darling-xnu/iokit/Kernel/IOServicePM.cpp
2023-05-16 21:41:14 -07:00

9056 lines
263 KiB
C++

/*
* Copyright (c) 1998-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <IOKit/assert.h>
#include <IOKit/IOKitDebug.h>
#include <IOKit/IOLib.h>
#include <IOKit/IOMessage.h>
#include <IOKit/IOPlatformExpert.h>
#include <IOKit/IOService.h>
#include <IOKit/IOUserServer.h>
#include <IOKit/IOEventSource.h>
#include <IOKit/IOWorkLoop.h>
#include <IOKit/IOCommand.h>
#include <IOKit/IOTimeStamp.h>
#include <IOKit/IOReportMacros.h>
#include <IOKit/IODeviceTreeSupport.h>
#include <IOKit/pwr_mgt/IOPMlog.h>
#include <IOKit/pwr_mgt/IOPMinformee.h>
#include <IOKit/pwr_mgt/IOPMinformeeList.h>
#include <IOKit/pwr_mgt/IOPowerConnection.h>
#include <IOKit/pwr_mgt/RootDomain.h>
#include <IOKit/pwr_mgt/IOPMPrivate.h>
#include <sys/proc.h>
#include <sys/proc_internal.h>
#include <sys/sysctl.h>
#include <libkern/OSDebug.h>
#include <kern/thread.h>
// Required for notification instrumentation
#include "IOServicePrivate.h"
#include "IOServicePMPrivate.h"
#include "IOKitKernelInternal.h"
#if USE_SETTLE_TIMER
static void settle_timer_expired(thread_call_param_t, thread_call_param_t);
#endif
static void idle_timer_expired(thread_call_param_t, thread_call_param_t);
static void tellKernelClientApplier(OSObject * object, void * arg);
static void tellAppClientApplier(OSObject * object, void * arg);
static const char * getNotificationPhaseString(uint32_t phase);
static uint64_t
computeTimeDeltaNS( const AbsoluteTime * start )
{
AbsoluteTime now;
uint64_t nsec;
clock_get_uptime(&now);
SUB_ABSOLUTETIME(&now, start);
absolutetime_to_nanoseconds(now, &nsec);
return nsec;
}
#if PM_VARS_SUPPORT
OSDefineMetaClassAndStructors(IOPMprot, OSObject)
#endif
//******************************************************************************
// Globals
//******************************************************************************
static bool gIOPMInitialized = false;
static uint32_t gIOPMBusyRequestCount = 0;
static uint32_t gIOPMWorkInvokeCount = 0;
static uint32_t gIOPMTickleGeneration = 0;
static IOWorkLoop * gIOPMWorkLoop = NULL;
static IOPMRequestQueue * gIOPMRequestQueue = NULL;
static IOPMRequestQueue * gIOPMReplyQueue = NULL;
static IOPMWorkQueue * gIOPMWorkQueue = NULL;
static IOPMCompletionQueue * gIOPMCompletionQueue = NULL;
static IOPMRequest * gIOPMRequest = NULL;
static IOService * gIOPMRootNode = NULL;
static IOPlatformExpert * gPlatform = NULL;
// log setPowerStates and powerStateChange longer than (ns):
static uint64_t gIOPMSetPowerStateLogNS =
#if defined(__i386__) || defined(__x86_64__)
(300ULL * 1000ULL * 1000ULL)
#else
(50ULL * 1000ULL * 1000ULL)
#endif
;
const OSSymbol * gIOPMPowerClientDevice = NULL;
const OSSymbol * gIOPMPowerClientDriver = NULL;
const OSSymbol * gIOPMPowerClientChildProxy = NULL;
const OSSymbol * gIOPMPowerClientChildren = NULL;
const OSSymbol * gIOPMPowerClientRootDomain = NULL;
static const OSSymbol * gIOPMPowerClientAdvisoryTickle = NULL;
static bool gIOPMAdvisoryTickleEnabled = true;
static thread_t gIOPMWatchDogThread = NULL;
uint32_t gCanSleepTimeout = 0;
static uint32_t
getPMRequestType( void )
{
uint32_t type = kIOPMRequestTypeInvalid;
if (gIOPMRequest) {
type = gIOPMRequest->getType();
}
return type;
}
SYSCTL_UINT(_kern, OID_AUTO, pmtimeout, CTLFLAG_RW | CTLFLAG_LOCKED, &gCanSleepTimeout, 0, "Power Management Timeout");
//******************************************************************************
// Macros
//******************************************************************************
#define PM_ERROR(x...) do { kprintf(x);IOLog(x); \
} while (false)
#define PM_LOG(x...) do { kprintf(x); } while (false)
#define PM_LOG1(x...) do { \
if (kIOLogDebugPower & gIOKitDebug) \
kprintf(x); } while (false)
#define PM_LOG2(x...) do { \
if (kIOLogDebugPower & gIOKitDebug) \
kprintf(x); } while (false)
#if 0
#define PM_LOG3(x...) do { kprintf(x); } while (false)
#else
#define PM_LOG3(x...)
#endif
#define RD_LOG(x...) do { \
if ((kIOLogPMRootDomain & gIOKitDebug) && \
(getPMRootDomain() == this)) { \
kprintf("PMRD: " x); \
}} while (false)
#define PM_ASSERT_IN_GATE(x) \
do { \
assert(gIOPMWorkLoop->inGate()); \
} while(false)
#define PM_LOCK() IOLockLock(fPMLock)
#define PM_UNLOCK() IOLockUnlock(fPMLock)
#define PM_LOCK_SLEEP(event, dl) IOLockSleepDeadline(fPMLock, event, dl, THREAD_UNINT)
#define PM_LOCK_WAKEUP(event) IOLockWakeup(fPMLock, event, false)
#define us_per_s 1000000
#define ns_per_us 1000
#define k30Seconds (30*us_per_s)
#define k5Seconds ( 5*us_per_s)
#if !defined(XNU_TARGET_OS_OSX)
#define kCanSleepMaxTimeReq k5Seconds
#else /* defined(XNU_TARGET_OS_OSX) */
#define kCanSleepMaxTimeReq k30Seconds
#endif /* defined(XNU_TARGET_OS_OSX) */
#define kMaxTimeRequested k30Seconds
#define kMinAckTimeoutTicks (10*1000000)
#define kIOPMTardyAckSPSKey "IOPMTardyAckSetPowerState"
#define kIOPMTardyAckPSCKey "IOPMTardyAckPowerStateChange"
#define kPwrMgtKey "IOPowerManagement"
#define OUR_PMLog(t, a, b) do { \
if (pwrMgt) { \
if (gIOKitDebug & kIOLogPower) \
pwrMgt->pmPrint(t, a, b); \
if (gIOKitTrace & kIOTracePowerMgmt) \
pwrMgt->pmTrace(t, DBG_FUNC_NONE, a, b); \
} \
} while(0)
#define OUR_PMLogFuncStart(t, a, b) do { \
if (pwrMgt) { \
if (gIOKitDebug & kIOLogPower) \
pwrMgt->pmPrint(t, a, b); \
if (gIOKitTrace & kIOTracePowerMgmt) \
pwrMgt->pmTrace(t, DBG_FUNC_START, a, b); \
} \
} while(0)
#define OUR_PMLogFuncEnd(t, a, b) do { \
if (pwrMgt) { \
if (gIOKitDebug & kIOLogPower) \
pwrMgt->pmPrint(-t, a, b); \
if (gIOKitTrace & kIOTracePowerMgmt) \
pwrMgt->pmTrace(t, DBG_FUNC_END, a, b); \
} \
} while(0)
#define NS_TO_MS(nsec) ((int)((nsec) / 1000000ULL))
#define NS_TO_US(nsec) ((int)((nsec) / 1000ULL))
#define SUPPORT_IDLE_CANCEL 1
#define kIOPMPowerStateMax 0xFFFFFFFF
#define kInvalidTicklePowerState kIOPMPowerStateMax
#define kNoTickleCancelWindow (60ULL * 1000ULL * 1000ULL * 1000ULL)
#define IS_PM_ROOT (this == gIOPMRootNode)
#define IS_ROOT_DOMAIN (getPMRootDomain() == this)
#define IS_POWER_DROP (StateOrder(fHeadNotePowerState) < StateOrder(fCurrentPowerState))
#define IS_POWER_RISE (StateOrder(fHeadNotePowerState) > StateOrder(fCurrentPowerState))
// log app responses longer than (ns):
#define LOG_APP_RESPONSE_TIMES (100ULL * 1000ULL * 1000ULL)
// use message tracer to log messages longer than (ns):
#define LOG_APP_RESPONSE_MSG_TRACER (3 * 1000ULL * 1000ULL * 1000ULL)
// log kext responses longer than (ns):
#define LOG_KEXT_RESPONSE_TIMES (100ULL * 1000ULL * 1000ULL)
enum {
kReserveDomainPower = 1
};
#define MS_PUSH(n) \
do { assert(kIOPM_BadMachineState == fSavedMachineState); \
assert(kIOPM_BadMachineState != n); \
fSavedMachineState = n; } while (false)
#define MS_POP() \
do { assert(kIOPM_BadMachineState != fSavedMachineState); \
fMachineState = fSavedMachineState; \
fSavedMachineState = kIOPM_BadMachineState; } while (false)
#define PM_ACTION_TICKLE(a) \
do { if (fPMActions.a) { \
(fPMActions.a)(fPMActions.target, this, &fPMActions); } \
} while (false)
#define PM_ACTION_CHANGE(a, x, y) \
do { if (fPMActions.a) { \
(fPMActions.a)(fPMActions.target, this, &fPMActions, gIOPMRequest, x, y); } \
} while (false)
#define PM_ACTION_CLIENT(a, x, y, z) \
do { if (fPMActions.a) { \
(fPMActions.a)(fPMActions.target, this, &fPMActions, x, y, z); } \
} while (false)
static OSNumber * copyClientIDForNotification(
OSObject *object,
IOPMInterestContext *context);
static void logClientIDForNotification(
OSObject *object,
IOPMInterestContext *context,
const char *logString);
//*********************************************************************************
// PM machine states
//
// Check kgmacros after modifying machine states.
//*********************************************************************************
enum {
kIOPM_Finished = 0,
kIOPM_OurChangeTellClientsPowerDown = 1,
kIOPM_OurChangeTellUserPMPolicyPowerDown = 2,
kIOPM_OurChangeTellPriorityClientsPowerDown = 3,
kIOPM_OurChangeNotifyInterestedDriversWillChange = 4,
kIOPM_OurChangeSetPowerState = 5,
kIOPM_OurChangeWaitForPowerSettle = 6,
kIOPM_OurChangeNotifyInterestedDriversDidChange = 7,
kIOPM_OurChangeTellCapabilityDidChange = 8,
kIOPM_OurChangeFinish = 9,
kIOPM_ParentChangeTellPriorityClientsPowerDown = 10,
kIOPM_ParentChangeNotifyInterestedDriversWillChange = 11,
kIOPM_ParentChangeSetPowerState = 12,
kIOPM_ParentChangeWaitForPowerSettle = 13,
kIOPM_ParentChangeNotifyInterestedDriversDidChange = 14,
kIOPM_ParentChangeTellCapabilityDidChange = 15,
kIOPM_ParentChangeAcknowledgePowerChange = 16,
kIOPM_NotifyChildrenStart = 17,
kIOPM_NotifyChildrenOrdered = 18,
kIOPM_NotifyChildrenDelayed = 19,
kIOPM_SyncTellClientsPowerDown = 20,
kIOPM_SyncTellPriorityClientsPowerDown = 21,
kIOPM_SyncNotifyWillChange = 22,
kIOPM_SyncNotifyDidChange = 23,
kIOPM_SyncTellCapabilityDidChange = 24,
kIOPM_SyncFinish = 25,
kIOPM_TellCapabilityChangeDone = 26,
kIOPM_DriverThreadCallDone = 27,
kIOPM_BadMachineState = 0xFFFFFFFF
};
//*********************************************************************************
// [public] PMinit
//
// Initialize power management.
//*********************************************************************************
void
IOService::PMinit( void )
{
if (!initialized) {
if (!gIOPMInitialized) {
gPlatform = getPlatform();
gIOPMWorkLoop = IOWorkLoop::workLoop();
if (gIOPMWorkLoop) {
gIOPMRequestQueue = IOPMRequestQueue::create(
this, OSMemberFunctionCast(IOPMRequestQueue::Action,
this, &IOService::actionPMRequestQueue));
gIOPMReplyQueue = IOPMRequestQueue::create(
this, OSMemberFunctionCast(IOPMRequestQueue::Action,
this, &IOService::actionPMReplyQueue));
gIOPMWorkQueue = IOPMWorkQueue::create(this,
OSMemberFunctionCast(IOPMWorkQueue::Action, this,
&IOService::actionPMWorkQueueInvoke),
OSMemberFunctionCast(IOPMWorkQueue::Action, this,
&IOService::actionPMWorkQueueRetire));
gIOPMCompletionQueue = IOPMCompletionQueue::create(
this, OSMemberFunctionCast(IOPMCompletionQueue::Action,
this, &IOService::actionPMCompletionQueue));
if (gIOPMWorkLoop->addEventSource(gIOPMRequestQueue) !=
kIOReturnSuccess) {
gIOPMRequestQueue->release();
gIOPMRequestQueue = NULL;
}
if (gIOPMWorkLoop->addEventSource(gIOPMReplyQueue) !=
kIOReturnSuccess) {
gIOPMReplyQueue->release();
gIOPMReplyQueue = NULL;
}
if (gIOPMWorkLoop->addEventSource(gIOPMWorkQueue) !=
kIOReturnSuccess) {
gIOPMWorkQueue->release();
gIOPMWorkQueue = NULL;
}
// Must be added after the work queue, which pushes request
// to the completion queue without signaling the work loop.
if (gIOPMWorkLoop->addEventSource(gIOPMCompletionQueue) !=
kIOReturnSuccess) {
gIOPMCompletionQueue->release();
gIOPMCompletionQueue = NULL;
}
gIOPMPowerClientDevice =
OSSymbol::withCStringNoCopy( "DevicePowerState" );
gIOPMPowerClientDriver =
OSSymbol::withCStringNoCopy( "DriverPowerState" );
gIOPMPowerClientChildProxy =
OSSymbol::withCStringNoCopy( "ChildProxyPowerState" );
gIOPMPowerClientChildren =
OSSymbol::withCStringNoCopy( "ChildrenPowerState" );
gIOPMPowerClientAdvisoryTickle =
OSSymbol::withCStringNoCopy( "AdvisoryTicklePowerState" );
gIOPMPowerClientRootDomain =
OSSymbol::withCStringNoCopy( "RootDomainPower" );
}
if (gIOPMRequestQueue && gIOPMReplyQueue && gIOPMCompletionQueue) {
gIOPMInitialized = true;
}
#if (DEVELOPMENT || DEBUG)
uint32_t setPowerStateLogMS = 0;
if (PE_parse_boot_argn("setpowerstate_log", &setPowerStateLogMS, sizeof(setPowerStateLogMS))) {
gIOPMSetPowerStateLogNS = setPowerStateLogMS * 1000000ULL;
}
#endif
}
if (!gIOPMInitialized) {
return;
}
pwrMgt = new IOServicePM;
pwrMgt->init();
setProperty(kPwrMgtKey, pwrMgt);
queue_init(&pwrMgt->WorkChain);
queue_init(&pwrMgt->RequestHead);
queue_init(&pwrMgt->PMDriverCallQueue);
fOwner = this;
fPMLock = IOLockAlloc();
fInterestedDrivers = new IOPMinformeeList;
fInterestedDrivers->initialize();
fDesiredPowerState = kPowerStateZero;
fDeviceDesire = kPowerStateZero;
fInitialPowerChange = true;
fInitialSetPowerState = true;
fPreviousRequestPowerFlags = 0;
fDeviceOverrideEnabled = false;
fMachineState = kIOPM_Finished;
fSavedMachineState = kIOPM_BadMachineState;
fIdleTimerMinPowerState = kPowerStateZero;
fActivityLock = IOLockAlloc();
fStrictTreeOrder = false;
fActivityTicklePowerState = kInvalidTicklePowerState;
fAdvisoryTicklePowerState = kInvalidTicklePowerState;
fControllingDriver = NULL;
fPowerStates = NULL;
fNumberOfPowerStates = 0;
fCurrentPowerState = kPowerStateZero;
fParentsCurrentPowerFlags = 0;
fMaxPowerState = kPowerStateZero;
fName = getName();
fParentsKnowState = false;
fSerialNumber = 0;
fResponseArray = NULL;
fNotifyClientArray = NULL;
fCurrentPowerConsumption = kIOPMUnknown;
fOverrideMaxPowerState = kIOPMPowerStateMax;
if (!gIOPMRootNode && (getParentEntry(gIOPowerPlane) == getRegistryRoot())) {
gIOPMRootNode = this;
fParentsKnowState = true;
} else if (getProperty(kIOPMResetPowerStateOnWakeKey) == kOSBooleanTrue) {
fResetPowerStateOnWake = true;
}
if (IS_ROOT_DOMAIN) {
fWatchdogTimer = thread_call_allocate(
&IOService::watchdog_timer_expired, (thread_call_param_t)this);
fWatchdogLock = IOLockAlloc();
fBlockedArray = OSArray::withCapacity(4);
}
fAckTimer = thread_call_allocate(
&IOService::ack_timer_expired, (thread_call_param_t)this);
#if USE_SETTLE_TIMER
fSettleTimer = thread_call_allocate(
&settle_timer_expired, (thread_call_param_t)this);
#endif
fIdleTimer = thread_call_allocate(
&idle_timer_expired, (thread_call_param_t)this);
fDriverCallEntry = thread_call_allocate(
(thread_call_func_t) &IOService::pmDriverCallout, this);
assert(fDriverCallEntry);
// Check for powerChangeDone override.
if (OSMemberFunctionCast(void (*)(void),
getResourceService(), &IOService::powerChangeDone) !=
OSMemberFunctionCast(void (*)(void),
this, &IOService::powerChangeDone)) {
fPCDFunctionOverride = true;
}
#if PM_VARS_SUPPORT
IOPMprot * prot = new IOPMprot;
if (prot) {
prot->init();
prot->ourName = fName;
prot->thePlatform = gPlatform;
fPMVars = prot;
pm_vars = prot;
}
#else
pm_vars = (void *) (uintptr_t) true;
#endif
initialized = true;
}
}
//*********************************************************************************
// [private] PMfree
//
// Free the data created by PMinit. Only called from IOService::free().
//*********************************************************************************
void
IOService::PMfree( void )
{
initialized = false;
pm_vars = NULL;
if (pwrMgt) {
assert(fMachineState == kIOPM_Finished);
assert(fInsertInterestSet == NULL);
assert(fRemoveInterestSet == NULL);
assert(fNotifyChildArray == NULL);
assert(queue_empty(&pwrMgt->RequestHead));
assert(queue_empty(&fPMDriverCallQueue));
if (fWatchdogTimer) {
thread_call_cancel(fWatchdogTimer);
thread_call_free(fWatchdogTimer);
fWatchdogTimer = NULL;
}
if (fWatchdogLock) {
IOLockFree(fWatchdogLock);
fWatchdogLock = NULL;
}
if (fBlockedArray) {
fBlockedArray->release();
fBlockedArray = NULL;
}
#if USE_SETTLE_TIMER
if (fSettleTimer) {
thread_call_cancel(fSettleTimer);
thread_call_free(fSettleTimer);
fSettleTimer = NULL;
}
#endif
if (fAckTimer) {
thread_call_cancel(fAckTimer);
thread_call_free(fAckTimer);
fAckTimer = NULL;
}
if (fIdleTimer) {
thread_call_cancel(fIdleTimer);
thread_call_free(fIdleTimer);
fIdleTimer = NULL;
}
if (fDriverCallEntry) {
thread_call_free(fDriverCallEntry);
fDriverCallEntry = NULL;
}
if (fPMLock) {
IOLockFree(fPMLock);
fPMLock = NULL;
}
if (fActivityLock) {
IOLockFree(fActivityLock);
fActivityLock = NULL;
}
if (fInterestedDrivers) {
fInterestedDrivers->release();
fInterestedDrivers = NULL;
}
if (fDriverCallParamSlots && fDriverCallParamPtr) {
IODelete(fDriverCallParamPtr, DriverCallParam, fDriverCallParamSlots);
fDriverCallParamPtr = NULL;
fDriverCallParamSlots = 0;
}
if (fResponseArray) {
fResponseArray->release();
fResponseArray = NULL;
}
if (fNotifyClientArray) {
fNotifyClientArray->release();
fNotifyClientArray = NULL;
}
if (fReportBuf && fNumberOfPowerStates) {
IOFree(fReportBuf, STATEREPORT_BUFSIZE(fNumberOfPowerStates));
fReportBuf = NULL;
}
if (fPowerStates && fNumberOfPowerStates) {
IODelete(fPowerStates, IOPMPSEntry, fNumberOfPowerStates);
fNumberOfPowerStates = 0;
fPowerStates = NULL;
}
if (fPowerClients) {
fPowerClients->release();
fPowerClients = NULL;
}
#if PM_VARS_SUPPORT
if (fPMVars) {
fPMVars->release();
fPMVars = NULL;
}
#endif
pwrMgt->release();
pwrMgt = NULL;
}
}
void
IOService::PMDebug( uint32_t event, uintptr_t param1, uintptr_t param2 )
{
OUR_PMLog(event, param1, param2);
}
//*********************************************************************************
// [public] joinPMtree
//
// A policy-maker calls its nub here when initializing, to be attached into
// the power management hierarchy. The default function is to call the
// platform expert, which knows how to do it. This method is overridden
// by a nub subclass which may either know how to do it, or may need to
// take other action.
//
// This may be the only "power management" method used in a nub,
// meaning it may not be initialized for power management.
//*********************************************************************************
void
IOService::joinPMtree( IOService * driver )
{
IOPlatformExpert * platform;
platform = getPlatform();
assert(platform != NULL);
platform->PMRegisterDevice(this, driver);
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] youAreRoot
//
// Power Managment is informing us that we are the root power domain.
//*********************************************************************************
IOReturn
IOService::youAreRoot( void )
{
return IOPMNoErr;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] PMstop
//
// Immediately stop driver callouts. Schedule an async stop request to detach
// from power plane.
//*********************************************************************************
void
IOService::PMstop( void )
{
IOPMRequest * request;
if (!initialized) {
return;
}
PM_LOCK();
if (fLockedFlags.PMStop) {
PM_LOG2("%s: PMstop() already stopped\n", fName);
PM_UNLOCK();
return;
}
// Inhibit future driver calls.
fLockedFlags.PMStop = true;
// Wait for all prior driver calls to finish.
waitForPMDriverCall();
PM_UNLOCK();
// The rest of the work is performed async.
request = acquirePMRequest( this, kIOPMRequestTypePMStop );
if (request) {
PM_LOG2("%s: %p PMstop\n", getName(), OBFUSCATE(this));
submitPMRequest( request );
}
}
//*********************************************************************************
// [private] handlePMstop
//
// Disconnect the node from all parents and children in the power plane.
//*********************************************************************************
void
IOService::handlePMstop( IOPMRequest * request )
{
OSIterator * iter;
OSObject * next;
IOPowerConnection * connection;
IOService * theChild;
IOService * theParent;
PM_ASSERT_IN_GATE();
PM_LOG2("%s: %p %s start\n", getName(), OBFUSCATE(this), __FUNCTION__);
// remove driver from prevent system sleep lists
getPMRootDomain()->updatePreventIdleSleepList(this, false);
getPMRootDomain()->updatePreventSystemSleepList(this, false);
// remove the property
removeProperty(kPwrMgtKey);
// detach parents
iter = getParentIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
theParent = (IOService *)connection->copyParentEntry(gIOPowerPlane);
if (theParent) {
theParent->removePowerChild(connection);
theParent->release();
}
}
}
iter->release();
}
// detach IOConnections
detachAbove( gIOPowerPlane );
// no more power state changes
fParentsKnowState = false;
// detach children
iter = getChildIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
theChild = ((IOService *)(connection->copyChildEntry(gIOPowerPlane)));
if (theChild) {
// detach nub from child
connection->detachFromChild(theChild, gIOPowerPlane);
theChild->release();
}
// detach us from nub
detachFromChild(connection, gIOPowerPlane);
}
}
iter->release();
}
// Remove all interested drivers from the list, including the power
// controlling driver.
//
// Usually, the controlling driver and the policy-maker functionality
// are implemented by the same object, and without the deregistration,
// the object will be holding an extra retain on itself, and cannot
// be freed.
if (fInterestedDrivers) {
IOPMinformeeList * list = fInterestedDrivers;
IOPMinformee * item;
PM_LOCK();
while ((item = list->firstInList())) {
list->removeFromList(item->whatObject);
}
PM_UNLOCK();
}
// Clear idle period to prevent idleTimerExpired() from servicing
// idle timer expirations.
fIdleTimerPeriod = 0;
if (fIdleTimer && thread_call_cancel(fIdleTimer)) {
release();
}
PM_LOG2("%s: %p %s done\n", getName(), OBFUSCATE(this), __FUNCTION__);
}
//*********************************************************************************
// [public] addPowerChild
//
// Power Management is informing us who our children are.
//*********************************************************************************
IOReturn
IOService::addPowerChild( IOService * child )
{
IOPowerConnection * connection = NULL;
IOPMRequest * requests[3] = {NULL, NULL, NULL};
OSIterator * iter;
bool ok = true;
if (!child) {
return kIOReturnBadArgument;
}
if (!initialized || !child->initialized) {
return IOPMNotYetInitialized;
}
OUR_PMLog( kPMLogAddChild, (uintptr_t) child, 0 );
do {
// Is this child already one of our children?
iter = child->getParentIterator( gIOPowerPlane );
if (iter) {
IORegistryEntry * entry;
OSObject * next;
while ((next = iter->getNextObject())) {
if ((entry = OSDynamicCast(IORegistryEntry, next)) &&
isChild(entry, gIOPowerPlane)) {
ok = false;
break;
}
}
iter->release();
}
if (!ok) {
PM_LOG2("%s: %s (%p) is already a child\n",
getName(), child->getName(), OBFUSCATE(child));
break;
}
// Add the child to the power plane immediately, but the
// joining connection is marked as not ready.
// We want the child to appear in the power plane before
// returning to the caller, but don't want the caller to
// block on the PM work loop.
connection = new IOPowerConnection;
if (!connection) {
break;
}
// Create a chain of PM requests to perform the bottom-half
// work from the PM work loop.
requests[0] = acquirePMRequest(
/* target */ this,
/* type */ kIOPMRequestTypeAddPowerChild1 );
requests[1] = acquirePMRequest(
/* target */ child,
/* type */ kIOPMRequestTypeAddPowerChild2 );
requests[2] = acquirePMRequest(
/* target */ this,
/* type */ kIOPMRequestTypeAddPowerChild3 );
if (!requests[0] || !requests[1] || !requests[2]) {
break;
}
requests[0]->attachNextRequest( requests[1] );
requests[1]->attachNextRequest( requests[2] );
connection->init();
connection->start(this);
connection->setAwaitingAck(false);
connection->setReadyFlag(false);
attachToChild( connection, gIOPowerPlane );
connection->attachToChild( child, gIOPowerPlane );
// connection needs to be released
requests[0]->fArg0 = connection;
requests[1]->fArg0 = connection;
requests[2]->fArg0 = connection;
submitPMRequests( requests, 3 );
return kIOReturnSuccess;
}while (false);
if (connection) {
connection->release();
}
if (requests[0]) {
releasePMRequest(requests[0]);
}
if (requests[1]) {
releasePMRequest(requests[1]);
}
if (requests[2]) {
releasePMRequest(requests[2]);
}
// Silent failure, to prevent platform drivers from adding the child
// to the root domain.
return kIOReturnSuccess;
}
//*********************************************************************************
// [private] addPowerChild1
//
// Step 1/3 of adding a power child. Called on the power parent.
//*********************************************************************************
void
IOService::addPowerChild1( IOPMRequest * request )
{
IOPMPowerStateIndex tempDesire = kPowerStateZero;
// Make us temporary usable before adding the child.
PM_ASSERT_IN_GATE();
OUR_PMLog( kPMLogMakeUsable, kPMLogMakeUsable, 0 );
if (fControllingDriver && inPlane(gIOPowerPlane) && fParentsKnowState) {
tempDesire = fHighestPowerState;
}
if ((tempDesire != kPowerStateZero) &&
(IS_PM_ROOT || (StateOrder(fMaxPowerState) >= StateOrder(tempDesire)))) {
adjustPowerState(tempDesire);
}
}
//*********************************************************************************
// [private] addPowerChild2
//
// Step 2/3 of adding a power child. Called on the joining child.
// Execution blocked behind addPowerChild1.
//*********************************************************************************
void
IOService::addPowerChild2( IOPMRequest * request )
{
IOPowerConnection * connection = (IOPowerConnection *) request->fArg0;
IOService * parent;
IOPMPowerFlags powerFlags;
bool knowsState;
IOPMPowerStateIndex powerState;
IOPMPowerStateIndex tempDesire;
PM_ASSERT_IN_GATE();
parent = (IOService *) connection->getParentEntry(gIOPowerPlane);
if (!parent || !inPlane(gIOPowerPlane)) {
PM_LOG("%s: addPowerChild2 not in power plane\n", getName());
return;
}
// Parent will be waiting for us to complete this stage.
// It is safe to directly access parent's vars.
knowsState = (parent->fPowerStates) && (parent->fParentsKnowState);
powerState = parent->fCurrentPowerState;
if (knowsState) {
powerFlags = parent->fPowerStates[powerState].outputPowerFlags;
} else {
powerFlags = 0;
}
// Set our power parent.
OUR_PMLog(kPMLogSetParent, knowsState, powerFlags);
setParentInfo( powerFlags, connection, knowsState );
connection->setReadyFlag(true);
if (fControllingDriver && fParentsKnowState) {
fMaxPowerState = fControllingDriver->maxCapabilityForDomainState(fParentsCurrentPowerFlags);
// initially change into the state we are already in
tempDesire = fControllingDriver->initialPowerStateForDomainState(fParentsCurrentPowerFlags);
fPreviousRequestPowerFlags = (IOPMPowerFlags)(-1);
adjustPowerState(tempDesire);
}
}
//*********************************************************************************
// [private] addPowerChild3
//
// Step 3/3 of adding a power child. Called on the parent.
// Execution blocked behind addPowerChild2.
//*********************************************************************************
void
IOService::addPowerChild3( IOPMRequest * request )
{
IOPowerConnection * connection = (IOPowerConnection *) request->fArg0;
IOService * child;
IOPMrootDomain * rootDomain = getPMRootDomain();
PM_ASSERT_IN_GATE();
child = (IOService *) connection->getChildEntry(gIOPowerPlane);
if (child && inPlane(gIOPowerPlane)) {
if ((this != rootDomain) && child->getProperty("IOPMStrictTreeOrder")) {
PM_LOG1("%s: strict PM order enforced\n", getName());
fStrictTreeOrder = true;
}
if (rootDomain) {
rootDomain->joinAggressiveness( child );
}
} else {
PM_LOG("%s: addPowerChild3 not in power plane\n", getName());
}
connection->release();
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] setPowerParent
//
// Power Management is informing us who our parent is.
// If we have a controlling driver, find out, given our newly-informed
// power domain state, what state it would be in, and then tell it
// to assume that state.
//*********************************************************************************
IOReturn
IOService::setPowerParent(
IOPowerConnection * theParent, bool stateKnown, IOPMPowerFlags powerFlags )
{
return kIOReturnUnsupported;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] removePowerChild
//
// Called on a parent whose child is being removed by PMstop().
//*********************************************************************************
IOReturn
IOService::removePowerChild( IOPowerConnection * theNub )
{
IORegistryEntry * theChild;
PM_ASSERT_IN_GATE();
OUR_PMLog( kPMLogRemoveChild, 0, 0 );
theNub->retain();
// detach nub from child
theChild = theNub->copyChildEntry(gIOPowerPlane);
if (theChild) {
theNub->detachFromChild(theChild, gIOPowerPlane);
theChild->release();
}
// detach from the nub
detachFromChild(theNub, gIOPowerPlane);
// Are we awaiting an ack from this child?
if (theNub->getAwaitingAck()) {
// yes, pretend we got one
theNub->setAwaitingAck(false);
if (fHeadNotePendingAcks != 0) {
// that's one fewer ack to worry about
fHeadNotePendingAcks--;
// is that the last?
if (fHeadNotePendingAcks == 0) {
stop_ack_timer();
getPMRootDomain()->reset_watchdog_timer(this, 0);
// This parent may have a request in the work queue that is
// blocked on fHeadNotePendingAcks=0. And removePowerChild()
// is called while executing the child's PMstop request so they
// can occur simultaneously. IOPMWorkQueue::checkForWork() must
// restart and check all request queues again.
gIOPMWorkQueue->incrementProducerCount();
}
}
}
theNub->release();
// A child has gone away, re-scan children desires and clamp bits.
// The fPendingAdjustPowerRequest helps to reduce redundant parent work.
if (!fAdjustPowerScheduled) {
IOPMRequest * request;
request = acquirePMRequest( this, kIOPMRequestTypeAdjustPowerState );
if (request) {
submitPMRequest( request );
fAdjustPowerScheduled = true;
}
}
return IOPMNoErr;
}
//*********************************************************************************
// [public] registerPowerDriver
//
// A driver has called us volunteering to control power to our device.
//*********************************************************************************
IOReturn
IOService::registerPowerDriver(
IOService * powerDriver,
IOPMPowerState * powerStates,
unsigned long numberOfStates )
{
IOPMRequest * request;
IOPMPSEntry * powerStatesCopy = NULL;
IOPMPowerStateIndex stateOrder;
IOReturn error = kIOReturnSuccess;
if (!initialized) {
return IOPMNotYetInitialized;
}
if (!powerStates || (numberOfStates < 2)) {
OUR_PMLog(kPMLogControllingDriverErr5, numberOfStates, 0);
return kIOReturnBadArgument;
}
if (!powerDriver || !powerDriver->initialized) {
OUR_PMLog(kPMLogControllingDriverErr4, 0, 0);
return kIOReturnBadArgument;
}
if (powerStates[0].version > kIOPMPowerStateVersion2) {
OUR_PMLog(kPMLogControllingDriverErr1, powerStates[0].version, 0);
return kIOReturnBadArgument;
}
do {
// Make a copy of the supplied power state array.
powerStatesCopy = IONew(IOPMPSEntry, numberOfStates);
if (!powerStatesCopy) {
error = kIOReturnNoMemory;
break;
}
// Initialize to bogus values
for (IOPMPowerStateIndex i = 0; i < numberOfStates; i++) {
powerStatesCopy[i].stateOrderToIndex = kIOPMPowerStateMax;
}
for (uint32_t i = 0; i < numberOfStates; i++) {
powerStatesCopy[i].capabilityFlags = powerStates[i].capabilityFlags;
powerStatesCopy[i].outputPowerFlags = powerStates[i].outputPowerCharacter;
powerStatesCopy[i].inputPowerFlags = powerStates[i].inputPowerRequirement;
powerStatesCopy[i].staticPower = powerStates[i].staticPower;
#if USE_SETTLE_TIMER
powerStatesCopy[i].settleUpTime = powerStates[i].settleUpTime;
powerStatesCopy[i].settleDownTime = powerStates[i].settleDownTime;
#endif
if (powerStates[i].version >= kIOPMPowerStateVersion2) {
stateOrder = powerStates[i].stateOrder;
} else {
stateOrder = i;
}
if (stateOrder < numberOfStates) {
powerStatesCopy[i].stateOrder = stateOrder;
powerStatesCopy[stateOrder].stateOrderToIndex = i;
}
}
for (IOPMPowerStateIndex i = 0; i < numberOfStates; i++) {
if (powerStatesCopy[i].stateOrderToIndex == kIOPMPowerStateMax) {
// power state order missing
error = kIOReturnBadArgument;
break;
}
}
if (kIOReturnSuccess != error) {
break;
}
request = acquirePMRequest( this, kIOPMRequestTypeRegisterPowerDriver );
if (!request) {
error = kIOReturnNoMemory;
break;
}
powerDriver->retain();
request->fArg0 = (void *) powerDriver;
request->fArg1 = (void *) powerStatesCopy;
request->fArg2 = (void *) numberOfStates;
submitPMRequest( request );
return kIOReturnSuccess;
}while (false);
if (powerStatesCopy) {
IODelete(powerStatesCopy, IOPMPSEntry, numberOfStates);
}
return error;
}
//*********************************************************************************
// [private] handleRegisterPowerDriver
//*********************************************************************************
void
IOService::handleRegisterPowerDriver( IOPMRequest * request )
{
IOService * powerDriver = (IOService *) request->fArg0;
IOPMPSEntry * powerStates = (IOPMPSEntry *) request->fArg1;
IOPMPowerStateIndex numberOfStates = (IOPMPowerStateIndex) request->fArg2;
IOPMPowerStateIndex i, stateIndex;
IOPMPowerStateIndex lowestPowerState;
IOService * root;
OSIterator * iter;
PM_ASSERT_IN_GATE();
assert(powerStates);
assert(powerDriver);
assert(numberOfStates > 1);
if (!fNumberOfPowerStates) {
OUR_PMLog(kPMLogControllingDriver, numberOfStates, kIOPMPowerStateVersion1);
fPowerStates = powerStates;
fNumberOfPowerStates = numberOfStates;
fControllingDriver = powerDriver;
fCurrentCapabilityFlags = fPowerStates[0].capabilityFlags;
lowestPowerState = fPowerStates[0].stateOrderToIndex;
fHighestPowerState = fPowerStates[numberOfStates - 1].stateOrderToIndex;
{
uint32_t aotFlags;
IOService * service;
OSObject * object;
OSData * data;
// Disallow kIOPMAOTPower states unless device tree enabled
aotFlags = 0;
service = this;
while (service && !service->inPlane(gIODTPlane)) {
service = service->getProvider();
}
if (service) {
object = service->copyProperty(kIOPMAOTPowerKey, gIODTPlane);
data = OSDynamicCast(OSData, object);
if (data && (data->getLength() >= sizeof(uint32_t))) {
aotFlags = ((uint32_t *)data->getBytesNoCopy())[0];
}
OSSafeReleaseNULL(object);
}
if (!aotFlags) {
for (i = 0; i < numberOfStates; i++) {
if (kIOPMAOTPower & fPowerStates[i].inputPowerFlags) {
fPowerStates[i].inputPowerFlags = 0xFFFFFFFF;
fPowerStates[i].capabilityFlags = 0;
fPowerStates[i].outputPowerFlags = 0;
}
}
}
}
// OR'in all the output power flags
fMergedOutputPowerFlags = 0;
fDeviceUsablePowerState = lowestPowerState;
for (i = 0; i < numberOfStates; i++) {
fMergedOutputPowerFlags |= fPowerStates[i].outputPowerFlags;
stateIndex = fPowerStates[i].stateOrderToIndex;
assert(stateIndex < numberOfStates);
if ((fDeviceUsablePowerState == lowestPowerState) &&
(fPowerStates[stateIndex].capabilityFlags & IOPMDeviceUsable)) {
// The minimum power state that the device is usable
fDeviceUsablePowerState = stateIndex;
}
}
// Register powerDriver as interested, unless already done.
// We don't want to register the default implementation since
// it does nothing. One ramification of not always registering
// is the one fewer retain count held.
root = getPlatform()->getProvider();
assert(root);
if (!root ||
((OSMemberFunctionCast(void (*)(void),
root, &IOService::powerStateDidChangeTo)) !=
((OSMemberFunctionCast(void (*)(void),
this, &IOService::powerStateDidChangeTo)))) ||
((OSMemberFunctionCast(void (*)(void),
root, &IOService::powerStateWillChangeTo)) !=
((OSMemberFunctionCast(void (*)(void),
this, &IOService::powerStateWillChangeTo))))) {
if (fInterestedDrivers->findItem(powerDriver) == NULL) {
PM_LOCK();
fInterestedDrivers->appendNewInformee(powerDriver);
PM_UNLOCK();
}
}
// Examine all existing power clients and perform limit check.
if (fPowerClients &&
(iter = OSCollectionIterator::withCollection(fPowerClients))) {
const OSSymbol * client;
while ((client = (const OSSymbol *) iter->getNextObject())) {
IOPMPowerStateIndex powerState = getPowerStateForClient(client);
if (powerState >= numberOfStates) {
updatePowerClient(client, fHighestPowerState);
}
}
iter->release();
}
// Populate IOPMActions for a few special services
getPMRootDomain()->tagPowerPlaneService(this, &fPMActions, fNumberOfPowerStates - 1);
if (inPlane(gIOPowerPlane) && fParentsKnowState) {
IOPMPowerStateIndex tempDesire;
fMaxPowerState = fControllingDriver->maxCapabilityForDomainState(fParentsCurrentPowerFlags);
// initially change into the state we are already in
tempDesire = fControllingDriver->initialPowerStateForDomainState(fParentsCurrentPowerFlags);
adjustPowerState(tempDesire);
}
} else {
OUR_PMLog(kPMLogControllingDriverErr2, numberOfStates, 0);
IODelete(powerStates, IOPMPSEntry, numberOfStates);
}
powerDriver->release();
}
//*********************************************************************************
// [public] registerInterestedDriver
//
// Add the caller to our list of interested drivers and return our current
// power state. If we don't have a power-controlling driver yet, we will
// call this interested driver again later when we do get a driver and find
// out what the current power state of the device is.
//*********************************************************************************
IOPMPowerFlags
IOService::registerInterestedDriver( IOService * driver )
{
IOPMRequest * request;
bool signal;
if (!driver || !initialized || !fInterestedDrivers) {
return 0;
}
PM_LOCK();
signal = (!fInsertInterestSet && !fRemoveInterestSet);
if (fInsertInterestSet == NULL) {
fInsertInterestSet = OSSet::withCapacity(4);
}
if (fInsertInterestSet) {
fInsertInterestSet->setObject(driver);
if (fRemoveInterestSet) {
fRemoveInterestSet->removeObject(driver);
}
}
PM_UNLOCK();
if (signal) {
request = acquirePMRequest( this, kIOPMRequestTypeInterestChanged );
if (request) {
submitPMRequest( request );
}
}
// This return value cannot be trusted, but return a value
// for those clients that care.
OUR_PMLog(kPMLogInterestedDriver, kIOPMDeviceUsable, 2);
return kIOPMDeviceUsable;
}
//*********************************************************************************
// [public] deRegisterInterestedDriver
//*********************************************************************************
IOReturn
IOService::deRegisterInterestedDriver( IOService * driver )
{
IOPMinformee * item;
IOPMRequest * request;
bool signal;
if (!driver) {
return kIOReturnBadArgument;
}
if (!initialized || !fInterestedDrivers) {
return IOPMNotPowerManaged;
}
PM_LOCK();
if (fInsertInterestSet) {
fInsertInterestSet->removeObject(driver);
}
item = fInterestedDrivers->findItem(driver);
if (!item) {
PM_UNLOCK();
return kIOReturnNotFound;
}
signal = (!fRemoveInterestSet && !fInsertInterestSet);
if (fRemoveInterestSet == NULL) {
fRemoveInterestSet = OSSet::withCapacity(4);
}
if (fRemoveInterestSet) {
fRemoveInterestSet->setObject(driver);
if (item->active) {
item->active = false;
waitForPMDriverCall( driver );
}
}
PM_UNLOCK();
if (signal) {
request = acquirePMRequest( this, kIOPMRequestTypeInterestChanged );
if (request) {
submitPMRequest( request );
}
}
return IOPMNoErr;
}
//*********************************************************************************
// [private] handleInterestChanged
//
// Handle interest added or removed.
//*********************************************************************************
void
IOService::handleInterestChanged( IOPMRequest * request )
{
IOService * driver;
IOPMinformee * informee;
IOPMinformeeList * list = fInterestedDrivers;
PM_LOCK();
if (fInsertInterestSet) {
while ((driver = (IOService *) fInsertInterestSet->getAnyObject())) {
if (list->findItem(driver) == NULL) {
list->appendNewInformee(driver);
}
fInsertInterestSet->removeObject(driver);
}
fInsertInterestSet->release();
fInsertInterestSet = NULL;
}
if (fRemoveInterestSet) {
while ((driver = (IOService *) fRemoveInterestSet->getAnyObject())) {
informee = list->findItem(driver);
if (informee) {
// Clean-up async interest acknowledgement
if (fHeadNotePendingAcks && informee->timer) {
informee->timer = 0;
fHeadNotePendingAcks--;
}
list->removeFromList(driver);
}
fRemoveInterestSet->removeObject(driver);
}
fRemoveInterestSet->release();
fRemoveInterestSet = NULL;
}
PM_UNLOCK();
}
//*********************************************************************************
// [public] acknowledgePowerChange
//
// After we notified one of the interested drivers or a power-domain child
// of an impending change in power, it has called to say it is now
// prepared for the change. If this object is the last to
// acknowledge this change, we take whatever action we have been waiting
// for.
// That may include acknowledging to our parent. In this case, we do it
// last of all to insure that this doesn't cause the parent to call us some-
// where else and alter data we are relying on here (like the very existance
// of a "current change note".)
//*********************************************************************************
IOReturn
IOService::acknowledgePowerChange( IOService * whichObject )
{
IOPMRequest * request;
if (!initialized) {
return IOPMNotYetInitialized;
}
if (!whichObject) {
return kIOReturnBadArgument;
}
request = acquirePMRequest( this, kIOPMRequestTypeAckPowerChange );
if (!request) {
return kIOReturnNoMemory;
}
whichObject->retain();
request->fArg0 = whichObject;
submitPMRequest( request );
return IOPMNoErr;
}
//*********************************************************************************
// [private] handleAcknowledgePowerChange
//*********************************************************************************
bool
IOService::handleAcknowledgePowerChange( IOPMRequest * request )
{
IOPMinformee * informee;
IOPMPowerStateIndex childPower = kIOPMUnknown;
IOService * theChild;
IOService * whichObject;
bool all_acked = false;
PM_ASSERT_IN_GATE();
whichObject = (IOService *) request->fArg0;
assert(whichObject);
// one of our interested drivers?
informee = fInterestedDrivers->findItem( whichObject );
if (informee == NULL) {
if (!isChild(whichObject, gIOPowerPlane)) {
OUR_PMLog(kPMLogAcknowledgeErr1, 0, 0);
goto no_err;
} else {
OUR_PMLog(kPMLogChildAcknowledge, fHeadNotePendingAcks, 0);
}
} else {
OUR_PMLog(kPMLogDriverAcknowledge, fHeadNotePendingAcks, 0);
}
if (fHeadNotePendingAcks != 0) {
assert(fPowerStates != NULL);
// yes, make sure we're expecting acks
if (informee != NULL) {
// it's an interested driver
// make sure we're expecting this ack
if (informee->timer != 0) {
if (informee->timer > 0) {
uint64_t nsec = computeTimeDeltaNS(&informee->startTime);
if (nsec > gIOPMSetPowerStateLogNS) {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsDriverPSChangeSlow, informee->whatObject->getName(),
fDriverCallReason, NS_TO_MS(nsec), informee->whatObject->getRegistryEntryID(),
NULL, fHeadNotePowerState, true);
}
}
// mark it acked
informee->timer = 0;
// that's one fewer to worry about
fHeadNotePendingAcks--;
} else {
// this driver has already acked
OUR_PMLog(kPMLogAcknowledgeErr2, 0, 0);
}
} else {
// it's a child
// make sure we're expecting this ack
if (((IOPowerConnection *)whichObject)->getAwaitingAck()) {
// that's one fewer to worry about
fHeadNotePendingAcks--;
((IOPowerConnection *)whichObject)->setAwaitingAck(false);
theChild = (IOService *)whichObject->copyChildEntry(gIOPowerPlane);
if (theChild) {
childPower = theChild->currentPowerConsumption();
theChild->release();
}
if (childPower == kIOPMUnknown) {
fHeadNotePowerArrayEntry->staticPower = kIOPMUnknown;
} else {
if (fHeadNotePowerArrayEntry->staticPower != kIOPMUnknown) {
fHeadNotePowerArrayEntry->staticPower += childPower;
}
}
}
}
if (fHeadNotePendingAcks == 0) {
// yes, stop the timer
stop_ack_timer();
// and now we can continue
all_acked = true;
getPMRootDomain()->reset_watchdog_timer(this, 0);
}
} else {
OUR_PMLog(kPMLogAcknowledgeErr3, 0, 0); // not expecting anybody to ack
}
no_err:
if (whichObject) {
whichObject->release();
}
return all_acked;
}
//*********************************************************************************
// [public] acknowledgeSetPowerState
//
// After we instructed our controlling driver to change power states,
// it has called to say it has finished doing so.
// We continue to process the power state change.
//*********************************************************************************
IOReturn
IOService::acknowledgeSetPowerState( void )
{
IOPMRequest * request;
if (!initialized) {
return IOPMNotYetInitialized;
}
request = acquirePMRequest( this, kIOPMRequestTypeAckSetPowerState );
if (!request) {
return kIOReturnNoMemory;
}
submitPMRequest( request );
return kIOReturnSuccess;
}
//*********************************************************************************
// [private] adjustPowerState
//*********************************************************************************
void
IOService::adjustPowerState( IOPMPowerStateIndex clamp )
{
PM_ASSERT_IN_GATE();
computeDesiredState(clamp, false);
if (fControllingDriver && fParentsKnowState && inPlane(gIOPowerPlane)) {
IOPMPowerChangeFlags changeFlags = kIOPMSelfInitiated;
// Indicate that children desires must be ignored, and do not ask
// apps for permission to drop power. This is used by root domain
// for demand sleep.
if (getPMRequestType() == kIOPMRequestTypeRequestPowerStateOverride) {
changeFlags |= (kIOPMIgnoreChildren | kIOPMSkipAskPowerDown);
}
startPowerChange(
/* flags */ changeFlags,
/* power state */ fDesiredPowerState,
/* domain flags */ 0,
/* connection */ NULL,
/* parent flags */ 0);
}
}
//*********************************************************************************
// [public] synchronizePowerTree
//*********************************************************************************
IOReturn
IOService::synchronizePowerTree(
IOOptionBits options,
IOService * notifyRoot )
{
IOPMRequest * request_c = NULL;
IOPMRequest * request_s;
if (this != getPMRootDomain()) {
return kIOReturnBadArgument;
}
if (!initialized) {
return kIOPMNotYetInitialized;
}
OUR_PMLog(kPMLogCSynchronizePowerTree, options, (notifyRoot != NULL));
if (notifyRoot) {
IOPMRequest * nr;
// Cancels don't need to be synchronized.
nr = acquirePMRequest(notifyRoot, kIOPMRequestTypeChildNotifyDelayCancel);
if (nr) {
submitPMRequest(nr);
}
// For display wrangler or any other delay-eligible (dark wake clamped)
// drivers attached to root domain in the power plane.
nr = acquirePMRequest(getPMRootDomain(), kIOPMRequestTypeChildNotifyDelayCancel);
if (nr) {
submitPMRequest(nr);
}
}
request_s = acquirePMRequest( this, kIOPMRequestTypeSynchronizePowerTree );
if (!request_s) {
goto error_no_memory;
}
if (options & kIOPMSyncCancelPowerDown) {
request_c = acquirePMRequest( this, kIOPMRequestTypeIdleCancel );
}
if (request_c) {
request_c->attachNextRequest( request_s );
submitPMRequest(request_c);
}
request_s->fArg0 = (void *)(uintptr_t) options;
submitPMRequest(request_s);
return kIOReturnSuccess;
error_no_memory:
if (request_c) {
releasePMRequest(request_c);
}
if (request_s) {
releasePMRequest(request_s);
}
return kIOReturnNoMemory;
}
//*********************************************************************************
// [private] handleSynchronizePowerTree
//*********************************************************************************
void
IOService::handleSynchronizePowerTree( IOPMRequest * request )
{
PM_ASSERT_IN_GATE();
if (fControllingDriver && fParentsKnowState && inPlane(gIOPowerPlane) &&
(fCurrentPowerState == fHighestPowerState)) {
IOPMPowerChangeFlags options = (IOPMPowerChangeFlags)(uintptr_t) request->fArg0;
startPowerChange(
/* flags */ kIOPMSelfInitiated | kIOPMSynchronize |
(options & kIOPMSyncNoChildNotify),
/* power state */ fCurrentPowerState,
/* domain flags */ 0,
/* connection */ NULL,
/* parent flags */ 0);
}
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] powerDomainWillChangeTo
//
// Called by the power-hierarchy parent notifying of a new power state
// in the power domain.
// We enqueue a parent power-change to our queue of power changes.
// This may or may not cause us to change power, depending on what
// kind of change is occuring in the domain.
//*********************************************************************************
IOReturn
IOService::powerDomainWillChangeTo(
IOPMPowerFlags newPowerFlags,
IOPowerConnection * whichParent )
{
assert(false);
return kIOReturnUnsupported;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [private] handlePowerDomainWillChangeTo
//*********************************************************************************
void
IOService::handlePowerDomainWillChangeTo( IOPMRequest * request )
{
IOPMPowerFlags parentPowerFlags = (IOPMPowerFlags) request->fArg0;
IOPowerConnection * whichParent = (IOPowerConnection *) request->fArg1;
IOPMPowerChangeFlags parentChangeFlags = (IOPMPowerChangeFlags)(uintptr_t) request->fArg2;
IOPMPowerChangeFlags myChangeFlags;
OSIterator * iter;
OSObject * next;
IOPowerConnection * connection;
IOPMPowerStateIndex maxPowerState;
IOPMPowerFlags combinedPowerFlags;
IOReturn result = IOPMAckImplied;
PM_ASSERT_IN_GATE();
OUR_PMLog(kPMLogWillChange, parentPowerFlags, 0);
if (!inPlane(gIOPowerPlane) || !whichParent || !whichParent->getAwaitingAck()) {
PM_LOG("%s::%s not in power tree\n", getName(), __FUNCTION__);
goto exit_no_ack;
}
// Combine parents' output power flags.
combinedPowerFlags = 0;
iter = getParentIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
if (connection == whichParent) {
combinedPowerFlags |= parentPowerFlags;
} else {
combinedPowerFlags |= connection->parentCurrentPowerFlags();
}
}
}
iter->release();
}
// If our initial change has yet to occur, then defer the power change
// until after the power domain has completed its power transition.
if (fControllingDriver && !fInitialPowerChange) {
maxPowerState = fControllingDriver->maxCapabilityForDomainState(
combinedPowerFlags);
if (parentChangeFlags & kIOPMDomainPowerDrop) {
// fMaxPowerState set a limit on self-initiated power changes.
// Update it before a parent power drop.
fMaxPowerState = maxPowerState;
}
// Use kIOPMSynchronize below instead of kIOPMRootBroadcastFlags
// to avoid propagating the root change flags if any service must
// change power state due to root's will-change notification.
// Root does not change power state for kIOPMSynchronize.
myChangeFlags = kIOPMParentInitiated | kIOPMDomainWillChange |
(parentChangeFlags & kIOPMSynchronize);
result = startPowerChange(
/* flags */ myChangeFlags,
/* power state */ maxPowerState,
/* domain flags */ combinedPowerFlags,
/* connection */ whichParent,
/* parent flags */ parentPowerFlags);
}
// If parent is dropping power, immediately update the parent's
// capability flags. Any future merging of parent(s) combined
// power flags should account for this power drop.
if (parentChangeFlags & kIOPMDomainPowerDrop) {
setParentInfo(parentPowerFlags, whichParent, true);
}
// Parent is expecting an ACK from us. If we did not embark on a state
// transition, i.e. startPowerChange() returned IOPMAckImplied. We are
// still required to issue an ACK to our parent.
if (IOPMAckImplied == result) {
IOService * parent;
parent = (IOService *) whichParent->copyParentEntry(gIOPowerPlane);
assert(parent);
if (parent) {
parent->acknowledgePowerChange( whichParent );
parent->release();
}
}
exit_no_ack:
// Drop the retain from notifyChild().
if (whichParent) {
whichParent->release();
}
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] powerDomainDidChangeTo
//
// Called by the power-hierarchy parent after the power state of the power domain
// has settled at a new level.
// We enqueue a parent power-change to our queue of power changes.
// This may or may not cause us to change power, depending on what
// kind of change is occuring in the domain.
//*********************************************************************************
IOReturn
IOService::powerDomainDidChangeTo(
IOPMPowerFlags newPowerFlags,
IOPowerConnection * whichParent )
{
assert(false);
return kIOReturnUnsupported;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [private] handlePowerDomainDidChangeTo
//*********************************************************************************
void
IOService::handlePowerDomainDidChangeTo( IOPMRequest * request )
{
IOPMPowerFlags parentPowerFlags = (IOPMPowerFlags) request->fArg0;
IOPowerConnection * whichParent = (IOPowerConnection *) request->fArg1;
IOPMPowerChangeFlags parentChangeFlags = (IOPMPowerChangeFlags)(uintptr_t) request->fArg2;
IOPMPowerChangeFlags myChangeFlags;
IOPMPowerStateIndex maxPowerState;
IOPMPowerStateIndex initialDesire = kPowerStateZero;
bool computeDesire = false;
bool desireChanged = false;
bool savedParentsKnowState;
IOReturn result = IOPMAckImplied;
PM_ASSERT_IN_GATE();
OUR_PMLog(kPMLogDidChange, parentPowerFlags, 0);
if (!inPlane(gIOPowerPlane) || !whichParent || !whichParent->getAwaitingAck()) {
PM_LOG("%s::%s not in power tree\n", getName(), __FUNCTION__);
goto exit_no_ack;
}
savedParentsKnowState = fParentsKnowState;
setParentInfo(parentPowerFlags, whichParent, true);
if (fControllingDriver) {
maxPowerState = fControllingDriver->maxCapabilityForDomainState(
fParentsCurrentPowerFlags);
if ((parentChangeFlags & kIOPMDomainPowerDrop) == 0) {
// fMaxPowerState set a limit on self-initiated power changes.
// Update it after a parent power rise.
fMaxPowerState = maxPowerState;
}
if (fInitialPowerChange) {
computeDesire = true;
initialDesire = fControllingDriver->initialPowerStateForDomainState(
fParentsCurrentPowerFlags);
} else if (parentChangeFlags & kIOPMRootChangeUp) {
if (fAdvisoryTickleUsed) {
// On system wake, re-compute the desired power state since
// gIOPMAdvisoryTickleEnabled will change for a full wake,
// which is an input to computeDesiredState(). This is not
// necessary for a dark wake because powerChangeDone() will
// handle the dark to full wake case, but it does no harm.
desireChanged = true;
}
if (fResetPowerStateOnWake) {
// Query the driver for the desired power state on system wake.
// Default implementation returns the lowest power state.
IOPMPowerStateIndex wakePowerState =
fControllingDriver->initialPowerStateForDomainState(
kIOPMRootDomainState | kIOPMPowerOn );
// fDesiredPowerState was adjusted before going to sleep
// with fDeviceDesire at min.
if (StateOrder(wakePowerState) > StateOrder(fDesiredPowerState)) {
// Must schedule a power adjustment if we changed the
// device desire. That will update the desired domain
// power on the parent power connection and ping the
// power parent if necessary.
updatePowerClient(gIOPMPowerClientDevice, wakePowerState);
desireChanged = true;
}
}
}
if (computeDesire || desireChanged) {
computeDesiredState(initialDesire, false);
}
// Absorb and propagate parent's broadcast flags
myChangeFlags = kIOPMParentInitiated | kIOPMDomainDidChange |
(parentChangeFlags & kIOPMRootBroadcastFlags);
if (kIOPMAOTPower & fPowerStates[maxPowerState].inputPowerFlags) {
IOLog("aotPS %s0x%qx[%ld]\n", getName(), getRegistryEntryID(), maxPowerState);
}
result = startPowerChange(
/* flags */ myChangeFlags,
/* power state */ maxPowerState,
/* domain flags */ fParentsCurrentPowerFlags,
/* connection */ whichParent,
/* parent flags */ 0);
}
// Parent is expecting an ACK from us. If we did not embark on a state
// transition, i.e. startPowerChange() returned IOPMAckImplied. We are
// still required to issue an ACK to our parent.
if (IOPMAckImplied == result) {
IOService * parent;
parent = (IOService *) whichParent->copyParentEntry(gIOPowerPlane);
assert(parent);
if (parent) {
parent->acknowledgePowerChange( whichParent );
parent->release();
}
}
// If the parent registers its power driver late, then this is the
// first opportunity to tell our parent about our desire. Or if the
// child's desire changed during a parent change notify.
if (fControllingDriver &&
((!savedParentsKnowState && fParentsKnowState) || desireChanged)) {
PM_LOG1("%s::powerDomainDidChangeTo parentsKnowState %d\n",
getName(), fParentsKnowState);
requestDomainPower( fDesiredPowerState );
}
exit_no_ack:
// Drop the retain from notifyChild().
if (whichParent) {
whichParent->release();
}
}
//*********************************************************************************
// [private] setParentInfo
//
// Set our connection data for one specific parent, and then combine all the parent
// data together.
//*********************************************************************************
void
IOService::setParentInfo(
IOPMPowerFlags newPowerFlags,
IOPowerConnection * whichParent,
bool knowsState )
{
OSIterator * iter;
OSObject * next;
IOPowerConnection * conn;
PM_ASSERT_IN_GATE();
// set our connection data
whichParent->setParentCurrentPowerFlags(newPowerFlags);
whichParent->setParentKnowsState(knowsState);
// recompute our parent info
fParentsCurrentPowerFlags = 0;
fParentsKnowState = true;
iter = getParentIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((conn = OSDynamicCast(IOPowerConnection, next))) {
fParentsKnowState &= conn->parentKnowsState();
fParentsCurrentPowerFlags |= conn->parentCurrentPowerFlags();
}
}
iter->release();
}
}
//******************************************************************************
// [private] trackSystemSleepPreventers
//******************************************************************************
void
IOService::trackSystemSleepPreventers(
IOPMPowerStateIndex oldPowerState,
IOPMPowerStateIndex newPowerState,
IOPMPowerChangeFlags changeFlags __unused )
{
IOPMPowerFlags oldCapability, newCapability;
oldCapability = fPowerStates[oldPowerState].capabilityFlags &
(kIOPMPreventIdleSleep | kIOPMPreventSystemSleep);
newCapability = fPowerStates[newPowerState].capabilityFlags &
(kIOPMPreventIdleSleep | kIOPMPreventSystemSleep);
if (fHeadNoteChangeFlags & kIOPMInitialPowerChange) {
oldCapability = 0;
}
if (oldCapability == newCapability) {
return;
}
if ((oldCapability ^ newCapability) & kIOPMPreventIdleSleep) {
bool enablePrevention = ((oldCapability & kIOPMPreventIdleSleep) == 0);
bool idleCancelAllowed = getPMRootDomain()->updatePreventIdleSleepList(
this, enablePrevention);
#if SUPPORT_IDLE_CANCEL
if (idleCancelAllowed && enablePrevention) {
IOPMRequest * cancelRequest;
cancelRequest = acquirePMRequest( getPMRootDomain(), kIOPMRequestTypeIdleCancel );
if (cancelRequest) {
submitPMRequest( cancelRequest );
}
}
#endif
}
if ((oldCapability ^ newCapability) & kIOPMPreventSystemSleep) {
getPMRootDomain()->updatePreventSystemSleepList(this,
((oldCapability & kIOPMPreventSystemSleep) == 0));
}
}
//*********************************************************************************
// [public] requestPowerDomainState
//
// Called on a power parent when a child's power requirement changes.
//*********************************************************************************
IOReturn
IOService::requestPowerDomainState(
IOPMPowerFlags childRequestPowerFlags,
IOPowerConnection * childConnection,
unsigned long specification )
{
IOPMPowerStateIndex order, powerState;
IOPMPowerFlags outputPowerFlags;
IOService * child;
IOPMRequest * subRequest;
bool adjustPower = false;
if (!initialized) {
return IOPMNotYetInitialized;
}
if (gIOPMWorkLoop->onThread() == false) {
PM_LOG("%s::requestPowerDomainState\n", getName());
return kIOReturnSuccess;
}
OUR_PMLog(kPMLogRequestDomain, childRequestPowerFlags, specification);
if (!isChild(childConnection, gIOPowerPlane)) {
return kIOReturnNotAttached;
}
if (!fControllingDriver || !fNumberOfPowerStates) {
return kIOReturnNotReady;
}
child = (IOService *) childConnection->getChildEntry(gIOPowerPlane);
assert(child);
// Remove flags from child request which we can't possibly supply
childRequestPowerFlags &= fMergedOutputPowerFlags;
// Merge in the power flags contributed by this power parent
// at its current or impending power state.
outputPowerFlags = fPowerStates[fCurrentPowerState].outputPowerFlags;
if (fMachineState != kIOPM_Finished) {
if (IS_POWER_DROP && !IS_ROOT_DOMAIN) {
// Use the lower power state when dropping power.
// Must be careful since a power drop can be cancelled
// from the following states:
// - kIOPM_OurChangeTellClientsPowerDown
// - kIOPM_OurChangeTellPriorityClientsPowerDown
//
// The child must not wait for this parent to raise power
// if the power drop was cancelled. The solution is to cancel
// the power drop if possible, then schedule an adjustment to
// re-evaluate the parent's power state.
//
// Root domain is excluded to avoid idle sleep issues. And allow
// root domain children to pop up when system is going to sleep.
if ((fMachineState == kIOPM_OurChangeTellClientsPowerDown) ||
(fMachineState == kIOPM_OurChangeTellPriorityClientsPowerDown)) {
fDoNotPowerDown = true; // cancel power drop
adjustPower = true;// schedule an adjustment
PM_LOG1("%s: power drop cancelled in state %u by %s\n",
getName(), fMachineState, child->getName());
} else {
// Beyond cancellation point, report the impending state.
outputPowerFlags =
fPowerStates[fHeadNotePowerState].outputPowerFlags;
}
} else if (IS_POWER_RISE) {
// When raising power, must report the output power flags from
// child's perspective. A child power request may arrive while
// parent is transitioning upwards. If a request arrives after
// setParentInfo() has already recorded the output power flags
// for the next power state, then using the power supplied by
// fCurrentPowerState is incorrect, and might cause the child
// to wait when it should not.
outputPowerFlags = childConnection->parentCurrentPowerFlags();
}
}
child->fHeadNoteDomainTargetFlags |= outputPowerFlags;
// Map child's requested power flags to one of our power state.
for (order = 0; order < fNumberOfPowerStates; order++) {
powerState = fPowerStates[order].stateOrderToIndex;
if ((fPowerStates[powerState].outputPowerFlags & childRequestPowerFlags)
== childRequestPowerFlags) {
break;
}
}
if (order >= fNumberOfPowerStates) {
powerState = kPowerStateZero;
}
// Conditions that warrants a power adjustment on this parent.
// Adjust power will also propagate any changes to the child's
// prevent idle/sleep flags towards the root domain.
if (!childConnection->childHasRequestedPower() ||
(powerState != childConnection->getDesiredDomainState())) {
adjustPower = true;
}
#if ENABLE_DEBUG_LOGS
if (adjustPower) {
PM_LOG("requestPowerDomainState[%s]: %s, init %d, %u->%u\n",
getName(), child->getName(),
!childConnection->childHasRequestedPower(),
(uint32_t) childConnection->getDesiredDomainState(),
(uint32_t) powerState);
}
#endif
// Record the child's desires on the connection.
childConnection->setChildHasRequestedPower();
childConnection->setDesiredDomainState( powerState );
// Schedule a request to re-evaluate all children desires and
// adjust power state. Submit a request if one wasn't pending,
// or if the current request is part of a call tree.
if (adjustPower && !fDeviceOverrideEnabled &&
(!fAdjustPowerScheduled || gIOPMRequest->getRootRequest())) {
subRequest = acquirePMRequest(
this, kIOPMRequestTypeAdjustPowerState, gIOPMRequest );
if (subRequest) {
submitPMRequest( subRequest );
fAdjustPowerScheduled = true;
}
}
return kIOReturnSuccess;
}
//*********************************************************************************
// [public] temporaryPowerClampOn
//
// A power domain wants to be clamped to max power until it has children which
// will then determine the power domain state.
//
// We enter the highest state until addPowerChild is called.
//*********************************************************************************
IOReturn
IOService::temporaryPowerClampOn( void )
{
return requestPowerState( gIOPMPowerClientChildProxy, kIOPMPowerStateMax );
}
//*********************************************************************************
// [public] makeUsable
//
// Some client of our device is asking that we become usable. Although
// this has not come from a subclassed device object, treat it exactly
// as if it had. In this way, subsequent requests for lower power from
// a subclassed device object will pre-empt this request.
//
// We treat this as a subclass object request to switch to the
// highest power state.
//*********************************************************************************
IOReturn
IOService::makeUsable( void )
{
OUR_PMLog(kPMLogMakeUsable, 0, 0);
return requestPowerState( gIOPMPowerClientDevice, kIOPMPowerStateMax );
}
//*********************************************************************************
// [public] currentCapability
//*********************************************************************************
IOPMPowerFlags
IOService::currentCapability( void )
{
if (!initialized) {
return IOPMNotPowerManaged;
}
return fCurrentCapabilityFlags;
}
//*********************************************************************************
// [public] changePowerStateTo
//
// Called by our power-controlling driver to change power state. The new desired
// power state is computed and compared against the current power state. If those
// power states differ, then a power state change is initiated.
//*********************************************************************************
IOReturn
IOService::changePowerStateTo( unsigned long ordinal )
{
OUR_PMLog(kPMLogChangeStateTo, ordinal, 0);
return requestPowerState( gIOPMPowerClientDriver, ordinal );
}
//*********************************************************************************
// [protected] changePowerStateToPriv
//
// Called by our driver subclass to change power state. The new desired power
// state is computed and compared against the current power state. If those
// power states differ, then a power state change is initiated.
//*********************************************************************************
IOReturn
IOService::changePowerStateToPriv( unsigned long ordinal )
{
OUR_PMLog(kPMLogChangeStateToPriv, ordinal, 0);
return requestPowerState( gIOPMPowerClientDevice, ordinal );
}
//*********************************************************************************
// [public] changePowerStateWithOverrideTo
//
// Called by our driver subclass to change power state. The new desired power
// state is computed and compared against the current power state. If those
// power states differ, then a power state change is initiated.
// Override enforced - Children and Driver desires are ignored.
//*********************************************************************************
IOReturn
IOService::changePowerStateWithOverrideTo( IOPMPowerStateIndex ordinal,
IOPMRequestTag tag )
{
IOPMRequest * request;
if (!initialized) {
return kIOPMNotYetInitialized;
}
OUR_PMLog(kPMLogChangeStateToPriv, ordinal, 0);
request = acquirePMRequest( this, kIOPMRequestTypeRequestPowerStateOverride );
if (!request) {
return kIOReturnNoMemory;
}
gIOPMPowerClientDevice->retain();
request->fTag = tag;
request->fArg0 = (void *) ordinal;
request->fArg1 = (void *) gIOPMPowerClientDevice;
request->fArg2 = NULL;
#if NOT_READY
if (action) {
request->installCompletionAction( action, target, param );
}
#endif
// Prevent needless downwards power transitions by clamping power
// until the scheduled request is executed.
//
// TODO: review fOverrideMaxPowerState
if (gIOPMWorkLoop->inGate() && (ordinal < fNumberOfPowerStates)) {
fTempClampPowerState = StateMax(fTempClampPowerState, ordinal);
fTempClampCount++;
request->fArg2 = (void *)(uintptr_t) true;
// Place a power state ceiling to prevent any transition to a
// power state higher than fOverrideMaxPowerState.
fOverrideMaxPowerState = ordinal;
}
submitPMRequest( request );
return IOPMNoErr;
}
//*********************************************************************************
// Tagged form of changePowerStateTo()
//*********************************************************************************
IOReturn
IOService::changePowerStateWithTagTo( IOPMPowerStateIndex ordinal, IOPMRequestTag tag )
{
OUR_PMLog(kPMLogChangeStateTo, ordinal, tag);
return requestPowerState(gIOPMPowerClientDriver, ordinal, tag);
}
//*********************************************************************************
// Tagged form of changePowerStateToPriv()
//*********************************************************************************
IOReturn
IOService::changePowerStateWithTagToPriv( unsigned long ordinal, IOPMRequestTag tag )
{
OUR_PMLog(kPMLogChangeStateToPriv, ordinal, tag);
return requestPowerState(gIOPMPowerClientDevice, ordinal, tag);
}
//*********************************************************************************
// [public] changePowerStateForRootDomain
//
// Adjust the root domain's power desire on the target
//*********************************************************************************
IOReturn
IOService::changePowerStateForRootDomain( IOPMPowerStateIndex ordinal )
{
OUR_PMLog(kPMLogChangeStateForRootDomain, ordinal, 0);
return requestPowerState( gIOPMPowerClientRootDomain, ordinal );
}
//*********************************************************************************
// [public for PMRD] quiescePowerTree
//
// For root domain to issue a request to quiesce the power tree.
// Supplied callback invoked upon completion.
//*********************************************************************************
IOReturn
IOService::quiescePowerTree(
void * target, IOPMCompletionAction action, void * param )
{
IOPMRequest * request;
if (!initialized) {
return kIOPMNotYetInitialized;
}
if (!target || !action) {
return kIOReturnBadArgument;
}
OUR_PMLog(kPMLogQuiescePowerTree, 0, 0);
// Target the root node instead of root domain. This is to avoid blocking
// the quiesce request behind an existing root domain request in the work
// queue. Root parent and root domain requests in the work queue must not
// block the completion of the quiesce request.
request = acquirePMRequest(gIOPMRootNode, kIOPMRequestTypeQuiescePowerTree);
if (!request) {
return kIOReturnNoMemory;
}
request->installCompletionAction(target, action, param);
// Submit through the normal request flow. This will make sure any request
// already in the request queue will get pushed over to the work queue for
// execution. Any request submitted after this request may not be serviced.
submitPMRequest( request );
return kIOReturnSuccess;
}
//*********************************************************************************
// [private] requestPowerState
//*********************************************************************************
IOReturn
IOService::requestPowerState(
const OSSymbol * client,
IOPMPowerStateIndex state,
IOPMRequestTag tag )
{
IOPMRequest * request;
if (!client || (state > UINT_MAX)) {
return kIOReturnBadArgument;
}
if (!initialized) {
return kIOPMNotYetInitialized;
}
request = acquirePMRequest( this, kIOPMRequestTypeRequestPowerState );
if (!request) {
return kIOReturnNoMemory;
}
client->retain();
request->fTag = tag;
request->fArg0 = (void *)(uintptr_t) state;
request->fArg1 = (void *) client;
request->fArg2 = NULL;
#if NOT_READY
if (action) {
request->installCompletionAction( action, target, param );
}
#endif
// Prevent needless downwards power transitions by clamping power
// until the scheduled request is executed.
if (gIOPMWorkLoop->inGate() && (state < fNumberOfPowerStates)) {
fTempClampPowerState = StateMax(fTempClampPowerState, state);
fTempClampCount++;
request->fArg2 = (void *)(uintptr_t) true;
}
submitPMRequest( request );
return IOPMNoErr;
}
//*********************************************************************************
// [private] handleRequestPowerState
//*********************************************************************************
void
IOService::handleRequestPowerState( IOPMRequest * request )
{
const OSSymbol * client = (const OSSymbol *) request->fArg1;
IOPMPowerStateIndex state = (IOPMPowerStateIndex) request->fArg0;
PM_ASSERT_IN_GATE();
if (request->fArg2) {
assert(fTempClampCount != 0);
if (fTempClampCount) {
fTempClampCount--;
}
if (!fTempClampCount) {
fTempClampPowerState = kPowerStateZero;
}
}
if (fNumberOfPowerStates && (state >= fNumberOfPowerStates)) {
state = fHighestPowerState;
}
// The power suppression due to changePowerStateWithOverrideTo() expires
// upon the next "device" power request - changePowerStateToPriv().
if ((getPMRequestType() != kIOPMRequestTypeRequestPowerStateOverride) &&
(client == gIOPMPowerClientDevice)) {
fOverrideMaxPowerState = kIOPMPowerStateMax;
}
if ((state == kPowerStateZero) &&
(client != gIOPMPowerClientDevice) &&
(client != gIOPMPowerClientDriver) &&
(client != gIOPMPowerClientChildProxy)) {
removePowerClient(client);
} else {
updatePowerClient(client, state);
}
adjustPowerState();
client->release();
}
//*********************************************************************************
// [private] Helper functions to update/remove power clients.
//*********************************************************************************
void
IOService::updatePowerClient( const OSSymbol * client, IOPMPowerStateIndex powerState )
{
IOPMPowerStateIndex oldPowerState = kPowerStateZero;
if (powerState > UINT_MAX) {
assert(false);
return;
}
if (!fPowerClients) {
fPowerClients = OSDictionary::withCapacity(4);
}
if (fPowerClients && client) {
OSNumber * num = (OSNumber *) fPowerClients->getObject(client);
if (num) {
oldPowerState = num->unsigned32BitValue();
num->setValue(powerState);
} else {
num = OSNumber::withNumber(powerState, 32);
if (num) {
fPowerClients->setObject(client, num);
num->release();
}
}
PM_ACTION_CLIENT(actionUpdatePowerClient, client, oldPowerState, powerState);
}
}
void
IOService::removePowerClient( const OSSymbol * client )
{
if (fPowerClients && client) {
fPowerClients->removeObject(client);
}
}
IOPMPowerStateIndex
IOService::getPowerStateForClient( const OSSymbol * client )
{
IOPMPowerStateIndex powerState = kPowerStateZero;
if (fPowerClients && client) {
OSNumber * num = (OSNumber *) fPowerClients->getObject(client);
if (num) {
powerState = num->unsigned32BitValue();
}
}
return powerState;
}
//*********************************************************************************
// [protected] powerOverrideOnPriv
//*********************************************************************************
IOReturn
IOService::powerOverrideOnPriv( void )
{
IOPMRequest * request;
if (!initialized) {
return IOPMNotYetInitialized;
}
if (gIOPMWorkLoop->inGate()) {
fDeviceOverrideEnabled = true;
return IOPMNoErr;
}
request = acquirePMRequest( this, kIOPMRequestTypePowerOverrideOnPriv );
if (!request) {
return kIOReturnNoMemory;
}
submitPMRequest( request );
return IOPMNoErr;
}
//*********************************************************************************
// [protected] powerOverrideOffPriv
//*********************************************************************************
IOReturn
IOService::powerOverrideOffPriv( void )
{
IOPMRequest * request;
if (!initialized) {
return IOPMNotYetInitialized;
}
if (gIOPMWorkLoop->inGate()) {
fDeviceOverrideEnabled = false;
return IOPMNoErr;
}
request = acquirePMRequest( this, kIOPMRequestTypePowerOverrideOffPriv );
if (!request) {
return kIOReturnNoMemory;
}
submitPMRequest( request );
return IOPMNoErr;
}
//*********************************************************************************
// [private] handlePowerOverrideChanged
//*********************************************************************************
void
IOService::handlePowerOverrideChanged( IOPMRequest * request )
{
PM_ASSERT_IN_GATE();
if (request->getType() == kIOPMRequestTypePowerOverrideOnPriv) {
OUR_PMLog(kPMLogOverrideOn, 0, 0);
fDeviceOverrideEnabled = true;
} else {
OUR_PMLog(kPMLogOverrideOff, 0, 0);
fDeviceOverrideEnabled = false;
}
adjustPowerState();
}
//*********************************************************************************
// [private] computeDesiredState
//*********************************************************************************
void
IOService::computeDesiredState( unsigned long localClamp, bool computeOnly )
{
OSIterator * iter;
OSObject * next;
IOPowerConnection * connection;
IOPMPowerStateIndex desiredState = kPowerStateZero;
IOPMPowerStateIndex newPowerState = kPowerStateZero;
bool hasChildren = false;
// Desired power state is always 0 without a controlling driver.
if (!fNumberOfPowerStates) {
fDesiredPowerState = kPowerStateZero;
return;
}
// Examine the children's desired power state.
iter = getChildIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
if (connection->getReadyFlag() == false) {
PM_LOG3("[%s] %s: connection not ready\n",
getName(), __FUNCTION__);
continue;
}
if (connection->childHasRequestedPower()) {
hasChildren = true;
}
desiredState = StateMax(connection->getDesiredDomainState(), desiredState);
}
}
iter->release();
}
if (hasChildren) {
updatePowerClient(gIOPMPowerClientChildren, desiredState);
} else {
removePowerClient(gIOPMPowerClientChildren);
}
// Iterate through all power clients to determine the min power state.
iter = OSCollectionIterator::withCollection(fPowerClients);
if (iter) {
const OSSymbol * client;
while ((client = (const OSSymbol *) iter->getNextObject())) {
// Ignore child and driver when override is in effect.
if ((fDeviceOverrideEnabled ||
(getPMRequestType() == kIOPMRequestTypeRequestPowerStateOverride)) &&
((client == gIOPMPowerClientChildren) ||
(client == gIOPMPowerClientDriver))) {
continue;
}
// Ignore child proxy when children are present.
if (hasChildren && (client == gIOPMPowerClientChildProxy)) {
continue;
}
// Advisory tickles are irrelevant unless system is in full wake
if (client == gIOPMPowerClientAdvisoryTickle &&
!gIOPMAdvisoryTickleEnabled) {
continue;
}
desiredState = getPowerStateForClient(client);
assert(desiredState < fNumberOfPowerStates);
PM_LOG1(" %u %s\n",
(uint32_t) desiredState, client->getCStringNoCopy());
newPowerState = StateMax(newPowerState, desiredState);
if (client == gIOPMPowerClientDevice) {
fDeviceDesire = desiredState;
}
}
iter->release();
}
// Factor in the temporary power desires.
newPowerState = StateMax(newPowerState, localClamp);
newPowerState = StateMax(newPowerState, fTempClampPowerState);
// Limit check against max power override.
newPowerState = StateMin(newPowerState, fOverrideMaxPowerState);
// Limit check against number of power states.
if (newPowerState >= fNumberOfPowerStates) {
newPowerState = fHighestPowerState;
}
if (getPMRootDomain()->isAOTMode()) {
if ((kIOPMPreventIdleSleep & fPowerStates[newPowerState].capabilityFlags)
&& !(kIOPMPreventIdleSleep & fPowerStates[fDesiredPowerState].capabilityFlags)) {
getPMRootDomain()->claimSystemWakeEvent(this, kIOPMWakeEventAOTExit, getName(), NULL);
}
}
fDesiredPowerState = newPowerState;
PM_LOG1(" temp %u, clamp %u, current %u, new %u\n",
(uint32_t) localClamp, (uint32_t) fTempClampPowerState,
(uint32_t) fCurrentPowerState, (uint32_t) newPowerState);
if (!computeOnly) {
// Restart idle timer if possible when device desire has increased.
// Or if an advisory desire exists.
if (fIdleTimerPeriod && fIdleTimerStopped) {
restartIdleTimer();
}
// Invalidate cached tickle power state when desires change, and not
// due to a tickle request. In case the driver has requested a lower
// power state, but the tickle is caching a higher power state which
// will drop future tickles until the cached value is lowered or in-
// validated. The invalidation must occur before the power transition
// to avoid dropping a necessary tickle.
if ((getPMRequestType() != kIOPMRequestTypeActivityTickle) &&
(fActivityTicklePowerState != kInvalidTicklePowerState)) {
IOLockLock(fActivityLock);
fActivityTicklePowerState = kInvalidTicklePowerState;
IOLockUnlock(fActivityLock);
}
}
}
//*********************************************************************************
// [public] currentPowerConsumption
//
//*********************************************************************************
unsigned long
IOService::currentPowerConsumption( void )
{
if (!initialized) {
return kIOPMUnknown;
}
return fCurrentPowerConsumption;
}
//*********************************************************************************
// [deprecated] getPMworkloop
//*********************************************************************************
#ifndef __LP64__
IOWorkLoop *
IOService::getPMworkloop( void )
{
return gIOPMWorkLoop;
}
#endif
#if NOT_YET
//*********************************************************************************
// Power Parent/Children Applier
//*********************************************************************************
static void
applyToPowerChildren(
IOService * service,
IOServiceApplierFunction applier,
void * context,
IOOptionBits options )
{
PM_ASSERT_IN_GATE();
IORegistryEntry * entry;
IORegistryIterator * iter;
IOPowerConnection * connection;
IOService * child;
iter = IORegistryIterator::iterateOver(service, gIOPowerPlane, options);
if (iter) {
while ((entry = iter->getNextObject())) {
// Get child of IOPowerConnection objects
if ((connection = OSDynamicCast(IOPowerConnection, entry))) {
child = (IOService *) connection->copyChildEntry(gIOPowerPlane);
if (child) {
(*applier)(child, context);
child->release();
}
}
}
iter->release();
}
}
static void
applyToPowerParent(
IOService * service,
IOServiceApplierFunction applier,
void * context,
IOOptionBits options )
{
PM_ASSERT_IN_GATE();
IORegistryEntry * entry;
IORegistryIterator * iter;
IOPowerConnection * connection;
IOService * parent;
iter = IORegistryIterator::iterateOver(service, gIOPowerPlane,
options | kIORegistryIterateParents);
if (iter) {
while ((entry = iter->getNextObject())) {
// Get child of IOPowerConnection objects
if ((connection = OSDynamicCast(IOPowerConnection, entry))) {
parent = (IOService *) connection->copyParentEntry(gIOPowerPlane);
if (parent) {
(*applier)(parent, context);
parent->release();
}
}
}
iter->release();
}
}
#endif /* NOT_YET */
// MARK: -
// MARK: Activity Tickle & Idle Timer
void
IOService::setAdvisoryTickleEnable( bool enable )
{
gIOPMAdvisoryTickleEnabled = enable;
}
//*********************************************************************************
// [public] activityTickle
//
// The tickle with parameter kIOPMSuperclassPolicy1 causes the activity
// flag to be set, and the device state checked. If the device has been
// powered down, it is powered up again.
// The tickle with parameter kIOPMSubclassPolicy is ignored here and
// should be intercepted by a subclass.
//*********************************************************************************
bool
IOService::activityTickle( unsigned long type, unsigned long stateNumber )
{
IOPMRequest * request;
bool noPowerChange = true;
uint32_t tickleFlags;
if (!initialized) {
return true; // no power change
}
if ((type == kIOPMSuperclassPolicy1) && StateOrder(stateNumber)) {
IOLockLock(fActivityLock);
// Record device activity for the idle timer handler.
fDeviceWasActive = true;
fActivityTickleCount++;
clock_get_uptime(&fDeviceActiveTimestamp);
PM_ACTION_TICKLE(actionActivityTickle);
// Record the last tickle power state.
// This helps to filter out redundant tickles as
// this function may be called from the data path.
if ((fActivityTicklePowerState == kInvalidTicklePowerState)
|| StateOrder(fActivityTicklePowerState) < StateOrder(stateNumber)) {
fActivityTicklePowerState = stateNumber;
noPowerChange = false;
tickleFlags = kTickleTypeActivity | kTickleTypePowerRise;
request = acquirePMRequest( this, kIOPMRequestTypeActivityTickle );
if (request) {
request->fArg0 = (void *) stateNumber;
request->fArg1 = (void *)(uintptr_t) tickleFlags;
request->fArg2 = (void *)(uintptr_t) gIOPMTickleGeneration;
submitPMRequest(request);
}
}
IOLockUnlock(fActivityLock);
} else if ((type == kIOPMActivityTickleTypeAdvisory) &&
((stateNumber = fDeviceUsablePowerState) != kPowerStateZero)) {
IOLockLock(fActivityLock);
fAdvisoryTickled = true;
if (fAdvisoryTicklePowerState != stateNumber) {
fAdvisoryTicklePowerState = stateNumber;
noPowerChange = false;
tickleFlags = kTickleTypeAdvisory | kTickleTypePowerRise;
request = acquirePMRequest( this, kIOPMRequestTypeActivityTickle );
if (request) {
request->fArg0 = (void *) stateNumber;
request->fArg1 = (void *)(uintptr_t) tickleFlags;
request->fArg2 = (void *)(uintptr_t) gIOPMTickleGeneration;
submitPMRequest(request);
}
}
IOLockUnlock(fActivityLock);
}
// Returns false if the activityTickle might cause a transition to a
// higher powered state, true otherwise.
return noPowerChange;
}
//*********************************************************************************
// [private] handleActivityTickle
//*********************************************************************************
void
IOService::handleActivityTickle( IOPMRequest * request )
{
IOPMPowerStateIndex ticklePowerState = (IOPMPowerStateIndex) request->fArg0;
IOPMPowerStateIndex tickleFlags = (IOPMPowerStateIndex) request->fArg1;
uint32_t tickleGeneration = (uint32_t)(uintptr_t) request->fArg2;
bool adjustPower = false;
PM_ASSERT_IN_GATE();
if (fResetPowerStateOnWake && (tickleGeneration != gIOPMTickleGeneration)) {
// Drivers that don't want power restored on wake will drop any
// tickles that pre-dates the current system wake. The model is
// that each wake is a fresh start, with power state depressed
// until a new tickle or an explicit power up request from the
// driver. It is possible for the PM work loop to enter the
// system sleep path with tickle requests queued.
return;
}
if (tickleFlags & kTickleTypeActivity) {
IOPMPowerStateIndex deviceDesireOrder = StateOrder(fDeviceDesire);
IOPMPowerStateIndex idleTimerGeneration = ticklePowerState; // kTickleTypePowerDrop
if (tickleFlags & kTickleTypePowerRise) {
if ((StateOrder(ticklePowerState) > deviceDesireOrder) &&
(ticklePowerState < fNumberOfPowerStates)) {
fIdleTimerMinPowerState = ticklePowerState;
updatePowerClient(gIOPMPowerClientDevice, ticklePowerState);
adjustPower = true;
}
} else if ((deviceDesireOrder > StateOrder(fIdleTimerMinPowerState)) &&
(idleTimerGeneration == fIdleTimerGeneration)) {
// Power drop due to idle timer expiration.
// Do not allow idle timer to reduce power below tickle power.
// This prevents the idle timer from decreasing the device desire
// to zero and cancelling the effect of a pre-sleep tickle when
// system wakes up to doze state, while the device is unable to
// raise its power state to satisfy the tickle.
deviceDesireOrder--;
if (deviceDesireOrder < fNumberOfPowerStates) {
ticklePowerState = fPowerStates[deviceDesireOrder].stateOrderToIndex;
updatePowerClient(gIOPMPowerClientDevice, ticklePowerState);
adjustPower = true;
}
}
} else { // advisory tickle
if (tickleFlags & kTickleTypePowerRise) {
if ((ticklePowerState == fDeviceUsablePowerState) &&
(ticklePowerState < fNumberOfPowerStates)) {
updatePowerClient(gIOPMPowerClientAdvisoryTickle, ticklePowerState);
fHasAdvisoryDesire = true;
fAdvisoryTickleUsed = true;
adjustPower = true;
} else {
IOLockLock(fActivityLock);
fAdvisoryTicklePowerState = kInvalidTicklePowerState;
IOLockUnlock(fActivityLock);
}
} else if (fHasAdvisoryDesire) {
removePowerClient(gIOPMPowerClientAdvisoryTickle);
fHasAdvisoryDesire = false;
adjustPower = true;
}
}
if (adjustPower) {
adjustPowerState();
}
}
//******************************************************************************
// [public] setIdleTimerPeriod
//
// A subclass policy-maker is using our standard idleness detection service.
// Start the idle timer. Period is in seconds.
//******************************************************************************
IOReturn
IOService::setIdleTimerPeriod( unsigned long period )
{
if (!initialized) {
return IOPMNotYetInitialized;
}
OUR_PMLog(kPMLogSetIdleTimerPeriod, period, fIdleTimerPeriod);
if (period > INT_MAX) {
return kIOReturnBadArgument;
}
IOPMRequest * request =
acquirePMRequest( this, kIOPMRequestTypeSetIdleTimerPeriod );
if (!request) {
return kIOReturnNoMemory;
}
request->fArg0 = (void *) period;
submitPMRequest( request );
return kIOReturnSuccess;
}
IOReturn
IOService::setIgnoreIdleTimer( bool ignore )
{
if (!initialized) {
return IOPMNotYetInitialized;
}
OUR_PMLog(kIOPMRequestTypeIgnoreIdleTimer, ignore, 0);
IOPMRequest * request =
acquirePMRequest( this, kIOPMRequestTypeIgnoreIdleTimer );
if (!request) {
return kIOReturnNoMemory;
}
request->fArg0 = (void *) ignore;
submitPMRequest( request );
return kIOReturnSuccess;
}
//******************************************************************************
// [public] nextIdleTimeout
//
// Returns how many "seconds from now" the device should idle into its
// next lowest power state.
//******************************************************************************
SInt32
IOService::nextIdleTimeout(
AbsoluteTime currentTime,
AbsoluteTime lastActivity,
unsigned int powerState)
{
AbsoluteTime delta;
UInt64 delta_ns;
SInt32 delta_secs;
SInt32 delay_secs;
// Calculate time difference using funky macro from clock.h.
delta = currentTime;
SUB_ABSOLUTETIME(&delta, &lastActivity);
// Figure it in seconds.
absolutetime_to_nanoseconds(delta, &delta_ns);
delta_secs = (SInt32)(delta_ns / NSEC_PER_SEC);
// Be paranoid about delta somehow exceeding timer period.
if (delta_secs < (int) fIdleTimerPeriod) {
delay_secs = (int) fIdleTimerPeriod - delta_secs;
} else {
delay_secs = (int) fIdleTimerPeriod;
}
return (SInt32)delay_secs;
}
//*********************************************************************************
// [public] start_PM_idle_timer
//*********************************************************************************
void
IOService::start_PM_idle_timer( void )
{
static const int maxTimeout = 100000;
static const int minTimeout = 1;
AbsoluteTime uptime, deadline;
SInt32 idle_in = 0;
boolean_t pending;
if (!initialized || !fIdleTimerPeriod ||
((unsigned int) fCurrentPowerState != fCurrentPowerState)) {
return;
}
IOLockLock(fActivityLock);
clock_get_uptime(&uptime);
// Subclasses may modify idle sleep algorithm
idle_in = nextIdleTimeout(uptime, fDeviceActiveTimestamp, (unsigned int) fCurrentPowerState);
// Check for out-of range responses
if (idle_in > maxTimeout) {
// use standard implementation
idle_in = IOService::nextIdleTimeout(uptime,
fDeviceActiveTimestamp,
(unsigned int) fCurrentPowerState);
} else if (idle_in < minTimeout) {
idle_in = fIdleTimerPeriod;
}
IOLockUnlock(fActivityLock);
fNextIdleTimerPeriod = idle_in;
fIdleTimerStartTime = uptime;
retain();
clock_interval_to_absolutetime_interval(idle_in, kSecondScale, &deadline);
ADD_ABSOLUTETIME(&deadline, &uptime);
pending = thread_call_enter_delayed(fIdleTimer, deadline);
if (pending) {
release();
}
}
//*********************************************************************************
// [private] restartIdleTimer
//*********************************************************************************
void
IOService::restartIdleTimer( void )
{
if (fDeviceDesire != kPowerStateZero) {
fIdleTimerStopped = false;
fActivityTickleCount = 0;
start_PM_idle_timer();
} else if (fHasAdvisoryDesire) {
fIdleTimerStopped = false;
start_PM_idle_timer();
} else {
fIdleTimerStopped = true;
}
}
//*********************************************************************************
// idle_timer_expired
//*********************************************************************************
static void
idle_timer_expired(
thread_call_param_t arg0, thread_call_param_t arg1 )
{
IOService * me = (IOService *) arg0;
if (gIOPMWorkLoop) {
gIOPMWorkLoop->runAction(
OSMemberFunctionCast(IOWorkLoop::Action, me,
&IOService::idleTimerExpired),
me);
}
me->release();
}
//*********************************************************************************
// [private] idleTimerExpired
//
// The idle timer has expired. If there has been activity since the last
// expiration, just restart the timer and return. If there has not been
// activity, switch to the next lower power state and restart the timer.
//*********************************************************************************
void
IOService::idleTimerExpired( void )
{
IOPMRequest * request;
bool restartTimer = true;
uint32_t tickleFlags;
if (!initialized || !fIdleTimerPeriod || fIdleTimerStopped ||
fLockedFlags.PMStop) {
return;
}
fIdleTimerStartTime = 0;
IOLockLock(fActivityLock);
// Check for device activity (tickles) over last timer period.
if (fDeviceWasActive) {
// Device was active - do not drop power, restart timer.
fDeviceWasActive = false;
} else if (!fIdleTimerIgnored) {
// No device activity - drop power state by one level.
// Decrement the cached tickle power state when possible.
// This value may be kInvalidTicklePowerState before activityTickle()
// is called, but the power drop request must be issued regardless.
if ((fActivityTicklePowerState != kInvalidTicklePowerState) &&
(fActivityTicklePowerState != kPowerStateZero)) {
fActivityTicklePowerState--;
}
tickleFlags = kTickleTypeActivity | kTickleTypePowerDrop;
request = acquirePMRequest( this, kIOPMRequestTypeActivityTickle );
if (request) {
request->fArg0 = (void *)(uintptr_t) fIdleTimerGeneration;
request->fArg1 = (void *)(uintptr_t) tickleFlags;
request->fArg2 = (void *)(uintptr_t) gIOPMTickleGeneration;
submitPMRequest( request );
// Do not restart timer until after the tickle request has been
// processed.
restartTimer = false;
}
}
if (fAdvisoryTickled) {
fAdvisoryTickled = false;
} else if (fHasAdvisoryDesire) {
// Want new tickles to turn into pm request after we drop the lock
fAdvisoryTicklePowerState = kInvalidTicklePowerState;
tickleFlags = kTickleTypeAdvisory | kTickleTypePowerDrop;
request = acquirePMRequest( this, kIOPMRequestTypeActivityTickle );
if (request) {
request->fArg0 = (void *)(uintptr_t) fIdleTimerGeneration;
request->fArg1 = (void *)(uintptr_t) tickleFlags;
request->fArg2 = (void *)(uintptr_t) gIOPMTickleGeneration;
submitPMRequest( request );
// Do not restart timer until after the tickle request has been
// processed.
restartTimer = false;
}
}
IOLockUnlock(fActivityLock);
if (restartTimer) {
start_PM_idle_timer();
}
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] PM_idle_timer_expiration
//*********************************************************************************
void
IOService::PM_idle_timer_expiration( void )
{
}
//*********************************************************************************
// [deprecated] command_received
//*********************************************************************************
void
IOService::command_received( void *statePtr, void *, void *, void * )
{
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] setAggressiveness
//
// Pass on the input parameters to all power domain children. All those which are
// power domains will pass it on to their children, etc.
//*********************************************************************************
IOReturn
IOService::setAggressiveness( unsigned long type, unsigned long newLevel )
{
return kIOReturnSuccess;
}
//*********************************************************************************
// [public] getAggressiveness
//
// Called by the user client.
//*********************************************************************************
IOReturn
IOService::getAggressiveness( unsigned long type, unsigned long * currentLevel )
{
IOPMrootDomain * rootDomain = getPMRootDomain();
if (!rootDomain) {
return kIOReturnNotReady;
}
return rootDomain->getAggressiveness( type, currentLevel );
}
//*********************************************************************************
// [public] getPowerState
//
//*********************************************************************************
UInt32
IOService::getPowerState( void )
{
if (!initialized) {
return kPowerStateZero;
}
return (UInt32) fCurrentPowerState;
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] systemWake
//
// Pass this to all power domain children. All those which are
// power domains will pass it on to their children, etc.
//*********************************************************************************
IOReturn
IOService::systemWake( void )
{
OSIterator * iter;
OSObject * next;
IOPowerConnection * connection;
IOService * theChild;
iter = getChildIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
if (connection->getReadyFlag() == false) {
PM_LOG3("[%s] %s: connection not ready\n",
getName(), __FUNCTION__);
continue;
}
theChild = (IOService *)connection->copyChildEntry(gIOPowerPlane);
if (theChild) {
theChild->systemWake();
theChild->release();
}
}
}
iter->release();
}
if (fControllingDriver != NULL) {
if (fControllingDriver->didYouWakeSystem()) {
makeUsable();
}
}
return IOPMNoErr;
}
//*********************************************************************************
// [deprecated] temperatureCriticalForZone
//*********************************************************************************
IOReturn
IOService::temperatureCriticalForZone( IOService * whichZone )
{
IOService * theParent;
IOService * theNub;
OUR_PMLog(kPMLogCriticalTemp, 0, 0);
if (inPlane(gIOPowerPlane) && !IS_PM_ROOT) {
theNub = (IOService *)copyParentEntry(gIOPowerPlane);
if (theNub) {
theParent = (IOService *)theNub->copyParentEntry(gIOPowerPlane);
theNub->release();
if (theParent) {
theParent->temperatureCriticalForZone(whichZone);
theParent->release();
}
}
}
return IOPMNoErr;
}
#endif /* !__LP64__ */
// MARK: -
// MARK: Power Change (Common)
//*********************************************************************************
// [private] startPowerChange
//
// All power state changes starts here.
//*********************************************************************************
IOReturn
IOService::startPowerChange(
IOPMPowerChangeFlags changeFlags,
IOPMPowerStateIndex powerState,
IOPMPowerFlags domainFlags,
IOPowerConnection * parentConnection,
IOPMPowerFlags parentFlags )
{
uint32_t savedPMActionsState;
PM_ASSERT_IN_GATE();
assert( fMachineState == kIOPM_Finished );
assert( powerState < fNumberOfPowerStates );
if (powerState >= fNumberOfPowerStates) {
return IOPMAckImplied;
}
fIsPreChange = true;
savedPMActionsState = fPMActions.state;
PM_ACTION_CHANGE(actionPowerChangeOverride, &powerState, &changeFlags);
// rdar://problem/55040032
// Schedule a power adjustment after removing the power clamp
// to inform our power parent(s) about our latest desired domain
// power state. For a self-initiated change, let OurChangeStart()
// automatically request parent power when necessary.
if (!fAdjustPowerScheduled &&
((changeFlags & kIOPMSelfInitiated) == 0) &&
((fPMActions.state & kPMActionsStatePowerClamped) == 0) &&
((savedPMActionsState & kPMActionsStatePowerClamped) != 0)) {
IOPMRequest * request = acquirePMRequest(this, kIOPMRequestTypeAdjustPowerState);
if (request) {
submitPMRequest(request);
fAdjustPowerScheduled = true;
}
}
if (changeFlags & kIOPMExpireIdleTimer) {
// Root domain requested removal of tickle influence
if (StateOrder(fDeviceDesire) > StateOrder(powerState)) {
// Reset device desire down to the clamped power state
updatePowerClient(gIOPMPowerClientDevice, powerState);
computeDesiredState(kPowerStateZero, true);
// Invalidate tickle cache so the next tickle will issue a request
IOLockLock(fActivityLock);
fDeviceWasActive = false;
fActivityTicklePowerState = kInvalidTicklePowerState;
IOLockUnlock(fActivityLock);
fIdleTimerMinPowerState = kPowerStateZero;
}
}
// Root domain's override handler may cancel the power change by
// setting the kIOPMNotDone flag.
if (changeFlags & kIOPMNotDone) {
return IOPMAckImplied;
}
// Forks to either Driver or Parent initiated power change paths.
fHeadNoteChangeFlags = changeFlags;
fHeadNotePowerState = powerState;
fHeadNotePowerArrayEntry = &fPowerStates[powerState];
fHeadNoteParentConnection = NULL;
if (changeFlags & kIOPMSelfInitiated) {
if (changeFlags & kIOPMSynchronize) {
OurSyncStart();
} else {
OurChangeStart();
}
return 0;
} else {
assert(changeFlags & kIOPMParentInitiated);
fHeadNoteDomainFlags = domainFlags;
fHeadNoteParentFlags = parentFlags;
fHeadNoteParentConnection = parentConnection;
return ParentChangeStart();
}
}
//*********************************************************************************
// [private] notifyInterestedDrivers
//*********************************************************************************
bool
IOService::notifyInterestedDrivers( void )
{
IOPMinformee * informee;
IOPMinformeeList * list = fInterestedDrivers;
DriverCallParam * param;
unsigned long numItems;
uint32_t count;
uint32_t skipCnt = 0;
PM_ASSERT_IN_GATE();
assert( fDriverCallParamCount == 0 );
assert( fHeadNotePendingAcks == 0 );
fHeadNotePendingAcks = 0;
numItems = list->numberOfItems();
if (!numItems || ((uint32_t) numItems != numItems)) {
goto done; // interested drivers count out of range
}
count = (uint32_t) numItems;
// Allocate an array of interested drivers and their return values
// for the callout thread. Everything else is still "owned" by the
// PM work loop, which can run to process acknowledgePowerChange()
// responses.
param = (DriverCallParam *) fDriverCallParamPtr;
if (count > fDriverCallParamSlots) {
if (fDriverCallParamSlots) {
assert(fDriverCallParamPtr);
IODelete(fDriverCallParamPtr, DriverCallParam, fDriverCallParamSlots);
fDriverCallParamPtr = NULL;
fDriverCallParamSlots = 0;
}
param = IONew(DriverCallParam, count);
if (!param) {
goto done; // no memory
}
fDriverCallParamPtr = (void *) param;
fDriverCallParamSlots = count;
}
informee = list->firstInList();
assert(informee);
for (IOItemCount i = 0; i < count; i++) {
if (fInitialSetPowerState || (fHeadNoteChangeFlags & kIOPMInitialPowerChange)) {
// Skip notifying self, if 'kIOPMInitialDeviceState' is set and
// this is the initial power state change
if ((this == informee->whatObject) &&
(fHeadNotePowerArrayEntry->capabilityFlags & kIOPMInitialDeviceState)) {
skipCnt++;
continue;
}
}
informee->timer = -1;
param[i].Target = informee;
informee->retain();
informee = list->nextInList( informee );
}
count -= skipCnt;
if (!count) {
goto done;
}
fDriverCallParamCount = count;
fHeadNotePendingAcks = count;
// Block state machine and wait for callout completion.
assert(!fDriverCallBusy);
fDriverCallBusy = true;
thread_call_enter( fDriverCallEntry );
return true;
done:
// Return false if there are no interested drivers or could not schedule
// callout thread due to error.
return false;
}
//*********************************************************************************
// [private] notifyInterestedDriversDone
//*********************************************************************************
void
IOService::notifyInterestedDriversDone( void )
{
IOPMinformee * informee;
IOItemCount count;
DriverCallParam * param;
IOReturn result;
int maxTimeout = 0;
PM_ASSERT_IN_GATE();
assert( fDriverCallBusy == false );
assert( fMachineState == kIOPM_DriverThreadCallDone );
param = (DriverCallParam *) fDriverCallParamPtr;
count = fDriverCallParamCount;
if (param && count) {
for (IOItemCount i = 0; i < count; i++, param++) {
informee = (IOPMinformee *) param->Target;
result = param->Result;
if ((result == IOPMAckImplied) || (result < 0)) {
// Interested driver return IOPMAckImplied.
// If informee timer is zero, it must have de-registered
// interest during the thread callout. That also drops
// the pending ack count.
if (fHeadNotePendingAcks && informee->timer) {
fHeadNotePendingAcks--;
}
informee->timer = 0;
} else if (informee->timer) {
assert(informee->timer == -1);
// Driver has not acked, and has returned a positive result.
// Enforce a minimum permissible timeout value.
// Make the min value large enough so timeout is less likely
// to occur if a driver misinterpreted that the return value
// should be in microsecond units. And make it large enough
// to be noticeable if a driver neglects to ack.
if (result < kMinAckTimeoutTicks) {
result = kMinAckTimeoutTicks;
}
informee->timer = (result / (ACK_TIMER_PERIOD / ns_per_us)) + 1;
if (result > maxTimeout) {
maxTimeout = result;
}
}
// else, child has already acked or driver has removed interest,
// and head_note_pendingAcks decremented.
// informee may have been removed from the interested drivers list,
// thus the informee must be retained across the callout.
informee->release();
}
fDriverCallParamCount = 0;
if (fHeadNotePendingAcks) {
OUR_PMLog(kPMLogStartAckTimer, 0, 0);
start_ack_timer();
getPMRootDomain()->reset_watchdog_timer(this, maxTimeout / USEC_PER_SEC + 1);
}
}
MS_POP(); // pop the machine state passed to notifyAll()
// If interest acks are outstanding, block the state machine until
// fHeadNotePendingAcks drops to zero before notifying root domain.
// Otherwise notify root domain directly.
if (!fHeadNotePendingAcks) {
notifyRootDomain();
} else {
MS_PUSH(fMachineState);
fMachineState = kIOPM_NotifyChildrenStart;
}
}
//*********************************************************************************
// [private] notifyRootDomain
//*********************************************************************************
void
IOService::notifyRootDomain( void )
{
assert( fDriverCallBusy == false );
// Only for root domain in the will-change phase.
// On a power up, don't notify children right after the interested drivers.
// Perform setPowerState() first, then notify the children.
if (!IS_ROOT_DOMAIN || (fMachineState != kIOPM_OurChangeSetPowerState)) {
notifyChildren();
return;
}
MS_PUSH(fMachineState); // push notifyAll() machine state
fMachineState = kIOPM_DriverThreadCallDone;
// Call IOPMrootDomain::willNotifyPowerChildren() on a thread call
// to avoid a deadlock.
fDriverCallReason = kRootDomainInformPreChange;
fDriverCallBusy = true;
thread_call_enter( fDriverCallEntry );
}
void
IOService::notifyRootDomainDone( void )
{
assert( fDriverCallBusy == false );
assert( fMachineState == kIOPM_DriverThreadCallDone );
MS_POP(); // pop notifyAll() machine state
notifyChildren();
}
//*********************************************************************************
// [private] notifyChildren
//*********************************************************************************
void
IOService::notifyChildren( void )
{
OSIterator * iter;
OSObject * next;
IOPowerConnection * connection;
OSArray * children = NULL;
IOPMrootDomain * rootDomain;
bool delayNotify = false;
if ((fHeadNotePowerState != fCurrentPowerState) &&
(IS_POWER_DROP == fIsPreChange) &&
((rootDomain = getPMRootDomain()) == this)) {
rootDomain->tracePoint( IS_POWER_DROP ?
kIOPMTracePointSleepPowerPlaneDrivers :
kIOPMTracePointWakePowerPlaneDrivers );
}
if (fStrictTreeOrder) {
children = OSArray::withCapacity(8);
}
// Sum child power consumption in notifyChild()
fHeadNotePowerArrayEntry->staticPower = 0;
iter = getChildIterator(gIOPowerPlane);
if (iter) {
while ((next = iter->getNextObject())) {
if ((connection = OSDynamicCast(IOPowerConnection, next))) {
if (connection->getReadyFlag() == false) {
PM_LOG3("[%s] %s: connection not ready\n",
getName(), __FUNCTION__);
continue;
}
// Mechanism to postpone the did-change notification to
// certain power children to order those children last.
// Cannot be used together with strict tree ordering.
if (!fIsPreChange &&
connection->delayChildNotification &&
getPMRootDomain()->shouldDelayChildNotification(this)) {
if (!children) {
children = OSArray::withCapacity(8);
if (children) {
delayNotify = true;
}
}
if (delayNotify) {
children->setObject( connection );
continue;
}
}
if (!delayNotify && children) {
children->setObject( connection );
} else {
notifyChild( connection );
}
}
}
iter->release();
}
if (children && (children->getCount() == 0)) {
children->release();
children = NULL;
}
if (children) {
assert(fNotifyChildArray == NULL);
fNotifyChildArray = children;
MS_PUSH(fMachineState);
if (delayNotify) {
// Block until all non-delayed children have acked their
// notification. Then notify the remaining delayed child
// in the array. This is used to hold off graphics child
// notification while the rest of the system powers up.
// If a hid tickle arrives during this time, the delayed
// children are immediately notified and root domain will
// not clamp power for dark wake.
fMachineState = kIOPM_NotifyChildrenDelayed;
PM_LOG2("%s: %d children in delayed array\n",
getName(), children->getCount());
} else {
// Child array created to support strict notification order.
// Notify children in the array one at a time.
fMachineState = kIOPM_NotifyChildrenOrdered;
}
}
}
//*********************************************************************************
// [private] notifyChildrenOrdered
//*********************************************************************************
void
IOService::notifyChildrenOrdered( void )
{
PM_ASSERT_IN_GATE();
assert(fNotifyChildArray);
assert(fMachineState == kIOPM_NotifyChildrenOrdered);
// Notify one child, wait for it to ack, then repeat for next child.
// This is a workaround for some drivers with multiple instances at
// the same branch in the power tree, but the driver is slow to power
// up unless the tree ordering is observed. Problem observed only on
// system wake, not on system sleep.
//
// We have the ability to power off in reverse child index order.
// That works nicely on some machines, but not on all HW configs.
if (fNotifyChildArray->getCount()) {
IOPowerConnection * connection;
connection = (IOPowerConnection *) fNotifyChildArray->getObject(0);
notifyChild( connection );
fNotifyChildArray->removeObject(0);
} else {
fNotifyChildArray->release();
fNotifyChildArray = NULL;
MS_POP(); // pushed by notifyChildren()
}
}
//*********************************************************************************
// [private] notifyChildrenDelayed
//*********************************************************************************
void
IOService::notifyChildrenDelayed( void )
{
IOPowerConnection * connection;
PM_ASSERT_IN_GATE();
assert(fNotifyChildArray);
assert(fMachineState == kIOPM_NotifyChildrenDelayed);
// Wait after all non-delayed children and interested drivers have ack'ed,
// then notify all delayed children. If notify delay is canceled, child
// acks may be outstanding with PM blocked on fHeadNotePendingAcks != 0.
// But the handling for either case is identical.
for (int i = 0;; i++) {
connection = (IOPowerConnection *) fNotifyChildArray->getObject(i);
if (!connection) {
break;
}
notifyChild( connection );
}
PM_LOG2("%s: notified delayed children\n", getName());
fNotifyChildArray->release();
fNotifyChildArray = NULL;
MS_POP(); // pushed by notifyChildren()
}
//*********************************************************************************
// [private] notifyAll
//*********************************************************************************
IOReturn
IOService::notifyAll( uint32_t nextMS )
{
// Save the machine state to be restored by notifyInterestedDriversDone()
PM_ASSERT_IN_GATE();
MS_PUSH(nextMS);
fMachineState = kIOPM_DriverThreadCallDone;
fDriverCallReason = fIsPreChange ?
kDriverCallInformPreChange : kDriverCallInformPostChange;
if (!notifyInterestedDrivers()) {
notifyInterestedDriversDone();
}
return IOPMWillAckLater;
}
//*********************************************************************************
// [private, static] pmDriverCallout
//
// Thread call context
//*********************************************************************************
IOReturn
IOService::actionDriverCalloutDone(
OSObject * target,
void * arg0, void * arg1,
void * arg2, void * arg3 )
{
IOServicePM * pwrMgt = (IOServicePM *) arg0;
assert( fDriverCallBusy );
fDriverCallBusy = false;
assert(gIOPMWorkQueue);
gIOPMWorkQueue->signalWorkAvailable();
return kIOReturnSuccess;
}
void
IOService::pmDriverCallout( IOService * from )
{
assert(from);
switch (from->fDriverCallReason) {
case kDriverCallSetPowerState:
from->driverSetPowerState();
break;
case kDriverCallInformPreChange:
case kDriverCallInformPostChange:
from->driverInformPowerChange();
break;
case kRootDomainInformPreChange:
getPMRootDomain()->willNotifyPowerChildren(from->fHeadNotePowerState);
break;
default:
panic("IOService::pmDriverCallout bad machine state %x",
from->fDriverCallReason);
}
gIOPMWorkLoop->runAction(actionDriverCalloutDone,
/* target */ from,
/* arg0 */ (void *) from->pwrMgt );
}
//*********************************************************************************
// [private] driverSetPowerState
//
// Thread call context
//*********************************************************************************
void
IOService::driverSetPowerState( void )
{
IOPMPowerStateIndex powerState;
DriverCallParam * param;
IOPMDriverCallEntry callEntry;
AbsoluteTime end;
IOReturn result;
uint32_t oldPowerState = getPowerState();
assert( fDriverCallBusy );
assert( fDriverCallParamPtr );
assert( fDriverCallParamCount == 1 );
param = (DriverCallParam *) fDriverCallParamPtr;
powerState = fHeadNotePowerState;
if (assertPMDriverCall(&callEntry, kIOPMDriverCallMethodSetPowerState)) {
OUR_PMLogFuncStart(kPMLogProgramHardware, (uintptr_t) this, powerState);
clock_get_uptime(&fDriverCallStartTime);
if (reserved && reserved->uvars && reserved->uvars->userServer) {
result = reserved->uvars->userServer->serviceSetPowerState(fControllingDriver, this, fHeadNotePowerArrayEntry->capabilityFlags, powerState);
} else {
result = fControllingDriver->setPowerState( powerState, this );
}
clock_get_uptime(&end);
OUR_PMLogFuncEnd(kPMLogProgramHardware, (uintptr_t) this, (UInt32) result);
deassertPMDriverCall(&callEntry);
// Record the most recent max power state residency timings.
// Use with DeviceActiveTimestamp to diagnose tickle issues.
if (powerState == fHighestPowerState) {
fMaxPowerStateEntryTime = end;
} else if (oldPowerState == fHighestPowerState) {
fMaxPowerStateExitTime = end;
}
if (result < 0) {
PM_LOG("%s::setPowerState(%p, %lu -> %lu) returned 0x%x\n",
fName, OBFUSCATE(this), fCurrentPowerState, powerState, result);
}
if ((result == IOPMAckImplied) || (result < 0)) {
uint64_t nsec;
SUB_ABSOLUTETIME(&end, &fDriverCallStartTime);
absolutetime_to_nanoseconds(end, &nsec);
if (nsec > gIOPMSetPowerStateLogNS) {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsDriverPSChangeSlow,
fName, kDriverCallSetPowerState, NS_TO_MS(nsec), getRegistryEntryID(),
NULL, powerState);
}
}
} else {
result = kIOPMAckImplied;
}
param->Result = result;
}
//*********************************************************************************
// [private] driverInformPowerChange
//
// Thread call context
//*********************************************************************************
void
IOService::driverInformPowerChange( void )
{
IOPMinformee * informee;
IOService * driver;
DriverCallParam * param;
IOPMDriverCallEntry callEntry;
IOPMPowerFlags powerFlags;
IOPMPowerStateIndex powerState;
AbsoluteTime end;
IOReturn result;
IOItemCount count;
IOOptionBits callMethod = (fDriverCallReason == kDriverCallInformPreChange) ?
kIOPMDriverCallMethodWillChange : kIOPMDriverCallMethodDidChange;
assert( fDriverCallBusy );
assert( fDriverCallParamPtr );
assert( fDriverCallParamCount );
param = (DriverCallParam *) fDriverCallParamPtr;
count = fDriverCallParamCount;
powerFlags = fHeadNotePowerArrayEntry->capabilityFlags;
powerState = fHeadNotePowerState;
for (IOItemCount i = 0; i < count; i++) {
informee = (IOPMinformee *) param->Target;
driver = informee->whatObject;
if (assertPMDriverCall(&callEntry, callMethod, informee)) {
if (fDriverCallReason == kDriverCallInformPreChange) {
OUR_PMLogFuncStart(kPMLogInformDriverPreChange, (uintptr_t) this, powerState);
clock_get_uptime(&informee->startTime);
result = driver->powerStateWillChangeTo(powerFlags, powerState, this);
clock_get_uptime(&end);
OUR_PMLogFuncEnd(kPMLogInformDriverPreChange, (uintptr_t) this, result);
} else {
OUR_PMLogFuncStart(kPMLogInformDriverPostChange, (uintptr_t) this, powerState);
clock_get_uptime(&informee->startTime);
result = driver->powerStateDidChangeTo(powerFlags, powerState, this);
clock_get_uptime(&end);
OUR_PMLogFuncEnd(kPMLogInformDriverPostChange, (uintptr_t) this, result);
}
deassertPMDriverCall(&callEntry);
if ((result == IOPMAckImplied) || (result < 0)) {
uint64_t nsec;
SUB_ABSOLUTETIME(&end, &informee->startTime);
absolutetime_to_nanoseconds(end, &nsec);
if (nsec > gIOPMSetPowerStateLogNS) {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsDriverPSChangeSlow, driver->getName(),
fDriverCallReason, NS_TO_MS(nsec), driver->getRegistryEntryID(),
NULL, powerState);
}
}
} else {
result = kIOPMAckImplied;
}
param->Result = result;
param++;
}
}
//*********************************************************************************
// [private] notifyChild
//
// Notify a power domain child of an upcoming power change.
// If the object acknowledges the current change, we return TRUE.
//*********************************************************************************
bool
IOService::notifyChild( IOPowerConnection * theNub )
{
IOReturn ret = IOPMAckImplied;
unsigned long childPower;
IOService * theChild;
IOPMRequest * childRequest;
IOPMPowerChangeFlags requestArg2;
int requestType;
PM_ASSERT_IN_GATE();
theChild = (IOService *)(theNub->copyChildEntry(gIOPowerPlane));
if (!theChild) {
return true;
}
// Unless the child handles the notification immediately and returns
// kIOPMAckImplied, we'll be awaiting their acknowledgement later.
fHeadNotePendingAcks++;
theNub->setAwaitingAck(true);
requestArg2 = fHeadNoteChangeFlags;
if (StateOrder(fHeadNotePowerState) < StateOrder(fCurrentPowerState)) {
requestArg2 |= kIOPMDomainPowerDrop;
}
requestType = fIsPreChange ?
kIOPMRequestTypePowerDomainWillChange :
kIOPMRequestTypePowerDomainDidChange;
childRequest = acquirePMRequest( theChild, requestType );
if (childRequest) {
theNub->retain();
childRequest->fArg0 = (void *) fHeadNotePowerArrayEntry->outputPowerFlags;
childRequest->fArg1 = (void *) theNub;
childRequest->fArg2 = (void *)(uintptr_t) requestArg2;
theChild->submitPMRequest( childRequest );
ret = IOPMWillAckLater;
} else {
ret = IOPMAckImplied;
fHeadNotePendingAcks--;
theNub->setAwaitingAck(false);
childPower = theChild->currentPowerConsumption();
if (childPower == kIOPMUnknown) {
fHeadNotePowerArrayEntry->staticPower = kIOPMUnknown;
} else {
if (fHeadNotePowerArrayEntry->staticPower != kIOPMUnknown) {
fHeadNotePowerArrayEntry->staticPower += childPower;
}
}
}
theChild->release();
return IOPMAckImplied == ret;
}
//*********************************************************************************
// [private] notifyControllingDriver
//*********************************************************************************
bool
IOService::notifyControllingDriver( void )
{
DriverCallParam * param;
PM_ASSERT_IN_GATE();
assert( fDriverCallParamCount == 0 );
assert( fControllingDriver );
if (fInitialSetPowerState) {
fInitialSetPowerState = false;
fHeadNoteChangeFlags |= kIOPMInitialPowerChange;
// Driver specified flag to skip the inital setPowerState()
if (fHeadNotePowerArrayEntry->capabilityFlags & kIOPMInitialDeviceState) {
return false;
}
}
param = (DriverCallParam *) fDriverCallParamPtr;
if (!param) {
param = IONew(DriverCallParam, 1);
if (!param) {
return false; // no memory
}
fDriverCallParamPtr = (void *) param;
fDriverCallParamSlots = 1;
}
param->Target = fControllingDriver;
fDriverCallParamCount = 1;
fDriverTimer = -1;
// Block state machine and wait for callout completion.
assert(!fDriverCallBusy);
fDriverCallBusy = true;
thread_call_enter( fDriverCallEntry );
return true;
}
//*********************************************************************************
// [private] notifyControllingDriverDone
//*********************************************************************************
void
IOService::notifyControllingDriverDone( void )
{
DriverCallParam * param;
IOReturn result;
PM_ASSERT_IN_GATE();
param = (DriverCallParam *) fDriverCallParamPtr;
assert( fDriverCallBusy == false );
assert( fMachineState == kIOPM_DriverThreadCallDone );
if (param && fDriverCallParamCount) {
assert(fDriverCallParamCount == 1);
// the return value from setPowerState()
result = param->Result;
if ((result == IOPMAckImplied) || (result < 0)) {
fDriverTimer = 0;
} else if (fDriverTimer) {
assert(fDriverTimer == -1);
// Driver has not acked, and has returned a positive result.
// Enforce a minimum permissible timeout value.
// Make the min value large enough so timeout is less likely
// to occur if a driver misinterpreted that the return value
// should be in microsecond units. And make it large enough
// to be noticeable if a driver neglects to ack.
if (result < kMinAckTimeoutTicks) {
result = kMinAckTimeoutTicks;
}
fDriverTimer = (result / (ACK_TIMER_PERIOD / ns_per_us)) + 1;
}
// else, child has already acked and driver_timer reset to 0.
fDriverCallParamCount = 0;
if (fDriverTimer) {
OUR_PMLog(kPMLogStartAckTimer, 0, 0);
start_ack_timer();
getPMRootDomain()->reset_watchdog_timer(this, result / USEC_PER_SEC + 1);
}
}
MS_POP(); // pushed by OurChangeSetPowerState()
fIsPreChange = false;
}
//*********************************************************************************
// [private] all_done
//
// A power change is done.
//*********************************************************************************
void
IOService::all_done( void )
{
IOPMPowerStateIndex prevPowerState;
const IOPMPSEntry * powerStatePtr;
IOPMDriverCallEntry callEntry;
uint32_t prevMachineState = fMachineState;
bool actionCalled = false;
uint64_t ts;
fMachineState = kIOPM_Finished;
if ((fHeadNoteChangeFlags & kIOPMSynchronize) &&
((prevMachineState == kIOPM_Finished) ||
(prevMachineState == kIOPM_SyncFinish))) {
// Sync operation and no power change occurred.
// Do not inform driver and clients about this request completion,
// except for the originator (root domain).
PM_ACTION_CHANGE(actionPowerChangeDone,
fHeadNotePowerState, fHeadNoteChangeFlags);
if (getPMRequestType() == kIOPMRequestTypeSynchronizePowerTree) {
powerChangeDone(fCurrentPowerState);
} else if (fAdvisoryTickleUsed) {
// Not root domain and advisory tickle target.
// Re-adjust power after power tree sync at the 'did' pass
// to recompute desire and adjust power state between dark
// and full wake transitions. Root domain is responsible
// for calling setAdvisoryTickleEnable() before starting
// the kIOPMSynchronize power change.
if (!fAdjustPowerScheduled &&
(fHeadNoteChangeFlags & kIOPMDomainDidChange)) {
IOPMRequest * request;
request = acquirePMRequest( this, kIOPMRequestTypeAdjustPowerState );
if (request) {
submitPMRequest( request );
fAdjustPowerScheduled = true;
}
}
}
return;
}
// our power change
if (fHeadNoteChangeFlags & kIOPMSelfInitiated) {
// power state changed
if ((fHeadNoteChangeFlags & kIOPMNotDone) == 0) {
trackSystemSleepPreventers(
fCurrentPowerState, fHeadNotePowerState, fHeadNoteChangeFlags);
// we changed, tell our parent
requestDomainPower(fHeadNotePowerState);
// yes, did power raise?
if (StateOrder(fCurrentPowerState) < StateOrder(fHeadNotePowerState)) {
// yes, inform clients and apps
tellChangeUp(fHeadNotePowerState);
}
prevPowerState = fCurrentPowerState;
// either way
fCurrentPowerState = fHeadNotePowerState;
PM_LOCK();
if (fReportBuf) {
ts = mach_absolute_time();
STATEREPORT_SETSTATE(fReportBuf, (uint16_t) fCurrentPowerState, ts);
}
PM_UNLOCK();
#if PM_VARS_SUPPORT
fPMVars->myCurrentState = fCurrentPowerState;
#endif
OUR_PMLog(kPMLogChangeDone, fCurrentPowerState, prevPowerState);
PM_ACTION_CHANGE(actionPowerChangeDone,
prevPowerState, fHeadNoteChangeFlags);
actionCalled = true;
powerStatePtr = &fPowerStates[fCurrentPowerState];
fCurrentCapabilityFlags = powerStatePtr->capabilityFlags;
if (fCurrentCapabilityFlags & kIOPMStaticPowerValid) {
fCurrentPowerConsumption = powerStatePtr->staticPower;
}
if (fHeadNoteChangeFlags & kIOPMRootChangeDown) {
// Bump tickle generation count once the entire tree is down
gIOPMTickleGeneration++;
}
// inform subclass policy-maker
if (fPCDFunctionOverride && fParentsKnowState &&
assertPMDriverCall(&callEntry, kIOPMDriverCallMethodChangeDone, NULL, kIOPMDriverCallNoInactiveCheck)) {
powerChangeDone(prevPowerState);
deassertPMDriverCall(&callEntry);
}
} else if (getPMRequestType() == kIOPMRequestTypeRequestPowerStateOverride) {
// changePowerStateWithOverrideTo() was cancelled
fOverrideMaxPowerState = kIOPMPowerStateMax;
}
}
// parent-initiated power change
if (fHeadNoteChangeFlags & kIOPMParentInitiated) {
if (fHeadNoteChangeFlags & kIOPMRootChangeDown) {
ParentChangeRootChangeDown();
}
// power state changed
if ((fHeadNoteChangeFlags & kIOPMNotDone) == 0) {
trackSystemSleepPreventers(
fCurrentPowerState, fHeadNotePowerState, fHeadNoteChangeFlags);
// did power raise?
if (StateOrder(fCurrentPowerState) < StateOrder(fHeadNotePowerState)) {
// yes, inform clients and apps
tellChangeUp(fHeadNotePowerState);
}
// either way
prevPowerState = fCurrentPowerState;
fCurrentPowerState = fHeadNotePowerState;
PM_LOCK();
if (fReportBuf) {
ts = mach_absolute_time();
STATEREPORT_SETSTATE(fReportBuf, (uint16_t) fCurrentPowerState, ts);
}
PM_UNLOCK();
#if PM_VARS_SUPPORT
fPMVars->myCurrentState = fCurrentPowerState;
#endif
OUR_PMLog(kPMLogChangeDone, fCurrentPowerState, prevPowerState);
PM_ACTION_CHANGE(actionPowerChangeDone,
prevPowerState, fHeadNoteChangeFlags);
actionCalled = true;
powerStatePtr = &fPowerStates[fCurrentPowerState];
fCurrentCapabilityFlags = powerStatePtr->capabilityFlags;
if (fCurrentCapabilityFlags & kIOPMStaticPowerValid) {
fCurrentPowerConsumption = powerStatePtr->staticPower;
}
// inform subclass policy-maker
if (fPCDFunctionOverride && fParentsKnowState &&
assertPMDriverCall(&callEntry, kIOPMDriverCallMethodChangeDone, NULL, kIOPMDriverCallNoInactiveCheck)) {
powerChangeDone(prevPowerState);
deassertPMDriverCall(&callEntry);
}
}
}
// When power rises enough to satisfy the tickle's desire for more power,
// the condition preventing idle-timer from dropping power is removed.
if (StateOrder(fCurrentPowerState) >= StateOrder(fIdleTimerMinPowerState)) {
fIdleTimerMinPowerState = kPowerStateZero;
}
if (!actionCalled) {
PM_ACTION_CHANGE(actionPowerChangeDone,
fHeadNotePowerState, fHeadNoteChangeFlags);
}
}
// MARK: -
// MARK: Power Change Initiated by Driver
//*********************************************************************************
// [private] OurChangeStart
//
// Begin the processing of a power change initiated by us.
//*********************************************************************************
void
IOService::OurChangeStart( void )
{
PM_ASSERT_IN_GATE();
OUR_PMLog( kPMLogStartDeviceChange, fHeadNotePowerState, fCurrentPowerState );
// fMaxPowerState is our maximum possible power state based on the current
// power state of our parents. If we are trying to raise power beyond the
// maximum, send an async request for more power to all parents.
if (!IS_PM_ROOT && (StateOrder(fMaxPowerState) < StateOrder(fHeadNotePowerState))) {
fHeadNoteChangeFlags |= kIOPMNotDone;
requestDomainPower(fHeadNotePowerState);
OurChangeFinish();
return;
}
// Redundant power changes skips to the end of the state machine.
if (!fInitialPowerChange && (fHeadNotePowerState == fCurrentPowerState)) {
OurChangeFinish();
return;
}
fInitialPowerChange = false;
// Change started, but may not complete...
// Can be canceled (power drop) or deferred (power rise).
PM_ACTION_CHANGE(actionPowerChangeStart, fHeadNotePowerState, &fHeadNoteChangeFlags);
// Two separate paths, depending if power is being raised or lowered.
// Lowering power is subject to approval by clients of this service.
if (IS_POWER_DROP) {
fDoNotPowerDown = false;
// Ask for persmission to drop power state
fMachineState = kIOPM_OurChangeTellClientsPowerDown;
fOutOfBandParameter = kNotifyApps;
askChangeDown(fHeadNotePowerState);
} else {
// This service is raising power and parents are able to support the
// new power state. However a parent may have already committed to
// drop power, which might force this object to temporarily drop power.
// This results in "oscillations" before the state machines converge
// to a steady state.
//
// To prevent this, a child must make a power reservation against all
// parents before raising power. If the reservation fails, indicating
// that the child will be unable to sustain the higher power state,
// then the child will signal the parent to adjust power, and the child
// will defer its power change.
IOReturn ret;
// Reserve parent power necessary to achieve fHeadNotePowerState.
ret = requestDomainPower( fHeadNotePowerState, kReserveDomainPower );
if (ret != kIOReturnSuccess) {
// Reservation failed, defer power rise.
fHeadNoteChangeFlags |= kIOPMNotDone;
OurChangeFinish();
return;
}
OurChangeTellCapabilityWillChange();
}
}
//*********************************************************************************
// [private] requestDomainPowerApplier
//
// Call requestPowerDomainState() on all power parents.
//*********************************************************************************
struct IOPMRequestDomainPowerContext {
IOService * child; // the requesting child
IOPMPowerFlags requestPowerFlags;// power flags requested by child
};
static void
requestDomainPowerApplier(
IORegistryEntry * entry,
void * inContext )
{
IOPowerConnection * connection;
IOService * parent;
IOPMRequestDomainPowerContext * context;
if ((connection = OSDynamicCast(IOPowerConnection, entry)) == NULL) {
return;
}
parent = (IOService *) connection->copyParentEntry(gIOPowerPlane);
if (!parent) {
return;
}
assert(inContext);
context = (IOPMRequestDomainPowerContext *) inContext;
if (connection->parentKnowsState() && connection->getReadyFlag()) {
parent->requestPowerDomainState(
context->requestPowerFlags,
connection,
IOPMLowestState);
}
parent->release();
}
//*********************************************************************************
// [private] requestDomainPower
//
// Called by a power child to broadcast its desired power state to all parents.
// If the child self-initiates a power change, it must call this function to
// allow its parents to adjust power state.
//*********************************************************************************
IOReturn
IOService::requestDomainPower(
IOPMPowerStateIndex ourPowerState,
IOOptionBits options )
{
IOPMPowerFlags requestPowerFlags;
IOPMPowerStateIndex maxPowerState;
IOPMRequestDomainPowerContext context;
PM_ASSERT_IN_GATE();
assert(ourPowerState < fNumberOfPowerStates);
if (ourPowerState >= fNumberOfPowerStates) {
return kIOReturnBadArgument;
}
if (IS_PM_ROOT) {
return kIOReturnSuccess;
}
// Fetch our input power flags for the requested power state.
// Parent request is stated in terms of required power flags.
requestPowerFlags = fPowerStates[ourPowerState].inputPowerFlags;
// Disregard the "previous request" for power reservation.
if (((options & kReserveDomainPower) == 0) &&
(fPreviousRequestPowerFlags == requestPowerFlags)) {
// skip if domain already knows our requirements
goto done;
}
fPreviousRequestPowerFlags = requestPowerFlags;
// The results will be collected by fHeadNoteDomainTargetFlags
context.child = this;
context.requestPowerFlags = requestPowerFlags;
fHeadNoteDomainTargetFlags = 0;
applyToParents(requestDomainPowerApplier, &context, gIOPowerPlane);
if (options & kReserveDomainPower) {
maxPowerState = fControllingDriver->maxCapabilityForDomainState(
fHeadNoteDomainTargetFlags );
if (StateOrder(maxPowerState) < StateOrder(ourPowerState)) {
PM_LOG1("%s: power desired %u:0x%x got %u:0x%x\n",
getName(),
(uint32_t) ourPowerState, (uint32_t) requestPowerFlags,
(uint32_t) maxPowerState, (uint32_t) fHeadNoteDomainTargetFlags);
return kIOReturnNoPower;
}
}
done:
return kIOReturnSuccess;
}
//*********************************************************************************
// [private] OurSyncStart
//*********************************************************************************
void
IOService::OurSyncStart( void )
{
PM_ASSERT_IN_GATE();
if (fInitialPowerChange) {
return;
}
PM_ACTION_CHANGE(actionPowerChangeStart, fHeadNotePowerState, &fHeadNoteChangeFlags);
if (fHeadNoteChangeFlags & kIOPMNotDone) {
OurChangeFinish();
return;
}
if (fHeadNoteChangeFlags & kIOPMSyncTellPowerDown) {
fDoNotPowerDown = false;
// Ask for permission to drop power state
fMachineState = kIOPM_SyncTellClientsPowerDown;
fOutOfBandParameter = kNotifyApps;
askChangeDown(fHeadNotePowerState);
} else {
// Only inform capability app and clients.
tellSystemCapabilityChange( kIOPM_SyncNotifyWillChange );
}
}
//*********************************************************************************
// [private] OurChangeTellClientsPowerDown
//
// All applications and kernel clients have acknowledged our permission to drop
// power. Here we notify them that we will lower the power and wait for acks.
//*********************************************************************************
void
IOService::OurChangeTellClientsPowerDown( void )
{
if (!IS_ROOT_DOMAIN) {
fMachineState = kIOPM_OurChangeTellPriorityClientsPowerDown;
} else {
fMachineState = kIOPM_OurChangeTellUserPMPolicyPowerDown;
}
tellChangeDown1(fHeadNotePowerState);
}
//*********************************************************************************
// [private] OurChangeTellUserPMPolicyPowerDown
//
// All applications and kernel clients have acknowledged our permission to drop
// power. Here we notify power management policy in user-space and wait for acks
// one last time before we lower power
//*********************************************************************************
void
IOService::OurChangeTellUserPMPolicyPowerDown( void )
{
fMachineState = kIOPM_OurChangeTellPriorityClientsPowerDown;
fOutOfBandParameter = kNotifyApps;
tellClientsWithResponse(kIOPMMessageLastCallBeforeSleep);
}
//*********************************************************************************
// [private] OurChangeTellPriorityClientsPowerDown
//
// All applications and kernel clients have acknowledged our intention to drop
// power. Here we notify "priority" clients that we are lowering power.
//*********************************************************************************
void
IOService::OurChangeTellPriorityClientsPowerDown( void )
{
fMachineState = kIOPM_OurChangeNotifyInterestedDriversWillChange;
tellChangeDown2(fHeadNotePowerState);
}
//*********************************************************************************
// [private] OurChangeTellCapabilityWillChange
//
// Extra stage for root domain to notify apps and drivers about the
// system capability change when raising power state.
//*********************************************************************************
void
IOService::OurChangeTellCapabilityWillChange( void )
{
if (!IS_ROOT_DOMAIN) {
return OurChangeNotifyInterestedDriversWillChange();
}
tellSystemCapabilityChange( kIOPM_OurChangeNotifyInterestedDriversWillChange );
}
//*********************************************************************************
// [private] OurChangeNotifyInterestedDriversWillChange
//
// All applications and kernel clients have acknowledged our power state change.
// Here we notify interested drivers pre-change.
//*********************************************************************************
void
IOService::OurChangeNotifyInterestedDriversWillChange( void )
{
IOPMrootDomain * rootDomain;
if ((rootDomain = getPMRootDomain()) == this) {
if (IS_POWER_DROP) {
rootDomain->tracePoint( kIOPMTracePointSleepWillChangeInterests );
} else {
rootDomain->tracePoint( kIOPMTracePointWakeWillChangeInterests );
}
}
notifyAll( kIOPM_OurChangeSetPowerState );
}
//*********************************************************************************
// [private] OurChangeSetPowerState
//
// Instruct our controlling driver to program the hardware for the power state
// change. Wait for async completions.
//*********************************************************************************
void
IOService::OurChangeSetPowerState( void )
{
MS_PUSH( kIOPM_OurChangeWaitForPowerSettle );
fMachineState = kIOPM_DriverThreadCallDone;
fDriverCallReason = kDriverCallSetPowerState;
if (notifyControllingDriver() == false) {
notifyControllingDriverDone();
}
}
//*********************************************************************************
// [private] OurChangeWaitForPowerSettle
//
// Our controlling driver has completed the power state change we initiated.
// Wait for the driver specified settle time to expire.
//*********************************************************************************
void
IOService::OurChangeWaitForPowerSettle( void )
{
fMachineState = kIOPM_OurChangeNotifyInterestedDriversDidChange;
startSettleTimer();
}
//*********************************************************************************
// [private] OurChangeNotifyInterestedDriversDidChange
//
// Power has settled on a power change we initiated. Here we notify
// all our interested drivers post-change.
//*********************************************************************************
void
IOService::OurChangeNotifyInterestedDriversDidChange( void )
{
IOPMrootDomain * rootDomain;
if ((rootDomain = getPMRootDomain()) == this) {
rootDomain->tracePoint( IS_POWER_DROP ?
kIOPMTracePointSleepDidChangeInterests :
kIOPMTracePointWakeDidChangeInterests );
}
notifyAll( kIOPM_OurChangeTellCapabilityDidChange );
}
//*********************************************************************************
// [private] OurChangeTellCapabilityDidChange
//
// For root domain to notify capability power-change.
//*********************************************************************************
void
IOService::OurChangeTellCapabilityDidChange( void )
{
if (!IS_ROOT_DOMAIN) {
return OurChangeFinish();
}
if (!IS_POWER_DROP) {
// Notify root domain immediately after notifying interested
// drivers and power children.
getPMRootDomain()->willTellSystemCapabilityDidChange();
}
getPMRootDomain()->tracePoint( IS_POWER_DROP ?
kIOPMTracePointSleepCapabilityClients :
kIOPMTracePointWakeCapabilityClients );
tellSystemCapabilityChange( kIOPM_OurChangeFinish );
}
//*********************************************************************************
// [private] OurChangeFinish
//
// Done with this self-induced power state change.
//*********************************************************************************
void
IOService::OurChangeFinish( void )
{
all_done();
}
// MARK: -
// MARK: Power Change Initiated by Parent
//*********************************************************************************
// [private] ParentChangeStart
//
// Here we begin the processing of a power change initiated by our parent.
//*********************************************************************************
IOReturn
IOService::ParentChangeStart( void )
{
PM_ASSERT_IN_GATE();
OUR_PMLog( kPMLogStartParentChange, fHeadNotePowerState, fCurrentPowerState );
// Root power domain has transitioned to its max power state
if ((fHeadNoteChangeFlags & (kIOPMDomainDidChange | kIOPMRootChangeUp)) ==
(kIOPMDomainDidChange | kIOPMRootChangeUp)) {
// Restart the idle timer stopped by ParentChangeRootChangeDown()
if (fIdleTimerPeriod && fIdleTimerStopped) {
restartIdleTimer();
}
}
// Power domain is forcing us to lower power
if (StateOrder(fHeadNotePowerState) < StateOrder(fCurrentPowerState)) {
PM_ACTION_CHANGE(actionPowerChangeStart, fHeadNotePowerState, &fHeadNoteChangeFlags);
// Tell apps and kernel clients
fInitialPowerChange = false;
fMachineState = kIOPM_ParentChangeTellPriorityClientsPowerDown;
tellChangeDown1(fHeadNotePowerState);
return IOPMWillAckLater;
}
// Power domain is allowing us to raise power up to fHeadNotePowerState
if (StateOrder(fHeadNotePowerState) > StateOrder(fCurrentPowerState)) {
if (StateOrder(fDesiredPowerState) > StateOrder(fCurrentPowerState)) {
if (StateOrder(fDesiredPowerState) < StateOrder(fHeadNotePowerState)) {
// We power up, but not all the way
fHeadNotePowerState = fDesiredPowerState;
fHeadNotePowerArrayEntry = &fPowerStates[fDesiredPowerState];
OUR_PMLog(kPMLogAmendParentChange, fHeadNotePowerState, 0);
}
} else {
// We don't need to change
fHeadNotePowerState = fCurrentPowerState;
fHeadNotePowerArrayEntry = &fPowerStates[fCurrentPowerState];
OUR_PMLog(kPMLogAmendParentChange, fHeadNotePowerState, 0);
}
}
if (fHeadNoteChangeFlags & kIOPMDomainDidChange) {
if (StateOrder(fHeadNotePowerState) > StateOrder(fCurrentPowerState)) {
PM_ACTION_CHANGE(actionPowerChangeStart,
fHeadNotePowerState, &fHeadNoteChangeFlags);
// Parent did change up - start our change up
fInitialPowerChange = false;
ParentChangeTellCapabilityWillChange();
return IOPMWillAckLater;
} else if (fHeadNoteChangeFlags & kIOPMRootBroadcastFlags) {
// No need to change power state, but broadcast change
// to our children.
fMachineState = kIOPM_SyncNotifyDidChange;
fDriverCallReason = kDriverCallInformPreChange;
fHeadNoteChangeFlags |= kIOPMNotDone;
notifyChildren();
return IOPMWillAckLater;
}
}
// No power state change necessary
fHeadNoteChangeFlags |= kIOPMNotDone;
all_done();
return IOPMAckImplied;
}
//******************************************************************************
// [private] ParentChangeRootChangeDown
//
// Root domain has finished the transition to the system sleep state. And all
// drivers in the power plane should have powered down. Cancel the idle timer,
// and also reset the device desire for those drivers that don't want power
// automatically restored on wake.
//******************************************************************************
void
IOService::ParentChangeRootChangeDown( void )
{
// Always stop the idle timer before root power down
if (fIdleTimerPeriod && !fIdleTimerStopped) {
fIdleTimerStopped = true;
if (fIdleTimer && thread_call_cancel(fIdleTimer)) {
release();
}
}
if (fResetPowerStateOnWake) {
// Reset device desire down to the lowest power state.
// Advisory tickle desire is intentionally untouched since
// it has no effect until system is promoted to full wake.
if (fDeviceDesire != kPowerStateZero) {
updatePowerClient(gIOPMPowerClientDevice, kPowerStateZero);
computeDesiredState(kPowerStateZero, true);
requestDomainPower( fDesiredPowerState );
PM_LOG1("%s: tickle desire removed\n", fName);
}
// Invalidate tickle cache so the next tickle will issue a request
IOLockLock(fActivityLock);
fDeviceWasActive = false;
fActivityTicklePowerState = kInvalidTicklePowerState;
IOLockUnlock(fActivityLock);
fIdleTimerMinPowerState = kPowerStateZero;
} else if (fAdvisoryTickleUsed) {
// Less aggressive mechanism to accelerate idle timer expiration
// before system sleep. May not always allow the driver to wake
// up from system sleep in the min power state.
AbsoluteTime now;
uint64_t nsec;
bool dropTickleDesire = false;
if (fIdleTimerPeriod && !fIdleTimerIgnored &&
(fIdleTimerMinPowerState == kPowerStateZero) &&
(fDeviceDesire != kPowerStateZero)) {
IOLockLock(fActivityLock);
if (!fDeviceWasActive) {
// No tickles since the last idle timer expiration.
// Safe to drop the device desire to zero.
dropTickleDesire = true;
} else {
// Was tickled since the last idle timer expiration,
// but not in the last minute.
clock_get_uptime(&now);
SUB_ABSOLUTETIME(&now, &fDeviceActiveTimestamp);
absolutetime_to_nanoseconds(now, &nsec);
if (nsec >= kNoTickleCancelWindow) {
dropTickleDesire = true;
}
}
if (dropTickleDesire) {
// Force the next tickle to raise power state
fDeviceWasActive = false;
fActivityTicklePowerState = kInvalidTicklePowerState;
}
IOLockUnlock(fActivityLock);
}
if (dropTickleDesire) {
// Advisory tickle desire is intentionally untouched since
// it has no effect until system is promoted to full wake.
updatePowerClient(gIOPMPowerClientDevice, kPowerStateZero);
computeDesiredState(kPowerStateZero, true);
PM_LOG1("%s: tickle desire dropped\n", fName);
}
}
}
//*********************************************************************************
// [private] ParentChangeTellPriorityClientsPowerDown
//
// All applications and kernel clients have acknowledged our intention to drop
// power. Here we notify "priority" clients that we are lowering power.
//*********************************************************************************
void
IOService::ParentChangeTellPriorityClientsPowerDown( void )
{
fMachineState = kIOPM_ParentChangeNotifyInterestedDriversWillChange;
tellChangeDown2(fHeadNotePowerState);
}
//*********************************************************************************
// [private] ParentChangeTellCapabilityWillChange
//
// All (legacy) applications and kernel clients have acknowledged, extra stage for
// root domain to notify apps and drivers about the system capability change.
//*********************************************************************************
void
IOService::ParentChangeTellCapabilityWillChange( void )
{
if (!IS_ROOT_DOMAIN) {
return ParentChangeNotifyInterestedDriversWillChange();
}
tellSystemCapabilityChange( kIOPM_ParentChangeNotifyInterestedDriversWillChange );
}
//*********************************************************************************
// [private] ParentChangeNotifyInterestedDriversWillChange
//
// All applications and kernel clients have acknowledged our power state change.
// Here we notify interested drivers pre-change.
//*********************************************************************************
void
IOService::ParentChangeNotifyInterestedDriversWillChange( void )
{
notifyAll( kIOPM_ParentChangeSetPowerState );
}
//*********************************************************************************
// [private] ParentChangeSetPowerState
//
// Instruct our controlling driver to program the hardware for the power state
// change. Wait for async completions.
//*********************************************************************************
void
IOService::ParentChangeSetPowerState( void )
{
MS_PUSH( kIOPM_ParentChangeWaitForPowerSettle );
fMachineState = kIOPM_DriverThreadCallDone;
fDriverCallReason = kDriverCallSetPowerState;
if (notifyControllingDriver() == false) {
notifyControllingDriverDone();
}
}
//*********************************************************************************
// [private] ParentChangeWaitForPowerSettle
//
// Our controlling driver has completed the power state change initiated by our
// parent. Wait for the driver specified settle time to expire.
//*********************************************************************************
void
IOService::ParentChangeWaitForPowerSettle( void )
{
fMachineState = kIOPM_ParentChangeNotifyInterestedDriversDidChange;
startSettleTimer();
}
//*********************************************************************************
// [private] ParentChangeNotifyInterestedDriversDidChange
//
// Power has settled on a power change initiated by our parent. Here we notify
// all our interested drivers post-change.
//*********************************************************************************
void
IOService::ParentChangeNotifyInterestedDriversDidChange( void )
{
notifyAll( kIOPM_ParentChangeTellCapabilityDidChange );
}
//*********************************************************************************
// [private] ParentChangeTellCapabilityDidChange
//
// For root domain to notify capability power-change.
//*********************************************************************************
void
IOService::ParentChangeTellCapabilityDidChange( void )
{
if (!IS_ROOT_DOMAIN) {
return ParentChangeAcknowledgePowerChange();
}
tellSystemCapabilityChange( kIOPM_ParentChangeAcknowledgePowerChange );
}
//*********************************************************************************
// [private] ParentAcknowledgePowerChange
//
// Acknowledge our power parent that our power change is done.
//*********************************************************************************
void
IOService::ParentChangeAcknowledgePowerChange( void )
{
IORegistryEntry * nub;
IOService * parent;
nub = fHeadNoteParentConnection;
nub->retain();
all_done();
parent = (IOService *)nub->copyParentEntry(gIOPowerPlane);
if (parent) {
parent->acknowledgePowerChange((IOService *)nub);
parent->release();
}
nub->release();
}
// MARK: -
// MARK: Ack and Settle timers
//*********************************************************************************
// [private] settleTimerExpired
//
// Power has settled after our last change. Notify interested parties that
// there is a new power state.
//*********************************************************************************
void
IOService::settleTimerExpired( void )
{
#if USE_SETTLE_TIMER
fSettleTimeUS = 0;
gIOPMWorkQueue->signalWorkAvailable();
#endif
}
//*********************************************************************************
// settle_timer_expired
//
// Holds a retain while the settle timer callout is in flight.
//*********************************************************************************
#if USE_SETTLE_TIMER
static void
settle_timer_expired( thread_call_param_t arg0, thread_call_param_t arg1 )
{
IOService * me = (IOService *) arg0;
if (gIOPMWorkLoop && gIOPMWorkQueue) {
gIOPMWorkLoop->runAction(
OSMemberFunctionCast(IOWorkLoop::Action, me, &IOService::settleTimerExpired),
me);
}
me->release();
}
#endif
//*********************************************************************************
// [private] startSettleTimer
//
// Calculate a power-settling delay in microseconds and start a timer.
//*********************************************************************************
void
IOService::startSettleTimer( void )
{
#if USE_SETTLE_TIMER
// This function is broken and serves no useful purpose since it never
// updates fSettleTimeUS to a non-zero value to stall the state machine,
// yet it starts a delay timer. It appears no driver relies on a delay
// from settleUpTime and settleDownTime in the power state table.
AbsoluteTime deadline;
IOPMPowerStateIndex stateIndex;
IOPMPowerStateIndex currentOrder, newOrder, i;
uint32_t settleTime = 0;
boolean_t pending;
PM_ASSERT_IN_GATE();
currentOrder = StateOrder(fCurrentPowerState);
newOrder = StateOrder(fHeadNotePowerState);
i = currentOrder;
// lowering power
if (newOrder < currentOrder) {
while (i > newOrder) {
stateIndex = fPowerStates[i].stateOrderToIndex;
settleTime += (uint32_t) fPowerStates[stateIndex].settleDownTime;
i--;
}
}
// raising power
if (newOrder > currentOrder) {
while (i < newOrder) {
stateIndex = fPowerStates[i + 1].stateOrderToIndex;
settleTime += (uint32_t) fPowerStates[stateIndex].settleUpTime;
i++;
}
}
if (settleTime) {
retain();
clock_interval_to_deadline(settleTime, kMicrosecondScale, &deadline);
pending = thread_call_enter_delayed(fSettleTimer, deadline);
if (pending) {
release();
}
}
#endif
}
//*********************************************************************************
// [private] ackTimerTick
//
// The acknowledgement timeout periodic timer has ticked.
// If we are awaiting acks for a power change notification,
// we decrement the timer word of each interested driver which hasn't acked.
// If a timer word becomes zero, we pretend the driver aknowledged.
// If we are waiting for the controlling driver to change the power
// state of the hardware, we decrement its timer word, and if it becomes
// zero, we pretend the driver acknowledged.
//
// Returns true if the timer tick made it possible to advance to the next
// machine state, false otherwise.
//*********************************************************************************
#ifndef __LP64__
#if MACH_ASSERT
__dead2
#endif
void
IOService::ack_timer_ticked( void )
{
assert(false);
}
#endif /* !__LP64__ */
bool
IOService::ackTimerTick( void )
{
IOPMinformee * nextObject;
bool done = false;
PM_ASSERT_IN_GATE();
switch (fMachineState) {
case kIOPM_OurChangeWaitForPowerSettle:
case kIOPM_ParentChangeWaitForPowerSettle:
// are we waiting for controlling driver to acknowledge?
if (fDriverTimer > 0) {
// yes, decrement timer tick
fDriverTimer--;
if (fDriverTimer == 0) {
// controlling driver is tardy
uint64_t nsec = computeTimeDeltaNS(&fDriverCallStartTime);
OUR_PMLog(kPMLogCtrlDriverTardy, 0, 0);
setProperty(kIOPMTardyAckSPSKey, kOSBooleanTrue);
PM_ERROR("%s::setPowerState(%p, %lu -> %lu) timed out after %d ms\n",
fName, OBFUSCATE(this), fCurrentPowerState, fHeadNotePowerState, NS_TO_MS(nsec));
#if DEBUG || DEVELOPMENT || !defined(XNU_TARGET_OS_OSX)
bool panic_allowed = false;
uint32_t setpowerstate_panic = -1;
PE_parse_boot_argn("setpowerstate_panic", &setpowerstate_panic, sizeof(setpowerstate_panic));
panic_allowed = setpowerstate_panic != 0;
#ifdef CONFIG_XNUPOST
uint64_t kernel_post_args = 0;
PE_parse_boot_argn("kernPOST", &kernel_post_args, sizeof(kernel_post_args));
if (kernel_post_args != 0) {
panic_allowed = false;
}
#endif /* CONFIG_XNUPOST */
if (panic_allowed) {
// rdar://problem/48743340 - excluding AppleSEPManager from panic
const char *whitelist = "AppleSEPManager";
if (strncmp(fName, whitelist, strlen(whitelist))) {
panic("%s::setPowerState(%p, %lu -> %lu) timed out after %d ms",
fName, this, fCurrentPowerState, fHeadNotePowerState, NS_TO_MS(nsec));
}
} else {
#ifdef CONFIG_XNUPOST
if (kernel_post_args != 0) {
PM_ERROR("setPowerState panic disabled by kernPOST boot-arg\n");
}
#endif /* CONFIG_XNUPOST */
if (setpowerstate_panic != 0) {
PM_ERROR("setPowerState panic disabled by setpowerstate_panic boot-arg\n");
}
}
#else /* !(DEBUG || DEVELOPMENT || !defined(XNU_TARGET_OS_OSX)) */
if (gIOKitDebug & kIOLogDebugPower) {
panic("%s::setPowerState(%p, %lu -> %lu) timed out after %d ms",
fName, this, fCurrentPowerState, fHeadNotePowerState, NS_TO_MS(nsec));
} else {
// panic for first party kexts
const void *function_addr = NULL;
OSKext *kext = NULL;
function_addr = OSMemberFunctionCast(const void *, fControllingDriver, &IOService::setPowerState);
kext = OSKext::lookupKextWithAddress((vm_address_t)function_addr);
if (kext) {
#if __has_feature(ptrauth_calls)
function_addr = (const void*)VM_KERNEL_STRIP_PTR(function_addr);
#endif /* __has_feature(ptrauth_calls) */
const char *bundleID = kext->getIdentifierCString();
const char *apple_prefix = "com.apple";
const char *kernel_prefix = "__kernel__";
if (strncmp(bundleID, apple_prefix, strlen(apple_prefix)) == 0 || strncmp(bundleID, kernel_prefix, strlen(kernel_prefix)) == 0) {
// first party client
panic("%s::setPowerState(%p : %p, %lu -> %lu) timed out after %d ms",
fName, this, function_addr, fCurrentPowerState, fHeadNotePowerState, NS_TO_MS(nsec));
}
kext->release();
}
}
#endif /* !(DEBUG || DEVELOPMENT || !defined(XNU_TARGET_OS_OSX)) */
// Unblock state machine and pretend driver has acked.
done = true;
getPMRootDomain()->reset_watchdog_timer(this, 0);
} else {
// still waiting, set timer again
start_ack_timer();
}
}
break;
case kIOPM_NotifyChildrenStart:
// are we waiting for interested parties to acknowledge?
if (fHeadNotePendingAcks != 0) {
// yes, go through the list of interested drivers
nextObject = fInterestedDrivers->firstInList();
// and check each one
while (nextObject != NULL) {
if (nextObject->timer > 0) {
nextObject->timer--;
// this one should have acked by now
if (nextObject->timer == 0) {
uint64_t nsec = computeTimeDeltaNS(&nextObject->startTime);
OUR_PMLog(kPMLogIntDriverTardy, 0, 0);
nextObject->whatObject->setProperty(kIOPMTardyAckPSCKey, kOSBooleanTrue);
PM_ERROR("%s::powerState%sChangeTo(%p, %s, %lu -> %lu) timed out after %d ms\n",
nextObject->whatObject->getName(),
(fDriverCallReason == kDriverCallInformPreChange) ? "Will" : "Did",
OBFUSCATE(nextObject->whatObject), fName, fCurrentPowerState, fHeadNotePowerState,
NS_TO_MS(nsec));
// Pretend driver has acked.
fHeadNotePendingAcks--;
}
}
nextObject = fInterestedDrivers->nextInList(nextObject);
}
// is that the last?
if (fHeadNotePendingAcks == 0) {
// yes, we can continue
done = true;
getPMRootDomain()->reset_watchdog_timer(this, 0);
} else {
// no, set timer again
start_ack_timer();
}
}
break;
// TODO: aggreggate this
case kIOPM_OurChangeTellClientsPowerDown:
case kIOPM_OurChangeTellUserPMPolicyPowerDown:
case kIOPM_OurChangeTellPriorityClientsPowerDown:
case kIOPM_OurChangeNotifyInterestedDriversWillChange:
case kIOPM_ParentChangeTellPriorityClientsPowerDown:
case kIOPM_ParentChangeNotifyInterestedDriversWillChange:
case kIOPM_SyncTellClientsPowerDown:
case kIOPM_SyncTellPriorityClientsPowerDown:
case kIOPM_SyncNotifyWillChange:
case kIOPM_TellCapabilityChangeDone:
// apps didn't respond in time
cleanClientResponses(true);
OUR_PMLog(kPMLogClientTardy, 0, 1);
// tardy equates to approval
done = true;
break;
default:
PM_LOG1("%s: unexpected ack timer tick (state = %d)\n",
getName(), fMachineState);
break;
}
return done;
}
//*********************************************************************************
// [private] start_watchdog_timer
//*********************************************************************************
void
IOService::start_watchdog_timer( void )
{
int timeout;
uint64_t deadline;
if (!fWatchdogTimer || (kIOSleepWakeWdogOff & gIOKitDebug)) {
return;
}
IOLockLock(fWatchdogLock);
timeout = getPMRootDomain()->getWatchdogTimeout();
clock_interval_to_deadline(timeout, kSecondScale, &deadline);
fWatchdogDeadline = deadline;
start_watchdog_timer(deadline);
IOLockUnlock(fWatchdogLock);
}
void
IOService::start_watchdog_timer(uint64_t deadline)
{
IOLockAssert(fWatchdogLock, kIOLockAssertOwned);
if (!thread_call_isactive(fWatchdogTimer)) {
thread_call_enter_delayed(fWatchdogTimer, deadline);
}
}
//*********************************************************************************
// [private] stop_watchdog_timer
//*********************************************************************************
void
IOService::stop_watchdog_timer( void )
{
if (!fWatchdogTimer || (kIOSleepWakeWdogOff & gIOKitDebug)) {
return;
}
IOLockLock(fWatchdogLock);
thread_call_cancel(fWatchdogTimer);
fWatchdogDeadline = 0;
while (fBlockedArray->getCount()) {
IOService *obj = OSDynamicCast(IOService, fBlockedArray->getObject(0));
if (obj) {
PM_ERROR("WDOG:Object %s unexpected in blocked array\n", obj->fName);
fBlockedArray->removeObject(0);
}
}
IOLockUnlock(fWatchdogLock);
}
//*********************************************************************************
// reset_watchdog_timer
//*********************************************************************************
void
IOService::reset_watchdog_timer(IOService *blockedObject, int pendingResponseTimeout)
{
unsigned int i;
uint64_t deadline;
IOService *obj;
if (!fWatchdogTimer || (kIOSleepWakeWdogOff & gIOKitDebug)) {
return;
}
IOLockLock(fWatchdogLock);
if (!fWatchdogDeadline) {
goto exit;
}
i = fBlockedArray->getNextIndexOfObject(blockedObject, 0);
if (pendingResponseTimeout == 0) {
blockedObject->fPendingResponseDeadline = 0;
if (i == (unsigned int)-1) {
goto exit;
}
fBlockedArray->removeObject(i);
} else {
// Set deadline 2secs after the expected response timeout to allow
// ack timer to handle the timeout.
clock_interval_to_deadline(pendingResponseTimeout + 2, kSecondScale, &deadline);
if (i != (unsigned int)-1) {
PM_ERROR("WDOG:Object %s is already blocked for responses. Ignoring timeout %d\n",
fName, pendingResponseTimeout);
goto exit;
}
for (i = 0; i < fBlockedArray->getCount(); i++) {
obj = OSDynamicCast(IOService, fBlockedArray->getObject(i));
if (obj && (obj->fPendingResponseDeadline < deadline)) {
blockedObject->fPendingResponseDeadline = deadline;
fBlockedArray->setObject(i, blockedObject);
break;
}
}
if (i == fBlockedArray->getCount()) {
blockedObject->fPendingResponseDeadline = deadline;
fBlockedArray->setObject(blockedObject);
}
}
obj = OSDynamicCast(IOService, fBlockedArray->getObject(0));
if (!obj) {
int timeout = getPMRootDomain()->getWatchdogTimeout();
clock_interval_to_deadline(timeout, kSecondScale, &deadline);
} else {
deadline = obj->fPendingResponseDeadline;
}
thread_call_cancel(fWatchdogTimer);
start_watchdog_timer(deadline);
exit:
IOLockUnlock(fWatchdogLock);
}
//*********************************************************************************
// [static] watchdog_timer_expired
//
// Inside PM work loop's gate.
//*********************************************************************************
void
IOService::watchdog_timer_expired( thread_call_param_t arg0, thread_call_param_t arg1 )
{
IOService * me = (IOService *) arg0;
gIOPMWatchDogThread = current_thread();
getPMRootDomain()->sleepWakeDebugTrig(true);
gIOPMWatchDogThread = NULL;
thread_call_free(me->fWatchdogTimer);
me->fWatchdogTimer = NULL;
return;
}
IOWorkLoop *
IOService::getIOPMWorkloop( void )
{
return gIOPMWorkLoop;
}
//*********************************************************************************
// [private] start_ack_timer
//*********************************************************************************
void
IOService::start_ack_timer( void )
{
start_ack_timer( ACK_TIMER_PERIOD, kNanosecondScale );
}
void
IOService::start_ack_timer( UInt32 interval, UInt32 scale )
{
AbsoluteTime deadline;
boolean_t pending;
clock_interval_to_deadline(interval, scale, &deadline);
retain();
pending = thread_call_enter_delayed(fAckTimer, deadline);
if (pending) {
release();
}
}
//*********************************************************************************
// [private] stop_ack_timer
//*********************************************************************************
void
IOService::stop_ack_timer( void )
{
boolean_t pending;
pending = thread_call_cancel(fAckTimer);
if (pending) {
release();
}
}
//*********************************************************************************
// [static] actionAckTimerExpired
//
// Inside PM work loop's gate.
//*********************************************************************************
IOReturn
IOService::actionAckTimerExpired(
OSObject * target,
void * arg0, void * arg1,
void * arg2, void * arg3 )
{
IOService * me = (IOService *) target;
bool done;
// done will be true if the timer tick unblocks the machine state,
// otherwise no need to signal the work loop.
done = me->ackTimerTick();
if (done && gIOPMWorkQueue) {
gIOPMWorkQueue->signalWorkAvailable();
}
return kIOReturnSuccess;
}
//*********************************************************************************
// ack_timer_expired
//
// Thread call function. Holds a retain while the callout is in flight.
//*********************************************************************************
void
IOService::ack_timer_expired( thread_call_param_t arg0, thread_call_param_t arg1 )
{
IOService * me = (IOService *) arg0;
if (gIOPMWorkLoop) {
gIOPMWorkLoop->runAction(&actionAckTimerExpired, me);
}
me->release();
}
// MARK: -
// MARK: Client Messaging
//*********************************************************************************
// [private] tellSystemCapabilityChange
//*********************************************************************************
void
IOService::tellSystemCapabilityChange( uint32_t nextMS )
{
assert(IS_ROOT_DOMAIN);
MS_PUSH( nextMS );
fMachineState = kIOPM_TellCapabilityChangeDone;
fOutOfBandMessage = kIOMessageSystemCapabilityChange;
if (fIsPreChange) {
// Notify app first on pre-change.
fOutOfBandParameter = kNotifyCapabilityChangeApps;
} else {
// Notify kernel clients first on post-change.
fOutOfBandParameter = kNotifyCapabilityChangePriority;
}
tellClientsWithResponse( fOutOfBandMessage );
}
//*********************************************************************************
// [public] askChangeDown
//
// Ask registered applications and kernel clients if we can change to a lower
// power state.
//
// Subclass can override this to send a different message type. Parameter is
// the destination state number.
//
// Return true if we don't have to wait for acknowledgements
//*********************************************************************************
bool
IOService::askChangeDown( unsigned long stateNum )
{
return tellClientsWithResponse( kIOMessageCanDevicePowerOff );
}
//*********************************************************************************
// [private] tellChangeDown1
//
// Notify registered applications and kernel clients that we are definitely
// dropping power.
//
// Return true if we don't have to wait for acknowledgements
//*********************************************************************************
bool
IOService::tellChangeDown1( unsigned long stateNum )
{
fOutOfBandParameter = kNotifyApps;
return tellChangeDown(stateNum);
}
//*********************************************************************************
// [private] tellChangeDown2
//
// Notify priority clients that we are definitely dropping power.
//
// Return true if we don't have to wait for acknowledgements
//*********************************************************************************
bool
IOService::tellChangeDown2( unsigned long stateNum )
{
fOutOfBandParameter = kNotifyPriority;
return tellChangeDown(stateNum);
}
//*********************************************************************************
// [public] tellChangeDown
//
// Notify registered applications and kernel clients that we are definitely
// dropping power.
//
// Subclass can override this to send a different message type. Parameter is
// the destination state number.
//
// Return true if we don't have to wait for acknowledgements
//*********************************************************************************
bool
IOService::tellChangeDown( unsigned long stateNum )
{
return tellClientsWithResponse( kIOMessageDeviceWillPowerOff );
}
//*********************************************************************************
// cleanClientResponses
//
//*********************************************************************************
static void
logAppTimeouts( OSObject * object, void * arg )
{
IOPMInterestContext * context = (IOPMInterestContext *) arg;
OSObject * flag;
unsigned int clientIndex;
int pid = 0;
char name[128];
if (OSDynamicCast(_IOServiceInterestNotifier, object)) {
// Discover the 'counter' value or index assigned to this client
// when it was notified, by searching for the array index of the
// client in an array holding the cached interested clients.
clientIndex = context->notifyClients->getNextIndexOfObject(object, 0);
if ((clientIndex != (unsigned int) -1) &&
(flag = context->responseArray->getObject(clientIndex)) &&
(flag != kOSBooleanTrue)) {
OSNumber *clientID = copyClientIDForNotification(object, context);
name[0] = '\0';
if (clientID) {
pid = clientID->unsigned32BitValue();
proc_name(pid, name, sizeof(name));
clientID->release();
}
PM_ERROR(context->errorLog, pid, name);
// TODO: record message type if possible
IOService::getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsResponseTimedOut,
name, 0, (30 * 1000), pid, object);
}
}
}
void
IOService::cleanClientResponses( bool logErrors )
{
if (logErrors && fResponseArray) {
switch (fOutOfBandParameter) {
case kNotifyApps:
case kNotifyCapabilityChangeApps:
if (fNotifyClientArray) {
IOPMInterestContext context;
context.responseArray = fResponseArray;
context.notifyClients = fNotifyClientArray;
context.serialNumber = fSerialNumber;
context.messageType = kIOMessageCopyClientID;
context.notifyType = kNotifyApps;
context.isPreChange = fIsPreChange;
context.enableTracing = false;
context.us = this;
context.maxTimeRequested = 0;
context.stateNumber = fHeadNotePowerState;
context.stateFlags = fHeadNotePowerArrayEntry->capabilityFlags;
context.changeFlags = fHeadNoteChangeFlags;
context.errorLog = "PM notification timeout (pid %d, %s)\n";
applyToInterested(gIOAppPowerStateInterest, logAppTimeouts, (void *) &context);
}
break;
default:
// kNotifyPriority, kNotifyCapabilityChangePriority
// TODO: identify the priority client that has not acked
PM_ERROR("PM priority notification timeout\n");
if (gIOKitDebug & kIOLogDebugPower) {
panic("PM priority notification timeout");
}
break;
}
}
if (IS_ROOT_DOMAIN) {
getPMRootDomain()->reset_watchdog_timer(this, 0);
}
if (fResponseArray) {
fResponseArray->release();
fResponseArray = NULL;
}
if (fNotifyClientArray) {
fNotifyClientArray->release();
fNotifyClientArray = NULL;
}
}
//*********************************************************************************
// [protected] tellClientsWithResponse
//
// Notify registered applications and kernel clients that we are definitely
// dropping power.
//
// Return true if we don't have to wait for acknowledgements
//*********************************************************************************
bool
IOService::tellClientsWithResponse( int messageType )
{
IOPMInterestContext context;
bool isRootDomain = IS_ROOT_DOMAIN;
uint32_t maxTimeOut = kMaxTimeRequested;
PM_ASSERT_IN_GATE();
assert( fResponseArray == NULL );
assert( fNotifyClientArray == NULL );
RD_LOG("tellClientsWithResponse( %s, %s )\n", getIOMessageString(messageType),
getNotificationPhaseString(fOutOfBandParameter));
fResponseArray = OSArray::withCapacity( 1 );
if (!fResponseArray) {
goto exit;
}
fResponseArray->setCapacityIncrement(8);
if (++fSerialNumber == 0) {
fSerialNumber++;
}
context.responseArray = fResponseArray;
context.notifyClients = NULL;
context.serialNumber = fSerialNumber;
context.messageType = messageType;
context.notifyType = fOutOfBandParameter;
context.skippedInDark = 0;
context.notSkippedInDark = 0;
context.isPreChange = fIsPreChange;
context.enableTracing = false;
context.us = this;
context.maxTimeRequested = 0;
context.stateNumber = fHeadNotePowerState;
context.stateFlags = fHeadNotePowerArrayEntry->capabilityFlags;
context.changeFlags = fHeadNoteChangeFlags;
context.messageFilter = (isRootDomain) ?
OSMemberFunctionCast(
IOPMMessageFilter,
(IOPMrootDomain *)this,
&IOPMrootDomain::systemMessageFilter) : NULL;
switch (fOutOfBandParameter) {
case kNotifyApps:
applyToInterested( gIOAppPowerStateInterest,
pmTellAppWithResponse, (void *) &context );
if (isRootDomain &&
(fMachineState != kIOPM_OurChangeTellClientsPowerDown) &&
(fMachineState != kIOPM_SyncTellClientsPowerDown) &&
(context.messageType != kIOPMMessageLastCallBeforeSleep)) {
// Notify capability app for tellChangeDown1()
// but not for askChangeDown().
context.notifyType = kNotifyCapabilityChangeApps;
context.messageType = kIOMessageSystemCapabilityChange;
applyToInterested( gIOAppPowerStateInterest,
pmTellCapabilityAppWithResponse, (void *) &context );
context.notifyType = fOutOfBandParameter;
context.messageType = messageType;
}
if (context.messageType == kIOMessageCanSystemSleep) {
maxTimeOut = kCanSleepMaxTimeReq;
if (gCanSleepTimeout) {
maxTimeOut = (gCanSleepTimeout * us_per_s);
}
}
context.maxTimeRequested = maxTimeOut;
context.enableTracing = isRootDomain;
applyToInterested( gIOGeneralInterest,
pmTellClientWithResponse, (void *) &context );
break;
case kNotifyPriority:
context.enableTracing = isRootDomain;
applyToInterested( gIOPriorityPowerStateInterest,
pmTellClientWithResponse, (void *) &context );
if (isRootDomain) {
// Notify capability clients for tellChangeDown2().
context.notifyType = kNotifyCapabilityChangePriority;
context.messageType = kIOMessageSystemCapabilityChange;
applyToInterested( gIOPriorityPowerStateInterest,
pmTellCapabilityClientWithResponse, (void *) &context );
}
break;
case kNotifyCapabilityChangeApps:
context.enableTracing = isRootDomain;
applyToInterested( gIOAppPowerStateInterest,
pmTellCapabilityAppWithResponse, (void *) &context );
if (context.messageType == kIOMessageCanSystemSleep) {
maxTimeOut = kCanSleepMaxTimeReq;
if (gCanSleepTimeout) {
maxTimeOut = (gCanSleepTimeout * us_per_s);
}
}
context.maxTimeRequested = maxTimeOut;
break;
case kNotifyCapabilityChangePriority:
context.enableTracing = isRootDomain;
applyToInterested( gIOPriorityPowerStateInterest,
pmTellCapabilityClientWithResponse, (void *) &context );
break;
}
fNotifyClientArray = context.notifyClients;
if (context.skippedInDark) {
IOLog("tellClientsWithResponse(%s, %s) %d of %d skipped in dark\n",
getIOMessageString(messageType), getNotificationPhaseString(fOutOfBandParameter),
context.skippedInDark, context.skippedInDark + context.notSkippedInDark);
}
// do we have to wait for somebody?
if (!checkForDone()) {
OUR_PMLog(kPMLogStartAckTimer, context.maxTimeRequested, 0);
if (context.enableTracing) {
getPMRootDomain()->traceDetail(context.messageType, 0, context.maxTimeRequested / 1000);
getPMRootDomain()->reset_watchdog_timer(this, context.maxTimeRequested / USEC_PER_SEC + 1);
}
start_ack_timer( context.maxTimeRequested / 1000, kMillisecondScale );
return false;
}
exit:
// everybody responded
if (fResponseArray) {
fResponseArray->release();
fResponseArray = NULL;
}
if (fNotifyClientArray) {
fNotifyClientArray->release();
fNotifyClientArray = NULL;
}
return true;
}
//*********************************************************************************
// [static private] pmTellAppWithResponse
//
// We send a message to an application, and we expect a response, so we compute a
// cookie we can identify the response with.
//*********************************************************************************
void
IOService::pmTellAppWithResponse( OSObject * object, void * arg )
{
IOPMInterestContext * context = (IOPMInterestContext *) arg;
IOServicePM * pwrMgt = context->us->pwrMgt;
uint32_t msgIndex, msgRef, msgType;
OSNumber *clientID = NULL;
proc_t proc = NULL;
boolean_t proc_suspended = FALSE;
OSObject * waitForReply = kOSBooleanTrue;
#if LOG_APP_RESPONSE_TIMES
AbsoluteTime now;
#endif
if (!OSDynamicCast(_IOServiceInterestNotifier, object)) {
return;
}
if (context->us == getPMRootDomain()) {
if ((clientID = copyClientIDForNotification(object, context))) {
uint32_t clientPID = clientID->unsigned32BitValue();
clientID->release();
proc = proc_find(clientPID);
if (proc) {
proc_suspended = get_task_pidsuspended((task_t) proc->task);
if (proc_suspended) {
logClientIDForNotification(object, context, "PMTellAppWithResponse - Suspended");
} else if (getPMRootDomain()->isAOTMode() && get_task_suspended((task_t) proc->task)) {
proc_suspended = true;
context->skippedInDark++;
}
proc_rele(proc);
if (proc_suspended) {
return;
}
}
}
}
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, NULL, &waitForReply)) {
if (kIOLogDebugPower & gIOKitDebug) {
logClientIDForNotification(object, context, "DROP App");
}
return;
}
context->notSkippedInDark++;
// Create client array (for tracking purposes) only if the service
// has app clients. Usually only root domain does.
if (NULL == context->notifyClients) {
context->notifyClients = OSArray::withCapacity( 32 );
}
msgType = context->messageType;
msgIndex = context->responseArray->getCount();
msgRef = ((context->serialNumber & 0xFFFF) << 16) + (msgIndex & 0xFFFF);
OUR_PMLog(kPMLogAppNotify, msgType, msgRef);
if (kIOLogDebugPower & gIOKitDebug) {
logClientIDForNotification(object, context, "MESG App");
}
if (waitForReply == kOSBooleanTrue) {
OSNumber * num;
clock_get_uptime(&now);
num = OSNumber::withNumber(AbsoluteTime_to_scalar(&now), sizeof(uint64_t) * 8);
if (num) {
context->responseArray->setObject(msgIndex, num);
num->release();
} else {
context->responseArray->setObject(msgIndex, kOSBooleanFalse);
}
} else {
context->responseArray->setObject(msgIndex, kOSBooleanTrue);
if (kIOLogDebugPower & gIOKitDebug) {
logClientIDForNotification(object, context, "App response ignored");
}
}
if (context->notifyClients) {
context->notifyClients->setObject(msgIndex, object);
}
context->us->messageClient(msgType, object, (void *)(uintptr_t) msgRef);
}
//*********************************************************************************
// [static private] pmTellClientWithResponse
//
// We send a message to an in-kernel client, and we expect a response,
// so we compute a cookie we can identify the response with.
//*********************************************************************************
void
IOService::pmTellClientWithResponse( OSObject * object, void * arg )
{
IOPowerStateChangeNotification notify;
IOPMInterestContext * context = (IOPMInterestContext *) arg;
OSObject * replied = kOSBooleanTrue;
_IOServiceInterestNotifier * notifier;
uint32_t msgIndex, msgRef, msgType;
IOReturn retCode;
AbsoluteTime start, end;
uint64_t nsec;
bool enableTracing;
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, NULL, NULL)) {
getPMRootDomain()->traceFilteredNotification(object);
return;
}
// Besides interest notifiers this applier function can also be invoked against
// IOService clients of context->us, so notifier can be NULL. But for tracing
// purposes the IOService clients can be ignored but each will still consume
// an entry in the responseArray and also advance msgIndex.
notifier = OSDynamicCast(_IOServiceInterestNotifier, object);
msgType = context->messageType;
msgIndex = context->responseArray->getCount();
msgRef = ((context->serialNumber & 0xFFFF) << 16) + (msgIndex & 0xFFFF);
enableTracing = context->enableTracing && (notifier != NULL);
IOServicePM * pwrMgt = context->us->pwrMgt;
if (gIOKitDebug & kIOLogPower) {
OUR_PMLog(kPMLogClientNotify, msgRef, msgType);
if (OSDynamicCast(IOService, object)) {
const char *who = ((IOService *) object)->getName();
gPlatform->PMLog(who, kPMLogClientNotify, (uintptr_t) object, 0);
} else if (notifier) {
OUR_PMLog(kPMLogClientNotify, (uintptr_t) notifier->handler, 0);
}
}
if (NULL == context->notifyClients) {
context->notifyClients = OSArray::withCapacity(32);
assert(context->notifyClients != NULL);
}
notify.powerRef = (void *)(uintptr_t) msgRef;
notify.returnValue = 0;
notify.stateNumber = context->stateNumber;
notify.stateFlags = context->stateFlags;
clock_get_uptime(&start);
if (enableTracing) {
getPMRootDomain()->traceNotification(notifier, true, start, msgIndex);
}
retCode = context->us->messageClient(msgType, object, (void *) &notify, sizeof(notify));
clock_get_uptime(&end);
if (enableTracing) {
getPMRootDomain()->traceNotification(notifier, false, end);
}
if (kIOReturnSuccess == retCode) {
if (0 == notify.returnValue) {
OUR_PMLog(kPMLogClientAcknowledge, msgRef, (uintptr_t) object);
context->responseArray->setObject(msgIndex, replied);
} else {
replied = kOSBooleanFalse;
if (notify.returnValue > context->maxTimeRequested) {
if (notify.returnValue > kPriorityClientMaxWait) {
context->maxTimeRequested = kPriorityClientMaxWait;
PM_ERROR("%s: client %p returned %llu for %s\n",
context->us->getName(),
notifier ? (void *) OBFUSCATE(notifier->handler) : OBFUSCATE(object),
(uint64_t) notify.returnValue,
getIOMessageString(msgType));
} else {
context->maxTimeRequested = (typeof(context->maxTimeRequested))notify.returnValue;
}
}
//
// Track time taken to ack, by storing the timestamp of
// callback completion
OSNumber * num;
num = OSNumber::withNumber(AbsoluteTime_to_scalar(&end), sizeof(uint64_t) * 8);
if (num) {
context->responseArray->setObject(msgIndex, num);
num->release();
} else {
context->responseArray->setObject(msgIndex, replied);
}
}
if (enableTracing) {
SUB_ABSOLUTETIME(&end, &start);
absolutetime_to_nanoseconds(end, &nsec);
if ((nsec > LOG_KEXT_RESPONSE_TIMES) || (notify.returnValue != 0)) {
getPMRootDomain()->traceNotificationResponse(notifier, NS_TO_MS(nsec), (uint32_t) notify.returnValue);
}
}
} else {
// not a client of ours
// so we won't be waiting for response
OUR_PMLog(kPMLogClientAcknowledge, msgRef, 0);
context->responseArray->setObject(msgIndex, replied);
}
if (context->notifyClients) {
context->notifyClients->setObject(msgIndex, object);
}
}
//*********************************************************************************
// [static private] pmTellCapabilityAppWithResponse
//*********************************************************************************
void
IOService::pmTellCapabilityAppWithResponse( OSObject * object, void * arg )
{
IOPMSystemCapabilityChangeParameters msgArg;
IOPMInterestContext * context = (IOPMInterestContext *) arg;
OSObject * replied = kOSBooleanTrue;
IOServicePM * pwrMgt = context->us->pwrMgt;
uint32_t msgIndex, msgRef, msgType;
#if LOG_APP_RESPONSE_TIMES
AbsoluteTime now;
#endif
if (!OSDynamicCast(_IOServiceInterestNotifier, object)) {
return;
}
memset(&msgArg, 0, sizeof(msgArg));
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, &msgArg, &replied)) {
return;
}
if (context->us == getPMRootDomain() &&
getPMRootDomain()->isAOTMode()
) {
OSNumber *clientID = NULL;
boolean_t proc_suspended = FALSE;
proc_t proc = NULL;
if ((clientID = copyClientIDForNotification(object, context))) {
uint32_t clientPID = clientID->unsigned32BitValue();
clientID->release();
proc = proc_find(clientPID);
if (proc) {
proc_suspended = get_task_pidsuspended((task_t) proc->task);
if (proc_suspended) {
logClientIDForNotification(object, context, "PMTellCapablityAppWithResponse - Suspended");
} else if (get_task_suspended((task_t) proc->task)) {
proc_suspended = true;
context->skippedInDark++;
}
proc_rele(proc);
if (proc_suspended) {
return;
}
}
}
}
context->notSkippedInDark++;
// Create client array (for tracking purposes) only if the service
// has app clients. Usually only root domain does.
if (NULL == context->notifyClients) {
context->notifyClients = OSArray::withCapacity(32);
assert(context->notifyClients != NULL);
}
msgType = context->messageType;
msgIndex = context->responseArray->getCount();
msgRef = ((context->serialNumber & 0xFFFF) << 16) + (msgIndex & 0xFFFF);
OUR_PMLog(kPMLogAppNotify, msgType, msgRef);
if (kIOLogDebugPower & gIOKitDebug) {
// Log client pid/name and client array index.
OSNumber * clientID = NULL;
OSString * clientIDString = NULL;;
context->us->messageClient(kIOMessageCopyClientID, object, &clientID);
if (clientID) {
clientIDString = IOCopyLogNameForPID(clientID->unsigned32BitValue());
}
PM_LOG("%s MESG App(%u) %s, wait %u, %s\n",
context->us->getName(),
msgIndex, getIOMessageString(msgType),
(replied != kOSBooleanTrue),
clientIDString ? clientIDString->getCStringNoCopy() : "");
if (clientID) {
clientID->release();
}
if (clientIDString) {
clientIDString->release();
}
}
msgArg.notifyRef = msgRef;
msgArg.maxWaitForReply = 0;
if (replied == kOSBooleanTrue) {
msgArg.notifyRef = 0;
context->responseArray->setObject(msgIndex, kOSBooleanTrue);
if (context->notifyClients) {
context->notifyClients->setObject(msgIndex, kOSBooleanTrue);
}
} else {
OSNumber * num;
clock_get_uptime(&now);
num = OSNumber::withNumber(AbsoluteTime_to_scalar(&now), sizeof(uint64_t) * 8);
if (num) {
context->responseArray->setObject(msgIndex, num);
num->release();
} else {
context->responseArray->setObject(msgIndex, kOSBooleanFalse);
}
if (context->notifyClients) {
context->notifyClients->setObject(msgIndex, object);
}
}
context->us->messageClient(msgType, object, (void *) &msgArg, sizeof(msgArg));
}
//*********************************************************************************
// [static private] pmTellCapabilityClientWithResponse
//*********************************************************************************
void
IOService::pmTellCapabilityClientWithResponse(
OSObject * object, void * arg )
{
IOPMSystemCapabilityChangeParameters msgArg;
IOPMInterestContext * context = (IOPMInterestContext *) arg;
OSObject * replied = kOSBooleanTrue;
_IOServiceInterestNotifier * notifier;
uint32_t msgIndex, msgRef, msgType;
IOReturn retCode;
AbsoluteTime start, end;
uint64_t nsec;
bool enableTracing;
memset(&msgArg, 0, sizeof(msgArg));
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, &msgArg, NULL)) {
getPMRootDomain()->traceFilteredNotification(object);
return;
}
if (NULL == context->notifyClients) {
context->notifyClients = OSArray::withCapacity(32);
assert(context->notifyClients != NULL);
}
notifier = OSDynamicCast(_IOServiceInterestNotifier, object);
msgType = context->messageType;
msgIndex = context->responseArray->getCount();
msgRef = ((context->serialNumber & 0xFFFF) << 16) + (msgIndex & 0xFFFF);
enableTracing = context->enableTracing && (notifier != NULL);
IOServicePM * pwrMgt = context->us->pwrMgt;
if (gIOKitDebug & kIOLogPower) {
OUR_PMLog(kPMLogClientNotify, msgRef, msgType);
if (OSDynamicCast(IOService, object)) {
const char *who = ((IOService *) object)->getName();
gPlatform->PMLog(who, kPMLogClientNotify, (uintptr_t) object, 0);
} else if (notifier) {
OUR_PMLog(kPMLogClientNotify, (uintptr_t) notifier->handler, 0);
}
}
msgArg.notifyRef = msgRef;
msgArg.maxWaitForReply = 0;
clock_get_uptime(&start);
if (enableTracing) {
getPMRootDomain()->traceNotification(notifier, true, start, msgIndex);
}
retCode = context->us->messageClient(msgType, object, (void *) &msgArg, sizeof(msgArg));
clock_get_uptime(&end);
if (enableTracing) {
getPMRootDomain()->traceNotification(notifier, false, end, msgIndex);
}
if (kIOReturnSuccess == retCode) {
if (0 == msgArg.maxWaitForReply) {
// client doesn't want time to respond
OUR_PMLog(kPMLogClientAcknowledge, msgRef, (uintptr_t) object);
context->responseArray->setObject(msgIndex, replied);
} else {
replied = kOSBooleanFalse;
if (msgArg.maxWaitForReply > context->maxTimeRequested) {
if (msgArg.maxWaitForReply > kCapabilityClientMaxWait) {
context->maxTimeRequested = kCapabilityClientMaxWait;
PM_ERROR("%s: client %p returned %u for %s\n",
context->us->getName(),
notifier ? (void *) OBFUSCATE(notifier->handler) : OBFUSCATE(object),
msgArg.maxWaitForReply,
getIOMessageString(msgType));
} else {
context->maxTimeRequested = msgArg.maxWaitForReply;
}
}
// Track time taken to ack, by storing the timestamp of
// callback completion
OSNumber * num;
num = OSNumber::withNumber(AbsoluteTime_to_scalar(&end), sizeof(uint64_t) * 8);
if (num) {
context->responseArray->setObject(msgIndex, num);
num->release();
} else {
context->responseArray->setObject(msgIndex, replied);
}
}
if (enableTracing) {
SUB_ABSOLUTETIME(&end, &start);
absolutetime_to_nanoseconds(end, &nsec);
if ((nsec > LOG_KEXT_RESPONSE_TIMES) || (msgArg.maxWaitForReply != 0)) {
getPMRootDomain()->traceNotificationResponse(notifier, NS_TO_MS(nsec), msgArg.maxWaitForReply);
}
}
} else {
// not a client of ours
// so we won't be waiting for response
OUR_PMLog(kPMLogClientAcknowledge, msgRef, 0);
context->responseArray->setObject(msgIndex, replied);
}
if (context->notifyClients) {
context->notifyClients->setObject(msgIndex, object);
}
}
//*********************************************************************************
// [public] tellNoChangeDown
//
// Notify registered applications and kernel clients that we are not
// dropping power.
//
// Subclass can override this to send a different message type. Parameter is
// the aborted destination state number.
//*********************************************************************************
void
IOService::tellNoChangeDown( unsigned long )
{
return tellClients( kIOMessageDeviceWillNotPowerOff );
}
//*********************************************************************************
// [public] tellChangeUp
//
// Notify registered applications and kernel clients that we are raising power.
//
// Subclass can override this to send a different message type. Parameter is
// the aborted destination state number.
//*********************************************************************************
void
IOService::tellChangeUp( unsigned long )
{
return tellClients( kIOMessageDeviceHasPoweredOn );
}
//*********************************************************************************
// [protected] tellClients
//
// Notify registered applications and kernel clients of something.
//*********************************************************************************
void
IOService::tellClients( int messageType )
{
IOPMInterestContext context;
RD_LOG("tellClients( %s )\n", getIOMessageString(messageType));
memset(&context, 0, sizeof(context));
context.messageType = messageType;
context.isPreChange = fIsPreChange;
context.us = this;
context.stateNumber = fHeadNotePowerState;
context.stateFlags = fHeadNotePowerArrayEntry->capabilityFlags;
context.changeFlags = fHeadNoteChangeFlags;
context.enableTracing = IS_ROOT_DOMAIN;
context.messageFilter = (IS_ROOT_DOMAIN) ?
OSMemberFunctionCast(
IOPMMessageFilter,
(IOPMrootDomain *)this,
&IOPMrootDomain::systemMessageFilter) : NULL;
context.notifyType = kNotifyPriority;
applyToInterested( gIOPriorityPowerStateInterest,
tellKernelClientApplier, (void *) &context );
context.notifyType = kNotifyApps;
applyToInterested( gIOAppPowerStateInterest,
tellAppClientApplier, (void *) &context );
applyToInterested( gIOGeneralInterest,
tellKernelClientApplier, (void *) &context );
}
//*********************************************************************************
// [private] tellKernelClientApplier
//
// Message a kernel client.
//*********************************************************************************
static void
tellKernelClientApplier( OSObject * object, void * arg )
{
IOPowerStateChangeNotification notify;
IOPMInterestContext * context = (IOPMInterestContext *) arg;
bool enableTracing = context->enableTracing;
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, NULL, NULL)) {
IOService::getPMRootDomain()->traceFilteredNotification(object);
return;
}
notify.powerRef = (void *) NULL;
notify.returnValue = 0;
notify.stateNumber = context->stateNumber;
notify.stateFlags = context->stateFlags;
if (enableTracing) {
IOService::getPMRootDomain()->traceNotification(object, true);
}
context->us->messageClient(context->messageType, object, &notify, sizeof(notify));
if (enableTracing) {
IOService::getPMRootDomain()->traceNotification(object, false);
}
}
static OSNumber *
copyClientIDForNotification(
OSObject *object,
IOPMInterestContext *context)
{
OSNumber *clientID = NULL;
context->us->messageClient(kIOMessageCopyClientID, object, &clientID);
return clientID;
}
static void
logClientIDForNotification(
OSObject *object,
IOPMInterestContext *context,
const char *logString)
{
OSString *logClientID = NULL;
OSNumber *clientID = copyClientIDForNotification(object, context);
if (logString) {
if (clientID) {
logClientID = IOCopyLogNameForPID(clientID->unsigned32BitValue());
}
PM_LOG("%s %s %s, %s\n",
context->us->getName(), logString,
IOService::getIOMessageString(context->messageType),
logClientID ? logClientID->getCStringNoCopy() : "");
if (logClientID) {
logClientID->release();
}
}
if (clientID) {
clientID->release();
}
return;
}
static void
tellAppClientApplier( OSObject * object, void * arg )
{
IOPMInterestContext * context = (IOPMInterestContext *) arg;
OSNumber * clientID = NULL;
proc_t proc = NULL;
boolean_t proc_suspended = FALSE;
if (context->us == IOService::getPMRootDomain()) {
if ((clientID = copyClientIDForNotification(object, context))) {
uint32_t clientPID = clientID->unsigned32BitValue();
clientID->release();
proc = proc_find(clientPID);
if (proc) {
proc_suspended = get_task_pidsuspended((task_t) proc->task);
if (proc_suspended) {
logClientIDForNotification(object, context, "tellAppClientApplier - Suspended");
} else if (IOService::getPMRootDomain()->isAOTMode() && get_task_suspended((task_t) proc->task)) {
proc_suspended = true;
context->skippedInDark++;
}
proc_rele(proc);
if (proc_suspended) {
return;
}
}
}
}
if (context->messageFilter &&
!context->messageFilter(context->us, object, context, NULL, NULL)) {
if (kIOLogDebugPower & gIOKitDebug) {
logClientIDForNotification(object, context, "DROP App");
}
return;
}
context->notSkippedInDark++;
if (kIOLogDebugPower & gIOKitDebug) {
logClientIDForNotification(object, context, "MESG App");
}
context->us->messageClient(context->messageType, object, NULL);
}
//*********************************************************************************
// [private] checkForDone
//*********************************************************************************
bool
IOService::checkForDone( void )
{
int i = 0;
OSObject * theFlag;
if (fResponseArray == NULL) {
return true;
}
for (i = 0;; i++) {
theFlag = fResponseArray->getObject(i);
if (NULL == theFlag) {
break;
}
if (kOSBooleanTrue != theFlag) {
return false;
}
}
return true;
}
//*********************************************************************************
// [public] responseValid
//*********************************************************************************
bool
IOService::responseValid( uint32_t refcon, int pid )
{
UInt16 serialComponent;
UInt16 ordinalComponent;
OSObject * theFlag;
OSObject *object = NULL;
serialComponent = (refcon >> 16) & 0xFFFF;
ordinalComponent = (refcon & 0xFFFF);
if (serialComponent != fSerialNumber) {
return false;
}
if (fResponseArray == NULL) {
return false;
}
theFlag = fResponseArray->getObject(ordinalComponent);
if (theFlag == NULL) {
return false;
}
if (fNotifyClientArray) {
object = fNotifyClientArray->getObject(ordinalComponent);
}
OSNumber * num;
if ((num = OSDynamicCast(OSNumber, theFlag))) {
AbsoluteTime now;
AbsoluteTime start;
uint64_t nsec;
char name[128];
clock_get_uptime(&now);
AbsoluteTime_to_scalar(&start) = num->unsigned64BitValue();
SUB_ABSOLUTETIME(&now, &start);
absolutetime_to_nanoseconds(now, &nsec);
if (pid != 0) {
name[0] = '\0';
proc_name(pid, name, sizeof(name));
if (nsec > LOG_APP_RESPONSE_TIMES) {
IOLog("PM response took %d ms (%d, %s)\n", NS_TO_MS(nsec),
pid, name);
}
if (nsec > LOG_APP_RESPONSE_MSG_TRACER) {
// TODO: populate the messageType argument
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsResponseSlow,
name, 0, NS_TO_MS(nsec), pid, object);
} else {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsResponsePrompt,
name, 0, NS_TO_MS(nsec), pid, object);
}
} else {
getPMRootDomain()->traceNotificationAck(object, NS_TO_MS(nsec));
}
if (kIOLogDebugPower & gIOKitDebug) {
PM_LOG("Ack(%u) %u ms\n",
(uint32_t) ordinalComponent,
NS_TO_MS(nsec));
}
theFlag = kOSBooleanFalse;
} else if (object) {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsResponsePrompt,
NULL, 0, 0, pid, object);
}
if (kOSBooleanFalse == theFlag) {
fResponseArray->replaceObject(ordinalComponent, kOSBooleanTrue);
}
return true;
}
//*********************************************************************************
// [public] allowPowerChange
//
// Our power state is about to lower, and we have notified applications
// and kernel clients, and one of them has acknowledged. If this is the last to do
// so, and all acknowledgements are positive, we continue with the power change.
//*********************************************************************************
IOReturn
IOService::allowPowerChange( unsigned long refcon )
{
IOPMRequest * request;
if (!initialized) {
// we're unloading
return kIOReturnSuccess;
}
request = acquirePMRequest( this, kIOPMRequestTypeAllowPowerChange );
if (!request) {
return kIOReturnNoMemory;
}
request->fArg0 = (void *) refcon;
request->fArg1 = (void *)(uintptr_t) proc_selfpid();
request->fArg2 = (void *) NULL;
submitPMRequest( request );
return kIOReturnSuccess;
}
#ifndef __LP64__
IOReturn
IOService::serializedAllowPowerChange2( unsigned long refcon )
{
// [deprecated] public
return kIOReturnUnsupported;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] cancelPowerChange
//
// Our power state is about to lower, and we have notified applications
// and kernel clients, and one of them has vetoed the change. If this is the last
// client to respond, we abandon the power change.
//*********************************************************************************
IOReturn
IOService::cancelPowerChange( unsigned long refcon )
{
IOPMRequest * request;
char name[128];
pid_t pid = proc_selfpid();
if (!initialized) {
// we're unloading
return kIOReturnSuccess;
}
name[0] = '\0';
proc_name(pid, name, sizeof(name));
PM_ERROR("PM notification cancel (pid %d, %s)\n", pid, name);
request = acquirePMRequest( this, kIOPMRequestTypeCancelPowerChange );
if (!request) {
return kIOReturnNoMemory;
}
request->fArg0 = (void *) refcon;
request->fArg1 = (void *)(uintptr_t) proc_selfpid();
request->fArg2 = (void *) OSString::withCString(name);
submitPMRequest( request );
return kIOReturnSuccess;
}
//*********************************************************************************
// cancelIdlePowerDown
//
// Internal method to trigger an idle cancel or revert
//*********************************************************************************
void
IOService::cancelIdlePowerDown( IOService * service )
{
IOPMRequest * request;
request = acquirePMRequest(service, kIOPMRequestTypeIdleCancel);
if (request) {
submitPMRequest(request);
}
}
#ifndef __LP64__
IOReturn
IOService::serializedCancelPowerChange2( unsigned long refcon )
{
// [deprecated] public
return kIOReturnUnsupported;
}
//*********************************************************************************
// PM_Clamp_Timer_Expired
//
// called when clamp timer expires...set power state to 0.
//*********************************************************************************
void
IOService::PM_Clamp_Timer_Expired( void )
{
}
//*********************************************************************************
// clampPowerOn
//
// Set to highest available power state for a minimum of duration milliseconds
//*********************************************************************************
void
IOService::clampPowerOn( unsigned long duration )
{
}
#endif /* !__LP64__ */
//*********************************************************************************
// configurePowerStateReport
//
// Configures the IOStateReport for kPMPowerStateChannel
//*********************************************************************************
IOReturn
IOService::configurePowerStatesReport( IOReportConfigureAction action, void *result )
{
IOReturn rc = kIOReturnSuccess;
size_t reportSize;
unsigned long i;
uint64_t ts;
if (!pwrMgt) {
return kIOReturnUnsupported;
}
if (!fNumberOfPowerStates) {
return kIOReturnSuccess; // For drivers which are in power plane, but haven't called registerPowerDriver()
}
if (fNumberOfPowerStates > INT16_MAX) {
return kIOReturnOverrun;
}
PM_LOCK();
switch (action) {
case kIOReportEnable:
if (fReportBuf) {
fReportClientCnt++;
break;
}
reportSize = STATEREPORT_BUFSIZE(fNumberOfPowerStates);
fReportBuf = IOMalloc(reportSize);
if (!fReportBuf) {
rc = kIOReturnNoMemory;
break;
}
memset(fReportBuf, 0, reportSize);
STATEREPORT_INIT((uint16_t) fNumberOfPowerStates, fReportBuf, reportSize,
getRegistryEntryID(), kPMPowerStatesChID, kIOReportCategoryPower);
for (i = 0; i < fNumberOfPowerStates; i++) {
unsigned bits = 0;
if (fPowerStates[i].capabilityFlags & kIOPMPowerOn) {
bits |= kPMReportPowerOn;
}
if (fPowerStates[i].capabilityFlags & kIOPMDeviceUsable) {
bits |= kPMReportDeviceUsable;
}
if (fPowerStates[i].capabilityFlags & kIOPMLowPower) {
bits |= kPMReportLowPower;
}
STATEREPORT_SETSTATEID(fReportBuf, i, ((bits & 0xff) << 8) |
((StateOrder(fMaxPowerState) & 0xf) << 4) | (StateOrder(i) & 0xf));
}
ts = mach_absolute_time();
STATEREPORT_SETSTATE(fReportBuf, (uint16_t) fCurrentPowerState, ts);
break;
case kIOReportDisable:
if (fReportClientCnt == 0) {
rc = kIOReturnBadArgument;
break;
}
if (fReportClientCnt == 1) {
IOFree(fReportBuf, STATEREPORT_BUFSIZE(fNumberOfPowerStates));
fReportBuf = NULL;
}
fReportClientCnt--;
break;
case kIOReportGetDimensions:
if (fReportBuf) {
STATEREPORT_UPDATERES(fReportBuf, kIOReportGetDimensions, result);
}
break;
}
PM_UNLOCK();
return rc;
}
//*********************************************************************************
// updatePowerStateReport
//
// Updates the IOStateReport for kPMPowerStateChannel
//*********************************************************************************
IOReturn
IOService::updatePowerStatesReport( IOReportConfigureAction action, void *result, void *destination )
{
uint32_t size2cpy;
void *data2cpy;
uint64_t ts;
IOReturn rc = kIOReturnSuccess;
IOBufferMemoryDescriptor *dest = OSDynamicCast(IOBufferMemoryDescriptor, (OSObject *)destination);
if (!pwrMgt) {
return kIOReturnUnsupported;
}
if (!fNumberOfPowerStates) {
return kIOReturnSuccess;
}
if (!result || !dest) {
return kIOReturnBadArgument;
}
PM_LOCK();
switch (action) {
case kIOReportCopyChannelData:
if (!fReportBuf) {
rc = kIOReturnNotOpen;
break;
}
ts = mach_absolute_time();
STATEREPORT_UPDATEPREP(fReportBuf, ts, data2cpy, size2cpy);
if (size2cpy > (dest->getCapacity() - dest->getLength())) {
rc = kIOReturnOverrun;
break;
}
STATEREPORT_UPDATERES(fReportBuf, kIOReportCopyChannelData, result);
dest->appendBytes(data2cpy, size2cpy);
break;
default:
break;
}
PM_UNLOCK();
return rc;
}
//*********************************************************************************
// configureSimplePowerReport
//
// Configures the IOSimpleReport for given channel id
//*********************************************************************************
IOReturn
IOService::configureSimplePowerReport(IOReportConfigureAction action, void *result )
{
IOReturn rc = kIOReturnSuccess;
if (!pwrMgt) {
return kIOReturnUnsupported;
}
if (!fNumberOfPowerStates) {
return rc;
}
switch (action) {
case kIOReportEnable:
case kIOReportDisable:
break;
case kIOReportGetDimensions:
SIMPLEREPORT_UPDATERES(kIOReportGetDimensions, result);
break;
}
return rc;
}
//*********************************************************************************
// updateSimplePowerReport
//
// Updates the IOSimpleReport for the given chanel id
//*********************************************************************************
IOReturn
IOService::updateSimplePowerReport( IOReportConfigureAction action, void *result, void *destination )
{
uint32_t size2cpy;
void *data2cpy;
uint64_t buf[SIMPLEREPORT_BUFSIZE / sizeof(uint64_t) + 1]; // Force a 8-byte alignment
IOBufferMemoryDescriptor *dest = OSDynamicCast(IOBufferMemoryDescriptor, (OSObject *)destination);
IOReturn rc = kIOReturnSuccess;
unsigned bits = 0;
if (!pwrMgt) {
return kIOReturnUnsupported;
}
if (!result || !dest) {
return kIOReturnBadArgument;
}
if (!fNumberOfPowerStates) {
return rc;
}
PM_LOCK();
switch (action) {
case kIOReportCopyChannelData:
SIMPLEREPORT_INIT(buf, sizeof(buf), getRegistryEntryID(), kPMCurrStateChID, kIOReportCategoryPower);
if (fPowerStates[fCurrentPowerState].capabilityFlags & kIOPMPowerOn) {
bits |= kPMReportPowerOn;
}
if (fPowerStates[fCurrentPowerState].capabilityFlags & kIOPMDeviceUsable) {
bits |= kPMReportDeviceUsable;
}
if (fPowerStates[fCurrentPowerState].capabilityFlags & kIOPMLowPower) {
bits |= kPMReportLowPower;
}
SIMPLEREPORT_SETVALUE(buf, ((bits & 0xff) << 8) | ((StateOrder(fMaxPowerState) & 0xf) << 4) |
(StateOrder(fCurrentPowerState) & 0xf));
SIMPLEREPORT_UPDATEPREP(buf, data2cpy, size2cpy);
if (size2cpy > (dest->getCapacity() - dest->getLength())) {
rc = kIOReturnOverrun;
break;
}
SIMPLEREPORT_UPDATERES(kIOReportCopyChannelData, result);
dest->appendBytes(data2cpy, size2cpy);
break;
default:
break;
}
PM_UNLOCK();
return rc;
}
// MARK: -
// MARK: Driver Overrides
//*********************************************************************************
// [public] setPowerState
//
// Does nothing here. This should be implemented in a subclass driver.
//*********************************************************************************
IOReturn
IOService::setPowerState(
unsigned long powerStateOrdinal, IOService * whatDevice )
{
return IOPMNoErr;
}
//*********************************************************************************
// [public] maxCapabilityForDomainState
//
// Finds the highest power state in the array whose input power requirement
// is equal to the input parameter. Where a more intelligent decision is
// possible, override this in the subclassed driver.
//*********************************************************************************
IOPMPowerStateIndex
IOService::getPowerStateForDomainFlags( IOPMPowerFlags flags )
{
IOPMPowerStateIndex stateIndex;
if (!fNumberOfPowerStates) {
return kPowerStateZero;
}
for (long order = fNumberOfPowerStates - 1; order >= 0; order--) {
stateIndex = fPowerStates[order].stateOrderToIndex;
if ((flags & fPowerStates[stateIndex].inputPowerFlags) ==
fPowerStates[stateIndex].inputPowerFlags) {
return stateIndex;
}
}
return kPowerStateZero;
}
unsigned long
IOService::maxCapabilityForDomainState( IOPMPowerFlags domainState )
{
return getPowerStateForDomainFlags(domainState);
}
//*********************************************************************************
// [public] initialPowerStateForDomainState
//
// Called to query the power state for the initial power transition.
//*********************************************************************************
unsigned long
IOService::initialPowerStateForDomainState( IOPMPowerFlags domainState )
{
if (fResetPowerStateOnWake && (domainState & kIOPMRootDomainState)) {
// Return lowest power state for any root power domain changes
return kPowerStateZero;
}
return getPowerStateForDomainFlags(domainState);
}
//*********************************************************************************
// [public] powerStateForDomainState
//
// This method is not called from PM.
//*********************************************************************************
unsigned long
IOService::powerStateForDomainState( IOPMPowerFlags domainState )
{
return getPowerStateForDomainFlags(domainState);
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] didYouWakeSystem
//
// Does nothing here. This should be implemented in a subclass driver.
//*********************************************************************************
bool
IOService::didYouWakeSystem( void )
{
return false;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] powerStateWillChangeTo
//
// Does nothing here. This should be implemented in a subclass driver.
//*********************************************************************************
IOReturn
IOService::powerStateWillChangeTo( IOPMPowerFlags, unsigned long, IOService * )
{
return kIOPMAckImplied;
}
//*********************************************************************************
// [public] powerStateDidChangeTo
//
// Does nothing here. This should be implemented in a subclass driver.
//*********************************************************************************
IOReturn
IOService::powerStateDidChangeTo( IOPMPowerFlags, unsigned long, IOService * )
{
return kIOPMAckImplied;
}
//*********************************************************************************
// [protected] powerChangeDone
//
// Called from PM work loop thread.
// Does nothing here. This should be implemented in a subclass policy-maker.
//*********************************************************************************
void
IOService::powerChangeDone( unsigned long )
{
}
#ifndef __LP64__
//*********************************************************************************
// [deprecated] newTemperature
//
// Does nothing here. This should be implemented in a subclass driver.
//*********************************************************************************
IOReturn
IOService::newTemperature( long currentTemp, IOService * whichZone )
{
return IOPMNoErr;
}
#endif /* !__LP64__ */
//*********************************************************************************
// [public] systemWillShutdown
//
// System shutdown and restart notification.
//*********************************************************************************
void
IOService::systemWillShutdown( IOOptionBits specifier )
{
IOPMrootDomain * rootDomain = IOService::getPMRootDomain();
if (rootDomain) {
rootDomain->acknowledgeSystemWillShutdown( this );
}
}
// MARK: -
// MARK: PM State Machine
//*********************************************************************************
// [private static] acquirePMRequest
//*********************************************************************************
IOPMRequest *
IOService::acquirePMRequest( IOService * target, IOOptionBits requestType,
IOPMRequest * active )
{
IOPMRequest * request;
assert(target);
request = IOPMRequest::create();
if (request) {
request->init( target, requestType );
if (active) {
IOPMRequest * root = active->getRootRequest();
if (root) {
request->attachRootRequest(root);
}
}
} else {
PM_ERROR("%s: No memory for PM request type 0x%x\n",
target->getName(), (uint32_t) requestType);
}
return request;
}
//*********************************************************************************
// [private static] releasePMRequest
//*********************************************************************************
void
IOService::releasePMRequest( IOPMRequest * request )
{
if (request) {
request->reset();
request->release();
}
}
//*********************************************************************************
// [private static] submitPMRequest
//*********************************************************************************
void
IOService::submitPMRequest( IOPMRequest * request )
{
assert( request );
assert( gIOPMReplyQueue );
assert( gIOPMRequestQueue );
PM_LOG1("[+ %02lx] %p [%p %s] %p %p %p\n",
(long)request->getType(), OBFUSCATE(request),
OBFUSCATE(request->getTarget()), request->getTarget()->getName(),
OBFUSCATE(request->fArg0),
OBFUSCATE(request->fArg1), OBFUSCATE(request->fArg2));
if (request->isReplyType()) {
gIOPMReplyQueue->queuePMRequest( request );
} else {
gIOPMRequestQueue->queuePMRequest( request );
}
}
void
IOService::submitPMRequests( IOPMRequest ** requests, IOItemCount count )
{
assert( requests );
assert( count > 0 );
assert( gIOPMRequestQueue );
for (IOItemCount i = 0; i < count; i++) {
IOPMRequest * req = requests[i];
PM_LOG1("[+ %02lx] %p [%p %s] %p %p %p\n",
(long)req->getType(), OBFUSCATE(req),
OBFUSCATE(req->getTarget()), req->getTarget()->getName(),
OBFUSCATE(req->fArg0),
OBFUSCATE(req->fArg1), OBFUSCATE(req->fArg2));
}
gIOPMRequestQueue->queuePMRequestChain( requests, count );
}
//*********************************************************************************
// [private] actionPMRequestQueue
//
// IOPMRequestQueue::checkForWork() passing a new request to the request target.
//*********************************************************************************
bool
IOService::actionPMRequestQueue(
IOPMRequest * request,
IOPMRequestQueue * queue )
{
bool more;
if (initialized) {
// Work queue will immediately execute the request if the per-service
// request queue is empty. Note pwrMgt is the target's IOServicePM.
more = gIOPMWorkQueue->queuePMRequest(request, pwrMgt);
} else {
// Calling PM without PMinit() is not allowed, fail the request.
// Need to signal more when completing attached requests.
PM_LOG("%s: PM not initialized\n", getName());
PM_LOG1("[- %02x] %p [%p %s] !initialized\n",
request->getType(), OBFUSCATE(request),
OBFUSCATE(this), getName());
more = gIOPMCompletionQueue->queuePMRequest(request);
if (more) {
gIOPMWorkQueue->incrementProducerCount();
}
}
return more;
}
//*********************************************************************************
// [private] actionPMCompletionQueue
//
// IOPMCompletionQueue::checkForWork() passing a completed request to the
// request target.
//*********************************************************************************
bool
IOService::actionPMCompletionQueue(
IOPMRequest * request,
IOPMCompletionQueue * queue )
{
bool more = (request->getNextRequest() != NULL);
IOPMRequest * root = request->getRootRequest();
if (root && (root != request)) {
more = true;
}
if (more) {
gIOPMWorkQueue->incrementProducerCount();
}
releasePMRequest( request );
return more;
}
//*********************************************************************************
// [private] actionPMWorkQueueRetire
//
// IOPMWorkQueue::checkForWork() passing a retired request to the request target.
//*********************************************************************************
bool
IOService::actionPMWorkQueueRetire( IOPMRequest * request, IOPMWorkQueue * queue )
{
assert(request && queue);
PM_LOG1("[- %02x] %p [%p %s] state %d, busy %d\n",
request->getType(), OBFUSCATE(request),
OBFUSCATE(this), getName(),
fMachineState, gIOPMBusyRequestCount);
// Catch requests created by idleTimerExpired()
if (request->getType() == kIOPMRequestTypeActivityTickle) {
uint32_t tickleFlags = (uint32_t)(uintptr_t) request->fArg1;
if ((tickleFlags & kTickleTypePowerDrop) && fIdleTimerPeriod) {
restartIdleTimer();
} else if (tickleFlags == (kTickleTypeActivity | kTickleTypePowerRise)) {
// Invalidate any idle power drop that got queued while
// processing this request.
fIdleTimerGeneration++;
}
}
// When the completed request is linked, tell work queue there is
// more work pending.
return gIOPMCompletionQueue->queuePMRequest( request );
}
//*********************************************************************************
// [private] isPMBlocked
//
// Check if machine state transition is blocked.
//*********************************************************************************
bool
IOService::isPMBlocked( IOPMRequest * request, int count )
{
int reason = 0;
do {
if (kIOPM_Finished == fMachineState) {
break;
}
if (kIOPM_DriverThreadCallDone == fMachineState) {
// 5 = kDriverCallInformPreChange
// 6 = kDriverCallInformPostChange
// 7 = kDriverCallSetPowerState
// 8 = kRootDomainInformPreChange
if (fDriverCallBusy) {
reason = 5 + fDriverCallReason;
}
break;
}
// Waiting on driver's setPowerState() timeout.
if (fDriverTimer) {
reason = 1; break;
}
// Child or interested driver acks pending.
if (fHeadNotePendingAcks) {
reason = 2; break;
}
// Waiting on apps or priority power interest clients.
if (fResponseArray) {
reason = 3; break;
}
#if USE_SETTLE_TIMER
// Waiting on settle timer expiration.
if (fSettleTimeUS) {
reason = 4; break;
}
#endif
} while (false);
fWaitReason = reason;
if (reason) {
if (count) {
PM_LOG1("[B %02x] %p [%p %s] state %d, reason %d\n",
request->getType(), OBFUSCATE(request),
OBFUSCATE(this), getName(),
fMachineState, reason);
}
return true;
}
return false;
}
//*********************************************************************************
// [private] actionPMWorkQueueInvoke
//
// IOPMWorkQueue::checkForWork() passing a request to the
// request target for execution.
//*********************************************************************************
bool
IOService::actionPMWorkQueueInvoke( IOPMRequest * request, IOPMWorkQueue * queue )
{
bool done = false;
int loop = 0;
assert(request && queue);
while (isPMBlocked(request, loop++) == false) {
PM_LOG1("[W %02x] %p [%p %s] state %d\n",
request->getType(), OBFUSCATE(request),
OBFUSCATE(this), getName(), fMachineState);
gIOPMRequest = request;
gIOPMWorkInvokeCount++;
// Every PM machine states must be handled in one of the cases below.
switch (fMachineState) {
case kIOPM_Finished:
start_watchdog_timer();
executePMRequest( request );
break;
case kIOPM_OurChangeTellClientsPowerDown:
// Root domain might self cancel due to assertions.
if (IS_ROOT_DOMAIN) {
bool cancel = (bool) fDoNotPowerDown;
getPMRootDomain()->askChangeDownDone(
&fHeadNoteChangeFlags, &cancel);
fDoNotPowerDown = cancel;
}
// askChangeDown() done, was it vetoed?
if (!fDoNotPowerDown) {
// no, we can continue
OurChangeTellClientsPowerDown();
} else {
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_ERROR("%s: idle cancel, state %u\n", fName, fMachineState);
if (IS_ROOT_DOMAIN) {
// RootDomain already sent "WillSleep" to its clients
tellChangeUp(fCurrentPowerState);
} else {
tellNoChangeDown(fHeadNotePowerState);
}
// mark the change note un-actioned
fHeadNoteChangeFlags |= kIOPMNotDone;
// and we're done
OurChangeFinish();
}
break;
case kIOPM_OurChangeTellUserPMPolicyPowerDown:
// PMRD: tellChangeDown/kNotifyApps done, was it cancelled?
if (fDoNotPowerDown) {
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_ERROR("%s: idle cancel, state %u\n", fName, fMachineState);
if (IS_ROOT_DOMAIN) {
// RootDomain already sent "WillSleep" to its clients
tellChangeUp(fCurrentPowerState);
} else {
tellNoChangeDown(fHeadNotePowerState);
}
// mark the change note un-actioned
fHeadNoteChangeFlags |= kIOPMNotDone;
// and we're done
OurChangeFinish();
} else {
OurChangeTellUserPMPolicyPowerDown();
}
break;
case kIOPM_OurChangeTellPriorityClientsPowerDown:
// PMRD: LastCallBeforeSleep notify done
// Non-PMRD: tellChangeDown/kNotifyApps done
if (fDoNotPowerDown) {
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_ERROR("%s: idle revert, state %u\n", fName, fMachineState);
// no, tell clients we're back in the old state
tellChangeUp(fCurrentPowerState);
// mark the change note un-actioned
fHeadNoteChangeFlags |= kIOPMNotDone;
// and we're done
OurChangeFinish();
} else {
// yes, we can continue
OurChangeTellPriorityClientsPowerDown();
}
break;
case kIOPM_OurChangeNotifyInterestedDriversWillChange:
OurChangeNotifyInterestedDriversWillChange();
break;
case kIOPM_OurChangeSetPowerState:
OurChangeSetPowerState();
break;
case kIOPM_OurChangeWaitForPowerSettle:
OurChangeWaitForPowerSettle();
break;
case kIOPM_OurChangeNotifyInterestedDriversDidChange:
OurChangeNotifyInterestedDriversDidChange();
break;
case kIOPM_OurChangeTellCapabilityDidChange:
OurChangeTellCapabilityDidChange();
break;
case kIOPM_OurChangeFinish:
OurChangeFinish();
break;
case kIOPM_ParentChangeTellPriorityClientsPowerDown:
ParentChangeTellPriorityClientsPowerDown();
break;
case kIOPM_ParentChangeNotifyInterestedDriversWillChange:
ParentChangeNotifyInterestedDriversWillChange();
break;
case kIOPM_ParentChangeSetPowerState:
ParentChangeSetPowerState();
break;
case kIOPM_ParentChangeWaitForPowerSettle:
ParentChangeWaitForPowerSettle();
break;
case kIOPM_ParentChangeNotifyInterestedDriversDidChange:
ParentChangeNotifyInterestedDriversDidChange();
break;
case kIOPM_ParentChangeTellCapabilityDidChange:
ParentChangeTellCapabilityDidChange();
break;
case kIOPM_ParentChangeAcknowledgePowerChange:
ParentChangeAcknowledgePowerChange();
break;
case kIOPM_DriverThreadCallDone:
switch (fDriverCallReason) {
case kDriverCallInformPreChange:
case kDriverCallInformPostChange:
notifyInterestedDriversDone();
break;
case kDriverCallSetPowerState:
notifyControllingDriverDone();
break;
case kRootDomainInformPreChange:
notifyRootDomainDone();
break;
default:
panic("%s: bad call reason %x",
getName(), fDriverCallReason);
}
break;
case kIOPM_NotifyChildrenOrdered:
notifyChildrenOrdered();
break;
case kIOPM_NotifyChildrenDelayed:
notifyChildrenDelayed();
break;
case kIOPM_NotifyChildrenStart:
// pop notifyAll() state saved by notifyInterestedDriversDone()
MS_POP();
notifyRootDomain();
break;
case kIOPM_SyncTellClientsPowerDown:
// Root domain might self cancel due to assertions.
if (IS_ROOT_DOMAIN) {
bool cancel = (bool) fDoNotPowerDown;
getPMRootDomain()->askChangeDownDone(
&fHeadNoteChangeFlags, &cancel);
fDoNotPowerDown = cancel;
}
if (!fDoNotPowerDown) {
fMachineState = kIOPM_SyncTellPriorityClientsPowerDown;
fOutOfBandParameter = kNotifyApps;
tellChangeDown(fHeadNotePowerState);
} else {
// Cancelled by IOPMrootDomain::askChangeDownDone() or
// askChangeDown/kNotifyApps
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_ERROR("%s: idle cancel, state %u\n", fName, fMachineState);
tellNoChangeDown(fHeadNotePowerState);
fHeadNoteChangeFlags |= kIOPMNotDone;
OurChangeFinish();
}
break;
case kIOPM_SyncTellPriorityClientsPowerDown:
// PMRD: tellChangeDown/kNotifyApps done, was it cancelled?
if (!fDoNotPowerDown) {
fMachineState = kIOPM_SyncNotifyWillChange;
fOutOfBandParameter = kNotifyPriority;
tellChangeDown(fHeadNotePowerState);
} else {
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_ERROR("%s: idle revert, state %u\n", fName, fMachineState);
tellChangeUp(fCurrentPowerState);
fHeadNoteChangeFlags |= kIOPMNotDone;
OurChangeFinish();
}
break;
case kIOPM_SyncNotifyWillChange:
if (kIOPMSyncNoChildNotify & fHeadNoteChangeFlags) {
fMachineState = kIOPM_SyncFinish;
continue;
}
fMachineState = kIOPM_SyncNotifyDidChange;
fDriverCallReason = kDriverCallInformPreChange;
notifyChildren();
break;
case kIOPM_SyncNotifyDidChange:
fIsPreChange = false;
if (fHeadNoteChangeFlags & kIOPMParentInitiated) {
fMachineState = kIOPM_SyncFinish;
} else {
assert(IS_ROOT_DOMAIN);
fMachineState = kIOPM_SyncTellCapabilityDidChange;
}
fDriverCallReason = kDriverCallInformPostChange;
notifyChildren();
break;
case kIOPM_SyncTellCapabilityDidChange:
tellSystemCapabilityChange( kIOPM_SyncFinish );
break;
case kIOPM_SyncFinish:
if (fHeadNoteChangeFlags & kIOPMParentInitiated) {
ParentChangeAcknowledgePowerChange();
} else {
OurChangeFinish();
}
break;
case kIOPM_TellCapabilityChangeDone:
if (fIsPreChange) {
if (fOutOfBandParameter == kNotifyCapabilityChangePriority) {
MS_POP(); // MS passed to tellSystemCapabilityChange()
continue;
}
fOutOfBandParameter = kNotifyCapabilityChangePriority;
} else {
if (fOutOfBandParameter == kNotifyCapabilityChangeApps) {
MS_POP(); // MS passed to tellSystemCapabilityChange()
continue;
}
fOutOfBandParameter = kNotifyCapabilityChangeApps;
}
tellClientsWithResponse( fOutOfBandMessage );
break;
default:
panic("PMWorkQueueInvoke: unknown machine state %x",
fMachineState);
}
gIOPMRequest = NULL;
if (fMachineState == kIOPM_Finished) {
stop_watchdog_timer();
done = true;
break;
}
}
return done;
}
//*********************************************************************************
// [private] executePMRequest
//*********************************************************************************
void
IOService::executePMRequest( IOPMRequest * request )
{
assert( kIOPM_Finished == fMachineState );
switch (request->getType()) {
case kIOPMRequestTypePMStop:
handlePMstop( request );
break;
case kIOPMRequestTypeAddPowerChild1:
addPowerChild1( request );
break;
case kIOPMRequestTypeAddPowerChild2:
addPowerChild2( request );
break;
case kIOPMRequestTypeAddPowerChild3:
addPowerChild3( request );
break;
case kIOPMRequestTypeRegisterPowerDriver:
handleRegisterPowerDriver( request );
break;
case kIOPMRequestTypeAdjustPowerState:
fAdjustPowerScheduled = false;
adjustPowerState();
break;
case kIOPMRequestTypePowerDomainWillChange:
handlePowerDomainWillChangeTo( request );
break;
case kIOPMRequestTypePowerDomainDidChange:
handlePowerDomainDidChangeTo( request );
break;
case kIOPMRequestTypeRequestPowerState:
case kIOPMRequestTypeRequestPowerStateOverride:
handleRequestPowerState( request );
break;
case kIOPMRequestTypePowerOverrideOnPriv:
case kIOPMRequestTypePowerOverrideOffPriv:
handlePowerOverrideChanged( request );
break;
case kIOPMRequestTypeActivityTickle:
handleActivityTickle( request );
break;
case kIOPMRequestTypeSynchronizePowerTree:
handleSynchronizePowerTree( request );
break;
case kIOPMRequestTypeSetIdleTimerPeriod:
{
fIdleTimerPeriod = (typeof(fIdleTimerPeriod))(uintptr_t) request->fArg0;
fNextIdleTimerPeriod = fIdleTimerPeriod;
if ((false == fLockedFlags.PMStop) && (fIdleTimerPeriod > 0)) {
restartIdleTimer();
}
}
break;
case kIOPMRequestTypeIgnoreIdleTimer:
fIdleTimerIgnored = request->fArg0 ? 1 : 0;
break;
case kIOPMRequestTypeQuiescePowerTree:
gIOPMWorkQueue->finishQuiesceRequest(request);
break;
default:
panic("executePMRequest: unknown request type %x", request->getType());
}
}
//*********************************************************************************
// [private] actionPMReplyQueue
//
// IOPMRequestQueue::checkForWork() passing a reply-type request to the
// request target.
//*********************************************************************************
bool
IOService::actionPMReplyQueue( IOPMRequest * request, IOPMRequestQueue * queue )
{
bool more = false;
assert( request && queue );
assert( request->isReplyType());
PM_LOG1("[A %02x] %p [%p %s] state %d\n",
request->getType(), OBFUSCATE(request),
OBFUSCATE(this), getName(), fMachineState);
switch (request->getType()) {
case kIOPMRequestTypeAllowPowerChange:
case kIOPMRequestTypeCancelPowerChange:
// Check if we are expecting this response.
if (responseValid((uint32_t)(uintptr_t) request->fArg0,
(int)(uintptr_t) request->fArg1)) {
if (kIOPMRequestTypeCancelPowerChange == request->getType()) {
// Clients are not allowed to cancel when kIOPMSkipAskPowerDown
// flag is set. Only root domain will set this flag.
// However, there is one exception to this rule. User-space PM
// policy may choose to cancel sleep even after all clients have
// been notified that we will lower power.
if ((fMachineState == kIOPM_OurChangeTellUserPMPolicyPowerDown)
|| (fMachineState == kIOPM_OurChangeTellPriorityClientsPowerDown)
|| ((fHeadNoteChangeFlags & kIOPMSkipAskPowerDown) == 0)) {
fDoNotPowerDown = true;
OSString * name = (OSString *) request->fArg2;
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsResponseCancel,
name ? name->getCStringNoCopy() : "", 0,
0, (int)(uintptr_t) request->fArg1, NULL);
}
}
if (checkForDone()) {
stop_ack_timer();
cleanClientResponses(false);
more = true;
}
}
// OSString containing app name in Arg2 must be released.
if (request->getType() == kIOPMRequestTypeCancelPowerChange) {
OSObject * obj = (OSObject *) request->fArg2;
if (obj) {
obj->release();
}
}
break;
case kIOPMRequestTypeAckPowerChange:
more = handleAcknowledgePowerChange( request );
break;
case kIOPMRequestTypeAckSetPowerState:
if (fDriverTimer == -1) {
// driver acked while setPowerState() call is in-flight.
// take this ack, return value from setPowerState() is irrelevant.
OUR_PMLog(kPMLogDriverAcknowledgeSet,
(uintptr_t) this, fDriverTimer);
fDriverTimer = 0;
} else if (fDriverTimer > 0) {
// expected ack, stop the timer
stop_ack_timer();
getPMRootDomain()->reset_watchdog_timer(this, 0);
uint64_t nsec = computeTimeDeltaNS(&fDriverCallStartTime);
if (nsec > gIOPMSetPowerStateLogNS) {
getPMRootDomain()->pmStatsRecordApplicationResponse(
gIOPMStatsDriverPSChangeSlow,
fName, kDriverCallSetPowerState, NS_TO_MS(nsec), getRegistryEntryID(),
NULL, fHeadNotePowerState, true);
}
OUR_PMLog(kPMLogDriverAcknowledgeSet, (uintptr_t) this, fDriverTimer);
fDriverTimer = 0;
more = true;
} else {
// unexpected ack
OUR_PMLog(kPMLogAcknowledgeErr4, (uintptr_t) this, 0);
}
break;
case kIOPMRequestTypeInterestChanged:
handleInterestChanged( request );
more = true;
break;
case kIOPMRequestTypeIdleCancel:
if ((fMachineState == kIOPM_OurChangeTellClientsPowerDown)
|| (fMachineState == kIOPM_OurChangeTellUserPMPolicyPowerDown)
|| (fMachineState == kIOPM_OurChangeTellPriorityClientsPowerDown)
|| (fMachineState == kIOPM_SyncTellClientsPowerDown)
|| (fMachineState == kIOPM_SyncTellPriorityClientsPowerDown)) {
OUR_PMLog(kPMLogIdleCancel, (uintptr_t) this, fMachineState);
PM_LOG2("%s: cancel from machine state %d\n",
getName(), fMachineState);
fDoNotPowerDown = true;
// Stop waiting for app replys.
if ((fMachineState == kIOPM_OurChangeTellPriorityClientsPowerDown) ||
(fMachineState == kIOPM_OurChangeTellUserPMPolicyPowerDown) ||
(fMachineState == kIOPM_SyncTellPriorityClientsPowerDown) ||
(fMachineState == kIOPM_SyncTellClientsPowerDown)) {
cleanClientResponses(false);
}
more = true;
}
break;
case kIOPMRequestTypeChildNotifyDelayCancel:
if (fMachineState == kIOPM_NotifyChildrenDelayed) {
PM_LOG2("%s: delay notify cancelled\n", getName());
notifyChildrenDelayed();
}
break;
default:
panic("PMReplyQueue: unknown reply type %x", request->getType());
}
more |= gIOPMCompletionQueue->queuePMRequest(request);
if (more) {
gIOPMWorkQueue->incrementProducerCount();
}
return more;
}
//*********************************************************************************
// [private] assertPMDriverCall / deassertPMDriverCall
//*********************************************************************************
bool
IOService::assertPMDriverCall(
IOPMDriverCallEntry * entry,
IOOptionBits method,
const IOPMinformee * inform,
IOOptionBits options )
{
IOService * target = NULL;
bool ok = false;
if (!initialized) {
return false;
}
PM_LOCK();
if (fLockedFlags.PMStop) {
goto fail;
}
if (((options & kIOPMDriverCallNoInactiveCheck) == 0) && isInactive()) {
goto fail;
}
if (inform) {
if (!inform->active) {
goto fail;
}
target = inform->whatObject;
if (target->isInactive()) {
goto fail;
}
}
// Record calling address for sleep failure diagnostics
switch (method) {
case kIOPMDriverCallMethodSetPowerState:
entry->callMethod = OSMemberFunctionCast(const void *, fControllingDriver, &IOService::setPowerState);
break;
case kIOPMDriverCallMethodWillChange:
entry->callMethod = OSMemberFunctionCast(const void *, target, &IOService::powerStateWillChangeTo);
break;
case kIOPMDriverCallMethodDidChange:
entry->callMethod = OSMemberFunctionCast(const void *, target, &IOService::powerStateDidChangeTo);
break;
case kIOPMDriverCallMethodUnknown:
case kIOPMDriverCallMethodSetAggressive:
default:
entry->callMethod = NULL;
break;
}
entry->thread = current_thread();
entry->target = target;
queue_enter(&fPMDriverCallQueue, entry, IOPMDriverCallEntry *, link);
ok = true;
fail:
PM_UNLOCK();
return ok;
}
void
IOService::deassertPMDriverCall( IOPMDriverCallEntry * entry )
{
bool wakeup = false;
PM_LOCK();
assert( !queue_empty(&fPMDriverCallQueue));
queue_remove(&fPMDriverCallQueue, entry, IOPMDriverCallEntry *, link);
if (fLockedFlags.PMDriverCallWait) {
wakeup = true;
}
PM_UNLOCK();
if (wakeup) {
PM_LOCK_WAKEUP(&fPMDriverCallQueue);
}
}
bool
IOService::getBlockingDriverCall(thread_t *thread, const void **callMethod)
{
const IOPMDriverCallEntry * entry = NULL;
bool blocked = false;
if (!initialized) {
return false;
}
if (current_thread() != gIOPMWatchDogThread) {
// Meant to be accessed only from watchdog thread
return false;
}
PM_LOCK();
entry = qe_queue_first(&fPMDriverCallQueue, IOPMDriverCallEntry, link);
if (entry) {
*thread = entry->thread;
*callMethod = entry->callMethod;
blocked = true;
}
PM_UNLOCK();
return blocked;
}
void
IOService::waitForPMDriverCall( IOService * target )
{
const IOPMDriverCallEntry * entry;
thread_t thread = current_thread();
AbsoluteTime deadline;
int waitResult;
bool log = true;
bool wait;
do {
wait = false;
queue_iterate(&fPMDriverCallQueue, entry, const IOPMDriverCallEntry *, link)
{
// Target of interested driver call
if (target && (target != entry->target)) {
continue;
}
if (entry->thread == thread) {
if (log) {
PM_LOG("%s: %s(%s) on PM thread\n",
fName, __FUNCTION__, target ? target->getName() : "");
OSReportWithBacktrace("%s: %s(%s) on PM thread\n",
fName, __FUNCTION__, target ? target->getName() : "");
log = false;
}
continue;
}
wait = true;
break;
}
if (wait) {
fLockedFlags.PMDriverCallWait = true;
clock_interval_to_deadline(15, kSecondScale, &deadline);
waitResult = PM_LOCK_SLEEP(&fPMDriverCallQueue, deadline);
fLockedFlags.PMDriverCallWait = false;
if (THREAD_TIMED_OUT == waitResult) {
PM_ERROR("%s: waitForPMDriverCall timeout\n", fName);
wait = false;
}
}
} while (wait);
}
//*********************************************************************************
// [private] Debug helpers
//*********************************************************************************
const char *
IOService::getIOMessageString( uint32_t msg )
{
#define MSG_ENTRY(x) {(int) x, #x}
static const IONamedValue msgNames[] = {
MSG_ENTRY( kIOMessageCanDevicePowerOff ),
MSG_ENTRY( kIOMessageDeviceWillPowerOff ),
MSG_ENTRY( kIOMessageDeviceWillNotPowerOff ),
MSG_ENTRY( kIOMessageDeviceHasPoweredOn ),
MSG_ENTRY( kIOMessageCanSystemPowerOff ),
MSG_ENTRY( kIOMessageSystemWillPowerOff ),
MSG_ENTRY( kIOMessageSystemWillNotPowerOff ),
MSG_ENTRY( kIOMessageCanSystemSleep ),
MSG_ENTRY( kIOMessageSystemWillSleep ),
MSG_ENTRY( kIOMessageSystemWillNotSleep ),
MSG_ENTRY( kIOMessageSystemHasPoweredOn ),
MSG_ENTRY( kIOMessageSystemWillRestart ),
MSG_ENTRY( kIOMessageSystemWillPowerOn ),
MSG_ENTRY( kIOMessageSystemCapabilityChange ),
MSG_ENTRY( kIOPMMessageLastCallBeforeSleep ),
MSG_ENTRY( kIOMessageSystemPagingOff ),
{ 0, NULL }
};
return IOFindNameForValue(msg, msgNames);
}
static const char *
getNotificationPhaseString( uint32_t phase )
{
#define PHASE_ENTRY(x) {(int) x, #x}
static const IONamedValue phaseNames[] = {
PHASE_ENTRY( kNotifyApps ),
PHASE_ENTRY( kNotifyPriority ),
PHASE_ENTRY( kNotifyCapabilityChangeApps ),
PHASE_ENTRY( kNotifyCapabilityChangePriority ),
{ 0, NULL }
};
return IOFindNameForValue(phase, phaseNames);
}
// MARK: -
// MARK: IOPMRequest
//*********************************************************************************
// IOPMRequest Class
//
// Requests from PM clients, and also used for inter-object messaging within PM.
//*********************************************************************************
OSDefineMetaClassAndStructors( IOPMRequest, IOCommand );
IOPMRequest *
IOPMRequest::create( void )
{
IOPMRequest * me = OSTypeAlloc(IOPMRequest);
if (me && !me->init(NULL, kIOPMRequestTypeInvalid)) {
me->release();
me = NULL;
}
return me;
}
bool
IOPMRequest::init( IOService * target, IOOptionBits type )
{
if (!IOCommand::init()) {
return false;
}
fRequestType = type;
fTarget = target;
if (fTarget) {
fTarget->retain();
}
// Root node and root domain requests does not prevent the power tree from
// becoming quiescent.
fIsQuiesceBlocker = ((fTarget != gIOPMRootNode) &&
(fTarget != IOService::getPMRootDomain()));
return true;
}
void
IOPMRequest::reset( void )
{
assert( fWorkWaitCount == 0 );
assert( fFreeWaitCount == 0 );
detachNextRequest();
detachRootRequest();
if (fCompletionAction && (fRequestType == kIOPMRequestTypeQuiescePowerTree)) {
// Call the completion on PM work loop context
fCompletionAction(fCompletionTarget, fCompletionParam);
fCompletionAction = NULL;
}
fRequestType = kIOPMRequestTypeInvalid;
if (fTarget) {
fTarget->release();
fTarget = NULL;
}
}
bool
IOPMRequest::attachNextRequest( IOPMRequest * next )
{
bool ok = false;
if (!fRequestNext) {
// Postpone the execution of the next request after
// this request.
fRequestNext = next;
fRequestNext->fWorkWaitCount++;
#if LOG_REQUEST_ATTACH
PM_LOG("Attached next: %p [0x%x] -> %p [0x%x, %u] %s\n",
OBFUSCATE(this), fRequestType, OBFUSCATE(fRequestNext),
fRequestNext->fRequestType,
(uint32_t) fRequestNext->fWorkWaitCount,
fTarget->getName());
#endif
ok = true;
}
return ok;
}
bool
IOPMRequest::detachNextRequest( void )
{
bool ok = false;
if (fRequestNext) {
assert(fRequestNext->fWorkWaitCount);
if (fRequestNext->fWorkWaitCount) {
fRequestNext->fWorkWaitCount--;
}
#if LOG_REQUEST_ATTACH
PM_LOG("Detached next: %p [0x%x] -> %p [0x%x, %u] %s\n",
OBFUSCATE(this), fRequestType, OBFUSCATE(fRequestNext),
fRequestNext->fRequestType,
(uint32_t) fRequestNext->fWorkWaitCount,
fTarget->getName());
#endif
fRequestNext = NULL;
ok = true;
}
return ok;
}
bool
IOPMRequest::attachRootRequest( IOPMRequest * root )
{
bool ok = false;
if (!fRequestRoot) {
// Delay the completion of the root request after
// this request.
fRequestRoot = root;
fRequestRoot->fFreeWaitCount++;
#if LOG_REQUEST_ATTACH
PM_LOG("Attached root: %p [0x%x] -> %p [0x%x, %u] %s\n",
OBFUSCATE(this), (uint32_t) fType, OBFUSCATE(fRequestRoot),
(uint32_t) fRequestRoot->fType,
(uint32_t) fRequestRoot->fFreeWaitCount,
fTarget->getName());
#endif
ok = true;
}
return ok;
}
bool
IOPMRequest::detachRootRequest( void )
{
bool ok = false;
if (fRequestRoot) {
assert(fRequestRoot->fFreeWaitCount);
if (fRequestRoot->fFreeWaitCount) {
fRequestRoot->fFreeWaitCount--;
}
#if LOG_REQUEST_ATTACH
PM_LOG("Detached root: %p [0x%x] -> %p [0x%x, %u] %s\n",
OBFUSCATE(this), (uint32_t) fType, OBFUSCATE(fRequestRoot),
(uint32_t) fRequestRoot->fType,
(uint32_t) fRequestRoot->fFreeWaitCount,
fTarget->getName());
#endif
fRequestRoot = NULL;
ok = true;
}
return ok;
}
// MARK: -
// MARK: IOPMRequestQueue
//*********************************************************************************
// IOPMRequestQueue Class
//
// Global queues. Queues are created once and never released.
//*********************************************************************************
OSDefineMetaClassAndStructors( IOPMRequestQueue, IOEventSource );
IOPMRequestQueue *
IOPMRequestQueue::create( IOService * inOwner, Action inAction )
{
IOPMRequestQueue * me = OSTypeAlloc(IOPMRequestQueue);
if (me && !me->init(inOwner, inAction)) {
me->release();
me = NULL;
}
return me;
}
bool
IOPMRequestQueue::init( IOService * inOwner, Action inAction )
{
if (!inAction || !IOEventSource::init(inOwner, (IOEventSourceAction)inAction)) {
return false;
}
queue_init(&fQueue);
fLock = IOLockAlloc();
return fLock != NULL;
}
void
IOPMRequestQueue::free( void )
{
if (fLock) {
IOLockFree(fLock);
fLock = NULL;
}
return IOEventSource::free();
}
void
IOPMRequestQueue::queuePMRequest( IOPMRequest * request )
{
uint64_t now = mach_continuous_time();
assert(request);
request->setTimestamp(now);
IOLockLock(fLock);
queue_enter(&fQueue, request, typeof(request), fCommandChain);
IOLockUnlock(fLock);
if (workLoop) {
signalWorkAvailable();
}
}
void
IOPMRequestQueue::queuePMRequestChain( IOPMRequest ** requests, IOItemCount count )
{
IOPMRequest * next;
uint64_t now = mach_continuous_time();
assert(requests && count);
IOLockLock(fLock);
while (count--) {
next = *requests;
next->setTimestamp(now);
requests++;
queue_enter(&fQueue, next, typeof(next), fCommandChain);
}
IOLockUnlock(fLock);
if (workLoop) {
signalWorkAvailable();
}
}
bool
IOPMRequestQueue::checkForWork( void )
{
Action dqAction = (Action) action;
IOPMRequest * request;
IOService * target;
int dequeueCount = 0;
bool more = false;
IOLockLock( fLock );
while (!queue_empty(&fQueue)) {
if (dequeueCount++ >= kMaxDequeueCount) {
// Allow other queues a chance to work
more = true;
break;
}
queue_remove_first(&fQueue, request, typeof(request), fCommandChain);
IOLockUnlock(fLock);
target = request->getTarget();
assert(target);
more |= (*dqAction)( target, request, this );
IOLockLock( fLock );
}
IOLockUnlock( fLock );
return more;
}
// MARK: -
// MARK: IOPMWorkQueue
//*********************************************************************************
// IOPMWorkQueue Class
//
// Queue of IOServicePM objects, each with a queue of IOPMRequest sharing the
// same target.
//*********************************************************************************
OSDefineMetaClassAndStructors( IOPMWorkQueue, IOEventSource );
IOPMWorkQueue *
IOPMWorkQueue::create( IOService * inOwner, Action invoke, Action retire )
{
IOPMWorkQueue * me = OSTypeAlloc(IOPMWorkQueue);
if (me && !me->init(inOwner, invoke, retire)) {
me->release();
me = NULL;
}
return me;
}
bool
IOPMWorkQueue::init( IOService * inOwner, Action invoke, Action retire )
{
if (!invoke || !retire ||
!IOEventSource::init(inOwner, (IOEventSourceAction)NULL)) {
return false;
}
queue_init(&fWorkQueue);
fInvokeAction = invoke;
fRetireAction = retire;
fConsumerCount = fProducerCount = 0;
return true;
}
bool
IOPMWorkQueue::queuePMRequest( IOPMRequest * request, IOServicePM * pwrMgt )
{
queue_head_t * requestQueue;
bool more = false;
bool empty;
assert( request );
assert( pwrMgt );
assert( onThread());
assert( queue_next(&request->fCommandChain) ==
queue_prev(&request->fCommandChain));
gIOPMBusyRequestCount++;
if (request->isQuiesceType()) {
if ((request->getTarget() == gIOPMRootNode) && !fQuiesceStartTime) {
// Attach new quiesce request to all quiesce blockers in the queue
fQuiesceStartTime = mach_absolute_time();
attachQuiesceRequest(request);
fQuiesceRequest = request;
}
} else if (fQuiesceRequest && request->isQuiesceBlocker()) {
// Attach the new quiesce blocker to the blocked quiesce request
request->attachNextRequest(fQuiesceRequest);
}
// Add new request to the tail of the per-service request queue.
// Then immediately check the request queue to minimize latency
// if the queue was empty.
requestQueue = &pwrMgt->RequestHead;
empty = queue_empty(requestQueue);
queue_enter(requestQueue, request, typeof(request), fCommandChain);
if (empty) {
more = checkRequestQueue(requestQueue, &empty);
if (!empty) {
// Request just added is blocked, add its target IOServicePM
// to the work queue.
assert( queue_next(&pwrMgt->WorkChain) ==
queue_prev(&pwrMgt->WorkChain));
queue_enter(&fWorkQueue, pwrMgt, typeof(pwrMgt), WorkChain);
fQueueLength++;
PM_LOG3("IOPMWorkQueue: [%u] added %s@%p to queue\n",
fQueueLength, pwrMgt->Name, OBFUSCATE(pwrMgt));
}
}
return more;
}
bool
IOPMWorkQueue::checkRequestQueue( queue_head_t * requestQueue, bool * empty )
{
IOPMRequest * request;
IOService * target;
bool more = false;
bool done = false;
assert(!queue_empty(requestQueue));
do {
request = (typeof(request))queue_first(requestQueue);
if (request->isWorkBlocked()) {
break; // request dispatch blocked on attached request
}
target = request->getTarget();
if (fInvokeAction) {
done = (*fInvokeAction)( target, request, this );
} else {
PM_LOG("PM request 0x%x dropped\n", request->getType());
done = true;
}
if (!done) {
break; // PM state machine blocked
}
assert(gIOPMBusyRequestCount > 0);
if (gIOPMBusyRequestCount) {
gIOPMBusyRequestCount--;
}
if (request == fQuiesceRequest) {
fQuiesceRequest = NULL;
}
queue_remove_first(requestQueue, request, typeof(request), fCommandChain);
more |= (*fRetireAction)( target, request, this );
done = queue_empty(requestQueue);
} while (!done);
*empty = done;
if (more) {
// Retired a request that may unblock a previously visited request
// that is still waiting on the work queue. Must trigger another
// queue check.
fProducerCount++;
}
return more;
}
bool
IOPMWorkQueue::checkForWork( void )
{
IOServicePM * entry;
IOServicePM * next;
bool more = false;
bool empty;
#if WORK_QUEUE_STATS
fStatCheckForWork++;
#endif
// Iterate over all IOServicePM entries in the work queue,
// and check each entry's request queue.
while (fConsumerCount != fProducerCount) {
PM_LOG3("IOPMWorkQueue: checkForWork %u %u\n",
fProducerCount, fConsumerCount);
fConsumerCount = fProducerCount;
#if WORK_QUEUE_STATS
if (queue_empty(&fWorkQueue)) {
fStatQueueEmpty++;
break;
}
fStatScanEntries++;
uint32_t cachedWorkCount = gIOPMWorkInvokeCount;
#endif
__IGNORE_WCASTALIGN(entry = (typeof(entry))queue_first(&fWorkQueue));
while (!queue_end(&fWorkQueue, (queue_entry_t) entry)) {
more |= checkRequestQueue(&entry->RequestHead, &empty);
// Get next entry, points to head if current entry is last.
__IGNORE_WCASTALIGN(next = (typeof(next))queue_next(&entry->WorkChain));
// if request queue is empty, remove IOServicePM from work queue.
if (empty) {
assert(fQueueLength);
if (fQueueLength) {
fQueueLength--;
}
PM_LOG3("IOPMWorkQueue: [%u] removed %s@%p from queue\n",
fQueueLength, entry->Name, OBFUSCATE(entry));
queue_remove(&fWorkQueue, entry, typeof(entry), WorkChain);
}
entry = next;
}
#if WORK_QUEUE_STATS
if (cachedWorkCount == gIOPMWorkInvokeCount) {
fStatNoWorkDone++;
}
#endif
}
return more;
}
void
IOPMWorkQueue::signalWorkAvailable( void )
{
fProducerCount++;
IOEventSource::signalWorkAvailable();
}
void
IOPMWorkQueue::incrementProducerCount( void )
{
fProducerCount++;
}
void
IOPMWorkQueue::attachQuiesceRequest( IOPMRequest * quiesceRequest )
{
IOServicePM * entry;
IOPMRequest * request;
if (queue_empty(&fWorkQueue)) {
return;
}
queue_iterate(&fWorkQueue, entry, typeof(entry), WorkChain)
{
queue_iterate(&entry->RequestHead, request, typeof(request), fCommandChain)
{
// Attach the quiesce request to any request in the queue that
// is not linked to a next request. These requests will block
// the quiesce request.
if (request->isQuiesceBlocker()) {
request->attachNextRequest(quiesceRequest);
}
}
}
}
void
IOPMWorkQueue::finishQuiesceRequest( IOPMRequest * quiesceRequest )
{
if (fQuiesceRequest && (quiesceRequest == fQuiesceRequest) &&
(fQuiesceStartTime != 0)) {
fInvokeAction = NULL;
fQuiesceFinishTime = mach_absolute_time();
}
}
// MARK: -
// MARK: IOPMCompletionQueue
//*********************************************************************************
// IOPMCompletionQueue Class
//*********************************************************************************
OSDefineMetaClassAndStructors( IOPMCompletionQueue, IOEventSource );
IOPMCompletionQueue *
IOPMCompletionQueue::create( IOService * inOwner, Action inAction )
{
IOPMCompletionQueue * me = OSTypeAlloc(IOPMCompletionQueue);
if (me && !me->init(inOwner, inAction)) {
me->release();
me = NULL;
}
return me;
}
bool
IOPMCompletionQueue::init( IOService * inOwner, Action inAction )
{
if (!inAction || !IOEventSource::init(inOwner, (IOEventSourceAction)inAction)) {
return false;
}
queue_init(&fQueue);
return true;
}
bool
IOPMCompletionQueue::queuePMRequest( IOPMRequest * request )
{
bool more;
assert(request);
// unblock dependent request
more = request->detachNextRequest();
queue_enter(&fQueue, request, typeof(request), fCommandChain);
return more;
}
bool
IOPMCompletionQueue::checkForWork( void )
{
Action dqAction = (Action) action;
IOPMRequest * request;
IOPMRequest * next;
IOService * target;
bool more = false;
request = (typeof(request))queue_first(&fQueue);
while (!queue_end(&fQueue, (queue_entry_t) request)) {
next = (typeof(next))queue_next(&request->fCommandChain);
if (!request->isFreeBlocked()) {
queue_remove(&fQueue, request, typeof(request), fCommandChain);
target = request->getTarget();
assert(target);
more |= (*dqAction)( target, request, this );
}
request = next;
}
return more;
}
// MARK: -
// MARK: IOServicePM
OSDefineMetaClassAndStructors(IOServicePM, OSObject)
//*********************************************************************************
// serialize
//
// Serialize IOServicePM for debugging.
//*********************************************************************************
static void
setPMProperty( OSDictionary * dict, const char * key, uint64_t value )
{
OSNumber * num = OSNumber::withNumber(value, sizeof(value) * 8);
if (num) {
dict->setObject(key, num);
num->release();
}
}
IOReturn
IOServicePM::gatedSerialize( OSSerialize * s ) const
{
OSDictionary * dict;
bool ok = false;
int powerClamp = -1;
int dictSize = 6;
if (IdleTimerPeriod) {
dictSize += 4;
}
if (PMActions.state & kPMActionsStatePowerClamped) {
dictSize += 1;
powerClamp = 0;
if (PMActions.flags &
(kPMActionsFlagIsDisplayWrangler | kPMActionsFlagIsGraphicsDriver)) {
powerClamp++;
}
}
#if WORK_QUEUE_STATS
if (gIOPMRootNode == ControllingDriver) {
dictSize += 4;
}
#endif
if (PowerClients) {
dict = OSDictionary::withDictionary(
PowerClients, PowerClients->getCount() + dictSize);
} else {
dict = OSDictionary::withCapacity(dictSize);
}
if (dict) {
setPMProperty(dict, "CurrentPowerState", CurrentPowerState);
setPMProperty(dict, "CapabilityFlags", CurrentCapabilityFlags);
if (NumberOfPowerStates) {
setPMProperty(dict, "MaxPowerState", NumberOfPowerStates - 1);
}
if (DesiredPowerState != CurrentPowerState) {
setPMProperty(dict, "DesiredPowerState", DesiredPowerState);
}
if (kIOPM_Finished != MachineState) {
setPMProperty(dict, "MachineState", MachineState);
}
if (DeviceOverrideEnabled) {
dict->setObject("PowerOverrideOn", kOSBooleanTrue);
}
if (powerClamp >= 0) {
setPMProperty(dict, "PowerClamp", powerClamp);
}
if (IdleTimerPeriod) {
AbsoluteTime now;
AbsoluteTime delta;
uint64_t nsecs;
clock_get_uptime(&now);
// The idle timer period in milliseconds
setPMProperty(dict, "IdleTimerPeriod", NextIdleTimerPeriod * 1000ULL);
// Number of tickles since the last idle timer expiration
setPMProperty(dict, "ActivityTickles", ActivityTickleCount);
if (AbsoluteTime_to_scalar(&DeviceActiveTimestamp)) {
// Milliseconds since the last activity tickle
delta = now;
SUB_ABSOLUTETIME(&delta, &DeviceActiveTimestamp);
absolutetime_to_nanoseconds(delta, &nsecs);
setPMProperty(dict, "TimeSinceLastTickle", NS_TO_MS(nsecs));
}
if (!IdleTimerStopped && AbsoluteTime_to_scalar(&IdleTimerStartTime)) {
// Idle timer elapsed time in milliseconds
delta = now;
SUB_ABSOLUTETIME(&delta, &IdleTimerStartTime);
absolutetime_to_nanoseconds(delta, &nsecs);
setPMProperty(dict, "IdleTimerElapsedTime", NS_TO_MS(nsecs));
}
}
#if WORK_QUEUE_STATS
if (gIOPMRootNode == Owner) {
setPMProperty(dict, "WQ-CheckForWork",
gIOPMWorkQueue->fStatCheckForWork);
setPMProperty(dict, "WQ-ScanEntries",
gIOPMWorkQueue->fStatScanEntries);
setPMProperty(dict, "WQ-QueueEmpty",
gIOPMWorkQueue->fStatQueueEmpty);
setPMProperty(dict, "WQ-NoWorkDone",
gIOPMWorkQueue->fStatNoWorkDone);
}
#endif
if (HasAdvisoryDesire && !gIOPMAdvisoryTickleEnabled) {
// Don't report advisory tickle when it has no influence
dict->removeObject(gIOPMPowerClientAdvisoryTickle);
}
ok = dict->serialize(s);
dict->release();
}
return ok ? kIOReturnSuccess : kIOReturnNoMemory;
}
bool
IOServicePM::serialize( OSSerialize * s ) const
{
IOReturn ret = kIOReturnNotReady;
if (gIOPMWatchDogThread == current_thread()) {
// Calling without lock as this data is collected for debug purpose, before reboot.
// The workloop is probably already hung in state machine.
ret = gatedSerialize(s);
} else if (gIOPMWorkLoop) {
ret = gIOPMWorkLoop->runAction(
OSMemberFunctionCast(IOWorkLoop::Action, this, &IOServicePM::gatedSerialize),
(OSObject *) this, (void *) s);
}
return kIOReturnSuccess == ret;
}
void
IOServicePM::pmPrint(
uint32_t event,
uintptr_t param1,
uintptr_t param2 ) const
{
gPlatform->PMLog(Name, event, param1, param2);
}
void
IOServicePM::pmTrace(
uint32_t event,
uint32_t eventFunc,
uintptr_t param1,
uintptr_t param2 ) const
{
uintptr_t nameAsArg = 0;
assert(event < KDBG_CODE_MAX);
assert((eventFunc & ~KDBG_FUNC_MASK) == 0);
// Copy the first characters of the name into an uintptr_t.
// NULL termination is not required.
strncpy((char*)&nameAsArg, Name, sizeof(nameAsArg));
#if defined(XNU_TARGET_OS_OSX)
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, IODBG_POWER(event) | eventFunc, nameAsArg,
(uintptr_t)Owner->getRegistryEntryID(), (uintptr_t)(OBFUSCATE(param1)),
(uintptr_t)(OBFUSCATE(param2)), 0);
#else
IOTimeStampConstant(IODBG_POWER(event) | eventFunc, nameAsArg, (uintptr_t)Owner->getRegistryEntryID(), (uintptr_t)(OBFUSCATE(param1)), (uintptr_t)(OBFUSCATE(param2)));
#endif
}