darling-xnu/osfmk/i386/hibernate_i386.c
2023-05-16 21:41:14 -07:00

306 lines
8.3 KiB
C

/*
* Copyright (c) 2004-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*!
* i386/x86_64-specific functions required to support hibernation entry, and also to
* support hibernation exit after wired pages have already been restored.
*/
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/thread.h>
#include <kern/processor.h>
#include <kern/kalloc.h>
#include <mach/machine.h>
#include <mach/processor_info.h>
#include <mach/mach_types.h>
#include <i386/pmap.h>
#include <kern/cpu_data.h>
#include <IOKit/IOPlatformExpert.h>
#include <pexpert/i386/efi.h>
#include <IOKit/IOHibernatePrivate.h>
#include <machine/pal_hibernate.h>
#include <vm/vm_page.h>
#include <i386/i386_lowmem.h>
#include <san/kasan.h>
extern ppnum_t max_ppnum;
#define MAX_BANKS 32
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
hibernate_page_list_t *
hibernate_page_list_allocate(boolean_t log)
{
ppnum_t base, num;
vm_size_t size;
uint32_t bank, num_banks;
uint32_t pages, page_count;
hibernate_page_list_t * list;
hibernate_bitmap_t * bitmap;
EfiMemoryRange * mptr;
uint32_t mcount, msize, i;
hibernate_bitmap_t dram_ranges[MAX_BANKS];
boot_args * args = (boot_args *) PE_state.bootArgs;
uint32_t non_os_pagecount;
ppnum_t pnmax = max_ppnum;
mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap);
if (args->MemoryMapDescriptorSize == 0) {
panic("Invalid memory map descriptor size");
}
msize = args->MemoryMapDescriptorSize;
mcount = args->MemoryMapSize / msize;
#if KASAN
/* adjust max page number to include stolen memory */
if (atop(shadow_ptop) > pnmax) {
pnmax = (ppnum_t)atop(shadow_ptop);
}
#endif
num_banks = 0;
non_os_pagecount = 0;
for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
num = (ppnum_t) mptr->NumberOfPages;
#if KASAN
if (i == shadow_stolen_idx) {
/*
* Add all stolen pages to the bitmap. Later we will prune the unused
* pages.
*/
num += shadow_pages_total;
}
#endif
if (base > pnmax) {
continue;
}
if ((base + num - 1) > pnmax) {
num = pnmax - base + 1;
}
if (!num) {
continue;
}
switch (mptr->Type) {
// any kind of dram
case kEfiACPIMemoryNVS:
case kEfiPalCode:
non_os_pagecount += num;
OS_FALLTHROUGH;
// OS used dram
case kEfiLoaderCode:
case kEfiLoaderData:
case kEfiBootServicesCode:
case kEfiBootServicesData:
case kEfiConventionalMemory:
for (bank = 0; bank < num_banks; bank++) {
if (dram_ranges[bank].first_page <= base) {
continue;
}
if ((base + num) == dram_ranges[bank].first_page) {
dram_ranges[bank].first_page = base;
num = 0;
}
break;
}
if (!num) {
break;
}
if (bank && (base == (1 + dram_ranges[bank - 1].last_page))) {
bank--;
} else {
num_banks++;
if (num_banks >= MAX_BANKS) {
break;
}
bcopy(&dram_ranges[bank],
&dram_ranges[bank + 1],
(num_banks - bank - 1) * sizeof(hibernate_bitmap_t));
dram_ranges[bank].first_page = base;
}
dram_ranges[bank].last_page = base + num - 1;
break;
// runtime services will be restarted, so no save
case kEfiRuntimeServicesCode:
case kEfiRuntimeServicesData:
// contents are volatile once the platform expert starts
case kEfiACPIReclaimMemory:
// non dram
case kEfiReservedMemoryType:
case kEfiUnusableMemory:
case kEfiMemoryMappedIO:
case kEfiMemoryMappedIOPortSpace:
default:
break;
}
}
if (num_banks >= MAX_BANKS) {
HIBLOG("%s error, num_banks exceed MAX_BANKS(0x%x)\n", __FUNCTION__, MAX_BANKS);
return NULL;
}
// size the hibernation bitmap
size = sizeof(hibernate_page_list_t);
page_count = 0;
for (bank = 0; bank < num_banks; bank++) {
pages = dram_ranges[bank].last_page + 1 - dram_ranges[bank].first_page;
page_count += pages;
size += sizeof(hibernate_bitmap_t) + ((pages + 31) >> 5) * sizeof(uint32_t);
}
list = (hibernate_page_list_t *)kalloc(size);
if (!list) {
return list;
}
list->list_size = (uint32_t)size;
list->page_count = page_count;
list->bank_count = num_banks;
// convert to hibernation bitmap.
bitmap = &list->bank_bitmap[0];
for (bank = 0; bank < num_banks; bank++) {
bitmap->first_page = dram_ranges[bank].first_page;
bitmap->last_page = dram_ranges[bank].last_page;
bitmap->bitmapwords = (bitmap->last_page + 1
- bitmap->first_page + 31) >> 5;
if (log) {
kprintf("hib bank[%d]: 0x%x000 end 0x%xfff\n",
bank, bitmap->first_page, bitmap->last_page);
}
bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords];
}
if (log) {
printf("efi pagecount %d\n", non_os_pagecount);
}
return list;
}
// mark pages not to be saved, but available for scratch usage during restore
void
hibernate_page_list_setall_machine( __unused hibernate_page_list_t * page_list,
__unused hibernate_page_list_t * page_list_wired,
__unused boolean_t preflight,
__unused uint32_t * pagesOut)
{
}
// mark pages not to be saved and not for scratch usage during restore
void
hibernate_page_list_set_volatile( hibernate_page_list_t * page_list,
hibernate_page_list_t * page_list_wired,
uint32_t * pagesOut)
{
boot_args * args = (boot_args *) PE_state.bootArgs;
if (args->efiRuntimeServicesPageStart) {
hibernate_set_page_state(page_list, page_list_wired,
args->efiRuntimeServicesPageStart, args->efiRuntimeServicesPageCount,
kIOHibernatePageStateFree);
*pagesOut -= args->efiRuntimeServicesPageCount;
}
}
kern_return_t
hibernate_processor_setup(IOHibernateImageHeader * header)
{
boot_args * args = (boot_args *) PE_state.bootArgs;
cpu_datap(0)->cpu_hibernate = 1;
header->processorFlags = 0;
header->runtimePages = args->efiRuntimeServicesPageStart;
header->runtimePageCount = args->efiRuntimeServicesPageCount;
header->runtimeVirtualPages = args->efiRuntimeServicesVirtualPageStart;
header->performanceDataStart = args->performanceDataStart;
header->performanceDataSize = args->performanceDataSize;
return KERN_SUCCESS;
}
static boolean_t hibernate_vm_locks_safe;
void
hibernate_vm_lock(void)
{
if (current_cpu_datap()->cpu_hibernate) {
hibernate_vm_lock_queues();
hibernate_vm_locks_safe = TRUE;
}
}
void
hibernate_vm_unlock(void)
{
assert(FALSE == ml_get_interrupts_enabled());
if (current_cpu_datap()->cpu_hibernate) {
hibernate_vm_unlock_queues();
}
ml_set_is_quiescing(TRUE);
}
// ACPI calls hibernate_vm_lock(), interrupt disable, hibernate_vm_unlock() on sleep,
// hibernate_vm_lock_end() and interrupt enable on wake.
// VM locks are safely single threaded between hibernate_vm_lock() and hibernate_vm_lock_end().
void
hibernate_vm_lock_end(void)
{
assert(FALSE == ml_get_interrupts_enabled());
hibernate_vm_locks_safe = FALSE;
ml_set_is_quiescing(FALSE);
}
boolean_t
hibernate_vm_locks_are_safe(void)
{
assert(FALSE == ml_get_interrupts_enabled());
return hibernate_vm_locks_safe;
}
void
pal_hib_write_hook(void)
{
}