darling-xnu/osfmk/kern/mpsc_queue.c
2023-05-16 21:41:14 -07:00

447 lines
13 KiB
C

/*
* Copyright (c) 2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <machine/machine_cpu.h>
#include <kern/locks.h>
#include <kern/mpsc_queue.h>
#include <kern/thread.h>
#pragma mark Single Consumer calls
__attribute__((noinline))
static mpsc_queue_chain_t
_mpsc_queue_wait_for_enqueuer(struct mpsc_queue_chain *_Atomic *ptr)
{
return hw_wait_while_equals((void **)ptr, NULL);
}
void
mpsc_queue_restore_batch(mpsc_queue_head_t q, mpsc_queue_chain_t first,
mpsc_queue_chain_t last)
{
mpsc_queue_chain_t head = os_atomic_load(&q->mpqh_head.mpqc_next, relaxed);
os_atomic_store(&last->mpqc_next, head, relaxed);
if (head == NULL &&
!os_atomic_cmpxchg(&q->mpqh_tail, &q->mpqh_head, last, release)) {
head = os_atomic_load(&q->mpqh_head.mpqc_next, relaxed);
if (__improbable(head == NULL)) {
head = _mpsc_queue_wait_for_enqueuer(&q->mpqh_head.mpqc_next);
}
os_atomic_store(&last->mpqc_next, head, relaxed);
}
os_atomic_store(&q->mpqh_head.mpqc_next, first, relaxed);
}
mpsc_queue_chain_t
mpsc_queue_dequeue_batch(mpsc_queue_head_t q, mpsc_queue_chain_t *tail_out,
os_atomic_dependency_t dependency)
{
mpsc_queue_chain_t head, tail;
q = os_atomic_inject_dependency(q, dependency);
tail = os_atomic_load(&q->mpqh_tail, relaxed);
if (__improbable(tail == &q->mpqh_head)) {
*tail_out = NULL;
return NULL;
}
head = os_atomic_load(&q->mpqh_head.mpqc_next, relaxed);
if (__improbable(head == NULL)) {
head = _mpsc_queue_wait_for_enqueuer(&q->mpqh_head.mpqc_next);
}
os_atomic_store(&q->mpqh_head.mpqc_next, NULL, relaxed);
/*
* 22708742: set tail to &q->mpqh_head with release, so that NULL write
* to head above doesn't clobber the head set by concurrent enqueuer
*
* The other half of the seq_cst is required to pair with any enqueuer that
* contributed to an element in this list (pairs with the release fence in
* __mpsc_queue_append_update_tail().
*
* Making this seq_cst instead of acq_rel makes mpsc_queue_append*()
* visibility transitive (when items hop from one queue to the next)
* which is expected by clients implicitly.
*
* Note that this is the same number of fences that a traditional lock
* would have, but as a once-per-batch cost.
*/
*tail_out = os_atomic_xchg(&q->mpqh_tail, &q->mpqh_head, seq_cst);
return head;
}
mpsc_queue_chain_t
mpsc_queue_batch_next(mpsc_queue_chain_t cur, mpsc_queue_chain_t tail)
{
mpsc_queue_chain_t elm = NULL;
if (cur == tail || cur == NULL) {
return elm;
}
elm = os_atomic_load(&cur->mpqc_next, relaxed);
if (__improbable(elm == NULL)) {
elm = _mpsc_queue_wait_for_enqueuer(&cur->mpqc_next);
}
return elm;
}
#pragma mark "GCD"-like facilities
static void _mpsc_daemon_queue_drain(mpsc_daemon_queue_t, thread_t);
static void _mpsc_daemon_queue_enqueue(mpsc_daemon_queue_t, mpsc_queue_chain_t);
/* thread based queues */
static void
_mpsc_queue_thread_continue(void *param, wait_result_t wr __unused)
{
mpsc_daemon_queue_t dq = param;
mpsc_daemon_queue_kind_t kind = dq->mpd_kind;
thread_t self = dq->mpd_thread;
__builtin_assume(self != THREAD_NULL);
if (kind == MPSC_QUEUE_KIND_THREAD_CRITICAL) {
self->options |= TH_OPT_SYSTEM_CRITICAL;
}
assert(dq->mpd_thread == current_thread());
_mpsc_daemon_queue_drain(dq, self);
if (kind == MPSC_QUEUE_KIND_THREAD_CRITICAL) {
self->options &= ~TH_OPT_SYSTEM_CRITICAL;
}
thread_block_parameter(_mpsc_queue_thread_continue, dq);
}
static void
_mpsc_queue_thread_wakeup(mpsc_daemon_queue_t dq)
{
thread_wakeup_thread((event_t)dq, dq->mpd_thread);
}
static kern_return_t
_mpsc_daemon_queue_init_with_thread(mpsc_daemon_queue_t dq,
mpsc_daemon_invoke_fn_t invoke, int pri, const char *name,
mpsc_daemon_queue_kind_t kind)
{
kern_return_t kr;
*dq = (struct mpsc_daemon_queue){
.mpd_kind = kind,
.mpd_invoke = invoke,
.mpd_queue = MPSC_QUEUE_INITIALIZER(dq->mpd_queue),
.mpd_chain = { MPSC_QUEUE_NOTQUEUED_MARKER },
};
kr = kernel_thread_create(_mpsc_queue_thread_continue, dq, pri,
&dq->mpd_thread);
if (kr == KERN_SUCCESS) {
thread_set_thread_name(dq->mpd_thread, name);
thread_start_in_assert_wait(dq->mpd_thread, (event_t)dq, THREAD_UNINT);
thread_deallocate(dq->mpd_thread);
}
return kr;
}
kern_return_t
mpsc_daemon_queue_init_with_thread(mpsc_daemon_queue_t dq,
mpsc_daemon_invoke_fn_t invoke, int pri, const char *name)
{
return _mpsc_daemon_queue_init_with_thread(dq, invoke, pri, name,
MPSC_QUEUE_KIND_THREAD);
}
/* thread-call based queues */
static void
_mpsc_queue_thread_call_drain(thread_call_param_t arg0,
thread_call_param_t arg1 __unused)
{
_mpsc_daemon_queue_drain((mpsc_daemon_queue_t)arg0, NULL);
}
static void
_mpsc_queue_thread_call_wakeup(mpsc_daemon_queue_t dq)
{
thread_call_enter(dq->mpd_call);
}
void
mpsc_daemon_queue_init_with_thread_call(mpsc_daemon_queue_t dq,
mpsc_daemon_invoke_fn_t invoke, thread_call_priority_t pri)
{
*dq = (struct mpsc_daemon_queue){
.mpd_kind = MPSC_QUEUE_KIND_THREAD_CALL,
.mpd_invoke = invoke,
.mpd_queue = MPSC_QUEUE_INITIALIZER(dq->mpd_queue),
.mpd_chain = { MPSC_QUEUE_NOTQUEUED_MARKER },
};
dq->mpd_call = thread_call_allocate_with_options(
_mpsc_queue_thread_call_drain, dq, pri, THREAD_CALL_OPTIONS_ONCE);
}
/* nested queues */
void
mpsc_daemon_queue_nested_invoke(mpsc_queue_chain_t elm,
__unused mpsc_daemon_queue_t tq)
{
mpsc_daemon_queue_t dq;
dq = mpsc_queue_element(elm, struct mpsc_daemon_queue, mpd_chain);
_mpsc_daemon_queue_drain(dq, NULL);
}
static void
_mpsc_daemon_queue_nested_wakeup(mpsc_daemon_queue_t dq)
{
_mpsc_daemon_queue_enqueue(dq->mpd_target, &dq->mpd_chain);
}
void
mpsc_daemon_queue_init_with_target(mpsc_daemon_queue_t dq,
mpsc_daemon_invoke_fn_t invoke, mpsc_daemon_queue_t target)
{
*dq = (struct mpsc_daemon_queue){
.mpd_kind = MPSC_QUEUE_KIND_NESTED,
.mpd_invoke = invoke,
.mpd_target = target,
.mpd_queue = MPSC_QUEUE_INITIALIZER(dq->mpd_queue),
.mpd_chain = { MPSC_QUEUE_NOTQUEUED_MARKER },
};
}
/* enqueue, drain & cancelation */
static void
_mpsc_daemon_queue_drain(mpsc_daemon_queue_t dq, thread_t self)
{
mpsc_daemon_invoke_fn_t invoke = dq->mpd_invoke;
mpsc_queue_chain_t head, cur, tail;
mpsc_daemon_queue_state_t st;
again:
/*
* Most of the time we're woken up because we're dirty,
* This atomic xor sets DRAINING and clears WAKEUP in a single atomic
* in that case.
*
* However, if we're woken up for cancelation, the state may be reduced to
* the CANCELED bit set only, and then the xor will actually set WAKEUP.
* We need to correct this and clear it back to avoid looping below.
* This is safe to do as no one is allowed to enqueue more work after
* cancelation has happened.
*
* We use `st` as a dependency token to pair with the release fence in
* _mpsc_daemon_queue_enqueue() which gives us the guarantee that the update
* to the tail of the MPSC queue that made it non empty is visible to us.
*/
st = os_atomic_xor(&dq->mpd_state,
MPSC_QUEUE_STATE_DRAINING | MPSC_QUEUE_STATE_WAKEUP, dependency);
assert(st & MPSC_QUEUE_STATE_DRAINING);
if (__improbable(st & MPSC_QUEUE_STATE_WAKEUP)) {
assert(st & MPSC_QUEUE_STATE_CANCELED);
os_atomic_andnot(&dq->mpd_state, MPSC_QUEUE_STATE_WAKEUP, relaxed);
}
os_atomic_dependency_t dep = os_atomic_make_dependency((uintptr_t)st);
while ((head = mpsc_queue_dequeue_batch(&dq->mpd_queue, &tail, dep))) {
mpsc_queue_batch_foreach_safe(cur, head, tail) {
os_atomic_store(&cur->mpqc_next,
MPSC_QUEUE_NOTQUEUED_MARKER, relaxed);
invoke(cur, dq);
}
}
if (self) {
assert_wait((event_t)dq, THREAD_UNINT);
}
/*
* Unlike GCD no fence is necessary here: there is no concept similar
* to "dispatch_sync()" that would require changes this thread made to be
* visible to other threads as part of the mpsc_daemon_queue machinery.
*
* Making updates that happened on the daemon queue visible to other threads
* is the responsibility of the client.
*/
st = os_atomic_andnot(&dq->mpd_state, MPSC_QUEUE_STATE_DRAINING, relaxed);
/*
* A wakeup has happened while we were draining,
* which means that the queue did an [ empty -> non empty ]
* transition during our drain.
*
* Chances are we already observed and drained everything,
* but we need to be absolutely sure, so start a drain again
* as the enqueuer observed the DRAINING bit and has skipped calling
* _mpsc_daemon_queue_wakeup().
*/
if (__improbable(st & MPSC_QUEUE_STATE_WAKEUP)) {
if (self) {
clear_wait(self, THREAD_AWAKENED);
}
goto again;
}
/* dereferencing `dq` past this point is unsafe */
if (__improbable(st & MPSC_QUEUE_STATE_CANCELED)) {
thread_wakeup(&dq->mpd_state);
if (self) {
clear_wait(self, THREAD_AWAKENED);
thread_terminate_self();
__builtin_unreachable();
}
}
}
static void
_mpsc_daemon_queue_wakeup(mpsc_daemon_queue_t dq)
{
switch (dq->mpd_kind) {
case MPSC_QUEUE_KIND_NESTED:
_mpsc_daemon_queue_nested_wakeup(dq);
break;
case MPSC_QUEUE_KIND_THREAD:
case MPSC_QUEUE_KIND_THREAD_CRITICAL:
_mpsc_queue_thread_wakeup(dq);
break;
case MPSC_QUEUE_KIND_THREAD_CALL:
_mpsc_queue_thread_call_wakeup(dq);
break;
default:
panic("mpsc_queue[%p]: invalid kind (%d)", dq, dq->mpd_kind);
}
}
static void
_mpsc_daemon_queue_enqueue(mpsc_daemon_queue_t dq, mpsc_queue_chain_t elm)
{
mpsc_daemon_queue_state_t st;
if (mpsc_queue_append(&dq->mpd_queue, elm)) {
/*
* Pairs with the acquire fence in _mpsc_daemon_queue_drain().
*/
st = os_atomic_or_orig(&dq->mpd_state, MPSC_QUEUE_STATE_WAKEUP, release);
if (__improbable(st & MPSC_QUEUE_STATE_CANCELED)) {
panic("mpsc_queue[%p]: use after cancelation", dq);
}
if ((st & (MPSC_QUEUE_STATE_DRAINING | MPSC_QUEUE_STATE_WAKEUP)) == 0) {
_mpsc_daemon_queue_wakeup(dq);
}
}
}
void
mpsc_daemon_enqueue(mpsc_daemon_queue_t dq, mpsc_queue_chain_t elm,
mpsc_queue_options_t options)
{
if (options & MPSC_QUEUE_DISABLE_PREEMPTION) {
disable_preemption();
}
_mpsc_daemon_queue_enqueue(dq, elm);
if (options & MPSC_QUEUE_DISABLE_PREEMPTION) {
enable_preemption();
}
}
void
mpsc_daemon_queue_cancel_and_wait(mpsc_daemon_queue_t dq)
{
mpsc_daemon_queue_state_t st;
assert_wait((event_t)&dq->mpd_state, THREAD_UNINT);
st = os_atomic_or_orig(&dq->mpd_state, MPSC_QUEUE_STATE_CANCELED, relaxed);
if (__improbable(st & MPSC_QUEUE_STATE_CANCELED)) {
panic("mpsc_queue[%p]: cancelled twice (%x)", dq, st);
}
if (dq->mpd_kind == MPSC_QUEUE_KIND_NESTED && st == 0) {
clear_wait(current_thread(), THREAD_AWAKENED);
} else {
disable_preemption();
_mpsc_daemon_queue_wakeup(dq);
enable_preemption();
thread_block(THREAD_CONTINUE_NULL);
}
switch (dq->mpd_kind) {
case MPSC_QUEUE_KIND_NESTED:
dq->mpd_target = NULL;
break;
case MPSC_QUEUE_KIND_THREAD:
case MPSC_QUEUE_KIND_THREAD_CRITICAL:
dq->mpd_thread = NULL;
break;
case MPSC_QUEUE_KIND_THREAD_CALL:
thread_call_cancel_wait(dq->mpd_call);
thread_call_free(dq->mpd_call);
dq->mpd_call = NULL;
break;
default:
panic("mpsc_queue[%p]: invalid kind (%d)", dq, dq->mpd_kind);
}
dq->mpd_kind = MPSC_QUEUE_KIND_UNKNOWN;
}
#pragma mark deferred deallocation daemon
static struct mpsc_daemon_queue thread_deferred_deallocation_queue;
void
thread_deallocate_daemon_init(void)
{
kern_return_t kr;
kr = _mpsc_daemon_queue_init_with_thread(&thread_deferred_deallocation_queue,
mpsc_daemon_queue_nested_invoke, MINPRI_KERNEL,
"daemon.deferred-deallocation", MPSC_QUEUE_KIND_THREAD_CRITICAL);
if (kr != KERN_SUCCESS) {
panic("thread_deallocate_daemon_init: creating daemon failed (%d)", kr);
}
}
void
thread_deallocate_daemon_register_queue(mpsc_daemon_queue_t dq,
mpsc_daemon_invoke_fn_t invoke)
{
mpsc_daemon_queue_init_with_target(dq, invoke,
&thread_deferred_deallocation_queue);
}