darling-xnu/osfmk/kern/arithmetic_128.h
2023-05-16 21:41:14 -07:00

104 lines
2.8 KiB
C

/*
* Copyright (c) 1999, 2003, 2006, 2007, 2010 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
* Code duplicated from Libc/gen/nanosleep.c
*/
#ifndef _ARITHMETIC_128_H_
#define _ARITHMETIC_128_H_
#include <stdint.h>
#if __LP64__
static __inline uint64_t
multi_overflow(uint64_t a, uint64_t b)
{
__uint128_t prod;
prod = (__uint128_t)a * (__uint128_t)b;
return (uint64_t) (prod >> 64);
}
#else
typedef struct {
uint64_t high;
uint64_t low;
} uint128_data_t;
/* 128-bit addition: acc += add */
static __inline void
add128_128(uint128_data_t *acc, uint128_data_t *add)
{
acc->high += add->high;
acc->low += add->low;
if (acc->low < add->low) {
acc->high++; // carry
}
}
/* 64x64 -> 128 bit multiplication */
static __inline void
mul64x64(uint64_t x, uint64_t y, uint128_data_t *prod)
{
uint128_data_t add;
/*
* Split the two 64-bit multiplicands into 32-bit parts:
* x => 2^32 * x1 + x2
* y => 2^32 * y1 + y2
*/
uint32_t x1 = (uint32_t)(x >> 32);
uint32_t x2 = (uint32_t)x;
uint32_t y1 = (uint32_t)(y >> 32);
uint32_t y2 = (uint32_t)y;
/*
* direct multiplication:
* x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2)
* The first and last terms are direct assignmenet into the uint128_t
* structure. Then we add the middle two terms separately, to avoid
* 64-bit overflow. (We could use the Karatsuba algorithm to save
* one multiply, but it is harder to deal with 64-bit overflows.)
*/
prod->high = (uint64_t)x1 * (uint64_t)y1;
prod->low = (uint64_t)x2 * (uint64_t)y2;
add.low = (uint64_t)x1 * (uint64_t)y2;
add.high = (add.low >> 32);
add.low <<= 32;
add128_128(prod, &add);
add.low = (uint64_t)x2 * (uint64_t)y1;
add.high = (add.low >> 32);
add.low <<= 32;
add128_128(prod, &add);
}
static __inline uint64_t
multi_overflow(uint64_t a, uint64_t b)
{
uint128_data_t prod;
mul64x64(a, b, &prod);
return prod.high;
}
#endif /* __LP64__ */
#endif /* _ARITHMETIC_128_H_ */