darling-xnu/osfmk/kern/bits.h
2023-05-16 21:41:14 -07:00

438 lines
9.6 KiB
C

/*
* Copyright (c) 2015-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*
* Bit manipulation functions
*/
#ifndef __BITS_H__
#define __BITS_H__
#ifdef KERNEL
#include <kern/assert.h>
#include <kern/kalloc.h>
#else
#include <assert.h>
#include <stdlib.h>
#define kalloc(x) malloc(x)
#define kfree(x, y) free(x)
#endif
#include <stdbool.h>
#include <stdint.h>
#include <stdatomic.h>
typedef unsigned int uint;
#define BIT(b) (1ULL << (b))
#define mask(width) (width >= 64 ? -1ULL : (BIT(width) - 1))
#define extract(x, shift, width) ((((uint64_t)(x)) >> (shift)) & mask(width))
#define bits(x, hi, lo) extract((x), (lo), (hi) - (lo) + 1)
#define bit_set(x, b) ((x) |= BIT(b))
#define bit_clear(x, b) ((x) &= ~BIT(b))
#define bit_test(x, b) ((bool)((x) & BIT(b)))
inline static uint64_t
bit_ror64(uint64_t bitmap, uint n)
{
#if defined(__arm64__)
uint64_t result;
uint64_t _n = (uint64_t)n;
asm volatile ("ror %0, %1, %2" : "=r" (result) : "r" (bitmap), "r" (_n));
return result;
#else
n = n & 63;
return (bitmap >> n) | (bitmap << (64 - n));
#endif
}
inline static uint64_t
bit_rol64(uint64_t bitmap, uint n)
{
#if defined(__arm64__)
return bit_ror64(bitmap, 64U - n);
#else
n = n & 63;
return (bitmap << n) | (bitmap >> (64 - n));
#endif
}
/* Non-atomically clear the bit and returns whether the bit value was changed */
inline static bool
bit_clear_if_set(uint64_t *bitmap, int bit)
{
bool bit_is_set = bit_test(*bitmap, bit);
bit_clear(*bitmap, bit);
return bit_is_set;
}
/* Non-atomically set the bit and returns whether the bit value was changed */
inline static bool
bit_set_if_clear(uint64_t *bitmap, int bit)
{
bool bit_is_set = bit_test(*bitmap, bit);
bit_set(*bitmap, bit);
return !bit_is_set;
}
/* Returns the most significant '1' bit, or -1 if all zeros */
inline static int
bit_first(uint64_t bitmap)
{
#if defined(__arm64__)
int64_t result;
asm volatile ("clz %0, %1" : "=r" (result) : "r" (bitmap));
return 63 - (int)result;
#else
return (bitmap == 0) ? -1 : 63 - __builtin_clzll(bitmap);
#endif
}
inline static int
__bit_next(uint64_t bitmap, int previous_bit)
{
uint64_t mask = previous_bit ? mask(previous_bit) : ~0ULL;
return bit_first(bitmap & mask);
}
/* Returns the most significant '1' bit that is less significant than previous_bit,
* or -1 if no such bit exists.
*/
inline static int
bit_next(uint64_t bitmap, int previous_bit)
{
if (previous_bit == 0) {
return -1;
} else {
return __bit_next(bitmap, previous_bit);
}
}
/* Returns the least significant '1' bit, or -1 if all zeros */
inline static int
lsb_first(uint64_t bitmap)
{
return __builtin_ffsll((long long)bitmap) - 1;
}
/* Returns the least significant '1' bit that is more significant than previous_bit,
* or -1 if no such bit exists.
* previous_bit may be -1, in which case this is equivalent to lsb_first()
*/
inline static int
lsb_next(uint64_t bitmap, int previous_bit)
{
uint64_t mask = mask(previous_bit + 1);
return lsb_first(bitmap & ~mask);
}
inline static int
bit_count(uint64_t x)
{
return __builtin_popcountll(x);
}
/* Return the highest power of 2 that is <= n, or -1 if n == 0 */
inline static int
bit_floor(uint64_t n)
{
return bit_first(n);
}
/* Return the lowest power of 2 that is >= n, or -1 if n == 0 */
inline static int
bit_ceiling(uint64_t n)
{
if (n == 0) {
return -1;
}
return bit_first(n - 1) + 1;
}
/* If n is a power of 2, bit_log2(n) == bit_floor(n) == bit_ceiling(n) */
#define bit_log2(n) bit_floor((uint64_t)(n))
typedef uint64_t bitmap_t;
inline static bool
atomic_bit_set(_Atomic bitmap_t *map, int n, int mem_order)
{
bitmap_t prev;
prev = __c11_atomic_fetch_or(map, BIT(n), mem_order);
return bit_test(prev, n);
}
inline static bool
atomic_bit_clear(_Atomic bitmap_t *map, int n, int mem_order)
{
bitmap_t prev;
prev = __c11_atomic_fetch_and(map, ~BIT(n), mem_order);
return bit_test(prev, n);
}
#define BITMAP_LEN(n) (((uint)(n) + 63) >> 6) /* Round to 64bit bitmap_t */
#define BITMAP_SIZE(n) (size_t)(BITMAP_LEN(n) << 3) /* Round to 64bit bitmap_t, then convert to bytes */
#define bitmap_bit(n) bits(n, 5, 0)
#define bitmap_index(n) bits(n, 63, 6)
inline static bitmap_t *
bitmap_zero(bitmap_t *map, uint nbits)
{
return (bitmap_t *)memset((void *)map, 0, BITMAP_SIZE(nbits));
}
inline static bitmap_t *
bitmap_full(bitmap_t *map, uint nbits)
{
uint i;
for (i = 0; i < bitmap_index(nbits - 1); i++) {
map[i] = ~((uint64_t)0);
}
uint nbits_filled = i * 64;
if (nbits > nbits_filled) {
map[i] = mask(nbits - nbits_filled);
}
return map;
}
inline static bool
bitmap_is_full(bitmap_t *map, uint nbits)
{
uint i;
for (i = 0; i < bitmap_index(nbits - 1); i++) {
if (map[i] != ~((uint64_t)0)) {
return false;
}
}
uint nbits_filled = i * 64;
if (nbits > nbits_filled) {
return map[i] == mask(nbits - nbits_filled);
}
return true;
}
inline static bitmap_t *
bitmap_alloc(uint nbits)
{
assert(nbits > 0);
bitmap_t *map = (bitmap_t *)kalloc(BITMAP_SIZE(nbits));
if (map) {
bitmap_zero(map, nbits);
}
return map;
}
inline static void
bitmap_free(bitmap_t *map, uint nbits)
{
assert(nbits > 0);
kfree(map, BITMAP_SIZE(nbits));
}
inline static void
bitmap_set(bitmap_t *map, uint n)
{
bit_set(map[bitmap_index(n)], bitmap_bit(n));
}
inline static void
bitmap_clear(bitmap_t *map, uint n)
{
bit_clear(map[bitmap_index(n)], bitmap_bit(n));
}
inline static bool
atomic_bitmap_set(_Atomic bitmap_t *map, uint n, int mem_order)
{
return atomic_bit_set(&map[bitmap_index(n)], bitmap_bit(n), mem_order);
}
inline static bool
atomic_bitmap_clear(_Atomic bitmap_t *map, uint n, int mem_order)
{
return atomic_bit_clear(&map[bitmap_index(n)], bitmap_bit(n), mem_order);
}
inline static bool
bitmap_test(const bitmap_t *map, uint n)
{
return bit_test(map[bitmap_index(n)], bitmap_bit(n));
}
inline static int
bitmap_first(bitmap_t *map, uint nbits)
{
for (int i = (int)bitmap_index(nbits - 1); i >= 0; i--) {
if (map[i] == 0) {
continue;
}
return (i << 6) + bit_first(map[i]);
}
return -1;
}
inline static void
bitmap_not(bitmap_t *out, const bitmap_t *in, uint nbits)
{
uint i;
for (i = 0; i < bitmap_index(nbits - 1); i++) {
out[i] = ~in[i];
}
uint nbits_complete = i * 64;
if (nbits > nbits_complete) {
out[i] = ~in[i] & mask(nbits - nbits_complete);
}
}
inline static void
bitmap_and(bitmap_t *out, const bitmap_t *in1, const bitmap_t *in2, uint nbits)
{
for (uint i = 0; i <= bitmap_index(nbits - 1); i++) {
out[i] = in1[i] & in2[i];
}
}
inline static void
bitmap_and_not(bitmap_t *out, const bitmap_t *in1, const bitmap_t *in2, uint nbits)
{
uint i;
for (i = 0; i < bitmap_index(nbits - 1); i++) {
out[i] = in1[i] & ~in2[i];
}
uint nbits_complete = i * 64;
if (nbits > nbits_complete) {
out[i] = (in1[i] & ~in2[i]) & mask(nbits - nbits_complete);
}
}
inline static bool
bitmap_equal(const bitmap_t *in1, const bitmap_t *in2, uint nbits)
{
for (uint i = 0; i <= bitmap_index(nbits - 1); i++) {
if (in1[i] != in2[i]) {
return false;
}
}
return true;
}
inline static int
bitmap_and_not_mask_first(bitmap_t *map, bitmap_t *mask, uint nbits)
{
for (int i = (int)bitmap_index(nbits - 1); i >= 0; i--) {
if ((map[i] & ~mask[i]) == 0) {
continue;
}
return (i << 6) + bit_first(map[i] & ~mask[i]);
}
return -1;
}
inline static int
bitmap_lsb_first(const bitmap_t *map, uint nbits)
{
for (uint i = 0; i <= bitmap_index(nbits - 1); i++) {
if (map[i] == 0) {
continue;
}
return (int)((i << 6) + (uint32_t)lsb_first(map[i]));
}
return -1;
}
inline static int
bitmap_next(const bitmap_t *map, uint prev)
{
if (prev == 0) {
return -1;
}
int64_t i = bitmap_index(prev - 1);
int res = __bit_next(map[i], bits(prev, 5, 0));
if (res >= 0) {
return (int)(res + (i << 6));
}
for (i = i - 1; i >= 0; i--) {
if (map[i] == 0) {
continue;
}
return (int)((i << 6) + bit_first(map[i]));
}
return -1;
}
inline static int
bitmap_lsb_next(const bitmap_t *map, uint nbits, uint prev)
{
if ((prev + 1) >= nbits) {
return -1;
}
uint64_t i = bitmap_index(prev + 1);
uint b = bits((prev + 1), 5, 0) - 1;
int32_t res = lsb_next((uint64_t)map[i], (int)b);
if (res >= 0) {
return (int)((uint64_t)res + (i << 6));
}
for (i = i + 1; i <= bitmap_index(nbits - 1); i++) {
if (map[i] == 0) {
continue;
}
return (int)((i << 6) + (uint64_t)lsb_first(map[i]));
}
return -1;
}
#endif