darling-xnu/osfmk/kern/ltable.c
2023-05-16 21:41:14 -07:00

1074 lines
28 KiB
C

/*
* Copyright (c) 2016-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <kern/cpu_data.h>
#include <kern/kern_types.h>
#include <kern/clock.h>
#include <kern/locks.h>
#include <kern/ltable.h>
#include <kern/zalloc.h>
#include <libkern/OSAtomic.h>
#include <pexpert/pexpert.h>
#include <vm/vm_kern.h>
#define P2ROUNDUP(x, align) (-(-((uintptr_t)(x)) & -((uintptr_t)align)))
#define ROUNDDOWN(x, y) (((x)/(y))*(y))
/* ----------------------------------------------------------------------
*
* Lockless Link Table Interface
*
* ---------------------------------------------------------------------- */
/* default VA space for link tables (zone allocated) */
#define DEFAULT_MAX_TABLE_SIZE P2ROUNDUP(8 * 1024 * 1024, PAGE_SIZE)
TUNABLE(vm_size_t, g_lt_max_tbl_size, "lt_tbl_size", 0);
LCK_GRP_DECLARE(g_lt_lck_grp, "link_table_locks");
#if DEVELOPMENT || DEBUG
/* global for lldb macros */
uint64_t g_lt_idx_max = LT_IDX_MAX;
#endif
__startup_func
static void
ltable_startup_tunables_init(void)
{
// make sure that if a boot-arg was passed, g_lt_max_tbl_size
// is a PAGE_SIZE multiple.
//
// Also set the default for platforms where PAGE_SIZE
// isn't a compile time constant.
if (g_lt_max_tbl_size == 0) {
g_lt_max_tbl_size = (typeof(g_lt_max_tbl_size))DEFAULT_MAX_TABLE_SIZE;
} else {
g_lt_max_tbl_size = round_page(g_lt_max_tbl_size);
}
}
STARTUP(TUNABLES, STARTUP_RANK_MIDDLE, ltable_startup_tunables_init);
/* construct a link table element from an offset and mask into a slab */
#define lt_elem_ofst_slab(slab, slab_msk, ofst) \
/* cast through 'void *' to avoid compiler alignment warning messages */ \
((struct lt_elem *)((void *)((uintptr_t)(slab) + ((ofst) & (slab_msk)))))
#if CONFIG_LTABLE_STATS
/* version that makes no assumption on waste within a slab */
static inline struct lt_elem *
lt_elem_idx(struct link_table *table, uint32_t idx)
{
int slab_idx = idx / table->slab_elem;
struct lt_elem *slab = table->table[slab_idx];
if (!slab) {
panic("Invalid index:%d slab:%d (NULL) for table:%p\n",
idx, slab_idx, table);
}
assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx);
return lt_elem_ofst_slab(slab, table->slab_msk, (idx - slab->lt_id.idx) * table->elem_sz);
}
#else /* !CONFIG_LTABLE_STATS */
/* verion that assumes 100% ultilization of slabs (no waste) */
static inline struct lt_elem *
lt_elem_idx(struct link_table *table, uint32_t idx)
{
uint32_t ofst = idx * table->elem_sz;
struct lt_elem *slab = table->table[ofst >> table->slab_shift];
if (!slab) {
panic("Invalid index:%d slab:%d (NULL) for table:%p\n",
idx, (ofst >> table->slab_shift), table);
}
assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx);
return lt_elem_ofst_slab(slab, table->slab_msk, ofst);
}
#endif /* CONFIG_LTABLE_STATS */
static int __assert_only
lt_elem_in_range(struct lt_elem *elem, struct link_table *table)
{
struct lt_elem **base = table->table;
uintptr_t e = (uintptr_t)elem;
assert(base != NULL);
while (*base != NULL) {
uintptr_t b = (uintptr_t)(*base);
if (e >= b && e < b + table->slab_sz) {
return 1;
}
base++;
if ((uintptr_t)base >= (uintptr_t)table->table + PAGE_SIZE) {
return 0;
}
}
return 0;
}
/**
* lt_elem_invalidate: mark 'elem' as invalid
*
* NOTE: this does _not_ get or put a reference on 'elem'
*/
void
lt_elem_invalidate(struct lt_elem *elem)
{
uint32_t __assert_only old = OSBitAndAtomic(~LT_BITS_VALID, &elem->lt_bits);
OSMemoryBarrier();
assert(((lt_bits_type(old) != LT_RESERVED) && (old & LT_BITS_VALID)) ||
((lt_bits_type(old) == LT_RESERVED) && !(old & LT_BITS_VALID)));
}
/**
* lt_elem_mkvalid: mark 'elem' as valid
*
* NOTE: this does _not_ get or put a reference on 'elem'
*/
void
lt_elem_mkvalid(struct lt_elem *elem)
{
uint32_t __assert_only old = OSBitOrAtomic(LT_BITS_VALID, &elem->lt_bits);
OSMemoryBarrier();
assert(!(old & LT_BITS_VALID));
}
static void
lt_elem_set_type(struct lt_elem *elem, int type)
{
uint32_t old_bits, new_bits;
do {
old_bits = elem->lt_bits;
new_bits = (old_bits & ~LT_BITS_TYPE) |
((type & LT_BITS_TYPE_MASK) << LT_BITS_TYPE_SHIFT);
} while (OSCompareAndSwap(old_bits, new_bits, &elem->lt_bits) == FALSE);
OSMemoryBarrier();
}
/**
* ltable_init: initialize a link table with given parameters
*
*/
void
ltable_init(struct link_table *table, const char *name,
uint32_t max_tbl_elem, uint32_t elem_sz,
ltable_poison_func poison)
{
kern_return_t kr;
uint32_t slab_sz, slab_shift, slab_msk, slab_elem;
zone_t slab_zone;
size_t max_tbl_sz;
struct lt_elem *e, **base;
#ifndef CONFIG_LTABLE_STATS
/* the element size _must_ be a power of two! */
if ((elem_sz & (elem_sz - 1)) != 0) {
panic("elem_sz:%d for table:'%s' must be a power of two!",
elem_sz, name);
}
#endif
/*
* First, allocate a single page of memory to act as the base
* for the table's element slabs
*/
kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&base,
PAGE_SIZE, 0, KMA_NOPAGEWAIT, VM_KERN_MEMORY_LTABLE);
if (kr != KERN_SUCCESS) {
panic("Cannot initialize %s table: "
"kernel_memory_allocate failed:%d\n", name, kr);
}
memset(base, 0, PAGE_SIZE);
/*
* Based on the maximum table size, calculate the slab size:
* we allocate 1 page of slab pointers for the table, and we need to
* index elements of 'elem_sz', this gives us the slab size based on
* the maximum size the table should grow.
*/
max_tbl_sz = (max_tbl_elem * elem_sz);
max_tbl_sz = P2ROUNDUP(max_tbl_sz, PAGE_SIZE);
/* system maximum table size divided by number of slots in a page */
slab_sz = (uint32_t)(max_tbl_sz / (PAGE_SIZE / (sizeof(void *))));
if (slab_sz < PAGE_SIZE) {
slab_sz = PAGE_SIZE;
}
/* make sure the slab size is a power of two */
slab_shift = 0;
slab_msk = ~0;
for (uint32_t i = 0; i < 31; i++) {
uint32_t bit = (1 << i);
if ((slab_sz & bit) == slab_sz) {
slab_shift = i;
slab_msk = 0;
for (uint32_t j = 0; j < i; j++) {
slab_msk |= (1 << j);
}
break;
}
slab_sz &= ~bit;
}
slab_elem = slab_sz / elem_sz;
/* initialize the table's slab zone (for table growth) */
ltdbg("Initializing %s zone: slab:%d (%d,0x%x) max:%ld",
name, slab_sz, slab_shift, slab_msk, max_tbl_sz);
slab_zone = zone_create(name, slab_sz, ZC_NONE);
assert(slab_zone != ZONE_NULL);
/* allocate the first slab and populate it */
base[0] = (struct lt_elem *)zalloc(slab_zone);
if (base[0] == NULL) {
panic("Can't allocate a %s table slab from zone:%p",
name, slab_zone);
}
memset(base[0], 0, slab_sz);
/* setup the initial freelist */
ltdbg("initializing %d links (%d bytes each)...", slab_elem, elem_sz);
for (unsigned l = 0; l < slab_elem; l++) {
e = lt_elem_ofst_slab(base[0], slab_msk, l * elem_sz);
e->lt_id.idx = l;
/*
* setting generation to 0 ensures that a setid of 0 is
* invalid because the generation will be incremented before
* each element's allocation.
*/
e->lt_id.generation = 0;
e->lt_next_idx = l + 1;
}
/* make sure the last free element points to a never-valid idx */
e = lt_elem_ofst_slab(base[0], slab_msk, (slab_elem - 1) * elem_sz);
e->lt_next_idx = LT_IDX_MAX;
lck_mtx_init(&table->lock, &g_lt_lck_grp, LCK_ATTR_NULL);
table->slab_sz = slab_sz;
table->slab_shift = slab_shift;
table->slab_msk = slab_msk;
table->slab_elem = slab_elem;
table->slab_zone = slab_zone;
table->elem_sz = elem_sz;
table->nelem = slab_elem;
table->used_elem = 0;
table->elem_sz = elem_sz;
table->poison = poison;
table->table = base;
table->next_free_slab = &base[1];
table->free_list.id = base[0]->lt_id.id;
#if CONFIG_LTABLE_STATS
table->nslabs = 1;
table->nallocs = 0;
table->nreallocs = 0;
table->npreposts = 0;
table->nreservations = 0;
table->nreserved_releases = 0;
table->max_used = 0;
table->avg_used = 0;
table->max_reservations = 0;
table->avg_reservations = 0;
#endif
}
/**
* ltable_grow: grow a link table by adding another 'slab' of table elements
*
* Conditions:
* table mutex is unlocked
* calling thread can block
*/
void
ltable_grow(struct link_table *table, uint32_t min_free)
{
struct lt_elem *slab, **slot;
struct lt_elem *e = NULL, *first_new_elem, *last_new_elem;
struct ltable_id free_id;
uint32_t free_elem;
assert(get_preemption_level() == 0);
assert(table && table->slab_zone);
lck_mtx_lock(&table->lock);
free_elem = table->nelem - table->used_elem;
/*
* If the caller just wanted to ensure a minimum number of elements,
* do that (and don't just blindly grow the table). Also, don't grow
* the table unnecessarily - we could have been beaten by a higher
* priority thread who acquired the lock and grew the table before we
* got here.
*/
if (free_elem > min_free) {
lck_mtx_unlock(&table->lock);
return;
}
/* we are now committed to table growth */
ltdbg_v("BEGIN");
if (table->next_free_slab == NULL) {
/*
* before we panic, check one more time to see if any other
* threads have free'd from space in the table.
*/
if ((table->nelem - table->used_elem) > 0) {
/* there's at least 1 free element: don't panic yet */
lck_mtx_unlock(&table->lock);
return;
}
panic("No more room to grow table: %p (nelem: %d, used: %d)",
table, table->nelem, table->used_elem);
}
slot = table->next_free_slab;
table->next_free_slab++;
if ((uintptr_t)table->next_free_slab >= (uintptr_t)table->table + PAGE_SIZE) {
table->next_free_slab = NULL;
}
assert(*slot == NULL);
/* allocate another slab */
slab = (struct lt_elem *)zalloc(table->slab_zone);
if (slab == NULL) {
panic("Can't allocate a %s%s table (%p) slab from zone:%p",
zone_heap_name(table->slab_zone), zone_name(table->slab_zone),
table, table->slab_zone);
}
memset(slab, 0, table->slab_sz);
/* put the new elements into a freelist */
ltdbg_v(" init %d new links...", table->slab_elem);
for (unsigned l = 0; l < table->slab_elem; l++) {
uint32_t idx = l + table->nelem;
if (idx >= (LT_IDX_MAX - 1)) {
break; /* the last element of the last slab */
}
e = lt_elem_ofst_slab(slab, table->slab_msk, l * table->elem_sz);
e->lt_id.idx = idx;
e->lt_next_idx = idx + 1;
}
last_new_elem = e;
assert(last_new_elem != NULL);
first_new_elem = lt_elem_ofst_slab(slab, table->slab_msk, 0);
/* update table book keeping, and atomically swap the freelist head */
*slot = slab;
if (table->nelem + table->slab_elem >= LT_IDX_MAX) {
table->nelem = LT_IDX_MAX - 1;
} else {
table->nelem += table->slab_elem;
}
#if CONFIG_LTABLE_STATS
table->nslabs += 1;
#endif
/*
* The atomic swap of the free list head marks the end of table
* growth. Incoming requests may now use the newly allocated slab
* of table elements
*/
free_id = table->free_list;
/* connect the existing free list to the end of the new free list */
last_new_elem->lt_next_idx = free_id.idx;
while (OSCompareAndSwap64(free_id.id, first_new_elem->lt_id.id,
&table->free_list.id) == FALSE) {
OSMemoryBarrier();
free_id = table->free_list;
last_new_elem->lt_next_idx = free_id.idx;
}
OSMemoryBarrier();
lck_mtx_unlock(&table->lock);
return;
}
#if DEVELOPMENT || DEBUG
int
ltable_nelem(struct link_table *table)
{
int nelem = 0;
lck_mtx_lock(&table->lock);
nelem = table->used_elem;
lck_mtx_unlock(&table->lock);
return nelem;
}
#endif
/**
* ltable_alloc_elem: allocate one or more elements from a given table
*
* The returned element(s) will be of type 'type', but will remain invalid.
*
* If the caller has disabled preemption, then this function may (rarely) spin
* waiting either for another thread to either release 'nelem' table elements,
* or grow the table.
*
* If the caller can block, then this function may (rarely) block while
* the table grows to meet the demand for 'nelem' element(s).
*/
__attribute__((noinline))
struct lt_elem *
ltable_alloc_elem(struct link_table *table, int type,
int nelem, int nattempts)
{
int nspins = 0, ntries = 0, nalloc = 0;
uint32_t table_size;
struct lt_elem *elem = NULL;
struct ltable_id free_id, next_id;
static const int max_retries = 500;
if (type != LT_ELEM && type != LT_LINK && type != LT_RESERVED) {
panic("link_table_aloc of invalid elem type:%d from table @%p",
type, table);
}
assert(nelem > 0);
/*
* If the callers only wants to try a certain number of times, make it
* look like we've already made (MAX - nattempts) tries at allocation
*/
if (nattempts > 0 && nattempts <= max_retries) {
ntries = max_retries - nattempts;
}
try_again:
elem = NULL;
if (ntries++ > max_retries) {
struct lt_elem *tmp;
if (nattempts > 0) {
/*
* The caller specified a particular number of
* attempts before failure, so it's expected that
* they're prepared to handle a NULL return.
*/
return NULL;
}
if (table->used_elem + nelem >= table_size) {
panic("No more room to grow table: 0x%p size:%d, used:%d, requested elem:%d",
table, table_size, table->used_elem, nelem);
}
if (nelem == 1) {
panic("Too many alloc retries: %d, table:%p, type:%d, nelem:%d",
ntries, table, type, nelem);
}
/* don't panic: try allocating one-at-a-time */
while (nelem > 0) {
tmp = ltable_alloc_elem(table, type, 1, nattempts);
if (elem) {
lt_elem_list_link(table, tmp, elem);
}
elem = tmp;
--nelem;
}
assert(elem != NULL);
return elem;
}
nalloc = 0;
table_size = table->nelem;
if (table->used_elem + nelem >= table_size) {
if (get_preemption_level() != 0) {
#if CONFIG_LTABLE_STATS
table->nspins += 1;
#endif
/*
* We may have just raced with table growth: check
* again to make sure there really isn't any space.
*/
if (++nspins > 4) {
panic("Can't grow table %p with preemption"
" disabled!", table);
}
delay(1);
goto try_again;
}
ltable_grow(table, nelem);
goto try_again;
}
/* read this value only once before the CAS */
free_id = table->free_list;
if (free_id.idx >= table_size) {
goto try_again;
}
/*
* Find the item on the free list which will become the new free list
* head, but be careful not to modify any memory (read only)! Other
* threads can alter table state at any time up until the CAS. We
* don't modify any memory until we've successfully swapped out the
* free list head with the one we've investigated.
*/
for (struct lt_elem *next_elem = lt_elem_idx(table, free_id.idx);
nalloc < nelem;
nalloc++) {
elem = next_elem;
next_id.generation = 0;
next_id.idx = next_elem->lt_next_idx;
if (next_id.idx < table->nelem) {
next_elem = lt_elem_idx(table, next_id.idx);
next_id.id = next_elem->lt_id.id;
} else {
goto try_again;
}
}
/* 'elem' points to the last element being allocated */
if (OSCompareAndSwap64(free_id.id, next_id.id,
&table->free_list.id) == FALSE) {
goto try_again;
}
/* load barrier */
OSMemoryBarrier();
/*
* After the CAS, we know that we own free_id, and it points to a
* valid table entry (checked above). Grab the table pointer and
* reset some values.
*/
OSAddAtomic(nelem, &table->used_elem);
/* end the list of allocated elements */
elem->lt_next_idx = LT_IDX_MAX;
/* reset 'elem' to point to the first allocated element */
elem = lt_elem_idx(table, free_id.idx);
/*
* Update the generation count, and return the element(s)
* with a single reference (and no valid bit). If the
* caller immediately calls _put() on any element, then
* it will be released back to the free list. If the caller
* subsequently marks the element as valid, then the put
* will simply drop the reference.
*/
for (struct lt_elem *tmp = elem;;) {
assert(!lt_bits_valid(tmp->lt_bits) &&
(lt_bits_refcnt(tmp->lt_bits) == 0));
--nalloc;
tmp->lt_id.generation += 1;
tmp->lt_bits = 1;
lt_elem_set_type(tmp, type);
if (tmp->lt_next_idx == LT_IDX_MAX) {
break;
}
assert(tmp->lt_next_idx != LT_IDX_MAX);
tmp = lt_elem_idx(table, tmp->lt_next_idx);
}
assert(nalloc == 0);
#if CONFIG_LTABLE_STATS
uint64_t nreservations;
table->nallocs += nelem;
if (type == LT_RESERVED) {
OSIncrementAtomic64(&table->nreservations);
}
nreservations = table->nreservations;
if (table->used_elem > table->max_used) {
table->max_used = table->used_elem;
}
if (nreservations > table->max_reservations) {
table->max_reservations = nreservations;
}
table->avg_used = (table->avg_used + table->used_elem) / 2;
table->avg_reservations = (table->avg_reservations + nreservations) / 2;
#endif
return elem;
}
/**
* ltable_realloc_elem: convert a reserved element to a particular type
*
* This funciton is used to convert reserved elements (not yet marked valid)
* to the given 'type'. The generation of 'elem' is incremented, the element
* is disconnected from any list to which it belongs, and its type is set to
* 'type'.
*/
void
ltable_realloc_elem(struct link_table *table, struct lt_elem *elem, int type)
{
(void)table;
assert(lt_elem_in_range(elem, table) &&
!lt_bits_valid(elem->lt_bits));
#if CONFIG_LTABLE_STATS
table->nreallocs += 1;
if (lt_bits_type(elem->lt_bits) == LT_RESERVED && type != LT_RESERVED) {
/*
* This isn't under any lock, so we'll clamp it.
* the stats are meant to be informative, not perfectly
* accurate
*/
OSDecrementAtomic64(&table->nreservations);
}
table->avg_reservations = (table->avg_reservations + table->nreservations) / 2;
#endif
/*
* Return the same element with a new generation count, and a
* (potentially) new type. Don't touch the refcount: the caller
* is responsible for getting that (and the valid bit) correct.
*/
elem->lt_id.generation += 1;
elem->lt_next_idx = LT_IDX_MAX;
lt_elem_set_type(elem, type);
return;
}
/**
* ltable_free_elem: release an element back to a link table
*
* Do not call this function directly: use ltable_[get|put]_elem!
*
* Conditions:
* 'elem' was originally allocated from 'table'
* 'elem' is _not_ marked valid
* 'elem' has a reference count of 0
*/
static void
ltable_free_elem(struct link_table *table, struct lt_elem *elem)
{
struct ltable_id next_id;
assert(lt_elem_in_range(elem, table) &&
!lt_bits_valid(elem->lt_bits) &&
(lt_bits_refcnt(elem->lt_bits) == 0));
OSDecrementAtomic(&table->used_elem);
#if CONFIG_LTABLE_STATS
table->avg_used = (table->avg_used + table->used_elem) / 2;
if (lt_bits_type(elem->lt_bits) == LT_RESERVED) {
OSDecrementAtomic64(&table->nreservations);
}
table->avg_reservations = (table->avg_reservations + table->nreservations) / 2;
#endif
elem->lt_bits = 0;
if (table->poison) {
(table->poison)(table, elem);
}
again:
next_id = table->free_list;
if (next_id.idx >= table->nelem) {
elem->lt_next_idx = LT_IDX_MAX;
} else {
elem->lt_next_idx = next_id.idx;
}
/* store barrier */
OSMemoryBarrier();
if (OSCompareAndSwap64(next_id.id, elem->lt_id.id,
&table->free_list.id) == FALSE) {
goto again;
}
}
/**
* ltable_get_elem: get a reference to a table element identified by 'id'
*
* Returns a reference to the table element associated with the given 'id', or
* NULL if the 'id' was invalid or does not exist in 'table'. The caller is
* responsible to release the reference using ltable_put_elem().
*
* NOTE: if the table element pointed to by 'id' is marked as invalid,
* this function will return NULL.
*/
struct lt_elem *
ltable_get_elem(struct link_table *table, uint64_t id)
{
struct lt_elem *elem;
uint32_t idx, bits, new_bits;
/*
* Here we have a reference to the table which is guaranteed to remain
* valid until we drop the reference
*/
idx = ((struct ltable_id *)&id)->idx;
if (idx >= table->nelem) {
panic("id:0x%llx : idx:%d > %d", id, idx, table->nelem);
}
elem = lt_elem_idx(table, idx);
/* verify the validity by taking a reference on the table object */
bits = elem->lt_bits;
if (!lt_bits_valid(bits)) {
return NULL;
}
/*
* do a pre-verify on the element ID to potentially
* avoid 2 compare-and-swaps
*/
if (elem->lt_id.id != id) {
return NULL;
}
new_bits = bits + 1;
/* check for overflow */
assert(lt_bits_refcnt(new_bits) > 0);
while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) {
/*
* either the element became invalid,
* or someone else grabbed/removed a reference.
*/
bits = elem->lt_bits;
if (!lt_bits_valid(bits)) {
/* don't return invalid elements */
return NULL;
}
new_bits = bits + 1;
assert(lt_bits_refcnt(new_bits) > 0);
}
/* load barrier */
OSMemoryBarrier();
/* check to see that our reference is to the same generation! */
if (elem->lt_id.id != id) {
/*
* ltdbg("ID:0x%llx table generation (%d) != %d",
* id, elem->lt_id.generation,
* ((struct ltable_id *)&id)->generation);
*/
ltable_put_elem(table, elem);
return NULL;
}
/* We now have a reference on a valid object */
return elem;
}
/**
* ltable_put_elem: release a reference to table element
*
* This function releases a reference taken on a table element via
* ltable_get_elem(). This function will release the element back to 'table'
* when the reference count goes to 0 AND the element has been marked as
* invalid.
*/
void
ltable_put_elem(struct link_table *table, struct lt_elem *elem)
{
uint32_t bits, new_bits;
assert(lt_elem_in_range(elem, table));
bits = elem->lt_bits;
new_bits = bits - 1;
/* check for underflow */
assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK);
while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) {
bits = elem->lt_bits;
new_bits = bits - 1;
/* catch underflow */
assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK);
}
/* load barrier */
OSMemoryBarrier();
/*
* if this was the last reference, and it was marked as invalid,
* then we can add this link object back to the free list
*/
if (!lt_bits_valid(new_bits) && (lt_bits_refcnt(new_bits) == 0)) {
ltable_free_elem(table, elem);
}
return;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* API: lt_elem_list_...
*
* Reuse the free list linkage member, 'lt_next_idx' of a table element
* in a slightly more generic singly-linked list. All members of this
* list have been allocated from a table, but have not been made valid.
*
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/
/**
* lt_elem_list_link: link a child onto a parent
*
* Note that if 'parent' is the head of a list, this function will follow that
* list and attach 'child' to the end of it. In the simplest case, this
* results in: parent->child
* however this could also result in: parent->...->child
*/
int
lt_elem_list_link(struct link_table *table, struct lt_elem *parent, struct lt_elem *child)
{
int nelem = 1;
assert(lt_elem_in_range(parent, table));
/* find the end of the parent's list */
while (parent->lt_next_idx != LT_IDX_MAX) {
assert(parent->lt_next_idx < table->nelem);
parent = lt_elem_idx(table, parent->lt_next_idx);
nelem++;
}
if (child) {
assert(lt_elem_in_range(child, table));
parent->lt_next_idx = child->lt_id.idx;
}
return nelem;
}
/**
* lt_elem_list_first: obtain a pointer to the first element of a list.
*
* This function converts the head of a singly-linked list, 'id', into a real
* lt_elem object and returns a pointer to the object.
*
* It does _not_ take an extra reference on the object: the list implicitly
* holds that reference.
*/
struct lt_elem *
lt_elem_list_first(struct link_table *table, uint64_t id)
{
uint32_t idx;
struct lt_elem *elem = NULL;
if (id == 0) {
return NULL;
}
idx = ((struct ltable_id *)&id)->idx;
if (idx > table->nelem) {
panic("Invalid element for id:0x%llx", id);
}
elem = lt_elem_idx(table, idx);
/* invalid element: reserved ID was probably already reallocated */
if (elem->lt_id.id != id) {
return NULL;
}
/* the returned element should _not_ be marked valid! */
if (lt_bits_valid(elem->lt_bits) ||
lt_bits_type(elem->lt_bits) != LT_RESERVED ||
lt_bits_refcnt(elem->lt_bits) != 1) {
panic("Valid/unreserved element %p (0x%x) in reserved list",
elem, elem->lt_bits);
}
return elem;
}
/**
* lt_elem_list_next: return the item subsequent to 'elem' in a list
*
* Note that this will return NULL if 'elem' is actually the end of the list.
*/
struct lt_elem *
lt_elem_list_next(struct link_table *table, struct lt_elem *head)
{
struct lt_elem *elem;
if (!head) {
return NULL;
}
if (head->lt_next_idx >= table->nelem) {
return NULL;
}
elem = lt_elem_idx(table, head->lt_next_idx);
assert(lt_elem_in_range(elem, table));
return elem;
}
/**
* lt_elem_list_break: break a list in two around 'elem'
*
* This function will reset the next_idx field of 'elem' (making it the end of
* the list), and return the element subsequent to 'elem' in the list
* (which could be NULL)
*/
struct lt_elem *
lt_elem_list_break(struct link_table *table, struct lt_elem *elem)
{
struct lt_elem *next;
if (!elem) {
return NULL;
}
next = lt_elem_list_next(table, elem);
elem->lt_next_idx = LT_IDX_MAX;
return next;
}
/**
* lt_elem_list_pop: pop an item off the head of a list
*
* The list head is pointed to by '*id', the element corresponding to '*id' is
* returned by this function, and the new list head is returned in the in/out
* parameter, '*id'. The caller is responsible for the reference on the
* returned object. A realloc is done to reset the type of the object, but it
* is still left invalid.
*/
struct lt_elem *
lt_elem_list_pop(struct link_table *table, uint64_t *id, int type)
{
struct lt_elem *first, *next;
if (!id || *id == 0) {
return NULL;
}
/* pop an item off the reserved stack */
first = lt_elem_list_first(table, *id);
if (!first) {
*id = 0;
return NULL;
}
next = lt_elem_list_next(table, first);
if (next) {
*id = next->lt_id.id;
} else {
*id = 0;
}
ltable_realloc_elem(table, first, type);
return first;
}
/**
* lt_elem_list_release: free an entire list of reserved elements
*
* All elements in the list whose first member is 'head' will be released back
* to 'table' as free elements. The 'type' parameter is used in development
* kernels to assert that all elements on the list are of the given type.
*/
int
lt_elem_list_release(struct link_table *table, struct lt_elem *head,
int __assert_only type)
{
struct lt_elem *elem;
struct ltable_id free_id;
int nelem = 0;
if (!head) {
return 0;
}
for (elem = head;;) {
assert(lt_elem_in_range(elem, table));
assert(!lt_bits_valid(elem->lt_bits) && (lt_bits_refcnt(elem->lt_bits) == 1));
assert(lt_bits_type(elem->lt_bits) == type);
nelem++;
elem->lt_bits = 0;
if (table->poison) {
(table->poison)(table, elem);
}
if (elem->lt_next_idx == LT_IDX_MAX) {
break;
}
assert(elem->lt_next_idx < table->nelem);
elem = lt_elem_idx(table, elem->lt_next_idx);
}
/*
* 'elem' now points to the end of our list, and 'head' points to the
* beginning. We want to atomically swap the free list pointer with
* the 'head' and ensure that 'elem' points to the previous free list
* head.
*/
again:
free_id = table->free_list;
if (free_id.idx >= table->nelem) {
elem->lt_next_idx = LT_IDX_MAX;
} else {
elem->lt_next_idx = free_id.idx;
}
/* store barrier */
OSMemoryBarrier();
if (OSCompareAndSwap64(free_id.id, head->lt_id.id,
&table->free_list.id) == FALSE) {
goto again;
}
OSAddAtomic(-nelem, &table->used_elem);
return nelem;
}