2023-05-16 21:41:14 -07:00

870 lines
29 KiB
C

/*
* Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
*/
/*
* File: pmap.h
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
* Date: 1985
*
* Machine-dependent structures for the physical map module.
*/
#ifdef KERNEL_PRIVATE
#ifndef _PMAP_MACHINE_
#define _PMAP_MACHINE_ 1
#ifndef ASSEMBLER
#include <mach/kern_return.h>
#include <mach/machine/vm_types.h>
#include <mach/vm_prot.h>
#include <mach/vm_statistics.h>
#include <mach/machine/vm_param.h>
#include <kern/kern_types.h>
#include <kern/thread.h>
#include <kern/simple_lock.h>
#include <i386/mp.h>
#include <i386/proc_reg.h>
#include <i386/pal_routines.h>
/*
* Define the generic in terms of the specific
*/
#define INTEL_PGBYTES I386_PGBYTES
#define INTEL_PGSHIFT I386_PGSHIFT
#define intel_btop(x) i386_btop(x)
#define intel_ptob(x) i386_ptob(x)
#define intel_round_page(x) i386_round_page(x)
#define intel_trunc_page(x) i386_trunc_page(x)
/*
* i386/i486/i860 Page Table Entry
*/
#endif /* ASSEMBLER */
#define NPGPTD 4ULL
#define PDESHIFT 21ULL
#define PTEMASK 0x1ffULL
#define PTEINDX 3ULL
#define PTESHIFT 12ULL
#define LOW_4GB_MASK ((vm_offset_t)0x00000000FFFFFFFFUL)
#define PDESIZE sizeof(pd_entry_t) /* for assembly files */
#define PTESIZE sizeof(pt_entry_t) /* for assembly files */
#define INTEL_OFFMASK (I386_PGBYTES - 1)
#define INTEL_LOFFMASK (I386_LPGBYTES - 1)
#define PG_FRAME 0x000FFFFFFFFFF000ULL
#define NPTEPG (PAGE_SIZE/(sizeof (pt_entry_t)))
#define NPTDPG (PAGE_SIZE/(sizeof (pd_entry_t)))
#define NBPTD (NPGPTD << PAGE_SHIFT)
#define NPDEPTD (NBPTD / (sizeof (pd_entry_t)))
#define NPDEPG (PAGE_SIZE/(sizeof (pd_entry_t)))
#define NBPDE (1ULL << PDESHIFT)
#define PDEMASK (NBPDE - 1)
#define PTE_PER_PAGE 512 /* number of PTE's per page on any level */
/* cleanly define parameters for all the page table levels */
typedef uint64_t pml4_entry_t;
#define NPML4PG (PAGE_SIZE/(sizeof (pml4_entry_t)))
#define PML4SHIFT 39
#define PML4PGSHIFT 9
#define NBPML4 (1ULL << PML4SHIFT)
#define PML4MASK (NBPML4-1)
#define PML4_ENTRY_NULL ((pml4_entry_t *) 0)
typedef uint64_t pdpt_entry_t;
#define NPDPTPG (PAGE_SIZE/(sizeof (pdpt_entry_t)))
#define PDPTSHIFT 30
#define PDPTPGSHIFT 9
#define NBPDPT (1ULL << PDPTSHIFT)
#define PDPTMASK (NBPDPT-1)
#define PDPT_ENTRY_NULL ((pdpt_entry_t *) 0)
typedef uint64_t pd_entry_t;
#define NPDPG (PAGE_SIZE/(sizeof (pd_entry_t)))
#define PDSHIFT 21
#define PDPGSHIFT 9
#define NBPD (1ULL << PDSHIFT)
#define PDMASK (NBPD-1)
#define PD_ENTRY_NULL ((pd_entry_t *) 0)
typedef uint64_t pt_entry_t;
#define NPTPG (PAGE_SIZE/(sizeof (pt_entry_t)))
#define PTSHIFT 12
#define PTPGSHIFT 9
#define NBPT (1ULL << PTSHIFT)
#define PTMASK (NBPT-1)
#define PT_ENTRY_NULL ((pt_entry_t *) 0)
typedef uint64_t pmap_paddr_t;
#if DEVELOPMENT || DEBUG
#define PMAP_ASSERT 1
extern int pmap_asserts_enabled;
extern int pmap_asserts_traced;
#endif
#if PMAP_ASSERT
#define pmap_assert(ex) (pmap_asserts_enabled ? ((ex) ? (void)0 : Assert(__FILE__, __LINE__, # ex)) : (void)0)
#define pmap_assert2(ex, fmt, args...) \
do { \
if (__improbable(pmap_asserts_enabled && !(ex))) { \
if (pmap_asserts_traced) { \
KERNEL_DEBUG_CONSTANT(0xDEAD1000, __builtin_return_address(0), __LINE__, 0, 0, 0); \
kdebug_enable = 0; \
} else { \
kprintf("Assertion %s failed (%s:%d, caller %p) " fmt , #ex, __FILE__, __LINE__, __builtin_return_address(0), ##args); \
panic("Assertion %s failed (%s:%d, caller %p) " fmt , #ex, __FILE__, __LINE__, __builtin_return_address(0), ##args); \
} \
} \
} while(0)
#else
#define pmap_assert(ex)
#define pmap_assert2(ex, fmt, args...)
#endif
/* superpages */
#define SUPERPAGE_NBASEPAGES 512
/*
* Atomic 64-bit store of a page table entry.
*/
static inline void
pmap_store_pte(pt_entry_t *entryp, pt_entry_t value)
{
/*
* In the 32-bit kernel a compare-and-exchange loop was
* required to provide atomicity. For K64, life is easier:
*/
*entryp = value;
}
/* in 64 bit spaces, the number of each type of page in the page tables */
#define NPML4PGS (1ULL * (PAGE_SIZE/(sizeof (pml4_entry_t))))
#define NPDPTPGS (NPML4PGS * (PAGE_SIZE/(sizeof (pdpt_entry_t))))
#define NPDEPGS (NPDPTPGS * (PAGE_SIZE/(sizeof (pd_entry_t))))
#define NPTEPGS (NPDEPGS * (PAGE_SIZE/(sizeof (pt_entry_t))))
extern int kernPhysPML4Index;
extern int kernPhysPML4EntryCount;
#define KERNEL_PML4_INDEX 511
#define KERNEL_KEXTS_INDEX (KERNEL_PML4_INDEX - 1) /* 510: Home of KEXTs - the basement */
#define KERNEL_PHYSMAP_PML4_INDEX (kernPhysPML4Index) /* 50X: virtual to physical map */
#define KERNEL_PHYSMAP_PML4_COUNT (kernPhysPML4EntryCount)
#define KERNEL_PHYSMAP_PML4_COUNT_MAX (16 - 2) /* 1 for KERNEL, 1 for BASEMENT */
/* 2 PML4s for KASAN to cover a maximum of 16 PML4s {PHYSMAP + BASEMENT + KVA} */
#define KERNEL_KASAN_PML4_LAST (495) /* 511 - 16 */
#define KERNEL_KASAN_PML4_FIRST (494) /* 511 - 17 */
#define KERNEL_DBLMAP_PML4_INDEX (KERNEL_KASAN_PML4_FIRST - 1)
#define KERNEL_PML4_COUNT 1
#define KERNEL_BASE (0ULL - (NBPML4 * KERNEL_PML4_COUNT))
#define KERNEL_BASEMENT (KERNEL_BASE - NBPML4) /* Basement uses one PML4 entry */
/*
* Pte related macros
*/
#define KVADDR(pmi, pdpi, pdi, pti) \
((vm_offset_t) \
((uint64_t) -1 << 47) | \
((uint64_t)(pmi) << PML4SHIFT) | \
((uint64_t)(pdpi) << PDPTSHIFT) | \
((uint64_t)(pdi) << PDESHIFT) | \
((uint64_t)(pti) << PTESHIFT))
#ifndef NKPT
#define NKPT 500 /* actual number of bootstrap kernel page tables */
#endif
/*
* Convert address offset to page descriptor index
*/
#define pdptnum(pmap, a) (((vm_offset_t)(a) >> PDPTSHIFT) & PDPTMASK)
#define pdenum(pmap, a) (((vm_offset_t)(a) >> PDESHIFT) & PDEMASK)
#define PMAP_INVALID_PDPTNUM (~0ULL)
#define pdeidx(pmap, a) (((a) >> PDSHIFT) & ((1ULL<<(48 - PDSHIFT)) -1))
#define pdptidx(pmap, a) (((a) >> PDPTSHIFT) & ((1ULL<<(48 - PDPTSHIFT)) -1))
#define pml4idx(pmap, a) (((a) >> PML4SHIFT) & ((1ULL<<(48 - PML4SHIFT)) -1))
/*
* Convert page descriptor index to user virtual address
*/
#define pdetova(a) ((vm_offset_t)(a) << PDESHIFT)
/*
* Convert address offset to page table index
*/
#define ptenum(a) (((vm_offset_t)(a) >> PTESHIFT) & PTEMASK)
/*
* Hardware pte bit definitions (to be used directly on the ptes
* without using the bit fields).
*/
#define INTEL_PTE_VALID 0x00000001ULL
#define INTEL_PTE_WRITE 0x00000002ULL
#define INTEL_PTE_RW 0x00000002ULL
#define INTEL_PTE_USER 0x00000004ULL
#define INTEL_PTE_WTHRU 0x00000008ULL
#define INTEL_PTE_NCACHE 0x00000010ULL
#define INTEL_PTE_REF 0x00000020ULL
#define INTEL_PTE_MOD 0x00000040ULL
#define INTEL_PTE_PS 0x00000080ULL
#define INTEL_PTE_PAT 0x00000080ULL
#define INTEL_PTE_GLOBAL 0x00000100ULL
/* These markers use software available bits ignored by the
* processor's 4-level and EPT pagetable walkers.
* N.B.: WIRED was originally bit 10, but that conflicts with
* execute permissions for EPT entries iff mode-based execute controls
* are enabled.
*/
#define INTEL_PTE_SWLOCK (0x1ULL << 52)
#define INTEL_PDPTE_NESTED (0x1ULL << 53)
#define INTEL_PTE_WIRED (0x1ULL << 54)
/* TODO: Compressed markers, potential conflict with protection keys? */
#define INTEL_PTE_COMPRESSED_ALT (1ULL << 61) /* compressed but with "alternate accounting" */
#define INTEL_PTE_COMPRESSED (1ULL << 62) /* marker, for invalid PTE only -- ignored by hardware for both regular/EPT entries*/
#define INTEL_PTE_PFN PG_FRAME
/* TODO: these should be internal definitions */
#define INTEL_PTE_NX (1ULL << 63)
#define INTEL_PTE_INVALID 0
/* This is conservative, but suffices */
#define INTEL_PTE_RSVD ((1ULL << 10) | (1ULL << 11))
#define INTEL_PTE_COMPRESSED_MASK (INTEL_PTE_COMPRESSED | \
INTEL_PTE_COMPRESSED_ALT | INTEL_PTE_SWLOCK)
#define PTE_IS_COMPRESSED(x, ptep, pmap, vaddr) \
((((x) & INTEL_PTE_VALID) == 0) && /* PTE is not valid... */ \
((x) & INTEL_PTE_COMPRESSED) && /* ...has "compressed" marker" */ \
((!((x) & ~INTEL_PTE_COMPRESSED_MASK)) || /* ...no other bits */ \
pmap_compressed_pte_corruption_repair((x), &(x), (ptep), (pmap), (vaddr))))
#define pa_to_pte(a) ((a) & INTEL_PTE_PFN) /* XXX */
#define pte_to_pa(p) ((p) & INTEL_PTE_PFN) /* XXX */
#define pte_increment_pa(p) ((p) += INTEL_OFFMASK+1)
#define pte_kernel_rw(p) ((pt_entry_t)(pa_to_pte(p) | INTEL_PTE_VALID|INTEL_PTE_RW))
#define pte_kernel_ro(p) ((pt_entry_t)(pa_to_pte(p) | INTEL_PTE_VALID))
#define pte_user_rw(p) ((pt_entry_t)(pa_to_pte(p) | INTEL_PTE_VALID|INTEL_PTE_USER|INTEL_PTE_RW))
#define pte_user_ro(p) ((pt_entry_t)(pa_to_pte(p) | INTEL_PTE_VALID|INTEL_PTE_USER))
#define PMAP_INVEPT_SINGLE_CONTEXT 1
#define INTEL_EPTP_AD 0x00000040ULL
#define INTEL_EPT_READ 0x00000001ULL
#define INTEL_EPT_WRITE 0x00000002ULL
#define INTEL_EPT_EX 0x00000004ULL
#define INTEL_EPT_IPAT 0x00000040ULL
#define INTEL_EPT_PS 0x00000080ULL
#define INTEL_EPT_REF 0x00000100ULL
#define INTEL_EPT_MOD 0x00000200ULL
#define INTEL_EPT_CACHE_MASK 0x00000038ULL
#define INTEL_EPT_NCACHE 0x00000000ULL
#define INTEL_EPT_WC 0x00000008ULL
#define INTEL_EPT_WTHRU 0x00000020ULL
#define INTEL_EPT_WP 0x00000028ULL
#define INTEL_EPT_WB 0x00000030ULL
/*
* Routines to filter correct bits depending on the pmap type
*/
static inline pt_entry_t
pte_remove_ex(pt_entry_t pte, boolean_t is_ept)
{
if (__probable(!is_ept)) {
return pte | INTEL_PTE_NX;
}
return pte & (~INTEL_EPT_EX);
}
static inline pt_entry_t
pte_set_ex(pt_entry_t pte, boolean_t is_ept)
{
if (__probable(!is_ept)) {
return pte & (~INTEL_PTE_NX);
}
return pte | INTEL_EPT_EX;
}
static inline pt_entry_t
physmap_refmod_to_ept(pt_entry_t physmap_pte)
{
pt_entry_t ept_pte = 0;
if (physmap_pte & INTEL_PTE_MOD) {
ept_pte |= INTEL_EPT_MOD;
}
if (physmap_pte & INTEL_PTE_REF) {
ept_pte |= INTEL_EPT_REF;
}
return ept_pte;
}
static inline pt_entry_t
ept_refmod_to_physmap(pt_entry_t ept_pte)
{
pt_entry_t physmap_pte = 0;
assert((ept_pte & ~(INTEL_EPT_REF | INTEL_EPT_MOD)) == 0);
if (ept_pte & INTEL_EPT_REF) {
physmap_pte |= INTEL_PTE_REF;
}
if (ept_pte & INTEL_EPT_MOD) {
physmap_pte |= INTEL_PTE_MOD;
}
return physmap_pte;
}
/*
* Note: Not all Intel processors support EPT referenced access and dirty bits.
* During pmap_init() we check the VMX capability for the current hardware
* and update this variable accordingly.
*/
extern boolean_t pmap_ept_support_ad;
#define PTE_VALID_MASK(is_ept) ((is_ept) ? (INTEL_EPT_READ | INTEL_EPT_WRITE | INTEL_EPT_EX) : INTEL_PTE_VALID)
#define PTE_READ(is_ept) ((is_ept) ? INTEL_EPT_READ : INTEL_PTE_VALID)
#define PTE_WRITE(is_ept) ((is_ept) ? INTEL_EPT_WRITE : INTEL_PTE_WRITE)
#define PTE_IS_EXECUTABLE(is_ept, pte) ((is_ept) ? (((pte) & INTEL_EPT_EX) != 0) : (((pte) & INTEL_PTE_NX) == 0))
#define PTE_PS INTEL_PTE_PS
#define PTE_COMPRESSED INTEL_PTE_COMPRESSED
#define PTE_COMPRESSED_ALT INTEL_PTE_COMPRESSED_ALT
#define PTE_NCACHE(is_ept) ((is_ept) ? INTEL_EPT_NCACHE : INTEL_PTE_NCACHE)
#define PTE_WTHRU(is_ept) ((is_ept) ? INTEL_EPT_WTHRU : INTEL_PTE_WTHRU)
#define PTE_REF(is_ept) ((is_ept) ? INTEL_EPT_REF : INTEL_PTE_REF)
#define PTE_MOD(is_ept) ((is_ept) ? INTEL_EPT_MOD : INTEL_PTE_MOD)
#define PTE_WIRED INTEL_PTE_WIRED
#define PMAP_DEFAULT_CACHE 0
#define PMAP_INHIBIT_CACHE 1
#define PMAP_GUARDED_CACHE 2
#define PMAP_ACTIVATE_CACHE 4
#define PMAP_NO_GUARD_CACHE 8
/* Per-pmap ledger operations */
#define pmap_ledger_debit(p, e, a) ledger_debit((p)->ledger, e, a)
#define pmap_ledger_credit(p, e, a) ledger_credit((p)->ledger, e, a)
#ifndef ASSEMBLER
#include <sys/queue.h>
/*
* Address of current and alternate address space page table maps
* and directories.
*/
extern pt_entry_t *PTmap;
extern pdpt_entry_t *IdlePDPT;
extern pml4_entry_t *IdlePML4;
extern boolean_t no_shared_cr3;
extern pd_entry_t *IdlePTD; /* physical addr of "Idle" state PTD */
extern uint64_t pmap_pv_hashlist_walks;
extern uint64_t pmap_pv_hashlist_cnts;
extern uint32_t pmap_pv_hashlist_max;
extern uint32_t pmap_kernel_text_ps;
#define ID_MAP_VTOP(x) ((void *)(((uint64_t)(x)) & LOW_4GB_MASK))
extern uint64_t physmap_base, physmap_max;
#define NPHYSMAP (MAX(((physmap_max - physmap_base) / GB), 4))
static inline boolean_t
physmap_enclosed(addr64_t a)
{
return a < (NPHYSMAP * GB);
}
static inline void *
PHYSMAP_PTOV_check(void *paddr)
{
uint64_t pvaddr = (uint64_t)paddr + physmap_base;
if (__improbable(pvaddr >= physmap_max)) {
panic("PHYSMAP_PTOV bounds exceeded, 0x%qx, 0x%qx, 0x%qx",
pvaddr, physmap_base, physmap_max);
}
return (void *)pvaddr;
}
#define PHYSMAP_PTOV(x) (PHYSMAP_PTOV_check((void*) (x)))
#define phystokv(x) ((vm_offset_t)(PHYSMAP_PTOV(x)))
#if MACH_KERNEL_PRIVATE
extern uint64_t dblmap_base, dblmap_max, dblmap_dist;
static inline uint64_t
DBLMAP_CHECK(uintptr_t x)
{
uint64_t dbladdr = (uint64_t)x + dblmap_dist;
if (__improbable((dbladdr >= dblmap_max) || (dbladdr < dblmap_base))) {
panic("DBLMAP bounds exceeded, 0x%qx, 0x%qx 0x%qx, 0x%qx",
(uint64_t)x, dbladdr, dblmap_base, dblmap_max);
}
return dbladdr;
}
#define DBLMAP(x) (DBLMAP_CHECK((uint64_t) x))
extern uint64_t ldt_alias_offset;
static inline uint64_t
LDTALIAS_CHECK(uintptr_t x)
{
uint64_t dbladdr = (uint64_t)x + ldt_alias_offset;
if (__improbable((dbladdr >= dblmap_max) || (dbladdr < dblmap_base))) {
panic("LDTALIAS: bounds exceeded, 0x%qx, 0x%qx 0x%qx, 0x%qx",
(uint64_t)x, dbladdr, dblmap_base, dblmap_max);
}
return dbladdr;
}
#define LDTALIAS(x) (LDTALIAS_CHECK((uint64_t) x))
#endif
/*
* For KASLR, we alias the master processor's IDT and GDT at fixed
* virtual addresses to defeat SIDT/SGDT address leakage.
* And non-boot processor's GDT aliases likewise (skipping LOWGLOBAL_ALIAS)
* The low global vector page is mapped at a fixed alias also.
*/
#define LOWGLOBAL_ALIAS (VM_MIN_KERNEL_ADDRESS + 0x2000)
/*
* This indicates (roughly) where there is free space for the VM
* to use for the heap; this does not need to be precise.
*/
#define KERNEL_PMAP_HEAP_RANGE_START VM_MIN_KERNEL_AND_KEXT_ADDRESS
#if MACH_KERNEL_PRIVATE
extern void
pmap_tlbi_range(uint64_t startv, uint64_t endv, bool global, uint16_t pcid);
#include <vm/vm_page.h>
/*
* For each vm_page_t, there is a list of all currently
* valid virtual mappings of that page. An entry is
* a pv_entry_t; the list is the pv_table.
*/
struct pmap {
lck_rw_t pmap_rwl __attribute((aligned(64)));
pmap_paddr_t pm_cr3 __attribute((aligned(64))); /* Kernel+user shared PML4 physical*/
pmap_paddr_t pm_ucr3; /* Mirrored user PML4 physical */
pml4_entry_t *pm_pml4; /* VKA of top level */
pml4_entry_t *pm_upml4; /* Shadow VKA of top level */
pmap_paddr_t pm_eptp; /* EPTP */
task_map_t pm_task_map;
boolean_t pagezero_accessible;
boolean_t pm_vm_map_cs_enforced; /* is vm_map cs_enforced? */
#define PMAP_PCID_MAX_CPUS MAX_CPUS /* Must be a multiple of 8 */
pcid_t pmap_pcid_cpus[PMAP_PCID_MAX_CPUS];
volatile uint8_t pmap_pcid_coherency_vector[PMAP_PCID_MAX_CPUS];
boolean_t pm_shared;
os_refcnt_t ref_count;
pdpt_entry_t *pm_pdpt; /* KVA of 3rd level page */
vm_object_t pm_obj; /* object to hold pde's */
vm_object_t pm_obj_pdpt; /* holds pdpt pages */
vm_object_t pm_obj_pml4; /* holds pml4 pages */
#if DEVELOPMENT || DEBUG
int nx_enabled;
#endif
ledger_t ledger; /* ledger tracking phys mappings */
struct pmap_statistics stats; /* map statistics */
uint64_t corrected_compressed_ptes_count;
#if MACH_ASSERT
boolean_t pmap_stats_assert;
int pmap_pid;
char pmap_procname[17];
#endif /* MACH_ASSERT */
};
static inline boolean_t
is_ept_pmap(pmap_t p)
{
if (__probable(p->pm_cr3 != 0)) {
assert(p->pm_eptp == 0);
return FALSE;
}
assert(p->pm_eptp != 0);
return TRUE;
}
void hv_ept_pmap_create(void **ept_pmap, void **eptp);
typedef struct pmap_memory_regions {
ppnum_t base; /* first page of this region */
ppnum_t alloc_up; /* pages below this one have been "stolen" */
ppnum_t alloc_down; /* pages above this one have been "stolen" */
ppnum_t alloc_frag_up; /* low page of fragment after large page alloc */
ppnum_t alloc_frag_down; /* high page of fragment after large page alloc */
ppnum_t end; /* last page of this region */
uint32_t type;
uint64_t attribute;
} pmap_memory_region_t;
extern unsigned pmap_memory_region_count;
extern unsigned pmap_memory_region_current;
#define PMAP_MEMORY_REGIONS_SIZE 128
extern pmap_memory_region_t pmap_memory_regions[];
#include <i386/pmap_pcid.h>
static inline void
set_dirbase(pmap_t tpmap, thread_t thread, int my_cpu)
{
int ccpu = my_cpu;
uint64_t pcr3 = tpmap->pm_cr3, ucr3 = tpmap->pm_ucr3;
cpu_datap(ccpu)->cpu_task_cr3 = pcr3;
cpu_shadowp(ccpu)->cpu_shadowtask_cr3 = pcr3;
cpu_datap(ccpu)->cpu_ucr3 = ucr3;
cpu_shadowp(ccpu)->cpu_ucr3 = ucr3;
cpu_datap(ccpu)->cpu_task_map = cpu_shadowp(ccpu)->cpu_task_map =
tpmap->pm_task_map;
assert((get_preemption_level() > 0) || (ml_get_interrupts_enabled() == FALSE));
assert(ccpu == cpu_number());
/*
* Switch cr3 if necessary
* - unless running with no_shared_cr3 debugging mode
* and we're not on the kernel's cr3 (after pre-empted copyio)
*/
boolean_t nopagezero = tpmap->pagezero_accessible;
boolean_t priorpagezero = cpu_datap(ccpu)->cpu_pagezero_mapped;
cpu_datap(ccpu)->cpu_pagezero_mapped = nopagezero;
if (__probable(!no_shared_cr3)) {
if (__improbable(nopagezero)) {
boolean_t copyio_active = ((thread->machine.specFlags & CopyIOActive) != 0);
if (pmap_pcid_ncpus) {
pmap_pcid_activate(tpmap, ccpu, TRUE, copyio_active);
} else {
if (copyio_active) {
if (get_cr3_base() != tpmap->pm_cr3) {
set_cr3_raw(tpmap->pm_cr3);
}
} else if (get_cr3_base() != cpu_datap(ccpu)->cpu_kernel_cr3) {
set_cr3_raw(cpu_datap(ccpu)->cpu_kernel_cr3);
}
}
} else if ((get_cr3_base() != tpmap->pm_cr3) || priorpagezero) {
if (pmap_pcid_ncpus) {
pmap_pcid_activate(tpmap, ccpu, FALSE, FALSE);
} else {
set_cr3_raw(tpmap->pm_cr3);
}
}
} else {
if (get_cr3_base() != cpu_datap(ccpu)->cpu_kernel_cr3) {
set_cr3_raw(cpu_datap(ccpu)->cpu_kernel_cr3);
}
}
}
/*
* External declarations for PMAP_ACTIVATE.
*/
extern void pmap_update_interrupt(void);
extern addr64_t(kvtophys)(
vm_offset_t addr);
extern kern_return_t pmap_expand(
pmap_t pmap,
vm_map_offset_t addr,
unsigned int options);
extern vm_offset_t pmap_map(
vm_offset_t virt,
vm_map_offset_t start,
vm_map_offset_t end,
vm_prot_t prot,
unsigned int flags);
extern vm_offset_t pmap_map_bd(
vm_offset_t virt,
vm_map_offset_t start,
vm_map_offset_t end,
vm_prot_t prot,
unsigned int flags);
extern void pmap_bootstrap(
vm_offset_t load_start,
boolean_t IA32e);
extern boolean_t pmap_valid_page(
ppnum_t pn);
extern int pmap_list_resident_pages(
struct pmap *pmap,
vm_offset_t *listp,
int space);
extern void x86_filter_TLB_coherency_interrupts(boolean_t);
extern void
pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX,
boolean_t ro);
/*
* Get cache attributes (as pagetable bits) for the specified phys page
*/
extern unsigned pmap_get_cache_attributes(ppnum_t, boolean_t is_ept);
extern kern_return_t pmap_map_block_addr(
pmap_t pmap,
addr64_t va,
pmap_paddr_t pa,
uint32_t size,
vm_prot_t prot,
int attr,
unsigned int flags);
extern kern_return_t pmap_map_block(
pmap_t pmap,
addr64_t va,
ppnum_t pa,
uint32_t size,
vm_prot_t prot,
int attr,
unsigned int flags);
extern void invalidate_icache(vm_offset_t addr, unsigned cnt, int phys);
extern void flush_dcache(vm_offset_t addr, unsigned count, int phys);
extern pmap_paddr_t pmap_find_pa(pmap_t map, addr64_t va);
extern ppnum_t pmap_find_phys(pmap_t map, addr64_t va);
extern ppnum_t pmap_find_phys_nofault(pmap_t pmap, addr64_t va);
extern kern_return_t pmap_get_prot(pmap_t pmap, addr64_t va, vm_prot_t *protp);
extern void pmap_cpu_init(void);
extern void pmap_disable_NX(pmap_t pmap);
extern void pmap_pagetable_corruption_msg_log(int (*)(const char * fmt, ...)__printflike(1, 2));
extern void x86_64_protect_data_const(void);
extern uint64_t pmap_commpage_size_min(pmap_t pmap);
/*
* Macros for speed.
*/
#include <kern/spl.h>
#define PMAP_ACTIVATE_MAP(map, thread, my_cpu) { \
pmap_t tpmap; \
\
tpmap = vm_map_pmap(map); \
set_dirbase(tpmap, thread, my_cpu); \
}
#if defined(__x86_64__)
#define PMAP_DEACTIVATE_MAP(map, thread, ccpu) \
pmap_assert2((pmap_pcid_ncpus ? (pcid_for_pmap_cpu_tuple(map->pmap, thread, ccpu) == (get_cr3_raw() & 0xFFF)) : TRUE),"PCIDs: 0x%x, active PCID: 0x%x, CR3: 0x%lx, pmap_cr3: 0x%llx, kernel_cr3: 0x%llx, kernel pmap cr3: 0x%llx, CPU active PCID: 0x%x, CPU kernel PCID: 0x%x, specflags: 0x%x, pagezero: 0x%x", pmap_pcid_ncpus, pcid_for_pmap_cpu_tuple(map->pmap, thread, ccpu), get_cr3_raw(), map->pmap->pm_cr3, cpu_datap(ccpu)->cpu_kernel_cr3, kernel_pmap->pm_cr3, cpu_datap(ccpu)->cpu_active_pcid, cpu_datap(ccpu)->cpu_kernel_pcid, thread->machine.specFlags, map->pmap->pagezero_accessible);
#else
#define PMAP_DEACTIVATE_MAP(map, thread)
#endif
#define PMAP_SWITCH_USER(th, new_map, my_cpu) { \
spl_t spl; \
\
spl = splhigh(); \
PMAP_DEACTIVATE_MAP(th->map, th, my_cpu); \
th->map = new_map; \
PMAP_ACTIVATE_MAP(th->map, th, my_cpu); \
splx(spl); \
}
/*
* Marking the current cpu's cr3 inactive is achieved by setting its lsb.
* Marking the current cpu's cr3 active once more involves clearng this bit.
* Note that valid page tables are page-aligned and so the bottom 12 bits
* are normally zero, modulo PCID.
* We can only mark the current cpu active/inactive but we can test any cpu.
*/
#define CPU_CR3_MARK_INACTIVE() \
current_cpu_datap()->cpu_active_cr3 |= 1
#define CPU_CR3_MARK_ACTIVE() \
current_cpu_datap()->cpu_active_cr3 &= ~1
#define CPU_CR3_IS_ACTIVE(cpu) \
((cpu_datap(cpu)->cpu_active_cr3 & 1) == 0)
#define CPU_GET_ACTIVE_CR3(cpu) \
(cpu_datap(cpu)->cpu_active_cr3 & ~1)
#define CPU_GET_TASK_CR3(cpu) \
(cpu_datap(cpu)->cpu_task_cr3)
/*
* Mark this cpu idle, and remove it from the active set,
* since it is not actively using any pmap. Signal_cpus
* will notice that it is idle, and avoid signaling it,
* but will queue the update request for when the cpu
* becomes active.
*/
#define MARK_CPU_IDLE(my_cpu) { \
assert(ml_get_interrupts_enabled() == FALSE); \
CPU_CR3_MARK_INACTIVE(); \
mfence(); \
}
#define MARK_CPU_ACTIVE(my_cpu) { \
assert(ml_get_interrupts_enabled() == FALSE); \
/* \
* If a kernel_pmap update was requested while this cpu \
* was idle, process it as if we got the interrupt. \
* Before doing so, remove this cpu from the idle set. \
* Since we do not grab any pmap locks while we flush \
* our TLB, another cpu may start an update operation \
* before we finish. Removing this cpu from the idle \
* set assures that we will receive another update \
* interrupt if this happens. \
*/ \
CPU_CR3_MARK_ACTIVE(); \
mfence(); \
pmap_update_interrupt(); \
}
#define PMAP_CONTEXT(pmap, thread)
#define pmap_kernel_va(VA) \
((((vm_offset_t) (VA)) >= vm_min_kernel_address) && \
(((vm_offset_t) (VA)) <= vm_max_kernel_address))
#define pmap_compressed(pmap) ((pmap)->stats.compressed)
#define pmap_resident_count(pmap) ((pmap)->stats.resident_count)
#define pmap_resident_max(pmap) ((pmap)->stats.resident_max)
#define pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
#define pmap_attribute(pmap, addr, size, attr, value) \
(KERN_INVALID_ADDRESS)
#define pmap_attribute_cache_sync(addr, size, attr, value) \
(KERN_INVALID_ADDRESS)
#define MACHINE_PMAP_IS_EMPTY 1
extern boolean_t pmap_is_empty(pmap_t pmap,
vm_map_offset_t start,
vm_map_offset_t end);
#define MACHINE_BOOTSTRAPPTD 1 /* Static bootstrap page-tables */
kern_return_t
pmap_permissions_verify(pmap_t, vm_map_t, vm_offset_t, vm_offset_t);
#if DEVELOPMENT || DEBUG
extern kern_return_t pmap_test_text_corruption(pmap_paddr_t);
#endif /* DEVELOPMENT || DEBUG */
#if MACH_ASSERT
extern int pmap_stats_assert;
#define PMAP_STATS_ASSERTF(args) \
MACRO_BEGIN \
if (pmap_stats_assert) assertf args; \
MACRO_END
#else /* MACH_ASSERT */
#define PMAP_STATS_ASSERTF(args)
#endif /* MACH_ASSERT */
#endif /* MACH_KERNEL_PRIVATE */
#endif /* ASSEMBLER */
#endif /* _PMAP_MACHINE_ */
#endif /* KERNEL_PRIVATE */