darling-xnu/osfmk/kern/gzalloc.c
2023-05-16 21:41:14 -07:00

656 lines
20 KiB
C

/*
* Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* File: kern/gzalloc.c
* Author: Derek Kumar
*
* "Guard mode" zone allocator, used to trap use-after-free errors,
* overruns, underruns, mismatched allocations/frees, uninitialized
* zone element use, timing dependent races etc.
*
* The allocator is configured by these boot-args:
* gzalloc_size=<size>: target all zones with elements of <size> bytes
* gzalloc_min=<size>: target zones with elements >= size
* gzalloc_max=<size>: target zones with elements <= size
* gzalloc_min/max can be specified in conjunction to target a range of
* sizes
* gzalloc_fc_size=<size>: number of zone elements (effectively page
* multiple sized) to retain in the free VA cache. This cache is evicted
* (backing pages and VA released) in a least-recently-freed fashion.
* Larger free VA caches allow for a longer window of opportunity to trap
* delayed use-after-free operations, but use more memory.
* -gzalloc_wp: Write protect, rather than unmap, freed allocations
* lingering in the free VA cache. Useful to disambiguate between
* read-after-frees/read overruns and writes. Also permits direct inspection
* of the freed element in the cache via the kernel debugger. As each
* element has a "header" (trailer in underflow detection mode), the zone
* of origin of the element can be easily determined in this mode.
* -gzalloc_uf_mode: Underflow detection mode, where the guard page
* adjoining each element is placed *before* the element page rather than
* after. The element is also located at the top of the page, rather than
* abutting the bottom as with the standard overflow detection mode.
* -gzalloc_noconsistency: disable consistency checks that flag mismatched
* frees, corruptions of the header/trailer signatures etc.
* -nogzalloc_mode: Disables the guard mode allocator. The DEBUG kernel
* enables the guard allocator for zones sized 1K (if present) by
* default, this option can disable that behaviour.
* gzname=<name> target a zone by name. Can be coupled with size-based
* targeting. Naming conventions match those of the zlog boot-arg, i.e.
* "a period in the logname will match a space in the zone name"
* -gzalloc_no_dfree_check Eliminate double free checks
* gzalloc_zscale=<value> specify size multiplier for the dedicated gzalloc submap
*/
#include <mach/mach_types.h>
#include <mach/vm_param.h>
#include <mach/kern_return.h>
#include <mach/machine/vm_types.h>
#include <mach_debug/zone_info.h>
#include <mach/vm_map.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/sched.h>
#include <kern/locks.h>
#include <kern/misc_protos.h>
#include <kern/zalloc_internal.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <pexpert/pexpert.h>
#include <machine/machparam.h>
#include <libkern/OSDebug.h>
#include <libkern/OSAtomic.h>
#include <sys/kdebug.h>
boolean_t gzalloc_mode = FALSE;
uint32_t pdzalloc_count, pdzfree_count;
#define GZALLOC_MIN_DEFAULT (1024)
#define GZDEADZONE ((zone_t) 0xDEAD201E)
#define GZALLOC_SIGNATURE (0xABADCAFE)
#define GZALLOC_RESERVE_SIZE_DEFAULT (2 * 1024 * 1024)
#define GZFC_DEFAULT_SIZE (1536)
char gzalloc_fill_pattern = 0x67; /* 'g' */
uint32_t gzalloc_min = ~0U;
uint32_t gzalloc_max = 0;
uint32_t gzalloc_size = 0;
uint64_t gzalloc_allocated, gzalloc_freed, gzalloc_early_alloc, gzalloc_early_free, gzalloc_wasted;
boolean_t gzalloc_uf_mode = FALSE, gzalloc_consistency_checks = TRUE, gzalloc_dfree_check = TRUE;
vm_prot_t gzalloc_prot = VM_PROT_NONE;
uint32_t gzalloc_guard = KMA_GUARD_LAST;
uint32_t gzfc_size = GZFC_DEFAULT_SIZE;
uint32_t gzalloc_zonemap_scale = 6;
vm_map_t gzalloc_map;
vm_offset_t gzalloc_map_min, gzalloc_map_max;
vm_offset_t gzalloc_reserve;
vm_size_t gzalloc_reserve_size;
typedef struct gzalloc_header {
zone_t gzone;
uint32_t gzsize;
uint32_t gzsig;
} gzhdr_t;
#define GZHEADER_SIZE (sizeof(gzhdr_t))
extern zone_t vm_page_zone;
static zone_t gztrackzone = NULL;
static char gznamedzone[MAX_ZONE_NAME] = "";
boolean_t
gzalloc_enabled(void)
{
return gzalloc_mode;
}
void
gzalloc_zone_init(zone_t z)
{
if (gzalloc_mode == 0) {
return;
}
bzero(&z->gz, sizeof(z->gz));
if (track_this_zone(z->z_name, gznamedzone)) {
gztrackzone = z;
}
if (!z->gzalloc_exempt) {
z->gzalloc_tracked = (z == gztrackzone) ||
((zone_elem_size(z) >= gzalloc_min) && (zone_elem_size(z) <= gzalloc_max));
}
if (gzfc_size && z->gzalloc_tracked) {
vm_size_t gzfcsz = round_page(sizeof(*z->gz.gzfc) * gzfc_size);
kern_return_t kr;
/* If the VM/kmem system aren't yet configured, carve
* out the free element cache structure directly from the
* gzalloc_reserve supplied by the pmap layer.
*/
if (__improbable(startup_phase < STARTUP_SUB_KMEM)) {
if (gzalloc_reserve_size < gzfcsz) {
panic("gzalloc reserve exhausted");
}
z->gz.gzfc = (vm_offset_t *)gzalloc_reserve;
gzalloc_reserve += gzfcsz;
gzalloc_reserve_size -= gzfcsz;
bzero(z->gz.gzfc, gzfcsz);
} else {
kr = kernel_memory_allocate(kernel_map,
(vm_offset_t *)&z->gz.gzfc, gzfcsz, 0,
KMA_KOBJECT | KMA_ZERO, VM_KERN_MEMORY_OSFMK);
if (kr != KERN_SUCCESS) {
panic("%s: kernel_memory_allocate failed (%d) for 0x%lx bytes",
__func__, kr, (unsigned long)gzfcsz);
}
}
}
}
/* Called by zdestroy() to dump the free cache elements so the zone count can drop to zero. */
void
gzalloc_empty_free_cache(zone_t zone)
{
kern_return_t kr;
int freed_elements = 0;
vm_offset_t free_addr = 0;
vm_offset_t rounded_size = round_page(zone_elem_size(zone) + GZHEADER_SIZE);
vm_offset_t gzfcsz = round_page(sizeof(*zone->gz.gzfc) * gzfc_size);
vm_offset_t gzfc_copy;
assert(zone->gzalloc_tracked); // the caller is responsible for checking
kr = kmem_alloc(kernel_map, &gzfc_copy, gzfcsz, VM_KERN_MEMORY_OSFMK);
if (kr != KERN_SUCCESS) {
panic("gzalloc_empty_free_cache: kmem_alloc: 0x%x", kr);
}
/* Reset gzalloc_data. */
zone_lock(zone);
memcpy((void *)gzfc_copy, (void *)zone->gz.gzfc, gzfcsz);
bzero((void *)zone->gz.gzfc, gzfcsz);
zone->gz.gzfc_index = 0;
zone_unlock(zone);
/* Free up all the cached elements. */
for (uint32_t index = 0; index < gzfc_size; index++) {
free_addr = ((vm_offset_t *)gzfc_copy)[index];
if (free_addr && free_addr >= gzalloc_map_min && free_addr < gzalloc_map_max) {
kr = vm_map_remove(gzalloc_map, free_addr,
free_addr + rounded_size + (1 * PAGE_SIZE),
VM_MAP_REMOVE_KUNWIRE);
if (kr != KERN_SUCCESS) {
panic("gzalloc_empty_free_cache: vm_map_remove: %p, 0x%x", (void *)free_addr, kr);
}
OSAddAtomic64((SInt32)rounded_size, &gzalloc_freed);
OSAddAtomic64(-((SInt32) (rounded_size - zone_elem_size(zone))), &gzalloc_wasted);
freed_elements++;
}
}
/*
* TODO: Consider freeing up zone->gz.gzfc as well if it didn't come from the gzalloc_reserve pool.
* For now we're reusing this buffer across zdestroy's. We would have to allocate it again on a
* subsequent zinit() as well.
*/
/* Decrement zone counters. */
zone_lock(zone);
zone->z_elems_free += freed_elements;
zone->z_wired_cur -= freed_elements;
zone_unlock(zone);
kmem_free(kernel_map, gzfc_copy, gzfcsz);
}
__startup_func
static void
gzalloc_configure(void)
{
#if !KASAN_ZALLOC
char temp_buf[16];
if (PE_parse_boot_argn("-gzalloc_mode", temp_buf, sizeof(temp_buf))) {
gzalloc_mode = TRUE;
gzalloc_min = GZALLOC_MIN_DEFAULT;
gzalloc_max = ~0U;
}
if (PE_parse_boot_argn("gzalloc_min", &gzalloc_min, sizeof(gzalloc_min))) {
gzalloc_mode = TRUE;
gzalloc_max = ~0U;
}
if (PE_parse_boot_argn("gzalloc_max", &gzalloc_max, sizeof(gzalloc_max))) {
gzalloc_mode = TRUE;
if (gzalloc_min == ~0U) {
gzalloc_min = 0;
}
}
if (PE_parse_boot_argn("gzalloc_size", &gzalloc_size, sizeof(gzalloc_size))) {
gzalloc_min = gzalloc_max = gzalloc_size;
gzalloc_mode = TRUE;
}
(void)PE_parse_boot_argn("gzalloc_fc_size", &gzfc_size, sizeof(gzfc_size));
if (PE_parse_boot_argn("-gzalloc_wp", temp_buf, sizeof(temp_buf))) {
gzalloc_prot = VM_PROT_READ;
}
if (PE_parse_boot_argn("-gzalloc_uf_mode", temp_buf, sizeof(temp_buf))) {
gzalloc_uf_mode = TRUE;
gzalloc_guard = KMA_GUARD_FIRST;
}
if (PE_parse_boot_argn("-gzalloc_no_dfree_check", temp_buf, sizeof(temp_buf))) {
gzalloc_dfree_check = FALSE;
}
(void) PE_parse_boot_argn("gzalloc_zscale", &gzalloc_zonemap_scale, sizeof(gzalloc_zonemap_scale));
if (PE_parse_boot_argn("-gzalloc_noconsistency", temp_buf, sizeof(temp_buf))) {
gzalloc_consistency_checks = FALSE;
}
if (PE_parse_boot_argn("gzname", gznamedzone, sizeof(gznamedzone))) {
gzalloc_mode = TRUE;
}
#if DEBUG
if (gzalloc_mode == FALSE) {
gzalloc_min = 1024;
gzalloc_max = 1024;
strlcpy(gznamedzone, "pmap", sizeof(gznamedzone));
gzalloc_prot = VM_PROT_READ;
gzalloc_mode = TRUE;
}
#endif
if (PE_parse_boot_argn("-nogzalloc_mode", temp_buf, sizeof(temp_buf))) {
gzalloc_mode = FALSE;
}
if (gzalloc_mode) {
gzalloc_reserve_size = GZALLOC_RESERVE_SIZE_DEFAULT;
gzalloc_reserve = (vm_offset_t) pmap_steal_memory(gzalloc_reserve_size);
}
#endif
}
STARTUP(PMAP_STEAL, STARTUP_RANK_FIRST, gzalloc_configure);
void
gzalloc_init(vm_size_t max_zonemap_size)
{
kern_return_t retval;
if (gzalloc_mode) {
vm_map_kernel_flags_t vmk_flags;
vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
vmk_flags.vmkf_permanent = TRUE;
retval = kmem_suballoc(kernel_map, &gzalloc_map_min, (max_zonemap_size * gzalloc_zonemap_scale),
FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE,
&gzalloc_map);
if (retval != KERN_SUCCESS) {
panic("zone_init: kmem_suballoc(gzalloc_map, 0x%lx, %u) failed",
max_zonemap_size, gzalloc_zonemap_scale);
}
gzalloc_map_max = gzalloc_map_min + (max_zonemap_size * gzalloc_zonemap_scale);
}
}
vm_offset_t
gzalloc_alloc(zone_t zone, zone_stats_t zstats, zalloc_flags_t flags)
{
vm_offset_t addr = 0;
assert(zone->gzalloc_tracked); // the caller is responsible for checking
if (get_preemption_level() != 0) {
if (flags & Z_NOWAIT) {
return 0;
}
pdzalloc_count++;
}
bool kmem_ready = (startup_phase >= STARTUP_SUB_KMEM);
vm_offset_t rounded_size = round_page(zone_elem_size(zone) + GZHEADER_SIZE);
vm_offset_t residue = rounded_size - zone_elem_size(zone);
vm_offset_t gzaddr = 0;
gzhdr_t *gzh, *gzhcopy = NULL;
bool new_va = false;
if (!kmem_ready || (vm_page_zone == ZONE_NULL)) {
/* Early allocations are supplied directly from the
* reserve.
*/
if (gzalloc_reserve_size < (rounded_size + PAGE_SIZE)) {
panic("gzalloc reserve exhausted");
}
gzaddr = gzalloc_reserve;
/* No guard page for these early allocations, just
* waste an additional page.
*/
gzalloc_reserve += rounded_size + PAGE_SIZE;
gzalloc_reserve_size -= rounded_size + PAGE_SIZE;
OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_alloc);
} else {
kern_return_t kr = kernel_memory_allocate(gzalloc_map,
&gzaddr, rounded_size + (1 * PAGE_SIZE),
0, KMA_KOBJECT | KMA_ATOMIC | gzalloc_guard,
VM_KERN_MEMORY_OSFMK);
if (kr != KERN_SUCCESS) {
panic("gzalloc: kernel_memory_allocate for size 0x%llx failed with %d",
(uint64_t)rounded_size, kr);
}
new_va = true;
}
if (gzalloc_uf_mode) {
gzaddr += PAGE_SIZE;
/* The "header" becomes a "footer" in underflow
* mode.
*/
gzh = (gzhdr_t *) (gzaddr + zone_elem_size(zone));
addr = gzaddr;
gzhcopy = (gzhdr_t *) (gzaddr + rounded_size - sizeof(gzhdr_t));
} else {
gzh = (gzhdr_t *) (gzaddr + residue - GZHEADER_SIZE);
addr = (gzaddr + residue);
}
if (zone->z_free_zeroes) {
bzero((void *)gzaddr, rounded_size);
} else {
/* Fill with a pattern on allocation to trap uninitialized
* data use. Since the element size may be "rounded up"
* by higher layers such as the kalloc layer, this may
* also identify overruns between the originally requested
* size and the rounded size via visual inspection.
* TBD: plumb through the originally requested size,
* prior to rounding by kalloc/IOMalloc etc.
* We also add a signature and the zone of origin in a header
* prefixed to the allocation.
*/
memset((void *)gzaddr, gzalloc_fill_pattern, rounded_size);
}
gzh->gzone = (kmem_ready && vm_page_zone) ? zone : GZDEADZONE;
gzh->gzsize = (uint32_t)zone_elem_size(zone);
gzh->gzsig = GZALLOC_SIGNATURE;
/* In underflow detection mode, stash away a copy of the
* metadata at the edge of the allocated range, for
* retrieval by gzalloc_element_size()
*/
if (gzhcopy) {
*gzhcopy = *gzh;
}
zone_lock(zone);
assert(zone->z_self == zone);
zone->z_elems_free--;
if (new_va) {
zone->z_va_cur += 1;
}
zone->z_wired_cur += 1;
zpercpu_get(zstats)->zs_mem_allocated += rounded_size;
zone_unlock(zone);
OSAddAtomic64((SInt32) rounded_size, &gzalloc_allocated);
OSAddAtomic64((SInt32) (rounded_size - zone_elem_size(zone)), &gzalloc_wasted);
return addr;
}
void
gzalloc_free(zone_t zone, zone_stats_t zstats, void *addr)
{
kern_return_t kr;
assert(zone->gzalloc_tracked); // the caller is responsible for checking
gzhdr_t *gzh;
vm_offset_t rounded_size = round_page(zone_elem_size(zone) + GZHEADER_SIZE);
vm_offset_t residue = rounded_size - zone_elem_size(zone);
vm_offset_t saddr;
vm_offset_t free_addr = 0;
if (gzalloc_uf_mode) {
gzh = (gzhdr_t *)((vm_offset_t)addr + zone_elem_size(zone));
saddr = (vm_offset_t) addr - PAGE_SIZE;
} else {
gzh = (gzhdr_t *)((vm_offset_t)addr - GZHEADER_SIZE);
saddr = ((vm_offset_t)addr) - residue;
}
if ((saddr & PAGE_MASK) != 0) {
panic("%s: invalid address supplied: "
"%p (adjusted: 0x%lx) for zone with element sized 0x%lx\n",
__func__, addr, saddr, zone_elem_size(zone));
}
if (gzfc_size && gzalloc_dfree_check) {
zone_lock(zone);
assert(zone->z_self == zone);
for (uint32_t gd = 0; gd < gzfc_size; gd++) {
if (zone->gz.gzfc[gd] != saddr) {
continue;
}
panic("%s: double free detected, freed address: 0x%lx, "
"current free cache index: %d, freed index: %d",
__func__, saddr, zone->gz.gzfc_index, gd);
}
zone_unlock(zone);
}
if (gzalloc_consistency_checks) {
if (gzh->gzsig != GZALLOC_SIGNATURE) {
panic("GZALLOC signature mismatch for element %p, "
"expected 0x%x, found 0x%x",
addr, GZALLOC_SIGNATURE, gzh->gzsig);
}
if (gzh->gzone != zone && (gzh->gzone != GZDEADZONE)) {
panic("%s: Mismatched zone or under/overflow, "
"current zone: %p, recorded zone: %p, address: %p",
__func__, zone, gzh->gzone, (void *)addr);
}
/* Partially redundant given the zone check, but may flag header corruption */
if (gzh->gzsize != zone_elem_size(zone)) {
panic("Mismatched zfree or under/overflow for zone %p, "
"recorded size: 0x%x, element size: 0x%x, address: %p",
zone, gzh->gzsize, (uint32_t)zone_elem_size(zone), (void *)addr);
}
char *gzc, *checkstart, *checkend;
if (gzalloc_uf_mode) {
checkstart = (char *) ((uintptr_t) gzh + sizeof(gzh));
checkend = (char *) ((((vm_offset_t)addr) & ~PAGE_MASK) + PAGE_SIZE);
} else {
checkstart = (char *) trunc_page_64(addr);
checkend = (char *)gzh;
}
for (gzc = checkstart; gzc < checkend; gzc++) {
if (*gzc == gzalloc_fill_pattern) {
continue;
}
panic("%s: detected over/underflow, byte at %p, element %p, "
"contents 0x%x from 0x%lx byte sized zone (%s%s) "
"doesn't match fill pattern (%c)",
__func__, gzc, addr, *gzc, zone_elem_size(zone),
zone_heap_name(zone), zone->z_name, gzalloc_fill_pattern);
}
}
if ((startup_phase < STARTUP_SUB_KMEM) || gzh->gzone == GZDEADZONE) {
/* For now, just leak frees of early allocations
* performed before kmem is fully configured.
* They don't seem to get freed currently;
* consider ml_static_mfree in the future.
*/
OSAddAtomic64((SInt32) (rounded_size), &gzalloc_early_free);
return;
}
if (get_preemption_level() != 0) {
pdzfree_count++;
}
if (gzfc_size) {
/* Either write protect or unmap the newly freed
* allocation
*/
kr = vm_map_protect(gzalloc_map, saddr,
saddr + rounded_size + (1 * PAGE_SIZE),
gzalloc_prot, FALSE);
if (kr != KERN_SUCCESS) {
panic("%s: vm_map_protect: %p, 0x%x", __func__, (void *)saddr, kr);
}
} else {
free_addr = saddr;
}
zone_lock(zone);
assert(zone->z_self == zone);
/* Insert newly freed element into the protected free element
* cache, and rotate out the LRU element.
*/
if (gzfc_size) {
if (zone->gz.gzfc_index >= gzfc_size) {
zone->gz.gzfc_index = 0;
}
free_addr = zone->gz.gzfc[zone->gz.gzfc_index];
zone->gz.gzfc[zone->gz.gzfc_index++] = saddr;
}
if (free_addr) {
zone->z_elems_free++;
zone->z_wired_cur -= 1;
}
zpercpu_get(zstats)->zs_mem_freed += rounded_size;
zone_unlock(zone);
if (free_addr) {
// TODO: consider using physical reads to check for
// corruption while on the protected freelist
// (i.e. physical corruption)
kr = vm_map_remove(gzalloc_map, free_addr,
free_addr + rounded_size + (1 * PAGE_SIZE),
VM_MAP_REMOVE_KUNWIRE);
if (kr != KERN_SUCCESS) {
panic("gzfree: vm_map_remove: %p, 0x%x", (void *)free_addr, kr);
}
// TODO: sysctl-ize for quick reference
OSAddAtomic64((SInt32)rounded_size, &gzalloc_freed);
OSAddAtomic64(-((SInt32) (rounded_size - zone_elem_size(zone))),
&gzalloc_wasted);
}
}
boolean_t
gzalloc_element_size(void *gzaddr, zone_t *z, vm_size_t *gzsz)
{
uintptr_t a = (uintptr_t)gzaddr;
if (__improbable(gzalloc_mode && (a >= gzalloc_map_min) && (a < gzalloc_map_max))) {
gzhdr_t *gzh;
boolean_t vmef;
vm_map_entry_t gzvme = NULL;
vm_map_lock_read(gzalloc_map);
vmef = vm_map_lookup_entry(gzalloc_map, (vm_map_offset_t)a, &gzvme);
vm_map_unlock(gzalloc_map);
if (vmef == FALSE) {
panic("GZALLOC: unable to locate map entry for %p\n", (void *)a);
}
assertf(gzvme->vme_atomic != 0, "GZALLOC: VM map entry inconsistency, "
"vme: %p, start: %llu end: %llu", gzvme, gzvme->vme_start, gzvme->vme_end);
/* Locate the gzalloc metadata adjoining the element */
if (gzalloc_uf_mode == TRUE) {
/* In underflow detection mode, locate the map entry describing
* the element, and then locate the copy of the gzalloc
* header at the trailing edge of the range.
*/
gzh = (gzhdr_t *)(gzvme->vme_end - GZHEADER_SIZE);
} else {
/* In overflow detection mode, scan forward from
* the base of the map entry to locate the
* gzalloc header.
*/
uint32_t *p = (uint32_t*) gzvme->vme_start;
while (p < (uint32_t *) gzvme->vme_end) {
if (*p == GZALLOC_SIGNATURE) {
break;
} else {
p++;
}
}
if (p >= (uint32_t *) gzvme->vme_end) {
panic("GZALLOC signature missing addr %p, zone %p", gzaddr, z);
}
p++;
uintptr_t q = (uintptr_t) p;
gzh = (gzhdr_t *) (q - sizeof(gzhdr_t));
}
if (gzh->gzsig != GZALLOC_SIGNATURE) {
panic("GZALLOC signature mismatch for element %p, expected 0x%x, found 0x%x",
(void *)a, GZALLOC_SIGNATURE, gzh->gzsig);
}
*gzsz = zone_elem_size(gzh->gzone);
if (__improbable(!gzh->gzone->gzalloc_tracked)) {
panic("GZALLOC: zone mismatch (%p)\n", gzh->gzone);
}
if (z) {
*z = gzh->gzone;
}
return TRUE;
} else {
return FALSE;
}
}