darling-xnu/osfmk/i386/mtrr.c
2023-05-16 21:41:14 -07:00

712 lines
19 KiB
C

/*
* Copyright (c) 2000-2011 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <mach/kern_return.h>
#include <kern/zalloc.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <i386/cpuid.h>
#include <i386/mp.h>
#include <i386/proc_reg.h>
#include <i386/mtrr.h>
#include <i386/machine_check.h>
struct mtrr_var_range {
uint64_t base; /* in IA32_MTRR_PHYSBASE format */
uint64_t mask; /* in IA32_MTRR_PHYSMASK format */
uint32_t refcnt; /* var ranges reference count */
};
struct mtrr_fix_range {
uint64_t types; /* fixed-range type octet */
};
typedef struct mtrr_var_range mtrr_var_range_t;
typedef struct mtrr_fix_range mtrr_fix_range_t;
static struct {
uint64_t MTRRcap;
uint64_t MTRRdefType;
mtrr_var_range_t * var_range;
unsigned int var_count;
mtrr_fix_range_t fix_range[11];
} mtrr_state;
static boolean_t mtrr_initialized = FALSE;
decl_simple_lock_data(static, mtrr_lock);
#define MTRR_LOCK() simple_lock(&mtrr_lock, LCK_GRP_NULL);
#define MTRR_UNLOCK() simple_unlock(&mtrr_lock);
//#define MTRR_DEBUG 1
#if MTRR_DEBUG
#define DBG(x...) kprintf(x)
#else
#define DBG(x...)
#endif
/* Private functions */
static void mtrr_get_var_ranges(mtrr_var_range_t * range, int count);
static void mtrr_set_var_ranges(const mtrr_var_range_t * range, int count);
static void mtrr_get_fix_ranges(mtrr_fix_range_t * range);
static void mtrr_set_fix_ranges(const mtrr_fix_range_t * range);
static void mtrr_update_setup(void * param);
static void mtrr_update_teardown(void * param);
static void mtrr_update_action(void * param);
static void var_range_encode(mtrr_var_range_t * range, addr64_t address,
uint64_t length, uint32_t type, int valid);
static int var_range_overlap(mtrr_var_range_t * range, addr64_t address,
uint64_t length, uint32_t type);
#define CACHE_CONTROL_MTRR (NULL)
#define CACHE_CONTROL_PAT ((void *)1)
/*
* MTRR MSR bit fields.
*/
#define IA32_MTRR_DEF_TYPE_MT 0x000000ff
#define IA32_MTRR_DEF_TYPE_FE 0x00000400
#define IA32_MTRR_DEF_TYPE_E 0x00000800
#define IA32_MTRRCAP_VCNT 0x000000ff
#define IA32_MTRRCAP_FIX 0x00000100
#define IA32_MTRRCAP_WC 0x00000400
/* 0 < bits <= 64 */
#define PHYS_BITS_TO_MASK(bits) \
((((1ULL << (bits-1)) - 1) << 1) | 1)
/*
* Default mask for 36 physical address bits, this can
* change depending on the cpu model.
*/
static uint64_t mtrr_phys_mask = PHYS_BITS_TO_MASK(36);
#define IA32_MTRR_PHYMASK_VALID 0x0000000000000800ULL
#define IA32_MTRR_PHYSBASE_MASK (mtrr_phys_mask & ~0x0000000000000FFFULL)
#define IA32_MTRR_PHYSBASE_TYPE 0x00000000000000FFULL
/*
* Variable-range mask to/from length conversions.
*/
#define MASK_TO_LEN(mask) \
((~((mask) & IA32_MTRR_PHYSBASE_MASK) & mtrr_phys_mask) + 1)
#define LEN_TO_MASK(len) \
(~((len) - 1) & IA32_MTRR_PHYSBASE_MASK)
#define LSB(x) ((x) & (~((x) - 1)))
/*
* Fetch variable-range MTRR register pairs.
*/
static void
mtrr_get_var_ranges(mtrr_var_range_t * range, int count)
{
int i;
for (i = 0; i < count; i++) {
range[i].base = rdmsr64(MSR_IA32_MTRR_PHYSBASE(i));
range[i].mask = rdmsr64(MSR_IA32_MTRR_PHYSMASK(i));
/* bump ref count for firmware configured ranges */
if (range[i].mask & IA32_MTRR_PHYMASK_VALID) {
range[i].refcnt = 1;
} else {
range[i].refcnt = 0;
}
}
}
/*
* Update variable-range MTRR register pairs.
*/
static void
mtrr_set_var_ranges(const mtrr_var_range_t * range, int count)
{
int i;
for (i = 0; i < count; i++) {
wrmsr64(MSR_IA32_MTRR_PHYSBASE(i), range[i].base);
wrmsr64(MSR_IA32_MTRR_PHYSMASK(i), range[i].mask);
}
}
/*
* Fetch all fixed-range MTRR's. Note MSR offsets are not consecutive.
*/
static void
mtrr_get_fix_ranges(mtrr_fix_range_t * range)
{
int i;
/* assume 11 fix range registers */
range[0].types = rdmsr64(MSR_IA32_MTRR_FIX64K_00000);
range[1].types = rdmsr64(MSR_IA32_MTRR_FIX16K_80000);
range[2].types = rdmsr64(MSR_IA32_MTRR_FIX16K_A0000);
for (i = 0; i < 8; i++) {
range[3 + i].types = rdmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i);
}
}
/*
* Update all fixed-range MTRR's.
*/
static void
mtrr_set_fix_ranges(const struct mtrr_fix_range * range)
{
int i;
/* assume 11 fix range registers */
wrmsr64(MSR_IA32_MTRR_FIX64K_00000, range[0].types);
wrmsr64(MSR_IA32_MTRR_FIX16K_80000, range[1].types);
wrmsr64(MSR_IA32_MTRR_FIX16K_A0000, range[2].types);
for (i = 0; i < 8; i++) {
wrmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i, range[3 + i].types);
}
}
static boolean_t
mtrr_check_fix_ranges(const struct mtrr_fix_range * range)
{
int i;
boolean_t match = TRUE;
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
/* assume 11 fix range registers */
match = range[0].types == rdmsr64(MSR_IA32_MTRR_FIX64K_00000) &&
range[1].types == rdmsr64(MSR_IA32_MTRR_FIX16K_80000) &&
range[2].types == rdmsr64(MSR_IA32_MTRR_FIX16K_A0000);
for (i = 0; match && i < 8; i++) {
match = range[3 + i].types ==
rdmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i);
}
return match;
}
static boolean_t
mtrr_check_var_ranges(mtrr_var_range_t * range, int count)
{
int i;
boolean_t match = TRUE;
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
for (i = 0; match && i < count; i++) {
match = range[i].base == rdmsr64(MSR_IA32_MTRR_PHYSBASE(i)) &&
range[i].mask == rdmsr64(MSR_IA32_MTRR_PHYSMASK(i));
}
return match;
}
#if MTRR_DEBUG
static void
mtrr_msr_dump(void)
{
int i;
int count = rdmsr64(MSR_IA32_MTRRCAP) & IA32_MTRRCAP_VCNT;
DBG("VAR -- BASE -------------- MASK -------------- SIZE\n");
for (i = 0; i < count; i++) {
DBG(" %02x 0x%016llx 0x%016llx 0x%llx\n", i,
rdmsr64(MSR_IA32_MTRR_PHYSBASE(i)),
rdmsr64(MSR_IA32_MTRR_PHYSMASK(i)),
MASK_TO_LEN(rdmsr64(MSR_IA32_MTRR_PHYSMASK(i))));
}
DBG("\n");
DBG("FIX64K_00000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX64K_00000));
DBG("FIX16K_80000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX16K_80000));
DBG("FIX16K_A0000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX16K_A0000));
DBG(" FIX4K_C0000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_C0000));
DBG(" FIX4K_C8000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_C8000));
DBG(" FIX4K_D0000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_D0000));
DBG(" FIX4K_D8000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_D8000));
DBG(" FIX4K_E0000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_E0000));
DBG(" FIX4K_E8000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_E8000));
DBG(" FIX4K_F0000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_F0000));
DBG(" FIX4K_F8000: 0x%016llx\n", rdmsr64(MSR_IA32_MTRR_FIX4K_F8000));
DBG("\nMTRRcap = 0x%llx MTRRdefType = 0x%llx\n",
rdmsr64(MSR_IA32_MTRRCAP), rdmsr64(MSR_IA32_MTRR_DEF_TYPE));
}
#endif /* MTRR_DEBUG */
/*
* Called by the boot processor (BP) early during boot to initialize MTRR
* support. The MTRR state on the BP is saved, any additional processors
* will have the same settings applied to ensure MTRR consistency.
*/
void
mtrr_init(void)
{
/* no reason to init more than once */
if (mtrr_initialized == TRUE) {
return;
}
/* check for presence of MTRR feature on the processor */
if ((cpuid_features() & CPUID_FEATURE_MTRR) == 0) {
return; /* no MTRR feature */
}
/* use a lock to serialize MTRR changes */
bzero((void *)&mtrr_state, sizeof(mtrr_state));
simple_lock_init(&mtrr_lock, 0);
mtrr_state.MTRRcap = rdmsr64(MSR_IA32_MTRRCAP);
mtrr_state.MTRRdefType = rdmsr64(MSR_IA32_MTRR_DEF_TYPE);
mtrr_state.var_count = (unsigned int)(mtrr_state.MTRRcap & IA32_MTRRCAP_VCNT);
/* allocate storage for variable ranges (can block?) */
if (mtrr_state.var_count) {
mtrr_state.var_range = (mtrr_var_range_t *)
zalloc_permanent(sizeof(mtrr_var_range_t) *
mtrr_state.var_count, ZALIGN(mtrr_var_range_t));
if (mtrr_state.var_range == NULL) {
mtrr_state.var_count = 0;
}
}
/* fetch the initial firmware configured variable ranges */
if (mtrr_state.var_count) {
mtrr_get_var_ranges(mtrr_state.var_range,
mtrr_state.var_count);
}
/* fetch the initial firmware configured fixed ranges */
if (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX) {
mtrr_get_fix_ranges(mtrr_state.fix_range);
}
mtrr_initialized = TRUE;
#if MTRR_DEBUG
mtrr_msr_dump(); /* dump firmware settings */
#endif
}
/*
* Performs the Intel recommended procedure for changing the MTRR
* in a MP system. Leverage rendezvous mechanism for the required
* barrier synchronization among all processors. This function is
* called from the rendezvous IPI handler, and mtrr_update_cpu().
*/
static void
mtrr_update_action(void * cache_control_type)
{
uintptr_t cr0, cr4;
uintptr_t tmp;
cr0 = get_cr0();
cr4 = get_cr4();
/* enter no-fill cache mode */
tmp = cr0 | CR0_CD;
tmp &= ~CR0_NW;
set_cr0(tmp);
/* flush caches */
wbinvd();
/* clear the PGE flag in CR4 */
if (cr4 & CR4_PGE) {
set_cr4(cr4 & ~CR4_PGE);
} else {
set_cr3_raw(get_cr3_raw());
}
if (CACHE_CONTROL_PAT == cache_control_type) {
/* Change PA6 attribute field to WC */
uint64_t pat = rdmsr64(MSR_IA32_CR_PAT);
DBG("CPU%d PAT: was 0x%016llx\n", get_cpu_number(), pat);
/*
* Intel doc states:
* "The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7.
* The three low-order bits of each field are used to specify a memory type.
* The five high-order bits of each field are reserved, and must be set to all 0s."
* So, we zero-out the high 5 bits of the PA6 entry here:
*/
pat &= ~(0xFFULL << 48);
pat |= (0x01ULL << 48);
wrmsr64(MSR_IA32_CR_PAT, pat);
DBG("CPU%d PAT: is 0x%016llx\n",
get_cpu_number(), rdmsr64(MSR_IA32_CR_PAT));
} else {
/* disable all MTRR ranges */
wrmsr64(MSR_IA32_MTRR_DEF_TYPE,
mtrr_state.MTRRdefType & ~IA32_MTRR_DEF_TYPE_E);
/* apply MTRR settings */
if (mtrr_state.var_count) {
mtrr_set_var_ranges(mtrr_state.var_range,
mtrr_state.var_count);
}
if (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX) {
mtrr_set_fix_ranges(mtrr_state.fix_range);
}
/* enable all MTRR range registers (what if E was not set?) */
wrmsr64(MSR_IA32_MTRR_DEF_TYPE,
mtrr_state.MTRRdefType | IA32_MTRR_DEF_TYPE_E);
}
/* flush all caches and TLBs a second time */
wbinvd();
set_cr3_raw(get_cr3_raw());
/* restore normal cache mode */
set_cr0(cr0);
/* restore PGE flag */
if (cr4 & CR4_PGE) {
set_cr4(cr4);
}
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
}
static void
mtrr_update_setup(__unused void * param_not_used)
{
/* disable interrupts before the first barrier */
current_cpu_datap()->cpu_iflag = ml_set_interrupts_enabled(FALSE);
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
}
static void
mtrr_update_teardown(__unused void * param_not_used)
{
/* restore interrupt flag following MTRR changes */
ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag);
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
}
/*
* Update MTRR settings on all processors.
*/
kern_return_t
mtrr_update_all_cpus(void)
{
if (mtrr_initialized == FALSE) {
return KERN_NOT_SUPPORTED;
}
MTRR_LOCK();
mp_rendezvous(mtrr_update_setup,
mtrr_update_action,
mtrr_update_teardown, NULL);
MTRR_UNLOCK();
return KERN_SUCCESS;
}
/*
* Verify that a processor has been set with the BSP's MTRR settings. Called
* during slave processor initialization to check and set MTRR settings
* discovered on the boot processor by mtrr_init().
*/
kern_return_t
mtrr_update_cpu(void)
{
boolean_t match = TRUE;
if (mtrr_initialized == FALSE) {
return KERN_NOT_SUPPORTED;
}
DBG("CPU%d: %s\n", get_cpu_number(), __FUNCTION__);
MTRR_LOCK();
/* Check MSR_IA32_MTRR_DEF_TYPE MSR */
match = mtrr_state.MTRRdefType == rdmsr64(MSR_IA32_MTRR_DEF_TYPE);
/* Check MSR_IA32_MTRRCAP MSR */
if (match) {
match = mtrr_state.MTRRcap == rdmsr64(MSR_IA32_MTRRCAP);
}
/* Check variable ranges */
if (match && mtrr_state.var_count) {
match = mtrr_check_var_ranges(mtrr_state.var_range,
mtrr_state.var_count);
}
/* Check fixed ranges */
if (match && (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX)) {
match = mtrr_check_fix_ranges(mtrr_state.fix_range);
}
#if MTRR_DEBUG
if (!match) {
mtrr_msr_dump();
}
#endif
if (!match) {
DBG("mtrr_update_cpu() setting MTRR for cpu %d\n",
get_cpu_number());
mtrr_update_action(NULL);
}
#if MTRR_DEBUG
if (!match) {
mtrr_msr_dump();
}
#endif
MTRR_UNLOCK();
return KERN_SUCCESS;
}
/*
* Add a MTRR range to associate the physical memory range specified
* with a given memory caching type.
*/
kern_return_t
mtrr_range_add(addr64_t address, uint64_t length, uint32_t type)
{
mtrr_var_range_t * vr;
mtrr_var_range_t * free_range;
kern_return_t ret = KERN_NO_SPACE;
int overlap;
unsigned int i;
DBG("mtrr_range_add base = 0x%llx, size = 0x%llx, type = %d\n",
address, length, type);
if (mtrr_initialized == FALSE) {
return KERN_NOT_SUPPORTED;
}
/* check memory type (GPF exception for undefined types) */
if ((type != MTRR_TYPE_UNCACHEABLE) &&
(type != MTRR_TYPE_WRITECOMBINE) &&
(type != MTRR_TYPE_WRITETHROUGH) &&
(type != MTRR_TYPE_WRITEPROTECT) &&
(type != MTRR_TYPE_WRITEBACK)) {
return KERN_INVALID_ARGUMENT;
}
/* check WC support if requested */
if ((type == MTRR_TYPE_WRITECOMBINE) &&
(mtrr_state.MTRRcap & IA32_MTRRCAP_WC) == 0) {
return KERN_NOT_SUPPORTED;
}
/* leave the fix range area below 1MB alone */
if (address < 0x100000 || mtrr_state.var_count == 0) {
return KERN_NOT_SUPPORTED;
}
/*
* Length must be a power of 2 given by 2^n, where n >= 12.
* Base address alignment must be larger than or equal to length.
*/
if ((length < 0x1000) ||
(LSB(length) != length) ||
(address && (length > LSB(address)))) {
return KERN_INVALID_ARGUMENT;
}
MTRR_LOCK();
/*
* Check for overlap and locate a free range.
*/
for (i = 0, free_range = NULL; i < mtrr_state.var_count; i++) {
vr = &mtrr_state.var_range[i];
if (vr->refcnt == 0) {
/* free range candidate if no overlaps are found */
free_range = vr;
continue;
}
overlap = var_range_overlap(vr, address, length, type);
if (overlap > 0) {
/*
* identical overlap permitted, increment ref count.
* no hardware update required.
*/
free_range = vr;
break;
}
if (overlap < 0) {
/* unsupported overlapping of memory types */
free_range = NULL;
break;
}
}
if (free_range) {
if (free_range->refcnt++ == 0) {
var_range_encode(free_range, address, length, type, 1);
mp_rendezvous(mtrr_update_setup,
mtrr_update_action,
mtrr_update_teardown, NULL);
}
ret = KERN_SUCCESS;
}
#if MTRR_DEBUG
mtrr_msr_dump();
#endif
MTRR_UNLOCK();
return ret;
}
/*
* Remove a previously added MTRR range. The same arguments used for adding
* the memory range must be supplied again.
*/
kern_return_t
mtrr_range_remove(addr64_t address, uint64_t length, uint32_t type)
{
mtrr_var_range_t * vr;
int result = KERN_FAILURE;
int cpu_update = 0;
unsigned int i;
DBG("mtrr_range_remove base = 0x%llx, size = 0x%llx, type = %d\n",
address, length, type);
if (mtrr_initialized == FALSE) {
return KERN_NOT_SUPPORTED;
}
MTRR_LOCK();
for (i = 0; i < mtrr_state.var_count; i++) {
vr = &mtrr_state.var_range[i];
if (vr->refcnt &&
var_range_overlap(vr, address, length, type) > 0) {
/* found specified variable range */
if (--mtrr_state.var_range[i].refcnt == 0) {
var_range_encode(vr, address, length, type, 0);
cpu_update = 1;
}
result = KERN_SUCCESS;
break;
}
}
if (cpu_update) {
mp_rendezvous(mtrr_update_setup,
mtrr_update_action,
mtrr_update_teardown, NULL);
result = KERN_SUCCESS;
}
#if MTRR_DEBUG
mtrr_msr_dump();
#endif
MTRR_UNLOCK();
return result;
}
/*
* Variable range helper routines
*/
static void
var_range_encode(mtrr_var_range_t * range, addr64_t address,
uint64_t length, uint32_t type, int valid)
{
range->base = (address & IA32_MTRR_PHYSBASE_MASK) |
(type & (uint32_t)IA32_MTRR_PHYSBASE_TYPE);
range->mask = LEN_TO_MASK(length) |
(valid ? IA32_MTRR_PHYMASK_VALID : 0);
}
static int
var_range_overlap(mtrr_var_range_t * range, addr64_t address,
uint64_t length, uint32_t type)
{
uint64_t v_address, v_length;
uint32_t v_type;
int result = 0; /* no overlap, or overlap ok */
v_address = range->base & IA32_MTRR_PHYSBASE_MASK;
v_type = (uint32_t)(range->base & IA32_MTRR_PHYSBASE_TYPE);
v_length = MASK_TO_LEN(range->mask);
/* detect range overlap */
if ((v_address >= address && v_address < (address + length)) ||
(address >= v_address && address < (v_address + v_length))) {
if (v_address == address && v_length == length && v_type == type) {
result = 1; /* identical overlap ok */
} else if (v_type == MTRR_TYPE_UNCACHEABLE &&
type == MTRR_TYPE_UNCACHEABLE) {
/* UC ranges can overlap */
} else if ((v_type == MTRR_TYPE_UNCACHEABLE &&
type == MTRR_TYPE_WRITEBACK) ||
(v_type == MTRR_TYPE_WRITEBACK &&
type == MTRR_TYPE_UNCACHEABLE)) {
/* UC/WB can overlap - effective type becomes UC */
} else {
/* anything else may cause undefined behavior */
result = -1;
}
}
return result;
}
/*
* Initialize PAT (Page Attribute Table)
*/
void
pat_init(void)
{
boolean_t istate;
uint64_t pat;
if (!(cpuid_features() & CPUID_FEATURE_PAT)) {
return;
}
istate = ml_set_interrupts_enabled(FALSE);
pat = rdmsr64(MSR_IA32_CR_PAT);
DBG("CPU%d PAT: was 0x%016llx\n", get_cpu_number(), pat);
/* Change PA6 attribute field to WC if required */
if ((pat & (0x07ULL << 48)) != (0x01ULL << 48)) {
mtrr_update_action(CACHE_CONTROL_PAT);
}
ml_set_interrupts_enabled(istate);
}