid = state->fIOVMAddr = state->fLength = 0; // At end
} else {
return rtn;
}
}
// seg = state, offset = end of seg
if (!curSegValid) {
UInt64 length = state->fLength;
offset += length;
curSeg.fIOVMAddr = state->fIOVMAddr;
curSeg.fLength = length;
curSegValid = true;
internalState->fIOVMAddrValid = state->fIOVMAddr = 0;
}
if (!internalState->fIOVMAddrValid) {
// maxPhys
if ((kWalkClient & op) && (curSeg.fIOVMAddr + curSeg.fLength - 1) > maxPhys) {
if (internalState->fCursor) {
curSegValid = curSeg.fIOVMAddr = 0;
ret = kIOReturnMessageTooLarge;
break;
} else if (curSeg.fIOVMAddr <= maxPhys) {
UInt64 remain, newLength;
newLength = (maxPhys + 1 - curSeg.fIOVMAddr);
DEBG("trunc %qx, %qx-> %qx\n", curSeg.fIOVMAddr, curSeg.fLength, newLength);
remain = curSeg.fLength - newLength;
state->fIOVMAddr = newLength + curSeg.fIOVMAddr;
internalState->fIOVMAddrValid = true;
curSeg.fLength = newLength;
state->fLength = remain;
offset -= remain;
} else {
UInt64 addr = curSeg.fIOVMAddr;
ppnum_t addrPage = (ppnum_t) atop_64(addr);
vm_page_t remap = NULL;
UInt64 remain, newLength;
DEBG("sparse switch %qx, %qx ", addr, curSeg.fLength);
remap = internalState->fNextRemapPage;
if (remap && (addrPage == vm_page_get_offset(remap))) {
} else {
for (remap = internalState->fCopyPageAlloc;
remap && (addrPage != vm_page_get_offset(remap));
remap = vm_page_get_next(remap)) {
}
}
if (!remap) {
panic("no remap page found");
}
curSeg.fIOVMAddr = ptoa_64(vm_page_get_phys_page(remap))
+ (addr & PAGE_MASK);
curSegValid = true;
internalState->fNextRemapPage = vm_page_get_next(remap);
newLength = PAGE_SIZE - (addr & PAGE_MASK);
if (newLength < curSeg.fLength) {
remain = curSeg.fLength - newLength;
state->fIOVMAddr = addr + newLength;
internalState->fIOVMAddrValid = true;
curSeg.fLength = newLength;
state->fLength = remain;
offset -= remain;
}
DEBG("-> %qx, %qx offset %qx\n", curSeg.fIOVMAddr, curSeg.fLength, offset);
}
}
// reduce size of output segment
uint64_t reduce, leftover = 0;
// fMaxSegmentSize
if (curSeg.fLength > fMaxSegmentSize) {
leftover += curSeg.fLength - fMaxSegmentSize;
curSeg.fLength = fMaxSegmentSize;
state->fIOVMAddr = curSeg.fLength + curSeg.fIOVMAddr;
internalState->fIOVMAddrValid = true;
}
// alignment current length
reduce = (curSeg.fLength & fAlignMaskLength);
if (reduce && (curSeg.fLength > reduce)) {
leftover += reduce;
curSeg.fLength -= reduce;
state->fIOVMAddr = curSeg.fLength + curSeg.fIOVMAddr;
internalState->fIOVMAddrValid = true;
}
// alignment next address
reduce = (state->fIOVMAddr & fAlignMaskInternalSegments);
if (reduce && (curSeg.fLength > reduce)) {
leftover += reduce;
curSeg.fLength -= reduce;
state->fIOVMAddr = curSeg.fLength + curSeg.fIOVMAddr;
internalState->fIOVMAddrValid = true;
}
if (leftover) {
DEBG("reduce seg by 0x%llx @ 0x%llx [0x%llx, 0x%llx]\n",
leftover, offset,
curSeg.fIOVMAddr, curSeg.fLength);
state->fLength = leftover;
offset -= leftover;
}
//
if (internalState->fCursor) {
bool misaligned;
uint32_t mask;
mask = (segIndex ? fAlignMaskInternalSegments : internalState->fSourceAlignMask);
misaligned = (0 != (mask & curSeg.fIOVMAddr));
if (!misaligned) {
mask = fAlignMaskLength;
misaligned |= (0 != (mask & curSeg.fLength));
}
if (misaligned) {
if (misaligned) {
DEBG("cursor misaligned %qx:%qx\n", curSeg.fIOVMAddr, curSeg.fLength);
}
curSegValid = curSeg.fIOVMAddr = 0;
ret = kIOReturnNotAligned;
break;
}
}
if (offset >= memLength) {
curSeg.fLength -= (offset - memLength);
offset = memLength;
internalState->fIOVMAddrValid = state->fIOVMAddr = state->fLength = 0; // At end
break;
}
}
if (internalState->fIOVMAddrValid) {
if ((segIndex + 1 == numSegments)) {
break;
}
#if defined(LOGTAG)
if ((LOGTAG == fMemory->getTag()) && (kWalkClient == op)) {
IOLog("DMA[%p] outseg 0x%qx, 0x%qx\n", this, curSeg.fIOVMAddr, curSeg.fLength);
}
#endif /* defined(LOGTAG) */
ret = (*outSegFunc)(reference, this, curSeg, segmentsP, segIndex++);
curSegValid = curSeg.fIOVMAddr = 0;
if (kIOReturnSuccess != ret) {
break;
}
}
}
if (curSegValid) {
#if defined(LOGTAG)
if ((LOGTAG == fMemory->getTag()) && (kWalkClient == op)) {
IOLog("DMA[%p] outseg 0x%qx, 0x%qx\n", this, curSeg.fIOVMAddr, curSeg.fLength);
}
#endif /* defined(LOGTAG) */
ret = (*outSegFunc)(reference, this, curSeg, segmentsP, segIndex++);
}
if (kIOReturnSuccess == ret) {
state->fOffset = offset;
*offsetP = offset - internalState->fPreparedOffset;
*numSegmentsP = segIndex;
}
return ret;
}
IOReturn
IODMACommand::clientOutputSegment(
void *reference, IODMACommand *target,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
SegmentFunction segmentFunction = (SegmentFunction) reference;
IOReturn ret = kIOReturnSuccess;
if (target->fNumAddressBits && (target->fNumAddressBits < 64)
&& ((segment.fIOVMAddr + segment.fLength - 1) >> target->fNumAddressBits)
&& (target->reserved->fLocalMapperAllocValid || !target->fMapper)) {
DEBG("kIOReturnMessageTooLarge(fNumAddressBits) %qx, %qx\n", segment.fIOVMAddr, segment.fLength);
ret = kIOReturnMessageTooLarge;
}
if (!(*segmentFunction)(target, segment, vSegList, outSegIndex)) {
DEBG("kIOReturnMessageTooLarge(fOutSeg) %qx, %qx\n", segment.fIOVMAddr, segment.fLength);
ret = kIOReturnMessageTooLarge;
}
return ret;
}
IOReturn
IODMACommand::genIOVMSegments(SegmentFunction segmentFunction,
UInt64 *offsetP,
void *segmentsP,
UInt32 *numSegmentsP)
{
return genIOVMSegments(kWalkClient, clientOutputSegment, (void *) segmentFunction,
offsetP, segmentsP, numSegmentsP);
}
bool
IODMACommand::OutputHost32(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
Segment32 *base = (Segment32 *) vSegList;
base[outSegIndex].fIOVMAddr = (UInt32) segment.fIOVMAddr;
base[outSegIndex].fLength = (UInt32) segment.fLength;
return true;
}
bool
IODMACommand::OutputBig32(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
const UInt offAddr = outSegIndex * sizeof(Segment32);
const UInt offLen = offAddr + sizeof(UInt32);
OSWriteBigInt32(vSegList, offAddr, (UInt32) segment.fIOVMAddr);
OSWriteBigInt32(vSegList, offLen, (UInt32) segment.fLength);
return true;
}
bool
IODMACommand::OutputLittle32(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
const UInt offAddr = outSegIndex * sizeof(Segment32);
const UInt offLen = offAddr + sizeof(UInt32);
OSWriteLittleInt32(vSegList, offAddr, (UInt32) segment.fIOVMAddr);
OSWriteLittleInt32(vSegList, offLen, (UInt32) segment.fLength);
return true;
}
bool
IODMACommand::OutputHost64(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
Segment64 *base = (Segment64 *) vSegList;
base[outSegIndex] = segment;
return true;
}
bool
IODMACommand::OutputBig64(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
const UInt offAddr = outSegIndex * sizeof(Segment64);
const UInt offLen = offAddr + sizeof(UInt64);
OSWriteBigInt64(vSegList, offAddr, (UInt64) segment.fIOVMAddr);
OSWriteBigInt64(vSegList, offLen, (UInt64) segment.fLength);
return true;
}
bool
IODMACommand::OutputLittle64(IODMACommand *,
Segment64 segment, void *vSegList, UInt32 outSegIndex)
{
const UInt offAddr = outSegIndex * sizeof(Segment64);
const UInt offLen = offAddr + sizeof(UInt64);
OSWriteLittleInt64(vSegList, offAddr, (UInt64) segment.fIOVMAddr);
OSWriteLittleInt64(vSegList, offLen, (UInt64) segment.fLength);
return true;
}