darling-xnu/osfmk/kern/host.c
2023-05-16 21:41:14 -07:00

1418 lines
41 KiB
C

/*
* Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
*/
/*
* host.c
*
* Non-ipc host functions.
*/
#include <mach/mach_types.h>
#include <mach/boolean.h>
#include <mach/host_info.h>
#include <mach/host_special_ports.h>
#include <mach/kern_return.h>
#include <mach/machine.h>
#include <mach/port.h>
#include <mach/processor_info.h>
#include <mach/vm_param.h>
#include <mach/processor.h>
#include <mach/mach_host_server.h>
#include <mach/host_priv_server.h>
#include <mach/vm_map.h>
#include <mach/task_info.h>
#include <machine/commpage.h>
#include <machine/cpu_capabilities.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/kalloc.h>
#include <kern/host.h>
#include <kern/host_statistics.h>
#include <kern/ipc_host.h>
#include <kern/misc_protos.h>
#include <kern/sched.h>
#include <kern/processor.h>
#include <kern/mach_node.h> // mach_node_port_changed()
#include <vm/vm_map.h>
#include <vm/vm_purgeable_internal.h>
#include <vm/vm_pageout.h>
#include <IOKit/IOBSD.h> // IOTaskHasEntitlement
#include <IOKit/IOKitKeys.h> // DriverKit entitlement strings
#if CONFIG_ATM
#include <atm/atm_internal.h>
#endif
#if CONFIG_MACF
#include <security/mac_mach_internal.h>
#endif
#include <pexpert/pexpert.h>
SCALABLE_COUNTER_DEFINE(vm_statistics_zero_fill_count); /* # of zero fill pages */
SCALABLE_COUNTER_DEFINE(vm_statistics_reactivations); /* # of pages reactivated */
SCALABLE_COUNTER_DEFINE(vm_statistics_pageins); /* # of pageins */
SCALABLE_COUNTER_DEFINE(vm_statistics_pageouts); /* # of pageouts */
SCALABLE_COUNTER_DEFINE(vm_statistics_faults); /* # of faults */
SCALABLE_COUNTER_DEFINE(vm_statistics_cow_faults); /* # of copy-on-writes */
SCALABLE_COUNTER_DEFINE(vm_statistics_lookups); /* object cache lookups */
SCALABLE_COUNTER_DEFINE(vm_statistics_hits); /* object cache hits */
SCALABLE_COUNTER_DEFINE(vm_statistics_purges); /* # of pages purged */
SCALABLE_COUNTER_DEFINE(vm_statistics_decompressions); /* # of pages decompressed */
SCALABLE_COUNTER_DEFINE(vm_statistics_compressions); /* # of pages compressed */
SCALABLE_COUNTER_DEFINE(vm_statistics_swapins); /* # of pages swapped in (via compression segments) */
SCALABLE_COUNTER_DEFINE(vm_statistics_swapouts); /* # of pages swapped out (via compression segments) */
SCALABLE_COUNTER_DEFINE(vm_statistics_total_uncompressed_pages_in_compressor); /* # of pages (uncompressed) held within the compressor. */
SCALABLE_COUNTER_DEFINE(vm_page_grab_count);
host_data_t realhost;
static void
get_host_vm_stats(vm_statistics64_t out)
{
out->zero_fill_count = counter_load(&vm_statistics_zero_fill_count);
out->reactivations = counter_load(&vm_statistics_reactivations);
out->pageins = counter_load(&vm_statistics_pageins);
out->pageouts = counter_load(&vm_statistics_pageouts);
out->faults = counter_load(&vm_statistics_faults);
out->cow_faults = counter_load(&vm_statistics_cow_faults);
out->lookups = counter_load(&vm_statistics_lookups);
out->hits = counter_load(&vm_statistics_hits);
out->compressions = counter_load(&vm_statistics_compressions);
out->decompressions = counter_load(&vm_statistics_decompressions);
out->swapins = counter_load(&vm_statistics_swapins);
out->swapouts = counter_load(&vm_statistics_swapouts);
}
vm_extmod_statistics_data_t host_extmod_statistics;
kern_return_t
host_processors(host_priv_t host_priv, processor_array_t * out_array, mach_msg_type_number_t * countp)
{
if (host_priv == HOST_PRIV_NULL) {
return KERN_INVALID_ARGUMENT;
}
unsigned int count = processor_count;
assert(count != 0);
static_assert(sizeof(mach_port_t) == sizeof(processor_t));
mach_port_t* ports = kalloc((vm_size_t)(count * sizeof(mach_port_t)));
if (!ports) {
return KERN_RESOURCE_SHORTAGE;
}
for (unsigned int i = 0; i < count; i++) {
processor_t processor = processor_array[i];
assert(processor != PROCESSOR_NULL);
/* do the conversion that Mig should handle */
ipc_port_t processor_port = convert_processor_to_port(processor);
ports[i] = processor_port;
}
*countp = count;
*out_array = (processor_array_t)ports;
return KERN_SUCCESS;
}
extern int sched_allow_NO_SMT_threads;
kern_return_t
host_info(host_t host, host_flavor_t flavor, host_info_t info, mach_msg_type_number_t * count)
{
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
switch (flavor) {
case HOST_BASIC_INFO: {
host_basic_info_t basic_info;
int master_id = master_processor->cpu_id;
/*
* Basic information about this host.
*/
if (*count < HOST_BASIC_INFO_OLD_COUNT) {
return KERN_FAILURE;
}
basic_info = (host_basic_info_t)info;
basic_info->memory_size = machine_info.memory_size;
basic_info->cpu_type = slot_type(master_id);
basic_info->cpu_subtype = slot_subtype(master_id);
basic_info->max_cpus = machine_info.max_cpus;
#if defined(__x86_64__)
if (sched_allow_NO_SMT_threads && current_task()->t_flags & TF_NO_SMT) {
basic_info->avail_cpus = primary_processor_avail_count_user;
} else {
basic_info->avail_cpus = processor_avail_count_user;
}
#else
basic_info->avail_cpus = processor_avail_count;
#endif
if (*count >= HOST_BASIC_INFO_COUNT) {
basic_info->cpu_threadtype = slot_threadtype(master_id);
basic_info->physical_cpu = machine_info.physical_cpu;
basic_info->physical_cpu_max = machine_info.physical_cpu_max;
#if defined(__x86_64__)
basic_info->logical_cpu = basic_info->avail_cpus;
#else
basic_info->logical_cpu = machine_info.logical_cpu;
#endif
basic_info->logical_cpu_max = machine_info.logical_cpu_max;
basic_info->max_mem = machine_info.max_mem;
*count = HOST_BASIC_INFO_COUNT;
} else {
*count = HOST_BASIC_INFO_OLD_COUNT;
}
return KERN_SUCCESS;
}
case HOST_SCHED_INFO: {
host_sched_info_t sched_info;
uint32_t quantum_time;
uint64_t quantum_ns;
/*
* Return scheduler information.
*/
if (*count < HOST_SCHED_INFO_COUNT) {
return KERN_FAILURE;
}
sched_info = (host_sched_info_t)info;
quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
sched_info->min_timeout = sched_info->min_quantum = (uint32_t)(quantum_ns / 1000 / 1000);
*count = HOST_SCHED_INFO_COUNT;
return KERN_SUCCESS;
}
case HOST_RESOURCE_SIZES: {
/*
* Return sizes of kernel data structures
*/
if (*count < HOST_RESOURCE_SIZES_COUNT) {
return KERN_FAILURE;
}
/* XXX Fail until ledgers are implemented */
return KERN_INVALID_ARGUMENT;
}
case HOST_PRIORITY_INFO: {
host_priority_info_t priority_info;
if (*count < HOST_PRIORITY_INFO_COUNT) {
return KERN_FAILURE;
}
priority_info = (host_priority_info_t)info;
priority_info->kernel_priority = MINPRI_KERNEL;
priority_info->system_priority = MINPRI_KERNEL;
priority_info->server_priority = MINPRI_RESERVED;
priority_info->user_priority = BASEPRI_DEFAULT;
priority_info->depress_priority = DEPRESSPRI;
priority_info->idle_priority = IDLEPRI;
priority_info->minimum_priority = MINPRI_USER;
priority_info->maximum_priority = MAXPRI_RESERVED;
*count = HOST_PRIORITY_INFO_COUNT;
return KERN_SUCCESS;
}
/*
* Gestalt for various trap facilities.
*/
case HOST_MACH_MSG_TRAP:
case HOST_SEMAPHORE_TRAPS: {
*count = 0;
return KERN_SUCCESS;
}
case HOST_CAN_HAS_DEBUGGER: {
host_can_has_debugger_info_t can_has_debugger_info;
if (*count < HOST_CAN_HAS_DEBUGGER_COUNT) {
return KERN_FAILURE;
}
can_has_debugger_info = (host_can_has_debugger_info_t)info;
can_has_debugger_info->can_has_debugger = PE_i_can_has_debugger(NULL);
*count = HOST_CAN_HAS_DEBUGGER_COUNT;
return KERN_SUCCESS;
}
case HOST_VM_PURGABLE: {
if (*count < HOST_VM_PURGABLE_COUNT) {
return KERN_FAILURE;
}
vm_purgeable_stats((vm_purgeable_info_t)info, NULL);
*count = HOST_VM_PURGABLE_COUNT;
return KERN_SUCCESS;
}
case HOST_DEBUG_INFO_INTERNAL: {
#if DEVELOPMENT || DEBUG
if (*count < HOST_DEBUG_INFO_INTERNAL_COUNT) {
return KERN_FAILURE;
}
host_debug_info_internal_t debug_info = (host_debug_info_internal_t)info;
bzero(debug_info, sizeof(host_debug_info_internal_data_t));
*count = HOST_DEBUG_INFO_INTERNAL_COUNT;
#if CONFIG_COALITIONS
debug_info->config_coalitions = 1;
#endif
debug_info->config_bank = 1;
#if CONFIG_ATM
debug_info->config_atm = 1;
#endif
#if CONFIG_CSR
debug_info->config_csr = 1;
#endif
return KERN_SUCCESS;
#else /* DEVELOPMENT || DEBUG */
return KERN_NOT_SUPPORTED;
#endif
}
case HOST_PREFERRED_USER_ARCH: {
host_preferred_user_arch_t user_arch_info;
/*
* Basic information about this host.
*/
if (*count < HOST_PREFERRED_USER_ARCH_COUNT) {
return KERN_FAILURE;
}
user_arch_info = (host_preferred_user_arch_t)info;
#if defined(PREFERRED_USER_CPU_TYPE) && defined(PREFERRED_USER_CPU_SUBTYPE)
cpu_type_t preferred_cpu_type;
cpu_subtype_t preferred_cpu_subtype;
if (!PE_get_default("kern.preferred_cpu_type", &preferred_cpu_type, sizeof(cpu_type_t))) {
preferred_cpu_type = PREFERRED_USER_CPU_TYPE;
}
if (!PE_get_default("kern.preferred_cpu_subtype", &preferred_cpu_subtype, sizeof(cpu_subtype_t))) {
preferred_cpu_subtype = PREFERRED_USER_CPU_SUBTYPE;
}
user_arch_info->cpu_type = preferred_cpu_type;
user_arch_info->cpu_subtype = preferred_cpu_subtype;
#else
int master_id = master_processor->cpu_id;
user_arch_info->cpu_type = slot_type(master_id);
user_arch_info->cpu_subtype = slot_subtype(master_id);
#endif
*count = HOST_PREFERRED_USER_ARCH_COUNT;
return KERN_SUCCESS;
}
default: return KERN_INVALID_ARGUMENT;
}
}
kern_return_t host_statistics(host_t host, host_flavor_t flavor, host_info_t info, mach_msg_type_number_t * count);
kern_return_t
host_statistics(host_t host, host_flavor_t flavor, host_info_t info, mach_msg_type_number_t * count)
{
if (host == HOST_NULL) {
return KERN_INVALID_HOST;
}
switch (flavor) {
case HOST_LOAD_INFO: {
host_load_info_t load_info;
if (*count < HOST_LOAD_INFO_COUNT) {
return KERN_FAILURE;
}
load_info = (host_load_info_t)info;
bcopy((char *)avenrun, (char *)load_info->avenrun, sizeof avenrun);
bcopy((char *)mach_factor, (char *)load_info->mach_factor, sizeof mach_factor);
*count = HOST_LOAD_INFO_COUNT;
return KERN_SUCCESS;
}
case HOST_VM_INFO: {
vm_statistics64_data_t host_vm_stat;
vm_statistics_t stat32;
mach_msg_type_number_t original_count;
if (*count < HOST_VM_INFO_REV0_COUNT) {
return KERN_FAILURE;
}
get_host_vm_stats(&host_vm_stat);
stat32 = (vm_statistics_t)info;
stat32->free_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_free_count + vm_page_speculative_count);
stat32->active_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_active_count);
if (vm_page_local_q) {
zpercpu_foreach(lq, vm_page_local_q) {
stat32->active_count += VM_STATISTICS_TRUNCATE_TO_32_BIT(lq->vpl_count);
}
}
stat32->inactive_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_inactive_count);
#if !XNU_TARGET_OS_OSX
stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count);
#else /* !XNU_TARGET_OS_OSX */
stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count);
#endif /* !XNU_TARGET_OS_OSX */
stat32->zero_fill_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.zero_fill_count);
stat32->reactivations = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.reactivations);
stat32->pageins = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageins);
stat32->pageouts = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageouts);
stat32->faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.faults);
stat32->cow_faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.cow_faults);
stat32->lookups = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.lookups);
stat32->hits = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.hits);
/*
* Fill in extra info added in later revisions of the
* vm_statistics data structure. Fill in only what can fit
* in the data structure the caller gave us !
*/
original_count = *count;
*count = HOST_VM_INFO_REV0_COUNT; /* rev0 already filled in */
if (original_count >= HOST_VM_INFO_REV1_COUNT) {
/* rev1 added "purgeable" info */
stat32->purgeable_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purgeable_count);
stat32->purges = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purged_count);
*count = HOST_VM_INFO_REV1_COUNT;
}
if (original_count >= HOST_VM_INFO_REV2_COUNT) {
/* rev2 added "speculative" info */
stat32->speculative_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_speculative_count);
*count = HOST_VM_INFO_REV2_COUNT;
}
/* rev3 changed some of the fields to be 64-bit*/
return KERN_SUCCESS;
}
case HOST_CPU_LOAD_INFO: {
host_cpu_load_info_t cpu_load_info;
if (*count < HOST_CPU_LOAD_INFO_COUNT) {
return KERN_FAILURE;
}
#define GET_TICKS_VALUE(state, ticks) \
MACRO_BEGIN cpu_load_info->cpu_ticks[(state)] += (uint32_t)(ticks / hz_tick_interval); \
MACRO_END
#define GET_TICKS_VALUE_FROM_TIMER(processor, state, timer) \
MACRO_BEGIN GET_TICKS_VALUE(state, timer_grab(&(processor)->timer)); \
MACRO_END
cpu_load_info = (host_cpu_load_info_t)info;
cpu_load_info->cpu_ticks[CPU_STATE_USER] = 0;
cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = 0;
cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
simple_lock(&processor_list_lock, LCK_GRP_NULL);
unsigned int pcount = processor_count;
for (unsigned int i = 0; i < pcount; i++) {
processor_t processor = processor_array[i];
assert(processor != PROCESSOR_NULL);
timer_t idle_state;
uint64_t idle_time_snapshot1, idle_time_snapshot2;
uint64_t idle_time_tstamp1, idle_time_tstamp2;
/* See discussion in processor_info(PROCESSOR_CPU_LOAD_INFO) */
GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_USER, user_state);
if (precise_user_kernel_time) {
GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_SYSTEM, system_state);
} else {
/* system_state may represent either sys or user */
GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_USER, system_state);
}
idle_state = &processor->idle_state;
idle_time_snapshot1 = timer_grab(idle_state);
idle_time_tstamp1 = idle_state->tstamp;
if (processor->current_state != idle_state) {
/* Processor is non-idle, so idle timer should be accurate */
GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_IDLE, idle_state);
} else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
(idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))) {
/* Idle timer is being updated concurrently, second stamp is good enough */
GET_TICKS_VALUE(CPU_STATE_IDLE, idle_time_snapshot2);
} else {
/*
* Idle timer may be very stale. Fortunately we have established
* that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
*/
idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
GET_TICKS_VALUE(CPU_STATE_IDLE, idle_time_snapshot1);
}
}
simple_unlock(&processor_list_lock);
*count = HOST_CPU_LOAD_INFO_COUNT;
return KERN_SUCCESS;
}
case HOST_EXPIRED_TASK_INFO: {
if (*count < TASK_POWER_INFO_COUNT) {
return KERN_FAILURE;
}
task_power_info_t tinfo1 = (task_power_info_t)info;
task_power_info_v2_t tinfo2 = (task_power_info_v2_t)info;
tinfo1->task_interrupt_wakeups = dead_task_statistics.task_interrupt_wakeups;
tinfo1->task_platform_idle_wakeups = dead_task_statistics.task_platform_idle_wakeups;
tinfo1->task_timer_wakeups_bin_1 = dead_task_statistics.task_timer_wakeups_bin_1;
tinfo1->task_timer_wakeups_bin_2 = dead_task_statistics.task_timer_wakeups_bin_2;
tinfo1->total_user = dead_task_statistics.total_user_time;
tinfo1->total_system = dead_task_statistics.total_system_time;
if (*count < TASK_POWER_INFO_V2_COUNT) {
*count = TASK_POWER_INFO_COUNT;
} else if (*count >= TASK_POWER_INFO_V2_COUNT) {
tinfo2->gpu_energy.task_gpu_utilisation = dead_task_statistics.task_gpu_ns;
#if defined(__arm__) || defined(__arm64__)
tinfo2->task_energy = dead_task_statistics.task_energy;
tinfo2->task_ptime = dead_task_statistics.total_ptime;
tinfo2->task_pset_switches = dead_task_statistics.total_pset_switches;
#endif
*count = TASK_POWER_INFO_V2_COUNT;
}
return KERN_SUCCESS;
}
default: return KERN_INVALID_ARGUMENT;
}
}
extern uint32_t c_segment_pages_compressed;
#define HOST_STATISTICS_TIME_WINDOW 1 /* seconds */
#define HOST_STATISTICS_MAX_REQUESTS 10 /* maximum number of requests per window */
#define HOST_STATISTICS_MIN_REQUESTS 2 /* minimum number of requests per window */
uint64_t host_statistics_time_window;
static LCK_GRP_DECLARE(host_statistics_lck_grp, "host_statistics");
static LCK_MTX_DECLARE(host_statistics_lck, &host_statistics_lck_grp);
#define HOST_VM_INFO64_REV0 0
#define HOST_VM_INFO64_REV1 1
#define HOST_EXTMOD_INFO64_REV0 2
#define HOST_LOAD_INFO_REV0 3
#define HOST_VM_INFO_REV0 4
#define HOST_VM_INFO_REV1 5
#define HOST_VM_INFO_REV2 6
#define HOST_CPU_LOAD_INFO_REV0 7
#define HOST_EXPIRED_TASK_INFO_REV0 8
#define HOST_EXPIRED_TASK_INFO_REV1 9
#define NUM_HOST_INFO_DATA_TYPES 10
static vm_statistics64_data_t host_vm_info64_rev0 = {};
static vm_statistics64_data_t host_vm_info64_rev1 = {};
static vm_extmod_statistics_data_t host_extmod_info64 = {};
static host_load_info_data_t host_load_info = {};
static vm_statistics_data_t host_vm_info_rev0 = {};
static vm_statistics_data_t host_vm_info_rev1 = {};
static vm_statistics_data_t host_vm_info_rev2 = {};
static host_cpu_load_info_data_t host_cpu_load_info = {};
static task_power_info_data_t host_expired_task_info = {};
static task_power_info_v2_data_t host_expired_task_info2 = {};
struct host_stats_cache {
uint64_t last_access;
uint64_t current_requests;
uint64_t max_requests;
uintptr_t data;
mach_msg_type_number_t count; //NOTE count is in sizeof(integer_t)
};
static struct host_stats_cache g_host_stats_cache[NUM_HOST_INFO_DATA_TYPES] = {
[HOST_VM_INFO64_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_vm_info64_rev0, .count = HOST_VM_INFO64_REV0_COUNT },
[HOST_VM_INFO64_REV1] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_vm_info64_rev1, .count = HOST_VM_INFO64_REV1_COUNT },
[HOST_EXTMOD_INFO64_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_extmod_info64, .count = HOST_EXTMOD_INFO64_COUNT },
[HOST_LOAD_INFO_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_load_info, .count = HOST_LOAD_INFO_COUNT },
[HOST_VM_INFO_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_vm_info_rev0, .count = HOST_VM_INFO_REV0_COUNT },
[HOST_VM_INFO_REV1] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_vm_info_rev1, .count = HOST_VM_INFO_REV1_COUNT },
[HOST_VM_INFO_REV2] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_vm_info_rev2, .count = HOST_VM_INFO_REV2_COUNT },
[HOST_CPU_LOAD_INFO_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_cpu_load_info, .count = HOST_CPU_LOAD_INFO_COUNT },
[HOST_EXPIRED_TASK_INFO_REV0] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_expired_task_info, .count = TASK_POWER_INFO_COUNT },
[HOST_EXPIRED_TASK_INFO_REV1] = { .last_access = 0, .current_requests = 0, .max_requests = 0, .data = (uintptr_t)&host_expired_task_info2, .count = TASK_POWER_INFO_V2_COUNT},
};
void
host_statistics_init(void)
{
nanoseconds_to_absolutetime((HOST_STATISTICS_TIME_WINDOW * NSEC_PER_SEC), &host_statistics_time_window);
}
static void
cache_host_statistics(int index, host_info64_t info)
{
if (index < 0 || index >= NUM_HOST_INFO_DATA_TYPES) {
return;
}
task_t task = current_task();
if (task->t_flags & TF_PLATFORM) {
return;
}
memcpy((void *)g_host_stats_cache[index].data, info, g_host_stats_cache[index].count * sizeof(integer_t));
return;
}
static void
get_cached_info(int index, host_info64_t info, mach_msg_type_number_t* count)
{
if (index < 0 || index >= NUM_HOST_INFO_DATA_TYPES) {
*count = 0;
return;
}
*count = g_host_stats_cache[index].count;
memcpy(info, (void *)g_host_stats_cache[index].data, g_host_stats_cache[index].count * sizeof(integer_t));
}
static int
get_host_info_data_index(bool is_stat64, host_flavor_t flavor, mach_msg_type_number_t* count, kern_return_t* ret)
{
switch (flavor) {
case HOST_VM_INFO64:
if (!is_stat64) {
*ret = KERN_INVALID_ARGUMENT;
return -1;
}
if (*count < HOST_VM_INFO64_REV0_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
if (*count >= HOST_VM_INFO64_REV1_COUNT) {
return HOST_VM_INFO64_REV1;
}
return HOST_VM_INFO64_REV0;
case HOST_EXTMOD_INFO64:
if (!is_stat64) {
*ret = KERN_INVALID_ARGUMENT;
return -1;
}
if (*count < HOST_EXTMOD_INFO64_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
return HOST_EXTMOD_INFO64_REV0;
case HOST_LOAD_INFO:
if (*count < HOST_LOAD_INFO_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
return HOST_LOAD_INFO_REV0;
case HOST_VM_INFO:
if (*count < HOST_VM_INFO_REV0_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
if (*count >= HOST_VM_INFO_REV2_COUNT) {
return HOST_VM_INFO_REV2;
}
if (*count >= HOST_VM_INFO_REV1_COUNT) {
return HOST_VM_INFO_REV1;
}
return HOST_VM_INFO_REV0;
case HOST_CPU_LOAD_INFO:
if (*count < HOST_CPU_LOAD_INFO_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
return HOST_CPU_LOAD_INFO_REV0;
case HOST_EXPIRED_TASK_INFO:
if (*count < TASK_POWER_INFO_COUNT) {
*ret = KERN_FAILURE;
return -1;
}
if (*count >= TASK_POWER_INFO_V2_COUNT) {
return HOST_EXPIRED_TASK_INFO_REV1;
}
return HOST_EXPIRED_TASK_INFO_REV0;
default:
*ret = KERN_INVALID_ARGUMENT;
return -1;
}
}
static bool
rate_limit_host_statistics(bool is_stat64, host_flavor_t flavor, host_info64_t info, mach_msg_type_number_t* count, kern_return_t* ret, int *pindex)
{
task_t task = current_task();
assert(task != kernel_task);
*ret = KERN_SUCCESS;
/* Access control only for third party applications */
if (task->t_flags & TF_PLATFORM) {
return FALSE;
}
/* Rate limit to HOST_STATISTICS_MAX_REQUESTS queries for each HOST_STATISTICS_TIME_WINDOW window of time */
bool rate_limited = FALSE;
bool set_last_access = TRUE;
/* there is a cache for every flavor */
int index = get_host_info_data_index(is_stat64, flavor, count, ret);
if (index == -1) {
goto out;
}
*pindex = index;
lck_mtx_lock(&host_statistics_lck);
if (g_host_stats_cache[index].last_access > mach_continuous_time() - host_statistics_time_window) {
set_last_access = FALSE;
if (g_host_stats_cache[index].current_requests++ >= g_host_stats_cache[index].max_requests) {
rate_limited = TRUE;
get_cached_info(index, info, count);
}
}
if (set_last_access) {
g_host_stats_cache[index].current_requests = 1;
/*
* select a random number of requests (included between HOST_STATISTICS_MIN_REQUESTS and HOST_STATISTICS_MAX_REQUESTS)
* to let query host_statistics.
* In this way it is not possible to infer looking at when the a cached copy changes if host_statistics was called on
* the provious window.
*/
g_host_stats_cache[index].max_requests = (mach_absolute_time() % (HOST_STATISTICS_MAX_REQUESTS - HOST_STATISTICS_MIN_REQUESTS + 1)) + HOST_STATISTICS_MIN_REQUESTS;
g_host_stats_cache[index].last_access = mach_continuous_time();
}
lck_mtx_unlock(&host_statistics_lck);
out:
return rate_limited;
}
kern_return_t
vm_stats(void *info, unsigned int *count)
{
vm_statistics64_data_t host_vm_stat;
mach_msg_type_number_t original_count;
unsigned int local_q_internal_count;
unsigned int local_q_external_count;
if (*count < HOST_VM_INFO64_REV0_COUNT) {
return KERN_FAILURE;
}
get_host_vm_stats(&host_vm_stat);
vm_statistics64_t stat = (vm_statistics64_t)info;
stat->free_count = vm_page_free_count + vm_page_speculative_count;
stat->active_count = vm_page_active_count;
local_q_internal_count = 0;
local_q_external_count = 0;
if (vm_page_local_q) {
zpercpu_foreach(lq, vm_page_local_q) {
stat->active_count += lq->vpl_count;
local_q_internal_count += lq->vpl_internal_count;
local_q_external_count += lq->vpl_external_count;
}
}
stat->inactive_count = vm_page_inactive_count;
#if !XNU_TARGET_OS_OSX
stat->wire_count = vm_page_wire_count;
#else /* !XNU_TARGET_OS_OSX */
stat->wire_count = vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count;
#endif /* !XNU_TARGET_OS_OSX */
stat->zero_fill_count = host_vm_stat.zero_fill_count;
stat->reactivations = host_vm_stat.reactivations;
stat->pageins = host_vm_stat.pageins;
stat->pageouts = host_vm_stat.pageouts;
stat->faults = host_vm_stat.faults;
stat->cow_faults = host_vm_stat.cow_faults;
stat->lookups = host_vm_stat.lookups;
stat->hits = host_vm_stat.hits;
stat->purgeable_count = vm_page_purgeable_count;
stat->purges = vm_page_purged_count;
stat->speculative_count = vm_page_speculative_count;
/*
* Fill in extra info added in later revisions of the
* vm_statistics data structure. Fill in only what can fit
* in the data structure the caller gave us !
*/
original_count = *count;
*count = HOST_VM_INFO64_REV0_COUNT; /* rev0 already filled in */
if (original_count >= HOST_VM_INFO64_REV1_COUNT) {
/* rev1 added "throttled count" */
stat->throttled_count = vm_page_throttled_count;
/* rev1 added "compression" info */
stat->compressor_page_count = VM_PAGE_COMPRESSOR_COUNT;
stat->compressions = host_vm_stat.compressions;
stat->decompressions = host_vm_stat.decompressions;
stat->swapins = host_vm_stat.swapins;
stat->swapouts = host_vm_stat.swapouts;
/* rev1 added:
* "external page count"
* "anonymous page count"
* "total # of pages (uncompressed) held in the compressor"
*/
stat->external_page_count = (vm_page_pageable_external_count + local_q_external_count);
stat->internal_page_count = (vm_page_pageable_internal_count + local_q_internal_count);
stat->total_uncompressed_pages_in_compressor = c_segment_pages_compressed;
*count = HOST_VM_INFO64_REV1_COUNT;
}
return KERN_SUCCESS;
}
kern_return_t host_statistics64(host_t host, host_flavor_t flavor, host_info_t info, mach_msg_type_number_t * count);
kern_return_t
host_statistics64(host_t host, host_flavor_t flavor, host_info64_t info, mach_msg_type_number_t * count)
{
if (host == HOST_NULL) {
return KERN_INVALID_HOST;
}
switch (flavor) {
case HOST_VM_INFO64: /* We were asked to get vm_statistics64 */
return vm_stats(info, count);
case HOST_EXTMOD_INFO64: /* We were asked to get vm_statistics64 */
{
vm_extmod_statistics_t out_extmod_statistics;
if (*count < HOST_EXTMOD_INFO64_COUNT) {
return KERN_FAILURE;
}
out_extmod_statistics = (vm_extmod_statistics_t)info;
*out_extmod_statistics = host_extmod_statistics;
*count = HOST_EXTMOD_INFO64_COUNT;
return KERN_SUCCESS;
}
default: /* If we didn't recognize the flavor, send to host_statistics */
return host_statistics(host, flavor, (host_info_t)info, count);
}
}
kern_return_t
host_statistics64_from_user(host_t host, host_flavor_t flavor, host_info64_t info, mach_msg_type_number_t * count)
{
kern_return_t ret = KERN_SUCCESS;
int index;
if (host == HOST_NULL) {
return KERN_INVALID_HOST;
}
if (rate_limit_host_statistics(TRUE, flavor, info, count, &ret, &index)) {
return ret;
}
if (ret != KERN_SUCCESS) {
return ret;
}
ret = host_statistics64(host, flavor, info, count);
if (ret == KERN_SUCCESS) {
cache_host_statistics(index, info);
}
return ret;
}
kern_return_t
host_statistics_from_user(host_t host, host_flavor_t flavor, host_info64_t info, mach_msg_type_number_t * count)
{
kern_return_t ret = KERN_SUCCESS;
int index;
if (host == HOST_NULL) {
return KERN_INVALID_HOST;
}
if (rate_limit_host_statistics(FALSE, flavor, info, count, &ret, &index)) {
return ret;
}
if (ret != KERN_SUCCESS) {
return ret;
}
ret = host_statistics(host, flavor, info, count);
if (ret == KERN_SUCCESS) {
cache_host_statistics(index, info);
}
return ret;
}
/*
* Get host statistics that require privilege.
* None for now, just call the un-privileged version.
*/
kern_return_t
host_priv_statistics(host_priv_t host_priv, host_flavor_t flavor, host_info_t info, mach_msg_type_number_t * count)
{
return host_statistics((host_t)host_priv, flavor, info, count);
}
kern_return_t
set_sched_stats_active(boolean_t active)
{
sched_stats_active = active;
return KERN_SUCCESS;
}
kern_return_t
get_sched_statistics(struct _processor_statistics_np * out, uint32_t * count)
{
uint32_t pos = 0;
if (!sched_stats_active) {
return KERN_FAILURE;
}
percpu_foreach_base(pcpu_base) {
struct sched_statistics stats;
processor_t processor;
pos += sizeof(struct _processor_statistics_np);
if (pos > *count) {
return KERN_FAILURE;
}
stats = *PERCPU_GET_WITH_BASE(pcpu_base, sched_stats);
processor = PERCPU_GET_WITH_BASE(pcpu_base, processor);
out->ps_cpuid = processor->cpu_id;
out->ps_csw_count = stats.csw_count;
out->ps_preempt_count = stats.preempt_count;
out->ps_preempted_rt_count = stats.preempted_rt_count;
out->ps_preempted_by_rt_count = stats.preempted_by_rt_count;
out->ps_rt_sched_count = stats.rt_sched_count;
out->ps_interrupt_count = stats.interrupt_count;
out->ps_ipi_count = stats.ipi_count;
out->ps_timer_pop_count = stats.timer_pop_count;
out->ps_runq_count_sum = SCHED(processor_runq_stats_count_sum)(processor);
out->ps_idle_transitions = stats.idle_transitions;
out->ps_quantum_timer_expirations = stats.quantum_timer_expirations;
out++;
}
/* And include RT Queue information */
pos += sizeof(struct _processor_statistics_np);
if (pos > *count) {
return KERN_FAILURE;
}
bzero(out, sizeof(*out));
out->ps_cpuid = (-1);
out->ps_runq_count_sum = SCHED(rt_runq_count_sum)();
out++;
*count = pos;
return KERN_SUCCESS;
}
kern_return_t
host_page_size(host_t host, vm_size_t * out_page_size)
{
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
*out_page_size = PAGE_SIZE;
return KERN_SUCCESS;
}
/*
* Return kernel version string (more than you ever
* wanted to know about what version of the kernel this is).
*/
extern char version[];
kern_return_t
host_kernel_version(host_t host, kernel_version_t out_version)
{
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
(void)strncpy(out_version, version, sizeof(kernel_version_t));
return KERN_SUCCESS;
}
/*
* host_processor_sets:
*
* List all processor sets on the host.
*/
kern_return_t
host_processor_sets(host_priv_t host_priv, processor_set_name_array_t * pset_list, mach_msg_type_number_t * count)
{
void * addr;
if (host_priv == HOST_PRIV_NULL) {
return KERN_INVALID_ARGUMENT;
}
/*
* Allocate memory. Can be pageable because it won't be
* touched while holding a lock.
*/
addr = kalloc((vm_size_t)sizeof(mach_port_t));
if (addr == 0) {
return KERN_RESOURCE_SHORTAGE;
}
/* do the conversion that Mig should handle */
*((ipc_port_t *)addr) = convert_pset_name_to_port(&pset0);
*pset_list = (processor_set_array_t)addr;
*count = 1;
return KERN_SUCCESS;
}
/*
* host_processor_set_priv:
*
* Return control port for given processor set.
*/
kern_return_t
host_processor_set_priv(host_priv_t host_priv, processor_set_t pset_name, processor_set_t * pset)
{
if (host_priv == HOST_PRIV_NULL || pset_name == PROCESSOR_SET_NULL) {
*pset = PROCESSOR_SET_NULL;
return KERN_INVALID_ARGUMENT;
}
*pset = pset_name;
return KERN_SUCCESS;
}
/*
* host_processor_info
*
* Return info about the processors on this host. It will return
* the number of processors, and the specific type of info requested
* in an OOL array.
*/
kern_return_t
host_processor_info(host_t host,
processor_flavor_t flavor,
natural_t * out_pcount,
processor_info_array_t * out_array,
mach_msg_type_number_t * out_array_count)
{
kern_return_t result;
host_t thost;
processor_info_t info;
unsigned int icount;
unsigned int pcount;
vm_offset_t addr;
vm_size_t size, needed;
vm_map_copy_t copy;
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
result = processor_info_count(flavor, &icount);
if (result != KERN_SUCCESS) {
return result;
}
pcount = processor_count;
assert(pcount != 0);
needed = pcount * icount * sizeof(natural_t);
size = vm_map_round_page(needed, VM_MAP_PAGE_MASK(ipc_kernel_map));
result = kmem_alloc(ipc_kernel_map, &addr, size, VM_KERN_MEMORY_IPC);
if (result != KERN_SUCCESS) {
return KERN_RESOURCE_SHORTAGE;
}
info = (processor_info_t)addr;
for (unsigned int i = 0; i < pcount; i++) {
processor_t processor = processor_array[i];
assert(processor != PROCESSOR_NULL);
unsigned int tcount = icount;
result = processor_info(processor, flavor, &thost, info, &tcount);
if (result != KERN_SUCCESS) {
kmem_free(ipc_kernel_map, addr, size);
return result;
}
info += icount;
}
if (size != needed) {
bzero((char *)addr + needed, size - needed);
}
result = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr, VM_MAP_PAGE_MASK(ipc_kernel_map)),
vm_map_round_page(addr + size, VM_MAP_PAGE_MASK(ipc_kernel_map)), FALSE);
assert(result == KERN_SUCCESS);
result = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr, (vm_map_size_t)needed, TRUE, &copy);
assert(result == KERN_SUCCESS);
*out_pcount = pcount;
*out_array = (processor_info_array_t)copy;
*out_array_count = pcount * icount;
return KERN_SUCCESS;
}
static bool
is_valid_host_special_port(int id)
{
return (id <= HOST_MAX_SPECIAL_PORT) &&
(id >= HOST_MIN_SPECIAL_PORT) &&
((id <= HOST_LAST_SPECIAL_KERNEL_PORT) || (id > HOST_MAX_SPECIAL_KERNEL_PORT));
}
extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc;
/*
* Kernel interface for setting a special port.
*/
kern_return_t
kernel_set_special_port(host_priv_t host_priv, int id, ipc_port_t port)
{
ipc_port_t old_port;
if (!is_valid_host_special_port(id)) {
panic("attempted to set invalid special port %d", id);
}
#if !MACH_FLIPC
if (id == HOST_NODE_PORT) {
return KERN_NOT_SUPPORTED;
}
#endif
host_lock(host_priv);
old_port = host_priv->special[id];
if ((id == HOST_AMFID_PORT) && (current_task()->bsd_info != initproc)) {
host_unlock(host_priv);
return KERN_NO_ACCESS;
}
host_priv->special[id] = port;
host_unlock(host_priv);
#if MACH_FLIPC
if (id == HOST_NODE_PORT) {
mach_node_port_changed();
}
#endif
if (IP_VALID(old_port)) {
ipc_port_release_send(old_port);
}
return KERN_SUCCESS;
}
/*
* Kernel interface for retrieving a special port.
*/
kern_return_t
kernel_get_special_port(host_priv_t host_priv, int id, ipc_port_t * portp)
{
if (!is_valid_host_special_port(id)) {
panic("attempted to get invalid special port %d", id);
}
host_lock(host_priv);
*portp = host_priv->special[id];
host_unlock(host_priv);
return KERN_SUCCESS;
}
/*
* User interface for setting a special port.
*
* Only permits the user to set a user-owned special port
* ID, rejecting a kernel-owned special port ID.
*
* A special kernel port cannot be set up using this
* routine; use kernel_set_special_port() instead.
*/
kern_return_t
host_set_special_port_from_user(host_priv_t host_priv, int id, ipc_port_t port)
{
if (host_priv == HOST_PRIV_NULL || id <= HOST_MAX_SPECIAL_KERNEL_PORT || id > HOST_MAX_SPECIAL_PORT) {
return KERN_INVALID_ARGUMENT;
}
if (task_is_driver(current_task())) {
return KERN_NO_ACCESS;
}
if (IP_VALID(port) && (port->ip_immovable_receive || port->ip_immovable_send)) {
return KERN_INVALID_RIGHT;
}
return host_set_special_port(host_priv, id, port);
}
kern_return_t
host_set_special_port(host_priv_t host_priv, int id, ipc_port_t port)
{
if (host_priv == HOST_PRIV_NULL || id <= HOST_MAX_SPECIAL_KERNEL_PORT || id > HOST_MAX_SPECIAL_PORT) {
return KERN_INVALID_ARGUMENT;
}
#if CONFIG_MACF
if (mac_task_check_set_host_special_port(current_task(), id, port) != 0) {
return KERN_NO_ACCESS;
}
#endif
return kernel_set_special_port(host_priv, id, port);
}
/*
* User interface for retrieving a special port.
*
* Note that there is nothing to prevent a user special
* port from disappearing after it has been discovered by
* the caller; thus, using a special port can always result
* in a "port not valid" error.
*/
kern_return_t
host_get_special_port_from_user(host_priv_t host_priv, __unused int node, int id, ipc_port_t * portp)
{
if (host_priv == HOST_PRIV_NULL || id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < HOST_MIN_SPECIAL_PORT) {
return KERN_INVALID_ARGUMENT;
}
task_t task = current_task();
if (task && task_is_driver(task) && id > HOST_MAX_SPECIAL_KERNEL_PORT) {
/* allow HID drivers to get the sysdiagnose port for keychord handling */
if (id == HOST_SYSDIAGNOSE_PORT &&
IOTaskHasEntitlement(task, kIODriverKitHIDFamilyEventServiceEntitlementKey)) {
goto get_special_port;
}
return KERN_NO_ACCESS;
}
get_special_port:
return host_get_special_port(host_priv, node, id, portp);
}
kern_return_t
host_get_special_port(host_priv_t host_priv, __unused int node, int id, ipc_port_t * portp)
{
ipc_port_t port;
if (host_priv == HOST_PRIV_NULL || id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < HOST_MIN_SPECIAL_PORT) {
return KERN_INVALID_ARGUMENT;
}
host_lock(host_priv);
port = realhost.special[id];
*portp = ipc_port_copy_send(port);
host_unlock(host_priv);
return KERN_SUCCESS;
}
/*
* host_get_io_master
*
* Return the IO master access port for this host.
*/
kern_return_t
host_get_io_master(host_t host, io_master_t * io_masterp)
{
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
return host_get_io_master_port(host_priv_self(), io_masterp);
}
host_t
host_self(void)
{
return &realhost;
}
host_priv_t
host_priv_self(void)
{
return &realhost;
}
host_security_t
host_security_self(void)
{
return &realhost;
}
kern_return_t
host_set_atm_diagnostic_flag(host_t host, uint32_t diagnostic_flag)
{
if (host == HOST_NULL) {
return KERN_INVALID_ARGUMENT;
}
if (!IOTaskHasEntitlement(current_task(), "com.apple.private.set-atm-diagnostic-flag")) {
return KERN_NO_ACCESS;
}
#if CONFIG_ATM
return atm_set_diagnostic_config(diagnostic_flag);
#else
(void)diagnostic_flag;
return KERN_NOT_SUPPORTED;
#endif
}
kern_return_t
host_set_multiuser_config_flags(host_priv_t host_priv, uint32_t multiuser_config)
{
#if !defined(XNU_TARGET_OS_OSX)
if (host_priv == HOST_PRIV_NULL) {
return KERN_INVALID_ARGUMENT;
}
/*
* Always enforce that the multiuser bit is set
* if a value is written to the commpage word.
*/
commpage_update_multiuser_config(multiuser_config | kIsMultiUserDevice);
return KERN_SUCCESS;
#else
(void)host_priv;
(void)multiuser_config;
return KERN_NOT_SUPPORTED;
#endif
}